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ABSTRACT

Clinical genetics is increasingly recognized as an important area within nephrology care. Clinicians require awareness of
genetic kidney disease to recognize clinical phenotypes, consider use of genomics to aid diagnosis, and inform
treatment decisions. Understanding the broad spectrum of clinical phenotypes and principles of genomic sequencing is
becoming increasingly required in clinical nephrology, with nephrologists requiring education and support to achieve
meaningful patient outcomes. Establishment of effective clinical resources, multi-disciplinary teams and education is
important to increase application of genomics in clinical care, for the benefit of patients and their families. Novel
applications of genomics in chronic kidney disease include pharmacogenomics and clinical translation of polygenic risk
scores. This review explores established and emerging impacts and utility of genomics in kidney disease.
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INTRODUCTION ing genomics into everyday clinical care [4]. Advances in ge-
nomics have led to improvements in clinical diagnosis that
are key to advancing nephrological care. Integrating genomics
into clinical nephrology has health economic benefits through
improving diagnostic work-up, avoidance of kidney biopsy,
rationalizing treatment decisions, and informing family screen-
ing [4-6]. The complex interplay of genetic and environmen-
tal factors is exemplified in kidney disease, an area where un-
derstanding polygenic traits and pharmacogenomics can in-
form personalized medicine. In synthesizing recent literature
(Methods S1, see online supplementary material), this review
discusses the impact and utility of genomics in genetic kid-
ney disease, challenges in integrating genomics into clinical
medicine, and areas for future research.

Integrating genomics into clinical practice enhances clinical di-
agnosis, identifies potential treatment strategies, and improves
awareness of genetic kidney disease (GKD) to progress pa-
tient outcomes. Combining clinical nephrology with advances
in genomics to improve diagnostics in chronic kidney disease
(CKD) has direct impacts on individuals and their families.
GKD is variably but substantially prevalent across adult and
paediatric populations, with significant clinical heterogeneity
across disease phenotypes (Fig. 1) [1-3]. The ability to accu-
rately diagnose affected patients informs prognosis, treatment
decisions, reproductive options, and screening of at-risk fam-
ily members, highlighting the ongoing importance of integrat-

Received: 9.10.2023; Editorial decision: 12.2.2024

© The Author(s) 2024. Published by Oxford University Press on behalf of the ERA. This is an Open Access article distributed under the terms of the Creative
Commons Attribution-NonCommercial License (https:/creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution,
and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

1

20Z AInf 2o uo} Zreel9l/ey0oels/e/ L L /g3re/Mo/u0d°ano oW ‘sapy wouy jumoQ
Gzoz Ainp zo uo 1sanb Aq 9//SY09eIS/S// L/ /Mo/woo dno-olwapese//:sd 0.} POPEOJUMO LINICAL IDNEY |OURNAL


https://academic.oup.com/
https:/doi.org/10.1093/ckj/sfae043
https://orcid.org/0000-0002-8752-2551
mailto:j
mailto:ulia.jefferis@health.qld.gov.au
mailto:andrew.mallett@health.qld.gov.au
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae043#supplementary-data
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

2 | ] Jefferis and A. Mallett

Congenital anomalies of kidne

and urinary tract
* Diagnostic yield: 1.3-72%

Cystic kidney disease
+ Diagnostic yield:
o Atypical: 60%
o Typical:80-93.1%

Complement requlation disorders

« Diagnostic yield
o C3GN: 25%

o Atypical haemolytic uraemic

syndrome: 21.6-61%

Glomerular diseases
« Diagnostic yield:
o Nephrotic syndrome
11.1-51.0%
o Other: 14.1-90.0%

Nephrolithiasis
* Diagnostic yield:
7.2-37.5%

Tubulointerstitial kidney disease
« Diagnostic yield
o ADTKD: 31-62.5%
o Tubulopathies: 26.0-71.9%

Mixed kidney disease
« Diagnostic yield: 4.0-72.8%

Benefits Impacts Utility
» Clinical diagnosis e Improve patient centred « Cost savings - particularly in
» Guides therapeutic decisions outcomes glomerular disease
* Reproductive options ¢ Reduce diagnostic delays » Avoidance of kidney biopsy
» Benefits to broader family » Targets for future research « Screening at risk family
* Potential for personalized members
medicine o Live-related kidney donation

Figure 1: Clinical applications of genetic testing strategies. The diagnostic yield of genetic diagnosis depends on the clinical phenotype of kidney disease. The benefits
of diagnostic testing have direct patient impacts and broader associations. Image made with BioRender.

GENETIC KIDNEY DISEASE

Advances in genomics for genetic kidney disease have become
an integral component of nephrology with direct patient im-
pacts. GKD are well-described, and understanding their genetic
basis has broad clinical applications with critical significance in
clinical care and research. Integration of clinical phenotyping
and genetic counselling with advances in genomics is high value
with direct implications for patients, and requires upskilling of
nephrologists to identify suspected cases of GKD [7, 8]. Advances
in genomic sequencing have enabled identification of over 400
clinically relevant kidney genes, with ten key genes accounting
for nearly 50% of GKD [3, 4]. A paediatric cohort of 188 chil-
dren with kidney failure identified a genetic cause of kidney
disease in 39.9%, impacting management decisions in 34.7% of
cases and enabling sequential family testing in 34.7% of fami-
lies [1]. In another paediatric cohort with kidney disease, whole-
exome sequencing (WES) was performed in those with a fam-
ily history, strong clinical suspicion of genetic kidney disease, or
where genetic result would impact management, establishing
a genetic diagnosis in 37.1% of patients [2]. The prevalence of

GKD in the adult population is markedly more varied depend-
ing on the characteristics of the population studied, and cer-
tain phenotypes such as ciliopathies, cystic kidney disease (47.7-
93.1%), and glomerulopathy (11.1-90.0%) have higher diagnostic
yields than congenital anomalies of the kidney and urinary tract
(CAKUT; Fig. 1, Table 1) [3, 9].

Given the broad range of genetic causes underpinning
clinical disorders, gene panels (engineered or virtual) based on
clinical phenotypes have been developed for Alport syndrome,
complement mediated disorders, CAKUT, glomerulopathy,
cystic kidney disorders, and tubulopathies. The clinical genome
resource (ClinGen) has developed a framework to evaluate the
evidence supporting a gene-disease association from ‘no re-
ported evidence’, ‘limited’, ‘moderate’, ‘strong’, and ‘definitive’,
to guide inclusion of genes on panels [10, 11]. An important
aspect of gene panels is regular review to ensure up-to-date,
clinically relevant information [12, 13]. Two resources are Pan-
elApp Australia (https://panelapp.agha.umccr.org/) and ClinGen
Kidney Disease Clinical Domain Working Group (CDWG; https://
clinicalgenome.org/working-groups/clinical-domain/clingen-
kidney-disease-clinical-domain-working-group/), which are
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curated by expert clinicians and scientists [14, 15]. Virtual
panel analyses are applied to genomic data from whole exome
or genome sequencing, where the coding or entire genome,
respectively, is sequenced and variants in the genes of the panel
are reviewed. Gene panels are limited as they require regular
updates to stay current and are not cost effective in some
diseases, where exome sequencing may be more appropriate.
The rapid expansion in knowledge requires ongoing review
and validation to ensure clinicians have updated, accurate
information. The ClinGen Kidney Disease CDWG supported by
the National Institutes of Health was established to support
aggregation of genomic data, curation of genetic variation,
dissemination of tools, standardization, and to evaluate and
improve integration of genomics into clinical practice [7,
15-17]. This ensures standardization of clinical genomics,
translation into practice, and application of the American
College of Medicine and Genetics criteria (ACMG) for variant
interpretation [18].

Impact on clinical practice

Integrating genomics into mainstream nephrology practice has
direct and indirect impacts for patients and families. Genomic
testing offers diagnostic clarity for patients and potential to
avoid investigations such as diagnostic kidney biopsy, guide
screening programs and inform treatment decisions [9, 19]. Ge-
netic testing can result in re-classification of diagnosis in 9.3-
13% of cases such as reclassifying dominant to recessive disor-
ders in cystic kidney disease or reclassifying clinical diagnosis
such as recognizing FSGS as Alport syndrome, directly impacting
patient care [1, 20, 21]. Recent evidence shows genomics is im-
portant to help clarify diagnosis in cases where kidney biopsy
is inconclusive [22]. Treatment decisions include immunosup-
pression, renin-angiotensin blockade strategies, and screening
for associated manifestations such as hearing involvement [9].
Integrating genomics early into clinical practice and the diag-
nostic journey will enable better patient outcomes and person-
alized care.

Genetic testing in CKD in practice

CKD clinics cover a heterogenous population with a variety
of disease processes driving kidney impairment, relying on
nephrologists to select possible cases of GKD and implement
appropriate genetic testing. Nephrologists should consider GKD,
particularly in those with a young age, family history, and extra-
kidney features such as hearingloss, gout, diabetes, retinitis pig-
mentosa, and liver disease, though there are many varied pre-
sentations where genetic testing can be appropriate [20, 23, 24].
A phenotype-first approach for genetic testing provides a frame-
work to identify potential GKD cases. Current dogma classifies
GKD into phenotypes including cystic kidney disease, glomeru-
lopathies, tubulopathies, tubulointerstitial disease, complement
disorders, and CKD of unknown aetiology [1, 23, 25]. Clinical as-
sessment and phenotyping enables clinicians to recognize dis-
ease patterns associated with forms of GKD and consider ge-
nomic testing. Phenotype-directed genetic testing focuses on
understanding the nuances of genetic testing in each area cate-
gory, including likelihood of positive test result, and specific lim-
itations in current sequencing strategies such as limitations in
APDKD testing or limitations in MUC1 for autosomal dominant
tubulointerstitial kidney disease (ADTKD) [26, 27]. A genomics-
first approach for patients with suspected GKD utilizes broader
exon-based panel testing, with analysis interpreted within the
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clinical context. This genomics-first approach broadens genetic
testing from phenotype-specific testing and can improve diag-
nostic yields [24, 28-30]. Genetic variants in Alport-associated
genes, COL4A3-5, have been detected in a broad array of clini-
cal phenotypes including glomerular diseases such as FSGS or
IgA nephropathy, congenital disorders including CAKUT, vascu-
lar diseases such as hypertensive nephropathy and unknown
cause of CKD, which may have been missed with a phenotype-
first search strategy [23, 24, 28, 31, 32]. Genomics-first strategies
carry the risk of detecting additional findings such as APOL1
allele status or cancer risk genes such as BRCA1/2, which re-
quire additional counselling to patients [28]. Nephrologists re-
quire an understanding of the rationale for different genomic
testing strategies in clinical practice.

Cystic kidney disease

In the adult population, autosomal dominant polycystic kidney
disease (ADPKD) is a well-known cause of kidney failure, ac-
counting for 6.7-9.8% of patients receiving kidney replacement
therapy [33, 34]. Genetic testing has enabled clarification of diag-
nosis, with the ability to distinguish phenocopies and to provide
prognostic information and is becoming part of mainstream
clinical care, with diagnostic yields amongst typical cases of
80.0-93.1% [3, 35]. Common genes in which variation is asso-
ciated with ADPKD are PKD1 and PKD2, with several pheno-
copy disorders that are important to distinguish including het-
erozygous variants in GANAB, IFT140, ALG5, ALG8, ALG9, SEC61B,
PKHD1, PRKCSH, SEC63, DNAJB11, and HNF1B [36, 37]. DNAJB11-
associated disease presents with kidney cysts and overlapping
ADTKD, distinguished by later onset of kidney failure [38]. Re-
nal cysts and diabetes (RCAD) is associated with HNF1B muta-
tions causing cystic kidneys with associated diabetes, hypomag-
nesemia, pancreatic, and liver abnormalities warranting distinct
management [39]. Development of a specific disease-modifying
therapeutic intervention, tolvaptan, can delay progression of
kidney failure in ADPKD [40]. Diagnosis of ADPKD enables oppor-
tunity within families for early diagnosis, targeted genetic coun-
selling, clinical prognostication, and genomic diagnosis can fa-
cilitate screening of at-risk relatives, living-related kidney donor
work-up and reproductive planning [35].

Glomerulopathies

Genetic forms of glomerular diseases have highly variable
clinical presentations including haematuria, proteinuria, ab-
normal glomerular basement membrane, congenital nephrotic
syndrome, non-immune glomerulopathy, and more. Studying
early-onset CKD found the highest diagnostic yield in glomeru-
lar phenotypes, with 80/131 (61%) with a confirmed genetic diag-
nosis, where 58/131 (73%) had positive family history and 30/80
(36%) had extra-renal manifestations [30]. An adult cohort with
biopsy-proven FSGS identified 42.9% with a genetic disorder, par-
ticularly in those with absence of nephrotic syndrome, family
history, and female gender [41]. In a systematic review, 11.1-
51.0% of patients with nephrotic syndrome had a genetic diag-
nosis and other glomerulopathies had diagnostic yields of 14.1-
91.0%, associated with family history, consanguinity, and age
of onset [3]. Alport syndrome (COL4A3-5) genes were frequently
identified, highlighting the clinical heterogeneity across Alport
syndrome. X-linked Alport syndrome is associated with hem-
izygous COL4A5 mutations in males, but female COL4A5 het-
erozygous variants may have haematuria, proteinuria, hearing
loss, and ocular defects, with risk of kidney failure increasing
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after age 60 years [42]. Considerations for Alport syndrome test-
inginclude clarification of unexplained haematuria and protein-
uria, even with negative family history, in patients with focal
segmental glomerulosclerosis (FSGS), familial IgA nephropathy,
and kidney failure of unknown cause [30, 43]. COL4A3-5 mu-
tations account for over 50% of the genetic diagnoses in FSGS
and should especially be considered with extra-renal features
and family history [31, 44]. MYH9 gene mutations can mimic Al-
port syndrome, with CKD, hearing loss, giant platelets and liver
dysfunction, and genetic diagnosis can avoid unnecessary treat-
ments including splenectomy or immunosuppression [45]. Un-
derstanding GKD inheritance clarifies risk to family members.
Recessive disorders such as Finnish Congenital Nephrotic syn-
drome have NPHS1 antenatal screening in high-risk populations
[46].

Tubulopathies

The complexity of kidney pathophysiology is highlighted by mu-
tations in kidney tubular and related transporters in diseases
such as Bartter syndrome, Gitelman syndrome, primary hyper-
oxaluria, cystinosis, cystinuria, and Dent disease [47]. Genetic
testing clarifies diagnosis and disease associations, such as hy-
pophosphataemic rickets association with Dent disease [48].
Cystinosis specific treatment can stabilize kidney function, with
potential gene therapy [49, 50]. In rarer disorders, the rare stone
consortium (https://www.rarekidneystones.org/) compiles cases
to coordinate education and research, such as adenine phos-
phoribosyltransferase deficiency, a rare cause of kidney stones
and kidney failure amenable to xanthine oxidase inhibitors [51].
Guidelines for the clinical detection and management of dis-
orders such as Bartter syndrome have been developed to sup-
port antenatal and prenatal management, recommendations
for genetic testing and management [52]. Understanding tubu-
lopathies has expanded our knowledge of complex kidney phys-
iology, and underpins our understanding of diuretics.

Tubulointerstitial disease

Tubulointerstitial disease is characterized by bland urinary sed-
iment and impaired kidney function, with/without family his-
tory. Kidney biopsy reveals non-specific interstitial fibrosis and
tubular atrophy, though protein accumulation may be detected
with special staining [53]. Common genetic causes of ADTKD
include UMOD, MUC1, HNF1B, SEC61A1, DNAJB11, and REN, and
possible extra-renal manifestations such as gout in ADTKD-
UMOD [3]. Recognizing ADKTD is important due to onset of kid-
ney disease in the second to fourth decades of life [54]. An au-
tosomal recessive cause of kidney failure is nephronophthisis,
common in paediatric populations and increasingly recognized
amongst adults; in a series of 5606 patients with adult-onset kid-
ney failure, 26 (0.5%) had homozygous deletions in NPHP1, with
88% of them being previously attributed to unknown CKD [55].
Tubulointerstitial diseases can be challenging diagnostically in
the absence of specific pathognomonic clinical or histopatho-
logic features, so clinician awareness of the potential diagnosis
is paramount, especially given potential novel targeted thera-
pies [56].

Complement disorders

Atypical haemolytic uraemic syndrome (aHUS) and C3 glomeru-
lopathy (C3GN) are two distinct forms of GKD potentially un-
derpinned by genetic mutations in the alternate complement

regulatory pathway. Genetic diagnoses in aHUS were initially re-
ported between 51-61% in a French registry population though
more recent studies found lower diagnostic yields: 21.6% in a
Korean paediatric population; 39% in a global registry; 40.9% in
a pregnancy registry; and 46% in a Japanese study [57-62]. C3GN
has a genetic diagnosis in up to 20-25% of cases, with mutations
in C3, CFB, CFH, CFI, CFHRS having a clear association [63-65]. Re-
gional variants occur in these genes, such as CFHR5 in familial
kidney disease with Cypriot ancestry [64]. These disorders re-
quire a ‘second hit’ complement amplifying event such as in-
fection or pregnancy, causing complement pathway activation.
Confirming genetic diagnosis enables specific treatment with
complement blockade, eculizumab, especially peri-transplant
[66]. Penetrance in aHUS family members is variable, between
10-70%, impacted by type of mutation, affected siblings, and age
[67, 68].

Unknown kidney disease

Advances in genomic testing have improved diagnosis in CKD
of unknown cause. Whole-exome sequencing (WES) in an older
population of kidney disease, 28.3% with positive family history,
found a genetic diagnosis for unknown CKD in 48/281 (17.1%) of
patients [24]. The Irish Kidney Gene project performed WES in
unknown CKD, without family history, and identified a causative
gene in 29.7% [20]. Genetics may inform diagnosis instead of kid-
ney biopsy [19, 22]. Advances in genomic testing for GKD disor-
ders should be considered to aid diagnosis, even without family
history.

TRANSPLANTATION

Genomic diagnosis has several implications for kidney trans-
plantation. Firstly, a genomic diagnosis can impact manage-
ment strategies in specific disease states, such as primary hy-
peroxaluria which previously required consideration of dual
liver-kidney transplantation, and intensive dialysis prior to
transplantation to prevent recurrence, though recent advances
in treatment for primary hyperoxaluria, lumasiran and ne-
dosiran, can be considered [1, 69, 70]. Complement disorders
with an underlying mutation direct use of eculizumab to pre-
empt recurrence and improve transplantation [71]. In low-
resource settings, genetic diagnosis in congenital nephrotic syn-
drome may provide reassurance disease recurrence is low-risk
after kidney transplant [72]. Genomic testing enables screening
of potential live-related donors across a broad spectrum of dom-
inant, recessive, and X-linked disorders given potential for vari-
able expression and penetrance [43]. In cystic kidney disease, re-
classification to recessive disorders or negative genetic testing
can enable relatives to donate [73]. Performing broader genomic
testing panels can find unexpected results, such as APOL1 or
complement disorder genes, that unknowingly exclude prospec-
tive donors [74]. Incorporating genetic diagnosis in kidney trans-
plant can benefit patients and prevent harm to potential donors,
requiring additional research and development of specific guide-
lines for implementation in transplantation practice [75, 76].

TESTING STRATEGIES

Advances in sequencing technology have improved genetic di-
agnosis with variable testing strategies used across the spec-
trum of kidney disease (Fig. 2). As an overarching principle,
we primarily espouse a phenotype-driven approach to any
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Figure 2: Comparison of genomic diagnostic techniques and applicability in genetic kidney disease. Image made with BioRender.

genomic testing strategy for a case of suspected GKD. Further,
it is important to ensure that a clinical question underpins a ge-
nomic testing strategy to maximize patient benefit and optimize
outcomes. Informed consent and its documentation is an abso-
lute requirement that founds the principle that genetic coun-
selling is undertaken around a genomic testing strategy. The
ordering clinician is encouraged to deliver the eventual result
wherever possible, for continuity in patient care in these com-
plex topics.

Certain GKD are due to missing or additional genetic ma-
terial, termed copy number variants (deletions/duplications)
which are best detected with specific assays (micro-array or mul-
tiplex ligand probe amplification) and are important for certain
genes, such as HNF1B, NPHP1 and in congenital kidney mal-
formation including CAKUT [3, 39, 55, 77, 78]. Another testing
approach is to develop assays for sets of genes of interest for

a phenotype of interest (targeted sequence analysis) that has
high diagnostic yields of 62-78% in selected patient cohorts with
clear clinical phenotypes for CKD, particularly Alport syndrome
and ADPKD, and is advantageous in offering targeted, effec-
tive testing at a lower cost [29, 30]. WES sequences the coding
portion of the genome (~2%) with analysis restricted to virtual
gene panels for CKD. This approach has significant variation
in diagnostic yields in CKD depending on the population, from
9.1% in dialysis patients to 51.5% in highly selected patients,
and does not cover intronic or structural variants [20, 24, 79].
Whole-genome sequencing (WGS) sequences both the coding
and non-coding genome, which may improve genetic diagno-
sis, including intronic variants, with risk of additional findings at
higher costs [80]. The value of this expanded testing to improve
diagnostic yield is uncertain in CKD, with further cohort data
awaited, including results from the HIDDEN study [81]. Genomic
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sequencing strategies can determine genetic diagnosis in GKD
and are established in clinical practice.

Many cases of clinical GKD that do not have a genomic diag-
nosis despite WES strategies require further testing strategies.
MUCI1 is a common form of ADTKD that is difficult to detect on
WES due to high regions of CG repeats, and requires dedicated
genetic sequencing or mass-spectrometry, though recent advan-
tages in long-read sequencing have potential [27, 82]. In ADPKD,
PKD1 is difficult to sequence using WES due to pseudogenes,
with only 50% of mutations successfully identified on standard
WES, though this is now improving with newer WES approaches
[36, 83]. WGS techniques diagnosed 81% of typical ADPKD cases
and 60% of atypical ADPKD [26]. Short- and long-read sequenc-
ing with RNA studies found a genetic diagnosis in 89% of ADPKD
with prior negative genetic testing, including intronic splice site
mutations not detected on exome sequencing [84]. Incorporat-
ing WGS into testing strategies improves the diagnostic yield in
suspected genetic CKD populations to 51.4%, particularly to find
genetic diagnosis in rare genetic diseases, though they may find
unexpected additional findings [20, 85, 86]. Mitochondrial disor-
ders cause a broad spectrum kidney disease and require clinical
suspicion for specific testing, especially considering the unique
inheritance modality and requisite genetic counselling [87-89].
Mosaic disorders such as tuberous sclerosis complex have vari-
able levels of gene variants detected in blood, making detection
difficult. Improvements in technology with targeted sequenc-
ing of the TSC1 and TSC2 genes at greater read depths has im-
proved diagnostic capabilities [90]. Overall, there is no ‘best test’
for diagnosing GKD, and clinicians must understand suitability
of each testing type for specific diseases.

CHALLENGES AND FUTURE DIRECTIONS

Integrating genomics into clinical practice to provide tailored
clinical care enables personalized medicine in nephrology. The
nephrologist is pivotal in formulating clinical diagnosis in CKD
and to consider genetic causes. The treating clinician is well
placed to discuss the merits of genetic testing including impact
on management, broader family implications, and reproductive
options, and understand how these decisions may change over
a patient’s lifespan. In ADPKD, for example, while clinical diag-
nosis can be made based on ultrasound criteria, genetic confir-
mation can provide prognostic information using the PROPKD
score, clarify atypical cases, inform additional screening, and
guide reproductive decision making [38, 91]. Each patient will
have a different experience and perceived value of the personal
benefits of genetic testing and broader implications to their fam-
ily, with their nephrologist well placed to integrate these into
a patient’s individualized clinical paradigm. The KDIGO contro-
versies conference on genomics in CKD identified lack of edu-
cation as a key barrier for nephrologists to implement genetics
into practice [92]. The ERA has further identified a lack of ge-
nomic literacy, lack of perceived benefit, difficulties with select-
ing testing strategy, uncertainty around variant interpretation,
high cost, and counselling issues [4]. Survey and interview data
highlights perceived barriers to implanting genetics in practice
including identifying correct patients, selecting the correct test,
interpreting results, following up with families, discussing re-
sults with patients and families, integrating results into clinical
care, ordering the test, and consenting for genetic tests [93, 94].
Strategies to overcome this prioritize education to nephrologists
to empower incorporation of clinical genetics and genomics into

contemporary clinical practice, increased funding and access to
genomic champions [4, 95]. Resources such as genomic decision
aids, embedding genetic counsellors into mainstream nephrol-
ogy clinics, and genetic stewardship programs are all avenues
to improve mainstream nephrology access to clinical genomics.
Potential avenues to overcome this include development of kid-
ney genetics clinics combining nephrologists, geneticists, ge-
netic counsellors, and patients to streamline and support ge-
netic testing [96].

Health economics

The direct healthcare implications for genetic testing are
paramount for patients and families, with broader impacts
for health care. In selected patients, particularly children with
glomerulopathy, early implementation of genetic testing can de-
termine the diagnosis and prevent invasive testing [19, 97]. Eco-
nomic analysis shows early integration of WES in children can
be cost saving, particularly through avoidance of biopsy [97].
Health economic evaluation of genetic diagnosis in kidney dis-
ease identified short- and long-term cost benefit, largely driven
by adults and children with glomerular disease. The cost ben-
efit in a genetic diagnosis of atypical cystic kidney disease is
through avoiding tolvaptan [5]. Modelling genetic testing to diag-
nose kidney disease suggests early integration in the work-flow
process, in targeted patients, can reduce costs by 20%, with ac-
tual cost savings in selected patients reduced by 41% [6]. Genetic
testing in adults has led to the discovery of more atypical or un-
usual presentations of typically paediatric disease, with prob-
ably similar benefits in treatment costs and quality of life. Ge-
netic testing can inform diagnosis in diseases such as FSGS and
identify cases unlikely to respond to immunosuppression [41].
Cascade testing can identify family members to direct preventa-
tive health measures and can avoid screening in negative family
members. Kidney failure has disproportionately high health care
costs, with annuals costs for home dialysis of $AUD49,137 and
$AUD79,072 for hospital dialysis, which are likely more costly
than pre-implantation genetic diagnosi,s which substantially re-
duces the risk of affected children. This is increasingly part of
clinical practice for families with established GKD; however, a
cost analysis has not been done [98, 99]. With the reducing costs
of genomic testing, and expanding knowledge of genomic test-
ing, a ‘genomic first’ approach has the potential to offer cost
savings and earlier diagnosis, and may provide clearer diagnosis
than kidney biopsy [3, 19].

The direct impacts of clinical and genetic diagnosis in GKD
are unique to each patient, including potential psychosocial im-
pacts. Research in this space is limited, with most studies fo-
cusing on clinical results, and more work is needed to priori-
tize patient outcomes. The SONG-PKD working group noted that
ADPKD had a heightened awareness of kidney disease due to
seeing the disease across generations, which needs to be ap-
preciated by clinicians [100]. There are also likely non-tangible
benefits for genetic testing including alleviating anxiety, reduc-
tion in unnecessary testing, and workforce participation. Qual-
itative analysis focusing on consumer perspectives in patients
with ADPKD highlighted the perceived benefit of genetic test-
ing to inform their family members, which is likely to hold
true in other forms of GKD [101]. Patients with rarer forms
of inherited kidney disease, especially in children, face a long
diagnostic odyssey. Genomic testing potentially shortens the
time frame to a diagnosis in these patients, though not all will
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Figure 3: Process of generating and developing polygenic risk scores (PGS) into clinical practice and potential clinical applications. Image made with BioRender.

receive an answer [102]. The perceived benefit of genomic test-
ingis highly individualized and perceived risk and benefits need
to be evaluated by patients and their clinicians. Genomic testing
requires shared decision making between the clinician and pa-
tient with a focus on disclosure, clinical benefits, psychosocial
impact around guilt, employment impacts, and unexpected sec-
ondary findings.

Assessing clinically relevant impacts of genomics in CKD
is important to guide integration into clinical practice, but is
difficult to standardize given significant heterogeneity across
key stakeholders: patients, families, and clinicians. Developing
a utility ontology specific for GKD will enable standardization
across research to enhance analysis of results, and to establish
clear research goals with demonstrable outcomes from integrat-
ing genomics in clinical practice [103].

Polygenic risk scores

CKD can be a complex trait with both environmental and poly-
genic determinants, distinct from mendelian forms of GKD.
Polygenic risk scores (PGS) capture multiple small genetic fac-
tors and aggregate relevant genetic loci for kidney disease from
genome-wide association studies (GWAS) into risk scores for
CKD traits, such as eGFR, decline in eGFR, CKD stage, and pro-
teinuria (https://www.pgscatalog.org), and then undergo valida-
tion (Fig. 3) [104]. PGS can stratify patients into high- and low-risk
groups prior to disease development, and evidence shows they
correlate well at a population level; however, individual appli-
cability is unclear [105-111]. PGS have the potential to provide

early information on CKD risk (distinct from mendelian GKD)
where risk can be modified by environment factors, suggest-
ing early intervention in high-risk PGS could prevent, slow, or
change development of CKD. Heritability estimates for kidney
function from family studies are greater than GWAS/PGS stud-
ies, suggesting SNP-derived scores do not capture complexities
such as epigenetic factors [112]. Future applications of PGS in-
clude risk stratification and prognosis, improved diagnostics, se-
lection of high-risk individuals for tailored nephrological inter-
vention, risk in live kidney donation and informing clinical trial
design by selecting those at high risk of CKD progression [105,
113, 114].

There are several novel applications of PGS in clinical
nephrology. PGS for peritoneal dialysis can provide additional in-
formation regarding peritoneal dialysis transporter status [115].
PGS may explain heterogeneity in mendelian GKD, as patients
with ADPKD and high-risk PGS had a 54-fold chance of CKD
compared to 3-fold risk in the low-risk PGS ADPKD group [116].
PGS for kidney disease with substantial heritability like IgA and
membranous nephropathy are being developed and may inform
clinical practice for diagnosis, progression risk, and treatment
responses [113,117]. PGS has the potential to provide targeted in-
formation on risk for CKD in live-donor work-up, which requires
validation in retrospective cohort studies. Post-transplant, PGS
may help stratify risk for skin cancer, post-transplant diabetes or
risk of CMV in high-risk individuals [118-120]. Further research
is necessary prior to PGS integration in clinical care, where po-
tential applications are broad. Future clinical research, refine-
ment, and early implementation may be enabled by greater up-

G20z AInr 2o uo 3sanb Aq zi2z19.2/€7096)s/€// L /3191Le/Bd/Wod dnoolwapede//:sdiy Wolj papeojumoq


https://www.pgscatalog.org

10 | J.Jefferis and A. Mallett

take of genomics, both research and clinical, in nephrology and
CKD settings empowered by digital medical record systems.

Pharmacogenomics

Pharmacogenomics endeavors to provide personalized
medicine, wherein genomic data informs therapeutic decisions,
may be beneficial in CKD management. Many medications
used in kidney medicine have genetic differences underpinning
metabolism, which may guide dosing and drug decisions such
as azathioprine, warfarin, and tacrolimus [121]. Metabolism
of warfarin varies, and metabolic status has been studied to
improve therapeutic outcomes. COAG, a randomized control
trial comparing genotype-based warfarin dosing for CYP2C9
and VKORCI variants with standard-of-care dosing found no
difference in time in therapeutic range, suggesting genotypic
information didn’t translate to clinical benefit [121]. Tacrolimus
metabolism is highly varied, with several genetic factors includ-
ing CYP3A4, CYP3AS5, and p-glycoprotein which require further
research to understand and guide therapy [122]. Hypertension
is a key modifiable risk factors in CKD with hundreds of SNPs
associated with hypertension, each exerting only a small in-
fluence on blood pressure [123]. Identifying specific genotypic
treatments with our current knowledge is challenging. Patients
of African ancestry with hypertension respond better to calcium
channel blockers and hydrochlorothiazide, which is the rec-
ommended first-line treatment in international hypertension
guidelines [124]. The rationale behind this is multi-faceted and
likely represents both environmental factors from differences
in both salt intake and handling to genomic variances in drug
metabolism [125]. Differences in the C825T polymorphism of
the G protein beta (3) subunit predicts blood pressure response
to thiazide treatment, with those with the TT polymorphism,
more common in those of African ancestry, having a small but
significant improvement in blood pressure, of 1 mmHg [126].
Current clinical translation of pharmacogenomics is under-
way. The recently published CKD-PGX feasibility trial aimed to
optimize hypertension management by screening 11 genetic
predictors of pharmacogenomic drug interaction in 335 patients
with hypertension. The study noted those with poorer hyper-
tension control were more likely to have a predicted pharma-
cogenomic drug interaction at the start of the study, such as
CYP2C9-reduced metabolism association with poor losartan re-
sponse and uncontrolled hypertension. Baseline data found 58%
of participants with uncontrolled hypertension had an action-
able genotype, and 36% of nephrology providers changed treat-
ment based on this data. Over one year of follow-up there was
a 4 mmHg systolic blood pressure improvement in the whole
group, and a 14.9 mmHg SBP improvement in those with un-
controlled hypertension. In survey data, 96% of patients reported
that being provided knowledge of their genotype would prompt
them to invest more in their blood pressure control [127, 128].
The GUARDD-US study is currently underway to assess how
knowledge of APOL risk alleles impacts on patient blood pres-
sure control [118]. Another smaller study in 61 patients with CKD
stage 3-5 found 39% of them had possible actionable changes,
with 26 changes made in 20 patients [129]. Integration of the
multigene panel into clinical practice can inform therapy se-
lection and reduce adverse drug reactions [130]. Practical re-
alization of pharmacogenomics requires a multi-disciplinary
approach with pharmacists and nephrologists supported in
genomic upskilling. Genomic predictors of pharmaceutical re-
sponse may be a feasible tool to optimize blood pressure control,
which is an important modifiable risk factor in CKD. An impor-

tant limitation is the lack of pharmacogenomic studies in non-
caucasian populations and to be truly applicable, more research
into impacts of genetic loci in global populations is required.

CONCLUSIONS

Genetics is expanding the field of nephrology to enable better
diagnostics and treatments. Applications of clinical genomics
for CKD have proven diagnostic efficacy and a growing body
of evidence for impact and utility. Understanding genomics in-
cluding differences in sequencing approaches across different
phenotypes of GKD is imperative to improve understanding and
integration into clinical care. Nephrologists face several chal-
lenges in integrating genomics into clinical practice, and require
further education and support to improve patient outcomes.
Further, genetics has the potential through clinical research
to inform future nephrology clinical practice in polygenic dis-
ease and pharmacogenomics, with the ultimate goal to improve
patient outcomes. Developing clear research priorities in con-
junction with key stakeholders is imperative to move the field
forwards and enable iterative utility and impact focused imple-
mentation.
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