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ABSTRACT 

Clinical genetics is increasingly recognized as an important area within nephrology care. Clinicians require awareness of 
genetic kidney disease to recognize clinical phenotypes, consider use of genomics to aid diagnosis, and inform 

treatment decisions. Understanding the broad spectrum of clinical phenotypes and principles of genomic sequencing is 
becoming increasingly required in clinical nephrology, with nephrologists requiring education and support to achieve 
meaningful patient outcomes. Establishment of effective clinical resources, multi-disciplinary teams and education is 
important to increase application of genomics in clinical care, for the benefit of patients and their families. Novel 
applications of genomics in chronic kidney disease include pharmacogenomics and clinical translation of polygenic risk 
scores. This review explores established and emerging impacts and utility of genomics in kidney disease. 
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ing genomics into everyday clinical care [4 ]. Advances in ge- 
nomics have led to improvements in clinical diagnosis that 
are key to advancing nephrological care. Integrating genomics 
into clinical nephrology has health economic benefits through 
improving diagnostic work-up, avoidance of kidney biopsy, 
rationalizing treatment decisions, and informing family screen- 
ing [4 –6 ]. The complex interplay of genetic and environmen- 
tal factors is exemplified in kidney disease, an area where un- 
derstanding polygenic traits and pharmacogenomics can in- 
form personalized medicine. In synthesizing recent literature 
( Methods S1, see online supplementary material) , this review 

discusses the impact and utility of genomics in genetic kid- 
ney disease, challenges in integrating genomics into clinical 
medicine, and areas for future research. 
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NTRODUCTION 

ntegrating genomics into clinical practice enhances clinical di- 
gnosis, identifies potential treatment strategies, and improves 
wareness of genetic kidney disease ( GKD) to progress pa- 
ient outcomes. Combining clinical nephrology with advances 
n genomics to improve diagnostics in chronic kidney disease 
 CKD) has direct impacts on individuals and their families.
KD is variably but substantially prevalent across adult and 
aediatric populations, with significant clinical heterogeneity 
cross disease phenotypes ( Fig. 1 ) [1 –3 ]. The ability to accu-
ately diagnose affected patients informs prognosis, treatment 
ecisions, reproductive options, and screening of at-risk fam- 
ly members, highlighting the ongoing importance of integrat- 
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Figure 1: Clinical applications of genetic testing strategies. The diagnostic yield of genetic diagnosis depends on the clinical phenotype of kidney disease. The benefits 
of diagnostic testing have direct patient impacts and broader associations. Image made with BioRender. 
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ENETIC KIDNEY DISEASE 

dvances in genomics for genetic kidney disease have become 
n integral component of nephrology with direct patient im- 
acts. GKD are well-described, and understanding their genetic 
asis has broad clinical applications with critical significance in 
linical care and research. Integration of clinical phenotyping 
nd genetic counselling with advances in genomics is high value 
ith direct implications for patients, and requires upskilling of 
ephrologists to identify suspected cases of GKD [7 , 8 ]. Advances 
n genomic sequencing have enabled identification of over 400 
linically relevant kidney genes, with ten key genes accounting 
or nearly 50% of GKD [3 , 4 ]. A paediatric cohort of 188 chil- 
ren with kidney failure identified a genetic cause of kidney 
isease in 39.9%, impacting management decisions in 34.7% of 
ases and enabling sequential family testing in 34.7% of fami- 
ies [1 ]. In another paediatric cohort with kidney disease, whole- 
xome sequencing ( WES) was performed in those with a fam- 
ly history, strong clinical suspicion of genetic kidney disease, or 
here genetic result would impact management, establishing 
 genetic diagnosis in 37.1% of patients [2 ]. The prevalence of 
k
KD in the adult population is markedly more varied depend- 
ng on the characteristics of the population studied, and cer- 
ain phenotypes such as ciliopathies, cystic kidney disease ( 47.7–
3.1%) , and glomerulopathy ( 11.1–90.0%) have higher diagnostic 
ields than congenital anomalies of the kidney and urinary tract 
 CAKUT; Fig. 1 , Table 1 ) [3 , 9 ]. 

Given the broad range of genetic causes underpinning 
linical disorders, gene panels ( engineered or virtual) based on 
linical phenotypes have been developed for Alport syndrome,
omplement mediated disorders, CAKUT, glomerulopathy,
ystic kidney disorders, and tubulopathies. The clinical genome 
esource ( ClinGen) has developed a framework to evaluate the 
vidence supporting a gene-disease association from ‘no re- 
orted evidence’, ‘limited’, ‘moderate’, ‘strong’, and ‘definitive’,
o guide inclusion of genes on panels [10 , 11 ]. An important 
spect of gene panels is regular review to ensure up-to-date,
linically relevant information [12 , 13 ]. Two resources are Pan- 
lApp Australia ( https://panelapp.agha.umccr.org/) and ClinGen 
idney Disease Clinical Domain Working Group ( CDWG; https://
linicalgenome.org/working-groups/clinical-domain/clingen-
idney-disease-clinical-domain-working-group/) , which ar e 

https://panelapp.agha.umccr.org/
https://clinicalgenome.org/working-groups/clinical-domain/clingen-kidney-disease-clinical-domain-working-group/
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urated by expert clinicians and scientists [14 , 15 ]. Virtual
anel analyses are applied to genomic data from whole exome
r genome sequencing, where the coding or entire genome,
espectively, is sequenced and variants in the genes of the panel
re reviewed. Gene panels are limited as they require regular
pdates to stay current and are not cost effective in some
iseases, where exome sequencing may be more appropriate.
he rapid expansion in knowledge requires ongoing review 

nd validation to ensure clinicians have updated, accurate 
nformation. The ClinGen Kidney Disease CDWG supported by 
he National Institutes of Health was established to support 
ggregation of genomic data, curation of genetic variation,
issemination of tools, standardization, and to evaluate and 
mprove integration of genomics into clinical practice [7 ,
5 –17 ]. This ensures standardization of clinical genomics,
ranslation into practice, and application of the American 
ollege of Medicine and Genetics criteria ( ACMG) for variant 
nterpretation [18 ]. 

mpact on clinical practice 

ntegrating genomics into mainstream nephrology practice has 
irect and indirect impacts for patients and families. Genomic 
esting offers diagnostic clarity for patients and potential to 
void investigations such as diagnostic kidney biopsy, guide 
creening programs and inform treatment decisions [9 , 19 ]. Ge- 
etic testing can result in re-classification of diagnosis in 9.3–
3% of cases such as reclassifying dominant to recessive disor-
ers in cystic kidney disease or reclassifying clinical diagnosis 
uch as recognizing FSGS as Alport syndrome, directly impacting 
atient care [1 , 20 , 21 ]. Recent evidence shows genomics is im-
ortant to help clarify diagnosis in cases where kidney biopsy
s inconclusive [22 ]. Treatment decisions include immunosup- 
ression, renin-angiotensin blockade strategies, and screening 
or associated manifestations such as hearing involvement [9 ].
ntegrating genomics early into clinical practice and the diag- 
ostic journey will enable better patient outcomes and person- 
lized care. 

enetic testing in CKD in practice 

KD clinics cover a heterogenous population with a variety 
f disease processes driving kidney impairment, relying on 
ephrologists to select possible cases of GKD and implement 
ppropriate genetic testing. Nephrologists should consider GKD,
articularly in those with a young age, family history, and extra-
idney features such as hearing loss, gout, diabetes, retinitis pig-
entosa, and liver disease, though there are many varied pre-
entations where genetic testing can be appropriate [20 , 23 , 24 ].
 phenotype-first approach for genetic testing provides a frame- 
ork to identify potential GKD cases. Current dogma classifies 
KD into phenotypes including cystic kidney disease, glomeru- 
opathies, tubulopathies, tubulointerstitial disease, complement 
isorders, and CKD of unknown aetiology [1 , 23 , 25 ]. Clinical as-
essment and phenotyping enables clinicians to recognize dis- 
ase patterns associated with forms of GKD and consider ge-
omic testing. Phenotype-directed genetic testing focuses on 
nderstanding the nuances of genetic testing in each area cate- 
ory, including likelihood of positive test result, and specific lim-
tations in current sequencing strategies such as limitations in 
PDKD testing or limitations in MUC1 for autosomal dominant 
ubulointerstitial kidney disease ( ADTKD) [26 , 27 ]. A genomics- 
rst approach for patients with suspected GKD utilizes broader 
xon-based panel testing, with analysis interpreted within the 
linical context. This genomics-first approach broadens genetic 
esting from phenotype-specific testing and can improve diag-
ostic yields [24 , 28 –30 ]. Genetic variants in Alport-associated
enes, COL4A3-5 , have been detected in a broad array of clini-
al phenotypes including glomerular diseases such as FSGS or
gA nephropathy, congenital disorders including CAKUT, vascu- 
ar diseases such as hypertensive nephropathy and unknown
ause of CKD, which may have been missed with a phenotype-
rst search strategy [23 , 24 , 28 , 31 , 32 ]. Genomics-first strategies
arry the risk of detecting additional findings such as APOL1
llele status or cancer risk genes such as BRCA1/2 , which re-
uire additional counselling to patients [28 ]. Nephrologists re-
uire an understanding of the rationale for different genomic
esting strategies in clinical practice. 

ystic kidney disease 

n the adult population, autosomal dominant polycystic kidney
isease ( ADPKD) is a well-known cause of kidney failure, ac-
ounting for 6.7–9.8% of patients receiving kidney replacement 
herapy [33 , 34 ]. Genetic testing has enabled clarification of diag-
osis, with the ability to distinguish phenocopies and to provide
rognostic information and is becoming part of mainstream
linical care, with diagnostic yields amongst typical cases of
0.0–93.1% [3 , 35 ]. Common genes in which variation is asso-
iated with ADPKD are PKD1 and PKD2 , with several pheno-
opy disorders that are important to distinguish including het-
rozygous variants in GANAB , IFT140 , ALG5 , ALG8 , ALG9 , SEC61B ,
KHD1 , PRKCSH , SEC63, DNAJB11 , and HNF1B [36 , 37 ]. DNAJB11-
ssociated disease presents with kidney cysts and overlapping
DTKD, distinguished by later onset of kidney failure [38 ]. Re-
al cysts and diabetes ( RCAD) is associated with HNF1B muta-
ions causing cystic kidneys with associated diabetes, hypomag-
esemia, pancreatic, and liver abnormalities warranting distinct 
anagement [39 ]. Development of a specific disease-modifying

herapeutic intervention, tolvaptan, can delay progression of 
idney failure in ADPKD [40 ]. Diagnosis of ADPKD enables oppor-
unity within families for early diagnosis, targeted genetic coun-
elling, clinical prognostication, and genomic diagnosis can fa-
ilitate screening of at-risk relatives, living-related kidney donor
ork-up and reproductive planning [35 ]. 

lomerulopathies 

enetic forms of glomerular diseases have highly variable
linical presentations including haematuria, proteinuria, ab- 
ormal glomerular basement membrane, congenital nephrotic 
yndrome, non-immune glomerulopathy, and more. Studying 
arly-onset CKD found the highest diagnostic yield in glomeru-
ar phenotypes, with 80/131 ( 61%) with a confirmed genetic diag-
osis, where 58/131 ( 73%) had positive family history and 30/80
 36%) had extra-renal manifestations [30 ]. An adult cohort with
iopsy-proven FSGS identified 42.9% with a genetic disorder, par-
icularly in those with absence of nephrotic syndrome, family
istory, and female gender [41 ]. In a systematic review, 11.1–
1.0% of patients with nephrotic syndrome had a genetic diag-
osis and other glomerulopathies had diagnostic yields of 14.1–
1.0%, associated with family history, consanguinity, and age
f onset [3 ]. Alport syndrome ( COL4A3-5) genes were frequently
dentified, highlighting the clinical heterogeneity across Alport 
yndrome. X-linked Alport syndrome is associated with hem-
zygous COL4A5 mutations in males, but female COL4A5 het-
rozygous variants may have haematuria, proteinuria, hearing 
oss, and ocular defects, with risk of kidney failure increasing
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fter age 60 years [42 ]. Considerations for Alport syndrome test- 
ng include clarification of unexplained haematuria and protein- 
ria, even with negative family history, in patients with focal 
egmental glomerulosclerosis ( FSGS) , familial IgA nephropathy,
nd kidney failure of unknown cause [30 , 43 ]. COL4A3-5 mu- 
ations account for over 50% of the genetic diagnoses in FSGS 
nd should especially be considered with extra-renal features 
nd family history [31 , 44 ]. MYH9 gene mutations can mimic Al- 
ort syndrome, with CKD, hearing loss, giant platelets and liver 
ysfunction, and genetic diagnosis can avoid unnecessary treat- 
ents including splenectomy or immunosuppression [45 ]. Un- 
erstanding GKD inheritance clarifies risk to family members.
ecessive disorders such as Finnish Congenital Nephrotic syn- 
rome have NPHS1 antenatal screening in high-risk populations 
46 ]. 

ubulopathies 

he complexity of kidney pathophysiology is highlighted by mu- 
ations in kidney tubular and related transporters in diseases 
uch as Bartter syndrome, Gitelman syndrome, primary hyper- 
xaluria, cystinosis, cystinuria, and Dent disease [47 ]. Genetic 
esting clarifies diagnosis and disease associations, such as hy- 
ophosphataemic rickets association with Dent disease [48 ].
ystinosis specific treatment can stabilize kidney function, with 
otential gene therapy [49 , 50 ]. In rarer disorders, the rare stone 
onsortium ( https://www.rarekidneystones.org/) compiles cases 
o coordinate education and research, such as adenine phos- 
horibosyltransferase deficiency, a rare cause of kidney stones 
nd kidney failure amenable to xanthine oxidase inhibitors [51 ].
uidelines for the clinical detection and management of dis- 
rders such as Bartter syndrome have been developed to sup- 
ort antenatal and prenatal management, recommendations 
or genetic testing and management [52 ]. Understanding tubu- 
opathies has expanded our knowledge of complex kidney phys- 
ology, and underpins our understanding of diuretics. 

ubulointerstitial disease 

ubulointerstitial disease is characterized by bland urinary sed- 
ment and impaired kidney function, with/without family his- 
ory. Kidney biopsy reveals non-specific interstitial fibrosis and 
ubular atrophy, though protein accumulation may be detected 
ith special staining [53 ]. Common genetic causes of ADTKD 

nclude UMOD , MUC1, HNF1B, SEC61A1, DNAJB11 , and REN , and 
ossible extra-renal manifestations such as gout in ADTKD- 
MOD [3 ]. Recognizing ADKTD is important due to onset of kid- 
ey disease in the second to fourth decades of life [54 ]. An au- 
osomal recessive cause of kidney failure is nephronophthisis,
ommon in paediatric populations and increasingly recognized 
mongst adults; in a series of 5606 patients with adult-onset kid- 
ey failure, 26 ( 0.5%) had homozygous deletions in NPHP1 , with 
8% of them being previously attributed to unknown CKD [55 ].
ubulointerstitial diseases can be challenging diagnostically in 
he absence of specific pathognomonic clinical or histopatho- 
ogic features, so clinician awareness of the potential diagnosis 
s paramount, especially given potential novel targeted thera- 
ies [56 ]. 

omplement disorders 

typical haemolytic uraemic syndrome ( aHUS) and C3 glomeru- 
opathy ( C3GN) are two distinct forms of GKD potentially un- 
erpinned by genetic mutations in the alternate complement 
egulatory pathway. Genetic diagnoses in aHUS were initially re- 
orted between 51–61% in a French registry population though 
ore recent studies found lower diagnostic yields: 21.6% in a 
orean paediatric population; 39% in a global registry; 40.9% in 
 pregnancy registry; and 46% in a Japanese study [57 –62 ]. C3GN
as a genetic diagnosis in up to 20–25% of cases, with mutations 
n C3, CFB, CFH, CFI, CFHR5 having a clear association [63 –65 ]. Re-
ional variants occur in these genes, such as CFHR5 in familial 
idney disease with Cypriot ancestry [64 ]. These disorders re- 
uire a ‘second hit’ complement amplifying event such as in- 
ection or pregnancy, causing complement pathway activation.
onfirming genetic diagnosis enables specific treatment with 
omplement blockade, eculizumab, especially peri-transplant 
66 ]. Penetrance in aHUS family members is variable, between 
0–70%, impacted by type of mutation, affected siblings, and age 
67 , 68 ]. 

nknown kidney disease 

dvances in genomic testing have improved diagnosis in CKD 

f unknown cause. Whole-exome sequencing ( WES) in an older 
opulation of kidney disease, 28.3% with positive family history,
ound a genetic diagnosis for unknown CKD in 48/281 ( 17.1%) of 
atients [24 ]. The Irish Kidney Gene project performed WES in 
nknown CKD, without family history, and identified a causative 
ene in 29.7% [20 ]. Genetics may inform diagnosis instead of kid-
ey biopsy [19 , 22 ]. Advances in genomic testing for GKD disor-
ers should be considered to aid diagnosis, even without family 
istory. 

RANSPLANTATION 

enomic diagnosis has several implications for kidney trans- 
lantation. Firstly, a genomic diagnosis can impact manage- 
ent strategies in specific disease states, such as primary hy- 
eroxaluria which previously required consideration of dual 
iver-kidney transplantation, and intensive dialysis prior to 
ransplantation to prevent recurrence, though recent advances 
n treatment for primary hyperoxaluria, lumasiran and ne- 
osiran, can be considered [1 , 69 , 70 ]. Complement disorders 
ith an underlying mutation direct use of eculizumab to pre- 
mpt recurrence and improve transplantation [71 ]. In low- 
esource settings, genetic diagnosis in congenital nephrotic syn- 
rome may provide reassurance disease recurrence is low-risk 
fter kidney transplant [72 ]. Genomic testing enables screening 
f potential live-related donors across a broad spectrum of dom- 
nant, recessive, and X-linked disorders given potential for vari- 
ble expression and penetrance [43 ]. In cystic kidney disease, re- 
lassification to recessive disorders or negative genetic testing 
an enable relatives to donate [73 ]. Performing broader genomic 
esting panels can find unexpected results, such as APOL1 or 
omplement disorder genes, that unknowingly exclude prospec- 
ive donors [74 ]. Incorporating genetic diagnosis in kidney trans- 
lant can benefit patients and prevent harm to potential donors,
equiring additional research and development of specific guide- 
ines for implementation in transplantation practice [75 , 76 ]. 

ESTING STRATEGIES 

dvances in sequencing technology have improved genetic di- 
gnosis with variable testing strategies used across the spec- 
rum of kidney disease ( Fig. 2 ) . As an overarching principle,
e primarily espouse a phenotype-driven approach to any 

https://www.rarekidneystones.org/
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Figure 2: Comparison of genomic diagnostic techniques and applicability in genetic kidney disease. Image made with BioRender. 
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enomic testing strategy for a case of suspected GKD. Further,
t is important to ensure that a clinical question underpins a ge-
omic testing strategy to maximize patient benefit and optimize 
utcomes. Informed consent and its documentation is an abso- 
ute requirement that founds the principle that genetic coun- 
elling is undertaken around a genomic testing strategy. The 
rdering clinician is encouraged to deliver the eventual result 
herever possible, for continuity in patient care in these com-
lex topics. 
Certain GKD are due to missing or additional genetic ma-

erial, termed copy number variants ( deletions/duplications) 
hich are best detected with specific assays ( micro-array or mul- 
iplex ligand probe amplification) and are important for certain 
enes, such as HNF1B, NPHP1 and in congenital kidney mal-
ormation including CAKUT [3 , 39 , 55 , 77 , 78 ]. Another testing
pproach is to develop assays for sets of genes of interest for
 phenotype of interest ( targeted sequence analysis) that has 
igh diagnostic yields of 62–78% in selected patient cohorts with
lear clinical phenotypes for CKD, particularly Alport syndrome
nd ADPKD, and is advantageous in offering targeted, effec-
ive testing at a lower cost [29 , 30 ]. WES sequences the coding
ortion of the genome ( ∼2%) with analysis restricted to virtual
ene panels for CKD. This approach has significant variation
n diagnostic yields in CKD depending on the population, from
.1% in dialysis patients to 51.5% in highly selected patients,
nd does not cover intronic or structural variants [20 , 24 , 79 ].
hole-genome sequencing ( WGS) sequences both the coding 
nd non-coding genome, which may improve genetic diagno-
is, including intronic variants, with risk of additional findings at
igher costs [80 ]. The value of this expanded testing to improve
iagnostic yield is uncertain in CKD, with further cohort data
waited, including results from the HIDDEN study [81 ]. Genomic
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equencing strategies can determine genetic diagnosis in GKD 

nd are established in clinical practice. 
Many cases of clinical GKD that do not have a genomic diag- 

osis despite WES strategies require further testing strategies.
UC1 is a common form of ADTKD that is difficult to detect on 
ES due to high regions of CG repeats, and requires dedicated 

enetic sequencing or mass-spectrometry, though recent advan- 
ages in long-read sequencing have potential [27 , 82 ]. In ADPKD,
KD1 is difficult to sequence using WES due to pseudogenes,
ith only 50% of mutations successfully identified on standard 
ES, though this is now improving with newer WES approaches 

36 , 83 ]. WGS techniques diagnosed 81% of typical ADPKD cases 
nd 60% of atypical ADPKD [26 ]. Short- and long-read sequenc- 
ng with RNA studies found a genetic diagnosis in 89% of ADPKD 

ith prior negative genetic testing, including intronic splice site 
utations not detected on exome sequencing [84 ]. Incorporat- 

ng WGS into testing strategies improves the diagnostic yield in 
uspected genetic CKD populations to 51.4%, particularly to find 
enetic diagnosis in rare genetic diseases, though they may find 
nexpected additional findings [20 , 85 , 86 ]. Mitochondrial disor- 
ers cause a broad spectrum kidney disease and require clinical 
uspicion for specific testing, especially considering the unique 
nheritance modality and requisite genetic counselling [87 –89 ].
osaic disorders such as tuberous sclerosis complex have vari- 
ble levels of gene variants detected in blood, making detection 
ifficult. Improvements in technology with targeted sequenc- 
ng of the TSC1 and TSC2 genes at greater read depths has im- 
roved diagnostic capabilities [90 ]. Overall, there is no ‘best test’ 
or diagnosing GKD, and clinicians must understand suitability 
f each testing type for specific diseases. 

HALLENGES AND FUTURE DIRECTIONS 

ntegrating genomics into clinical practice to provide tailored 
linical care enables personalized medicine in nephrology. The 
ephrologist is pivotal in formulating clinical diagnosis in CKD 

nd to consider genetic causes. The treating clinician is well 
laced to discuss the merits of genetic testing including impact 
n management, broader family implications, and reproductive 
ptions, and understand how these decisions may change over 
 patient’s lifespan. In ADPKD, for example, while clinical diag- 
osis can be made based on ultrasound criteria, genetic confir- 
ation can provide prognostic information using the PROPKD 

core, clarify atypical cases, inform additional screening, and 
uide reproductive decision making [38 , 91 ]. Each patient will 
ave a different experience and perceived value of the personal 
enefits of genetic testing and broader implications to their fam- 
ly, with their nephrologist well placed to integrate these into 
 patient’s individualized clinical paradigm. The KDIGO contro- 
ersies conference on genomics in CKD identified lack of edu- 
ation as a key barrier for nephrologists to implement genetics 
nto practice [92 ]. The ERA has further identified a lack of ge- 
omic literacy, lack of perceived benefit, difficulties with select- 
ng testing strategy, uncertainty around variant interpretation,
igh cost, and counselling issues [4 ]. Survey and interview data 
ighlights perceived barriers to implanting genetics in practice 
ncluding identifying correct patients, selecting the correct test,
nterpreting results, following up with families, discussing re- 
ults with patients and families, integrating results into clinical 
are, ordering the test, and consenting for genetic tests [93 , 94 ].
trategies to overcome this prioritize education to nephrologists 
o empower incorporation of clinical genetics and genomics into 
ontemporary clinical practice, increased funding and access to 
enomic champions [4 , 95 ]. Resources such as genomic decision 
ids, embedding genetic counsellors into mainstream nephrol- 
gy clinics, and genetic stewardship programs are all avenues 
o improve mainstream nephrology access to clinical genomics.
otential avenues to overcome this include development of kid- 
ey genetics clinics combining nephrologists, geneticists, ge- 
etic counsellors, and patients to streamline and support ge- 
etic testing [96 ]. 

ealth economics 

he direct healthcare implications for genetic testing are 
aramount for patients and families, with broader impacts 
or health care. In selected patients, particularly children with 
lomerulopathy, early implementation of genetic testing can de- 
ermine the diagnosis and prevent invasive testing [19 , 97 ]. Eco- 
omic analysis shows early integration of WES in children can 
e cost saving, particularly through avoidance of biopsy [97 ].
ealth economic evaluation of genetic diagnosis in kidney dis- 
ase identified short- and long-term cost benefit, largely driven 
y adults and children with glomerular disease. The cost ben- 
fit in a genetic diagnosis of atypical cystic kidney disease is 
hrough avoiding tolvaptan [5 ]. Modelling genetic testing to diag- 
ose kidney disease suggests early integration in the work-flow 

rocess, in targeted patients, can reduce costs by 20%, with ac- 
ual cost savings in selected patients reduced by 41% [6 ]. Genetic 
esting in adults has led to the discovery of more atypical or un-
sual presentations of typically paediatric disease, with prob- 
bly similar benefits in treatment costs and quality of life. Ge- 
etic testing can inform diagnosis in diseases such as FSGS and 
dentify cases unlikely to respond to immunosuppression [41 ].
ascade testing can identify family members to direct preventa- 
ive health measures and can avoid screening in negative family 
embers. Kidney failure has disproportionately high health care 
osts, with annuals costs for home dialysis of $AUD49,137 and 
AUD79,072 for hospital dialysis, which are likely more costly 
han pre-implantation genetic diagnosi,s which substantially re- 
uces the risk of affected children. This is increasingly part of 
linical practice for families with established GKD; however, a 
ost analysis has not been done [98 , 99 ]. With the reducing costs
f genomic testing, and expanding knowledge of genomic test- 
ng, a ‘genomic first’ approach has the potential to offer cost 
avings and earlier diagnosis, and may provide clearer diagnosis 
han kidney biopsy [3 , 19 ]. 

The direct impacts of clinical and genetic diagnosis in GKD 

re unique to each patient, including potential psychosocial im- 
acts. Research in this space is limited, with most studies fo- 
using on clinical results, and more work is needed to priori- 
ize patient outcomes. The SONG-PKD working group noted that 
DPKD had a heightened awareness of kidney disease due to 
eeing the disease across generations, which needs to be ap- 
reciated by clinicians [100 ]. There are also likely non-tangible 
enefits for genetic testing including alleviating anxiety, reduc- 
ion in unnecessary testing, and workforce participation. Qual- 
tative analysis focusing on consumer perspectives in patients 
ith ADPKD highlighted the perceived benefit of genetic test- 

ng to inform their family members, which is likely to hold 
rue in other forms of GKD [101 ]. Patients with rarer forms 
f inherited kidney disease, especially in children, face a long 
iagnostic odyssey. Genomic testing potentially shortens the 
ime frame to a diagnosis in these patients, though not all will
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Figure 3: Process of generating and developing polygenic risk scores ( PGS) into clinical practice and potential clinical applications. Image made with BioRender. 
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eceive an answer [102 ]. The perceived benefit of genomic test-
ng is highly individualized and perceived risk and benefits need
o be evaluated by patients and their clinicians. Genomic testing
equires shared decision making between the clinician and pa- 
ient with a focus on disclosure, clinical benefits, psychosocial 
mpact around guilt, employment impacts, and unexpected sec- 
ndary findings. 

Assessing clinically relevant impacts of genomics in CKD 

s important to guide integration into clinical practice, but is
ifficult to standardize given significant heterogeneity across 
ey stakeholders: patients, families, and clinicians. Developing 
 utility ontology specific for GKD will enable standardization 
cross research to enhance analysis of results, and to establish
lear research goals with demonstrable outcomes from integrat- 
ng genomics in clinical practice [103 ]. 

olygenic risk scores 

KD can be a complex trait with both environmental and poly-
enic determinants, distinct from mendelian forms of GKD.
olygenic risk scores ( PGS) capture multiple small genetic fac- 
ors and aggregate relevant genetic loci for kidney disease from
enome-wide association studies ( GWAS) into risk scores for 
KD traits, such as eGFR, decline in eGFR, CKD stage, and pro-
einuria ( https://www.pgscatalog.org) , and then under go valida- 
ion ( Fig. 3 ) [104 ]. PGS can stratify patients into high- and low-risk
roups prior to disease development, and evidence shows they 
orrelate well at a population level; however, individual appli- 
ability is unclear [105 –111 ]. PGS have the potential to provide
arly information on CKD risk ( distinct from mendelian GKD)
here risk can be modified by environment factors, suggest-

ng early intervention in high-risk PGS could prevent, slow, or
hange development of CKD. Heritability estimates for kidney
unction from family studies are greater than GWAS/PGS stud-
es, suggesting SNP-derived scores do not capture complexities
uch as epigenetic factors [112 ]. Future applications of PGS in-
lude risk stratification and prognosis, improved diagnostics, se-
ection of high-risk individuals for tailored nephrological inter-
ention, risk in live kidney donation and informing clinical trial
esign by selecting those at high risk of CKD progression [105 ,
13 , 114 ]. 

There are several novel applications of PGS in clinical
ephrology. PGS for peritoneal dialysis can provide additional in-
ormation regarding peritoneal dialysis transporter status [115 ].
GS may explain heterogeneity in mendelian GKD, as patients
ith ADPKD and high-risk PGS had a 54-fold chance of CKD
ompared to 3-fold risk in the low-risk PGS ADPKD group [116 ].
GS for kidney disease with substantial heritability like IgA and
embranous nephropathy are being developed and may inform
linical practice for diagnosis, progression risk, and treatment
esponses [113 , 117 ]. PGS has the potential to provide targeted in-
ormation on risk for CKD in live-donor work-up, which requires
alidation in retrospective cohort studies. Post-transplant, PGS 
ay help stratify risk for skin cancer, post-transplant diabetes or

isk of CMV in high-risk individuals [118 –120 ]. Further research
s necessary prior to PGS integration in clinical care, where po-
ential applications are broad. Future clinical research, refine-
ent, and early implementation may be enabled by greater up-

https://www.pgscatalog.org


10 J. Jefferis and A. Mallett

t
C

P

P
m  

m
u
m
a
o
i
t
a
d
i
m
i
r
i
a
fl
t
o
c
o
g
l
i
m
t
t  

m
s

w
o
p
w
t
c
C
s
o
a
m
a
g
c
t
t  

T
k
s
s  

w
m
l
a
a
g
s  

w

t
c
i

C

G
d
f
o
c
p
i
l
f  

F
t
e
p
j
f
m

S

S

A
A
R

D
N
s

C
T

R

1  

 

2

3

4

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ckj/article/17/3/sfae043/7612242 by guest on 02 July 2025
ake of genomics, both research and clinical, in nephrology and 
KD settings empowered by digital medical record systems. 

harmacogenomics 

harmacogenomics endeavors to provide personalized 
edicine, wherein genomic data informs therapeutic decisions,
ay be beneficial in CKD management. Many medications 
sed in kidney medicine have genetic differences underpinning 
etabolism, which may guide dosing and drug decisions such 
s azathioprine, warfarin, and tacrolimus [121 ]. Metabolism 

f warfarin varies, and metabolic status has been studied to 
mprove therapeutic outcomes. COAG, a randomized control 
rial comparing genotype-based warfarin dosing for CYP2C9 
nd VKORC1 variants with standard-of-care dosing found no 
ifference in time in therapeutic range, suggesting genotypic 
nformation didn’t translate to clinical benefit [121 ]. Tacrolimus 
etabolism is highly varied, with several genetic factors includ- 

ng CYP3A4, CYP3A5 , and p-glycoprotein which require further 
esearch to understand and guide therapy [122 ]. Hypertension 
s a key modifiable risk factors in CKD with hundreds of SNPs 
ssociated with hypertension, each exerting only a small in- 
uence on blood pressure [123 ]. Identifying specific genotypic 
reatments with our current knowledge is challenging. Patients 
f African ancestry with hypertension respond better to calcium 

hannel blockers and hydrochlorothiazide, which is the rec- 
mmended first-line treatment in international hypertension 
uidelines [124 ]. The rationale behind this is multi-faceted and 
ikely represents both environmental factors from differences 
n both salt intake and handling to genomic variances in drug 
etabolism [125 ]. Differences in the C825T polymorphism of 

he G protein beta ( 3) subunit predicts blood pressure response 
o thiazide treatment, with those with the TT polymorphism,
ore common in those of African ancestry, having a small but 
ignificant improvement in blood pressure, of 1 mmHg [126 ]. 

Current clinical translation of pharmacogenomics is under- 
ay. The recently published CKD-PGX feasibility trial aimed to 
ptimize hypertension management by screening 11 genetic 
redictors of pharmacogenomic drug interaction in 335 patients 
ith hypertension. The study noted those with poorer hyper- 
ension control were more likely to have a predicted pharma- 
ogenomic drug interaction at the start of the study, such as 
YP2C9-reduced metabolism association with poor losartan re- 
ponse and uncontrolled hypertension. Baseline data found 58% 

f participants with uncontrolled hypertension had an action- 
ble genotype, and 36% of nephrology providers changed treat- 
ent based on this data. Over one year of follow-up there was 
 4 mmHg systolic blood pressure improvement in the whole 
roup, and a 14.9 mmHg SBP improvement in those with un- 
ontrolled hypertension. In survey data, 96% of patients reported 
hat being provided knowledge of their genotype would prompt 
hem to invest more in their blood pressure control [127 , 128 ].
he GUARDD-US study is currently underway to assess how 

nowledge of APOL risk alleles impacts on patient blood pres- 
ure control [118 ]. Another smaller study in 61 patients with CKD 

tage 3–5 found 39% of them had possible actionable changes,
ith 26 changes made in 20 patients [129 ]. Integration of the 
ultigene panel into clinical practice can inform therapy se- 

ection and reduce adverse drug reactions [130 ]. Practical re- 
lization of pharmacogenomics requires a multi-disciplinary 
pproach with pharmacists and nephrologists supported in 
enomic upskilling. Genomic predictors of pharmaceutical re- 
ponse may be a feasible tool to optimize blood pressure control,
hich is an important modifiable risk factor in CKD. An impor- 
ant limitation is the lack of pharmacogenomic studies in non- 
aucasian populations and to be truly applicable, more research 
nto impacts of genetic loci in global populations is required. 

ONCLUSIONS 

enetics is expanding the field of nephrology to enable better 
iagnostics and treatments. Applications of clinical genomics 
or CKD have proven diagnostic efficacy and a growing body 
f evidence for impact and utility. Understanding genomics in- 
luding differences in sequencing approaches across different 
henotypes of GKD is imperative to improve understanding and 
ntegration into clinical care. Nephrologists face several chal- 
enges in integrating genomics into clinical practice, and require 
urther education and support to improve patient outcomes.
urther, genetics has the potential through clinical research 
o inform future nephrology clinical practice in polygenic dis- 
ase and pharmacogenomics, with the ultimate goal to improve 
atient outcomes. Developing clear research priorities in con- 
unction with key stakeholders is imperative to move the field 
orwards and enable iterative utility and impact focused imple- 
entation. 
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