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Abstract: This study advances knowledge in the AI field. It provides deep insight into current industry
generative AI inclusion systems. It shows both literature and practical leading industry operations
can link, overlap, and complement each other when it comes to AI and understanding its complexities.
It shows how to structurally model and link AI inclusions towards delivering a suitable sustainability
positioning. It shows approaches to integrate external AI contributions from one firm into another
firm’s intelligences developments. It shows how to track, and maybe benchmark, the progress of
such AI inclusions from either an external or an integrated internal software developer perspective.
It shows how to understand and create a more sustainable, AI-integrated business positioning.
This study considers firm artificial intelligence (AI) and the inclusion of additional external software
developer engineering as another AI related pathway to future firm or industry advancement. Several
substantive industrial warehousing throughput areas are discussed. Amazon’s ‘smart dynamic
warehousing’ necessitates both digital and generative ongoing AI system prowess. Amazon and other
substantive, digitally focused industry warehousing operations also likely benefit from astute ongoing
external software developer firm inclusions. This study causally, and stagewise, models significant
global software development firms involved in generative AI systems developments—specifically
ones designed to beneficially enhance both warehouse operational productivity and its ongoing
sustainability. A structural equation model (SEM) approach offers unique perspectives through
which substantive firms already using AI can now model and track/benchmark the relevance of
their prospective or existing external software developer firms, and so create rapid internal ‘net-AI’
competencies incorporations and AI capabilities developments through to sustainable operational
and performance outcomes solutions.

Keywords: artificial intelligence; assimilation; acquisition; digital network; generation AI system;
transformation; innovation; sustainable performance; autonomous robots; deep machine learning;
competitiveness; collective knowledge; strategic risk; productive capacities

1. Introduction

Today, firms and corporate entities rely on their own intelligence gathering to dif-
ferentiate themselves and to remain closely in-tune with their marketplace and its rules,
their rivals, and with the dynamic consumer demands experienced across their globally
competitive environments.

This study considers smart business and corporate entities (hereafter termed ‘firms’)
engaging in, choosing, and adopting, smart data capture. It considers emerging artificial
intelligence (AI) trends. It elucidates AI-related competitiveness opportunities likely gained
by early firm adopters. It assesses warehousing AI adoption by leading-edge firms. It
offers future smart and dynamic strategic adoption pathways for a firm when it considers
engaging external software developer firms to help it in the pursuit of specific and desired
AI-related ongoing software enhancement inclusions. This model-based recognition system
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can guide a firm’s focus when choosing a specific, desired mix of relevant external AI
competencies and AI capabilities as internal firm enhancement additions.

1.1. Historical Flow of AI

In 1935, Alan Turing, an English mathematician, computer scientist, logician, cryptolo-
gist, philosopher, and theoretical biologist, first proposed an abstract computing machine
with limitless memory, linked with a scanner that moved back and forth through memory,
symbol-by-symbol, reading what it found and writing further symbols. The scanner actions
were dictated by a program of instructions that was also stored in the memory in the form
of symbols [1]. Turing’s genius framed the pathways for modern computing and produced
insights into what is now known as AI [2].

In 1952, Christopher Strachey delivered an early AI algorithm that played checkers on
a Ferranti Mark1 computer, and Anthony Oettinger delivered a machine learning ‘Shopper’
program on an EDSAC computer that sourced one item from a group of other mixed items,
and then recalled in which of the eight shops along with the position it was located.

Thus, AI from early days of computing began to add ‘smart’ general intelligence
components. Today, these AI ‘smart’ intelligences extend into machine capabilities, or
into executing tasks like pattern recognition, decision making, and/or into making astute
weighted judgments like humans. However, AI is extending further, and is assisting to
upskill data-smart robotic machines towards possessing real-time ‘dynamic’ response capa-
bilities that approximate human intellectual and behavioral ability, whilst also facilitating
greater human resolution and actioning powers.

1.2. AI Advancement

Today, AI is an enabling digital data science. It is enabling computers or computer-
controlled machines to think, act, and/or behave akin to the intelligent processes of hu-
mans [1]. The Oxford Dictionary defines AI as ‘the theory and development of computer
systems able to perform tasks normally requiring human intelligence, such as visual per-
ception, speech recognition, decision making, and translation between languages.’ Thus,
AI is a broad reaching mix of coalescing capabilities that can be designed to target specific
physical or virtual fields to meet specific requirements and to deliver useful outcomes.

Chen et al. [3] suggest AI development has multi-faceted technologies, device con-
trolling/manipulating algorithms, and consumer demand-related links into an ongoing
sustainable position. Rakha [4] links significant AI opportunities to multifaceted data qual-
ity, accessibility, rules consequences, and equitable benefits and their effect on an ongoing
sustainable position. Van Wynsberghe et al. [5] add AI interoperability, networking, and
reusable algorithms can contribute to ongoing sustainability performance and operational
costings. Kindylidi and Cabral [6] complement these comments adding consumer interest
in information also grows AI’s importance in delivering both consumer desired products
and services, and in-turn affecting the ongoing sustainability position and the sustainable
AI-related lifecycle. Thus, AI remains a complex, multi-faceted network of costly interacting
and directing intelligences, that in business, can impact consumers in their demands for
products and/or services.

Like the above directions, firm AI inclusion is widely literature-supported as a stage-
wise, developmental, intelligences-driven, change process [7,8]. Identified benefits that
AI inclusion offers the firm include (1) collations of knowledge-driven competencies and
capabilities; (2) engaging innovative digital deep learning; along with (3) robust stage-
wise interpretations, and these effects ultimately network, and coalesce towards possibly
delivering beneficial competitiveness changes [9].

Today, AI has moved from mildly intelligent data manipulation towards highly com-
plex global data fusion, sensory capture, behavioral interpretation, extended realities, and
clever self-learning across internet-of-everything integrated devices/systems [10].
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1.3. Generations of AI Systems Development

Currently, AI’s development has delivered up to generation 4 AI systems, and there
is ongoing progression towards an imagined further six more generations of AI systems
development [11–13].

The first five generations of AI are (1) simple reactive AI systems using basic digital
information and programmed to deliver specific responses in an unsupervised non-learning
manner; (2) AI systems using basic machine learning to compare past/present data and to
use predictive algorithms to project required changes or redirections; (3) detailed limited
combinations of input-sourced AI machine learning systems that can combine data capture
and then read, interpret, and sometimes develop, specific real-time responses that improve
reliability but cannot improve functionalities against the experiences collected; (4) AI
systems and smart autonomous robotics with more advanced deep learning scenarios,
global data gathering, detailed fluidity-of-thought, intelligent memory processing/recall
management, and smarter decision making that can adapt findings towards appropriate
(and even future-forecasting) communicative interactions; and (5) AI systems operating
super-intelligently as dynamic, self-aware, emotionally conscious, intelligent brain-like,
multi-interacting neural entities that perceive/interpret/resolve/adapt to almost anything
in a human-like manner [11–13].

1.4. Current Generations of AI Applications

Facebook, Google, and now Microsoft, are key software developers behind AI’s rapid
advancements. Over the past five years, Microsoft has reportedly invested USD 13 billion
in OpenAI and launched generation 3 AI ChatGPT, and then generation 4 AI ChatGPT,
into answering in-depth consumer queries/questions. It now leads Alphabet (Google)
and META (Facebook) in this field. Australian firms like the Commonwealth Bank have
deployed Chat GPT AI solutions to recognize and block scams and to reduce payment
anomalies—saving its consumers over AUD 250 million. The telecommunications firm
Telstra uses ChatGPT solutions to provide precise enquiry summaries and has reduced con-
sumer call times by 20%. The paint manufacturer Cabot’s has deployed its own consumer
Chatbox to respond to queries around its woodcare products.

Today, humanoid (human-like) robots like Ameca, Sophia, and Apollo use large lan-
guage models like ChatGPT, Microsoft Copilot, and Google Gemini approaches and are
improving these, with their generation 4–to–5 AI systems moving closer to realistically
mimicking deep human actions, expressions, and behaviors, but so far, unlike humans,
these humanoids cannot cry or bleed. Such leading-edge robots coalesce AI, global database
assessment, and advanced materials/mechanics into their capabilities. Many other develop-
ing forms of autonomous robots are now following, and these are generally being deployed
to work in specific or designed operational environments. Still, other large language mod-
els are also available, including GPT-4 Turbo and Nvidia Hugging Face/ServiceNow’s
StarCoder2 LLM. Further, some smaller language models, like Vicuna-7B, Nvidia’s Chat,
and Retrieval Augmented Generation, can now run on specific smartphones. These too can
incorporate into the firm’s ongoing and mobile intelligences developments.

Neuralink, an Elon Musk company, aims to ‘create a generalized brain interface to
restore autonomy to those with unmet medical needs today, and unlock human potential
tomorrow.’ It is creating its own breakthrough generation 5 AI systems technologies using
brain implants to monitor/digitally stimulate/drive ongoing brain messaging activities.

In February 2024, Neuralink.com successfully used its own robotic surgery to implant
1024 electrodes across 64 connections into a human’s brain, and the testing phase is now
underway. Neuralink.com’s goal is to deliver generation 5 AI system symbiosis with
human intelligence, and to use directed thought to directly action external devices. Another
aim is to deliver spectrum-wide vision capabilities that extend and enhance human sight
capabilities. It is also working towards solutions that can solve or enhance body limb
actions—like resolving and rectifying an inability to walk. Thus, generation 5 AI is a future
possibility for companies like Neuralink, and others mentioned above.
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1.5. AI and Mining

AI extends into mining. ‘Gudai-Darri,’ Rio Tinto’s most technologically advanced
iron ore mine (operational since April 2019), engages over one hundred AI-supported
digital technologies [13]. This ‘mine-of-the-future’ applies AI to all levels of mine operation
complexities, and across generation 1–to–5 complexities of AI. Rio Tinto aims for this
mine site to operate under digital control, correct all iron ore mining functions, and rail
haul shipment anomalies in a millisecond, and do so without the need for continual,
ongoing human intervention [13]. Rio Tinto continues to advance its generation 1–to–4
AI-supported systems, and it remains focused on advancing its generation 5 AI-supported
systems. It is particularly targeting coalescing superintelligence, self-awareness, emotional
consciousness, and sensory AI capabilities into super-astute generation 5 AI solutions.
Into the future, this Rio Tinto focus for its mines may even surpass human intelligences,
further augment existing autonomous and intelligent robotics functionalities/flexibilities,
in addition to likely driving advances in self-optimizing, predictive, problem-solving
analytics activities [13].

1.6. AI and Warehousing

Similarly, AI extends into warehousing, where corporate entities like Amazon are
designing ultra-efficient warehousing, and with minimal (ideally none) human input.
Amazon’s web services use generation 1–to–4 AI-enabled intelligent robotics complete
with machine vision. Amazon’s generation 3–to–4 AI machine deep learning capabilities
systems are also grouped, packaged, and offered for purchase by other firms with less
advanced integration capabilities. These Amazon web services recognize, sort, and inspect
diverse items/goods, and they can extend AI into packaging, loading, and shipping to
consumers or delivery to the marketplace. This AI-enabled robotics focused approach is
likely to advance further with more advanced, self-learning, humanoid AI robots—like
Tesla’s ‘Optimus Gen 2’ bot, now trialing under selected industrial localities and possibly
moving Amazon’s smart warehousing closer to an autonomous ‘warehouse-of-the-future’
operation like that of Rio Tinto in mining.

1.7. AI and Pharmacy

In the pharmaceuticals industry, smart dynamic warehousing is likewise important—
especially for large national operations and especially for those running low-cost warehouse
models [14]. Today, Australia’s largest retail pharmaceuticals employer—My Chemist/Chemist
Warehouse Group, employs over 14,000 staff across over 550 retail outlets and eight ware-
houses. It enlists over 6500 servers and over 2000 mobile devices across its vertically integrated
24/7/365 yearly operation. Its warehouse and retail operations now interface smart phone
technologies to capture damaged or faded barcodes and so greatly improve staff efficiency
whilst reducing task completion times. In 2023, it added its digital health/wellbeing camera
sensor scanner AI to measure heart rate, respiration, SpO2, and HRV, and provide predictive
insight. It is progressing towards a single scalable operation that can seamlessly, reliably, and
intelligently platform, whilst also running any application at store, warehouse, datacenter, or
in-cloud levels. This involves partners such as AWS and IBM working with VMware and allow-
ing virtual machines to operate with great degrees of automation and to datacenter orchestrate
AI application movements within warehouse premises and engage vendor-respective public
clouds. Today, this pharmacy group is incorporating various generation 1–4 levels of AI systems
into its operations.

1.8. AI and Retail

Across the e-commerce sector, Walmart, the largest global retailer, with sales over
USD 573 billion in 2022, competes with Amazon (sales over USD 512 billion in 2022). Its
fulfillment centers, and its 4700 plus stores, and its 5000 internationally placed stores now
offer automation, 24/7/365 service, and consumer variety of choice selection.
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Marketplace Plus suggests Walmart’s number of active e-commerce sellers is around
one tenth that of Amazon’s more than one million active sellers. However, in the US, most
consumers live within 10 km of a Walmart store. This proximity advantage potentially
offers a shorter delivery time than Amazon. Further, Walmart’s website app has a consumer-
perceived usability advantage. This means, Walmart remains competitive, and continues
to advance its technologies, its automation, and its autonomous robotics deployment. In
2022, it invested USD 14 billion into innovation across its automation, technologies, supply
chain, logistics, drone delivery, and consumer-facing initiative domains. These innovative
directions are heavily linked into Walmart’s generation 1–to–4 AI systems adoption and
integrated with its ongoing store and fulfillment center autonomous advancements.

1.9. AI Systems Directions

Hence, and depending on the entity, or the field of business, or the person, and/or the
operational or behavioral requirements, AI typically collectively resides across multiple
generations of AI systems, and currently, AI development is progressing rapidly towards
generation 5 AI systems, towards super-intelligence, and towards smart autonomous
robotics and logistics systems.

This study now directs its attention to AI and warehousing. Warehousing is a key
operational and logistics cost factor in all the above examples. Warehousing in mining uses
AI to efficiently collect, store, and mix (as required) different raw material stockpiles into
specifically demanded shipping blends to enable optimal performance at downstream pro-
cessor sites. Warehouse distributors and retailers like Amazon deploy AI, automation, and
robotics to deliver lower cost and rapid-supply operations. Warehousing in pharmacy uses
AI to ensure products are efficiently stored, processed, packaged, and shipped downstream
according to specific precise volume usage, or according to real-time projected consumer
demand trends. Large retailers like Walmart use their in-store warehousing and fulfillment
centers to conjointly, and efficiently, deliver consumer-demanded items in near real-time.

This study proceeds to show how global software developer firms can be modelled and
better matched towards another firm’s ongoing AI related internal warehousing require-
ments. It uses Amazon and three other warehousing approaches as its primary example.

2. Materials Used by Amazon across Its AI Warehousing

Warehousing today demands ongoing innovation moving it towards a ‘warehouse-
of-the-future’ status. This resolves, schedules, compiles, delivers, and ships consumer-
packaged solutions in an ‘instant.’ Hence, future warehousing likely involves data driven
solutions combined with ongoing innovation, continuous latest technologies incorporations,
smart dynamic AI incorporations, new fulfillment agilities, and more precise resource(s)
utilization. Such approaches are also likely designed to capture continual growth in stock
placement units and in most efficient logistical process pathways that then intermix smaller
batch units and deliver unique consumer-ordered requirements. These features likely
unlock against tight just-in-time supply chain availability, less skilled labor requirements,
and ongoing increases in costs.

2.1. Smart Dynamic Warehousing

Over time, previous ‘community storerooms’ have progressed into multi-million
dollar temporary-holding facilities called warehouses. Smart warehousing is a German
high-tech strategy specifically formulated during the fourth industrial revolution [15]. It
enlists digitally coordinated, computer and cloud digitally networked systems, bringing
together coordinated AI systems IoT relevant items (and their automation), and delivering
precision processing [15].

By 2018, most warehouses engaged some level of automation across their placement,
storage, and retrieval operations, and this approach builds IT (information technology)
knowledge and saves costs [15]. Today, rivalry and competition are driving continual effi-
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ciencies upgrades and supply chain/demand chain collaborations across the warehousing
system [16–18].

Smart warehousing is claimed to be the most effective and efficient way of improving a
firm’s return on investment, improving precision processing, and reducing labor costs [15],
but in the case of small-to-medium enterprises (SMEs), investment costs, uncertainty
about costs, and lack of expertise may affect their overall industrial utilization of AI and
robotics [19].

Today, smart warehousing defines as machine- and AI-directed raw materials and
manufactured items inputs, their autonomous movement to specific rack and pick locations,
and their packaging and shipping, with process intervention and tasking roles no longer
human dominated. Thus, smart warehousing is technologies and process focused, but this
form of warehousing can also be dynamic.

Dynamic warehousing adds instant change options and flexibility to the operation. This
requires greater warehouse ‘extended-input-to-extended-output’ adaptability, combined
with real-time adjusting, change-optimized agilities, and adjustable layout solutions. Dy-
namic warehousing is real-time consumer- and marketplace demand responsive, and it
optimally operates beyond inputs/outputs. It optimizes space, applied robotics, automatic
and autonomous systems and processes under specific generation 1–to–4 AI systems and
solutions guidance.

Today, dynamic warehousing defines as autonomous input, and most efficient rack/picking
storage, along with demand-optimized selection, and most efficient processing of specific
demand output item(s). Thus, dynamic warehousing is a digital intelligences and real-time
demand-process optimization solution.

Currently, smart warehousing and dynamic warehousing can combine their AI tech-
nologies, delivering ‘smart dynamic warehousing’ outcomes that assess options, operate in
real-time, and delivers efficient decision making and agile solutions. Thus, smart dynamic
warehousing incorporates developing AI digital intelligences and actioned roboticized
capabilities as real-time item process optimization solutions that combine intelligences
from suppliers across the entirety of warehouse-applied technologies and processes and
through to the marketplace and its consumers [20].

Hence, smart dynamic warehousing is likely integrated, automated, and where possible,
deploying autonomous robotic machinery. Such warehousing must real-time integrate
operational and autonomous software, have active 3D mapped cell volume and space
position recognition and translocation capabilities, provide shortest intralogistics flows
real-time consumer connectivities, and selectively engage optimal, automatic, autonomous,
and 3D laser-guided vehicle tasking, and consumer driven demand solutions.

2.2. Amazon: Delivery Methods Engaged in Smart Dynamic AI Warehousing

Currently, Amazon is arguably the largest and most advanced global, smart dynamic
warehousing corporation. This study now considers Amazon from its inputs through to its
marketplace and its consumers, and then against a software developers’ perspective.

Amazon accepts from its suppliers and its just-in-time stores, over 14 million dif-
ferent item bins in each of its localized fulfillment warehouses, with each binned item’s
position within the warehouse allocated into a specific pod. It operates its warehousing
model incorporating data collation, analysis, agile solutions, and deployment of its pro-
curement/deliverance (digital and/or physical) system as a real-time flexible, scalable,
most efficient, and costs minimized platform. Currently, Amazon deploys robots and more
advanced AI in about 25% of its 160 plus global fulfillment centers. It estimates that by
2030, fully autonomous warehousing may be possible [21].
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AI extends into warehousing, where corporate entities like Amazon are designing
ultra-efficient warehousing, with minimal (ideally zero) human input. Its Amazon web
services packages generation 3–to–4 AI machine deep learning capabilities systems. These
can be purchased by other firms with less advanced integration capabilities. These AWS
can recognize, sort, and inspect diverse items/goods. They can extend into packaging,
loading, and shipping refinements, enabling faster firm connection into marketplaces.

Lindsey [22] believes ‘intelligent technologies are automating data analysis to help
organizations save time and money.’ She considers human experience at Amazon and links
it to AI developments, suggesting this fusion improves consumer outcomes, optimizes
selection, and automates logistics. Amazon continues to add further AI systems -like
its Alexa voice service, its Amazon Go stores, its ever-developing AWS, and its cloud
computing, to further enhance IT automation and autonomous AI solution deliverables,
and to bring its machine learning technologies across its procurement solutions.

Today, these AI systems also spread throughout real-time intelligent tracking and
strategic planning, automation, spend optimization, suppliers, management, compliance,
search results, and tail spend (faster servicing, easier processing, and precise discovery of
best-pricing products). These all deliver growth in procurement, productivity, agility, and
diversity of real-time deliverables solutions.

2.3. Amazon: Delivery Systems Engaged in Smart Dynamic AI Warehousing

Amazon engages multiple procurement, process, agility, and delivery systems across
its networked warehousing operations. Considering current generative AI (real-time
processing that learns patterns, re-structures data, computes and generates text, images,
commands, or other remapped data in response to various requirements or prompts)
approaches, Amazon applies these into its varied multi, intertwined, digitally related
operational solutions. Table 1 shows 36 recent process applications mapped against its
appropriately deployed generation 1–to–5 AI technologies solutions. Figure 1 presents
a selection of relevant available Google images highlighting and visualizing AI-relevant
aspects of each Table 1 application process.

Table 1. Amazon AI-deployed application methods and generative AI system levels applied.

Thirty Six of Amazon’s Generative AI Deployment Methods Gen 1 Gen 2 Gen 3 Gen 4 Gen 5

1. Architecture integration platform x x x x x
2. Global big data engagement x x x x x
3. Infrastructure & 2023 Trainium2 advanced cloud x x x x x
4. ML augmented AI x x x AI
5. ML stage details x x x
6. Deep AI monitoring x x x x AI
7. Task specific virtual selection x x x AI
8. Contacts analysis x
9. Large language models x x x
10. Virtual innovation x x x x AI
11. Robotic process parcelling/delivery x x x
12. Autonomous language & ML processing x x x
13. Digital field-action simulation training x x x AI AI
14. Warehouse SageMaker S/W x x x x AI
15. SageMaker ongoing S/W enhancement modelling x x x AI AI
16. Virtual fashion modelling x x x
17. Automated 3D stacker cranes & dynamic shelving x x x AI
18. On-sold AI developed technologies x x x
19. External clouds integration x x x x AI
20. External values-advancing partnering x
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Table 1. Cont.

Thirty Six of Amazon’s Generative AI Deployment Methods Gen 1 Gen 2 Gen 3 Gen 4 Gen 5

21. Warehouse-of-Future layered-techs/innovative plant layout/design x x x x AI
22. Optimized automated guided vehicles & trajectories x x x
23. Laser guided vehicles & drones x x x
24. Drone 3D-mapped external delivery service x x x AI
25. Digital virtual warehouse & robotics autonomy x x x x
26. Digital Twin—AWS IoT TwinMaker x x x x AI
27. Autonomous warehouse robots x x x x
28. Remote VR warehouse monitoring x x x
29. Supply chain visualization x x x
30. Holistic digital warehouse management system x x x
31. Integrated virtual management system x x x AI
32. Virtual e-commerce system x x x AI AI
33. Logistical warehouse activation x x x x AI
34. Block chain quality connectivities x x x AI
35. Advancing against external competitiveness x x x AI
36. Sensory autonomous humanoid intelligence x x x x AI

Bold ‘AI’ = key ongoing development areas.

Table 1 indicates Amazon remains in active pursuit of improved real-time warehousing
solutions, and it continues to develop the applications of higher generative levels of AI into
its operational prowess.

Today, Amazon’s AI is predominantly focused on operating towards, or at, generation
4 AI process levels, and its competencies-supported new assimilation, transformational,
and acquisition abilities continue to advance within and across all four of its 1–to–4 AI
generations. For example, Amazon’s new Prime Air robotic delivery drone (MK30) adds
another dynamic capability to its warehouse shipping by facilitating the delivery of small
items into the warehouse’s nearby consumer marketplace. This direct point-to-point flight
technology networks across many AI areas. First, it can acquire energy from home-base
renewable chargers. It can read, pickup, ship, and location-deposit a parcel or item. It
can engage a GPS laser guidance system. It can real-time recognize and carry specific
items of up to 5 lbs. in collective weight. It can fly for up to one hour, 3D position its
consumer-intended parcel or item, and then return to home-base. Across one year, it can
make thousands of flight deliveries—and in most weather conditions. Its payloads can
vary across thousands of possible items—such as batteries, drugs, books, beauty products,
etc. The MK30 also has a degree of autonomy when positioning deliveries and when
communicating with its external or virtual controllers.

Under generation 4 AI, the above features and other Amazon AI factors combine
towards providing ever-smarter delivery efficiencies, greater corporate agilities, faster
precision delivery, lower costs, and higher decarbonization per item delivery.

Machine language, another vital Amazon smart warehouse component, brings ma-
chine learning and optimizing algorithms into each warehouse process. For example,
machine language learning is continually advancing and incorporating generation 4 AI.
Techniques like forecasting/projecting consumer demand versus past data, personalizing
communications by tracking favorites and product choices, and robotic activities/use-
optimizations by item logistical/direct delivery servicing, when coordinated and intel-
ligently interlinked, all coalesce to help advance Amazon’s throughput process efficien-
cies [21].
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Table 1 and Figure 1 indicate how Amazon is applying available latest technologies to
enhance and cost minimize operations. Table 1 shows Amazon selectively matches and
applies differing generative AI levels into each of its different process requirements. Those
with minimal requirements tend to require simple solutions. Those with complex engage-
ment requirements need more complex, and sometimes platform-networked solutions.

For example, in transportation of foods, software-coalesced development of manu-
facturing and supply chain systems can save time, costs, efforts, logistics, and provide
faster delivery. This is now engaging Amazon’s transparent block chain (image No. 34) for
historical location, harvest, shipping, and quality information. So where to next?

Amazon relies on its digital prowess, and this likely requires astute ongoing software
development. Hence, this study now considers how Amazon’s competencies and capabili-
ties can best retain and maybe advance both its sustainable operational and sustainable
performance outcomes (image No. 30).

Table 1 shows (as an ‘x’) Amazon’s generative AI engagement across its operational
processes. All warehouse areas have AI embedded to some degree across the current range
of generation 1–to–5 AI incorporations, and these areas are continually developing towards
(or across) the generation 5 AI systems level.

For example, ‘virtual fashion modelling’ (image No. 16) houses measurement, fit
shape, 3D rotatable images, and is a generation 3 AI system. In the future, virtual fashion
modelling can house a virtual ‘twin’ image (image No. 26) of a consumer image modelling
the chosen garment in differing color, position, and location environments. Hence, this
simplistic generation 3 AI system continues advancing in complexities and capabilities
towards a generation 4 AI system.

Similarly, and considering AI, an ‘optimized automated guided vehicle and trajec-
tories’ (image No. 22) situation is somewhat restricted by the active paths that robotic
transportation vehicles follow (image No. 33) via logistical warehouse floor activation
areas. This generation 4 AI system is currently focused on direct, efficient, and collision
avoidance grid movement of specific bin items, but as warehouse intelligence and sensing
increases (image No. 36), more autonomous generation 4–to–5 AI systems for vehicles can
likely emerge.

Table 1 shows (as a capitalized ‘AI’) where Amazon and its AI incorporation is cur-
rently particularly focused towards incorporating further detailed enhancements. These
generation 4 AI systems and generation 5 AI systems areas are likely ones potentially
offering Amazon larger net benefits and a further future competitive edge within its active
global business marketplace.

For example, movement towards a ‘warehouse-of-the-future layered-techs/innovative
plant layout/design’ (image No. 21) requires high-level, coordinated, coalesced data. This
helps support platform intelligent and software-driven capabilities advancement towards
delivering required outcomes against its real-time generation 5 AI requirements.

Similarly, when considering ‘supply chain visualization’ (image No. 29), this is linked
to the ‘holistic digital warehouse management system’ (image No. 30), which also en-
compasses the ‘integrated virtual management system (image No. 31), and the ‘virtual
e-commerce system’ (image No. 32). These generation 4 AI and generation 5 AI systems net-
work and coalesce into components of a business platform that enables real-time and virtual
management across Amazon’s complete value chain, including external values-advancing
partnering (image No. 20), and from anywhere and at any time.

Figure 1’s visual aspect representation of components of Table 1’s Amazon’s gener-
ation AI-engaged operational processes gives further insight into complexities involved
in delivering generation 5 AI incorporations. Every contributing pathway involves multi-
ple networked integrations of data, analysis, and outcomes collations, with each further
assessed against frameworks of efficient, flexible, agile, and precise speedy delivery actions.
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For example, ‘delivery of field action simulation training’ (image No. 13) and ‘remote
VR warehouse monitoring’ (image No. 28) requires operators to first become skilled in
strategic risk management, digital autonomy, proactive skills capacities, collective knowl-
edge, logistical perception, and digital creativity. These collective input competencies
can then be network assessed and tested against relevant deliverable capabilities—with
particular emphasis on the likely promotion of sustainable performance and/or sustainable
operational advancement outcomes.

The following Figure 1 Amazon applications all require smart software development
and networked collective integration. Many corporate entities and nations are currently in
pursuit of techniques and measurable model approaches that best align AIrelated software
input competency parameters into delivering ‘sustainable’ (for some time) AI software
application output successes. Such AI software applications integrate and align AI across
a business’ operational workflows and logistical systems. rather than contribute as just
add-ons or standalone toolkit components. Thus, today AI brings an integral value, adding
costefficient networking system into the corporate entity’s sustainability solutions.
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ods/systems approaches (images sourced from Google’s image collection).

The above Amazon applications all require smart software development and net-
worked collective integration. Many nations are now in pursuit of techniques and mea-
surable model approaches to best align software AI input competency parameters into
delivering ‘sustainable’ (for some time) software AI output successes.

2.4. Literature Considerations

To model software developer firm AI contributions towards sustainability for a firm
such as Amazon, we return to recent literature. Authors [23,24] suggest high sustainability
standards can occur through AI and its (1) improved techno-scientific (or robotics-enhanced)
qualities across production systems, (2) digital technologies integrated across productivity
capabilities, (3) reduced production costs/emissions, (4) decreased intensity across pro-
duction processes, (5) improved marketplace connectivities, and (6) expansive big data
connectivities. Thus, AI has complex and multi-connected pathway contributions towards
delivering sustainability.

Others [24] add these AI related processes further align and integrate (1) decision
making processes, (2) human and artificial domains, (3) emergent technological changes,
and (4) knowledge creation and so deliver beneficial sustainable business opportuni-
ties. A recent study [25] suggests incorporation of AI also requires system thinkers
who (1) manage firm complexities, (2) design integrated strategies, and then (3) jointly
leverage both AI transformational capabilities and sustainability outcomes. Some re-
searchers [26] theoretically model and coalesce AI related competencies, including input
resources, workforce capacities, creative big data knowledge, and technological adapt-
ability into drivers of dynamic, flexible firm capabilities, which in turn collectively
driver of a sustainable process system complete with feedback connectivities. These
researchers [24–26] imply three-stage or multi-stage modelling is likely needed to inves-
tigate the role of AI in delivering sustainability.

Other researchers [27] believe digital transformation reshapes firm processes to-
wards data-driven, intelligent, networked, and resilient AI-supported firm systems.
This approach brings accuracy, precision, and efficient smart processes—complete with
self-adaptability, reliability, flexibility, high-quality and low-cost output. Under this
industry 4.0 AI-supported environment, model and computation investigations demon-
strate achievability of minimal total cost and least machine energy consumption [27].
Thus, complex, combined digital approaches can offer AI efficient business processes
and systems.

Hence, from differing perspectives literature and the above Amazon study each inves-
tigate AI inclusion as a net logical pathway towards enhancing a sustainability position.
These differing perspectives coalesce and show AI typically operates as complex, integrated,
digitalnetworked system incorporating intelligent decision making capabilities.

Further, AI builds upon an existing suite of firm possessed components that can
incorporate relevant and developing AI components into the mix of available firm
competencies. This paper interprets these competencies as risk management, digital
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autonomy, productive capacities, collective knowledge, and digital creativities. These
competencies further support a downstream suite of actioned capabilities that can then
optimally assimilate and/or transform and/or acquire networked new digital knowledge
competencies into an actioned capabilities suite. This entire collective of AI advancement
competencies and capabilities then supports a resultant more sustainable performance
(and profitable) outcome, along with a resultant more sustainable ongoing operation.
Thus, a three-stage (input, intermediate, output/outcome) multi-construct, causal, and
networked investigative framework model (Figure 2) is envisaged as an approach to
studying linkages between deployed AI and sustainability, and a SEM approach likely
offers a bestchoice investigatory method.

Sustainability 2024, 16, x FOR PEER REVIEW 13 of 23 
 

productive capacities, collective knowledge, and digital creativities. These competencies 
further support a downstream suite of actioned capabilities that can then optimally as-
similate and/or transform and/or acquire networked new digital knowledge competencies 
into an actioned capabilities suite. This entire collective of AI advancement competencies 
and capabilities then supports a resultant more sustainable performance (and profitable) 
outcome, along with a resultant more sustainable ongoing operation. Thus, a three-stage 
(input, intermediate, output/outcome) multi-construct, causal, and networked investiga-
tive framework model (Figure 2) is envisaged as an approach to studying linkages be-
tween deployed AI and sustainability, and a SEM approach likely offers a bestchoice in-
vestigatory method. 

 
Figure 2. Causal AI to sustainability-linked framework approach. 

3. Methods 
When delivering rapid software development, large business entities like Amazon 

often expand their internal software development and turn towards including the assis-
tance of globally useful external software developer options. One tech-savvy country such 
business entities sometimes utilize is Pakistan. Pakistan sees itself as a value-adding con-
tributor towards an engaged business entity’s global software development solution(s). 

Software development is one of Pakistan’s five top global exports, and it is currently 
seeking to find enhanced pathways that help it improve, export, and expand key external 
software solutions. Hence, this study turns to SEM and quantitatively investigates how 
Pakistan’s software development firms can further improve their international software 
developer deliverables and so create more sustainable global software developer business 
solutions for leading-edge, digitally astute clients such as Amazon, Rio Tinto, My Chem-
ist/Chemist Warehouse Group, and Walmart. Hence, this study sees Pakistan software de-
veloper firms AI approaches across software development as being directly relevant to 
firms like those discussed above. 

This 2024 study sources its information in conjunction with participating legal soft-
ware developer firms registered through the Pakistan Government Ministry of Infor-
mation Technology and Telecommunication Pakistan Software Export Board (refer Ap-
pendix A). These Pakistan software developer firms operate in the global and highly com-
petitive developer marketplace. Today, this typically involves generative AI develop-
ments. Each firm also pursues its own strategic AI risk management competencies [28–32] 
and engages both its staff digital autonomies competencies and its available proactive ca-
pacities as competencies in pursuit of individual new AI and software approaches [33,34]. 

Within the AI domain, these software development firms use their collected 
knowledge competencies and their digital creativity competencies as input requirements 
that also include aggressive and global competitive competencies [35–40]. 

Today, registered software developer firms in Pakistan are typically involved in AI 
related projects, and their competencies suite is typically focused-towards actioning new 
AI transformational capabilities. This likely networks with their latest AI assimilation abil-
ities capabilities and their current AI acquisition inclusions capabilities. This network of 
competencies and capabilities is only useful if it then delivers a net AI sustainable position 
for the individual software developer firm. This can AI measure as the software developer 
firm’s sustainable performance and its sustainable operational outcomes. Hence, the Fig-
ure 3 framework for this study is established. 

Firm internal & external 
AI-developing 
competencies 

Firm ongoing development 
suite of AI-engaged 

capabilities solutions

Firm AI-supported 
performance & operational 

sustainability 

Figure 2. Causal AI to sustainability-linked framework approach.

3. Methods

When delivering rapid software development, large business entities like Amazon
often expand their internal software development and turn towards including the assistance
of globally useful external software developer options. One tech-savvy country such
business entities sometimes utilize is Pakistan. Pakistan sees itself as a value-adding
contributor towards an engaged business entity’s global software development solution(s).

Software development is one of Pakistan’s five top global exports, and it is currently
seeking to find enhanced pathways that help it improve, export, and expand key exter-
nal software solutions. Hence, this study turns to SEM and quantitatively investigates
how Pakistan’s software development firms can further improve their international soft-
ware developer deliverables and so create more sustainable global software developer
business solutions for leading-edge, digitally astute clients such as Amazon, Rio Tinto,
My Chemist/Chemist Warehouse Group, and Walmart. Hence, this study sees Pakistan
software developer firms AI approaches across software development as being directly
relevant to firms like those discussed above.

This 2024 study sources its information in conjunction with participating legal software
developer firms registered through the Pakistan Government Ministry of Information
Technology and Telecommunication Pakistan Software Export Board (refer Appendix A).
These Pakistan software developer firms operate in the global and highly competitive
developer marketplace. Today, this typically involves generative AI developments. Each
firm also pursues its own strategic AI risk management competencies [28–32] and engages
both its staff digital autonomies competencies and its available proactive capacities as
competencies in pursuit of individual new AI and software approaches [33,34].

Within the AI domain, these software development firms use their collected knowledge
competencies and their digital creativity competencies as input requirements that also
include aggressive and global competitive competencies [35–40].

Today, registered software developer firms in Pakistan are typically involved in AI
related projects, and their competencies suite is typically focused-towards actioning new
AI transformational capabilities. This likely networks with their latest AI assimilation
abilities capabilities and their current AI acquisition inclusions capabilities. This network
of competencies and capabilities is only useful if it then delivers a net AI sustainable
position for the individual software developer firm. This can AI measure as the software
developer firm’s sustainable performance and its sustainable operational outcomes. Hence,
the Figure 3 framework for this study is established.
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internal warehousing sustainability.

4. Analysis and Results

In pursuit of a likely expertise profile for software developer firms in Pakistan, this
study first assesses its survey respondents’ demographics. It then quantitatively builds the
study’s framework of competencies to capabilities to sustainability into a SEM pathways
model approach. This model exposes how a software developer firm could ensure its
skilled digitally focused workforce remains competencies and capabilities task aligned.

4.1. Survey Demographics

This January–February 2024 study quantitatively surveys, and then models, respon-
dent data provided by 137 senior representatives of different (differing IP localities) leading
and legal software development firms in Pakistan. Demographics show respondent age
distributions are 76 (<30 years), 58 (30–45 years), and 2 (46–60 years), Respondent education
levels attained are 70 (Batchelor), 59 (Master’s) 4 (PhD), and 4 (other). Software respondent
firm sizes are 7 (<10), 27 (11–50), 33 (51–100), 15 (101–200), and 54 (>200). Time in the
industry is 0 (<1 year), 71 (1–5 years), 43 (6–10 years), 17 (11–15 years), 5 (>15 years). All bar
four respondents have research and development roles ranging from analyst, to engineer,
to programmer, to architect, to developer to manager, to QA manager. Hence, the survey
data is deemed to suitably represent software developers, and information provided is
deemed of an ‘expert’ and reliable nature.

4.2. Statistical Presentation of Quantitative Survey Software Develper Responses

The capture of software developer responses is gauged across ten resultant constructs.
Three resultant factor-reduced question items (all residuals < 0.05), each with Likert scale
(1 = strongly disagree to 5 = strongly agree) ranges, remain as the collective representation
of one of ten framed constructs (refer Table 2).

Column 1 lists the three final factor reduced item measures for each construct [41,42].
Column 2 lists the construct load for each item. Experimental loads above 0.6 are acceptable
in research, but those above 0.7 are preferred [43], and all bar four loads exceed 0.7. Column
3 lists the average variance extracted (or captured) by each construct relative to the amount
of variance captured due to measurement error in the construct. The resultant values, as
desired, all exceed 0.5 [43].



Sustainability 2024, 16, 3908 15 of 23

Table 2. Software developers’ collated survey data table (compiled for Figure 3 and three-stage
SEM modelling).

ELEVEN CONSTRUCTS, THEIR ITEMS, AND RELEVANT MEASURES
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Company Staff Digital Autonomy 0.62 3.80 0.87 0.82 0.78 0.13
1. help develop strategic vision 0.884
2. provide business ideas 0.787
3. take part in developing business concepts 0.682
Company Digital Creativity 0.63 3.83 0.76 0.84 0.70 0.09
4. supports staff creativity 0.881
5. hire only employs who pursue creative ideas 0.855
6. seek out new opportunities 0.617
Company Quick Digital Innovativeness Response To 0.54 3.79 0.77 0.77 0.68 0.14
7. changes in consumer demands 0.783
8. delivers new innovative services to consumers 0.745
9. competitor initiatives 0.665
Company Quick Proactive Capacities Response 0.84 3.80 0.99 0.94 0.96 0.06
10. offering best qualities for consumers 0.930
11. delivering new innovations 0.911
12. providing best products for consumers 0.901
Company Strategic Risk Mgmt Assessed New Project Ideas 0.52 3.73 0.69 0.80 0.62 0.09
13. balance risk against financial rewards 0.816
14. successfully manage associated risks 0.698
15. bring unexpected beneficial opportunities 0.641
Company Creative Collective Knowledge 0.64 3.97 0.74 0.86 0.68 0.08
16. combines external and internal knowledge to generate new ideas 0.813
17. is shared to learn from other experiences and failures 0.801
18. grows when specialist workforce skills are shared 0.783
Company Sustainable Performance Outcomes 0.68 3.70 0.90 0.89 0.85 0.08
19. progressively increases its market share each year 0.885
20. against last financial year remains superior to competitors 0.793
21. competitors find it hard to gain competitive advantage against us 0.788
Company Acquires New Knowledge By 0.59 3.92 0.73 0.84 0.67 0.09
22. regularly seeking consumers’ feedback 0.786
23. using routines that source/adapt/exploit new knowledge 0.771
24. pursuing relevant strategic industrial intelligence information 0.737
Company Assimilation Abilities Are 0.55 3.98 0.74 0.77 0.65 0.13
25. applied to its acquired information and knowledge 0.838
26. proactively changing to changing market demands 0.775
27. identifies new opportunities to provide quick service to customers 0.593
Company Transformational Abilities 0.75 3.94 0.78 0.91 0.74 0.05
28. structurally help acquire new knowledge insights 0.898
29. include employees sharing practical experiences 0.886
30. continually refine our development of new products 0.816
Company Sustainable Operations Outcomes 0.69 3.95 0.83 0.86 0.77 0.09
57. successfully exploit data/ideas/knowledge into software development 0.877
58. effectively utilize operational knowledge into new software products 0.845
59. effectively apply operational knowledge into new services 0.758
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Construct means are slightly positively skewed, and along with their respective
SDs, are all suitable and within acceptable ranges for statistical analysis. All construct
Cronbach alpha values are strong, and each is above 0.7, indicating sound construct internal
consistency and scale reliability [43].

Each single indicator construct load and its individual construct error are calculated
for structural equation analysis using Munck’s equations [43–45]. Each load measure
indicates strong loading on its individual single indicator construct, and combined with
its individual (and small) error measure, these two measures collectively indicate each
construct is likely suitable for maximum likelihood single indicator SEM analysis [44,45].

Single indicator SEM analysis is used when the construct’s remaining factor reduction
indicators items are closely related to the construct and have similar loadings, and when
pathways across complex models are to be investigated. Then, the best representation of
these similar indicators can likely be computed as an average (or weighted average) of the
construct’s remaining factor reduction construct items, rather than a selected item from this
group [43–45]. This modelling is shown as Figure 4.
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Figure 4. Software developers’ three-stage SEM path model solution to ongoing sustainability.

These Table 2 single indicator constructs can be applied within the literature-developed
causal framework model. Here, each construct’s single indicator item is set against a
1.0 measurement error variance (set against the study’s literature developed survey items
focus as assessment of indicator methodology), and against this focal construct’s causal
connections to other model constructs whilst assuring literature supported causal appropri-
ateness of constructs connected to multiple indicators is suitably captured [43–45].

This study notes measurement and theory remain closely related, yet the environs are
set in an imperfect knowing situation but kept within literature trustworthy guidelines.
This brings a close coordination between the study’s literature and its resultant framework
modelling. The study also places a close understanding of the modelling with the data
capture, also supporting logical and causal model outcomes, and with each construct
and its indicator items, together supporting and contributing towards theory and model
precision [41,46].
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We also model as Figure 5, the Figure 4 solution, this time complete with full inde-
pendent construct items complete with their interaction effects, and again deliver a strong
structural model. We conclude the Figures 4 and 5 modelling is stable and representative
of the survey’s software ‘expert’ data capture.
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To further validate the model structure, we add the Bollen-Stine bootstrap p value of
0.328 for Figure 4. This shows the model fits better in 135 of 200 bootstrap samples and
worse in only 65 bootstrap samples. Similarly, Figure 5’s Bollen-Stine bootstrap p value of
0.090 fits better in 183 of 200 bootstrap samples and worse in only 17 bootstrap samples.

4.3. SEM of Table 2’s Software Developer Responses

Figure 4 shows software developers perceive their deliverance of sustainable
AI software development processes as a three-stage solution, commencing with an
independent suite of possessed competencies. These can help build an intermediate
dependent stage-two suite of developing capabilities. The independent competencies
and intermediate dependent capabilities then coalesce as a solution set that helps
deliver improvements to stage three’s dependent ongoing sustainable performance
and a sustainable operational position.

All Figure 4 paths are significant (at better than p < 0.05), all constructs network and
interplay. A high-quality model fit is achieved (refer model fit data provided immediately
below Figure 4), and all measures, except RMSEA (which offers only acceptable fit), indicate
an excellent fit [29,43]. Figure 5, with its interaction effects between dependent constructs
included, follows an identical but somewhat weaker path model structure. In both models,
the productive capacities to new acquisitions beta path weights are positive (0.14 and 0.18),
whereas the productive capacities to transformational abilities beta path weights are nega-
tive (−0.14 and −0.18). This difference is logical because productive capacities introduce
available best, quality, and innovative consumer items. These likely have some influence
on new acquisitions—hence a positive relationship, whereas productive capacities likely
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do not require additional extensive transformational abilities, hence a negative relationship.
Both models display logical causal progressions. All remaining model beta pathways are
both positive and significant (at better than p < 0.01 levels), with new acquisitions and
transformational abilities actions generating moderately strong changes influences onto
sustainable performance and sustainable operations outcomes.

The Figures 4 and 5 single indicator constructs can be applied within the literature-
developed framework (full causal) model. Here, each construct’s single indicator item is
set to a 1.0 measurement error variance-set against the study’s literature-developed survey
items focus (the assessment of indicator methodology), and against this focal construct’s
causal connections to the other constructs in the model whilst also assuring the literature
supported causal appropriateness of the constructs connected to multiple indicators is also
captured [43–45].

Figure 4 has all independent constructs with significant covariances (p < 0.001) between
0.43 and 0.79 and all correlations between 0.43 and 0.79. This study notes measurement and
theory remain closely related, yet the environs are set in an imperfect knowing situation
but kept within literature trustworthy guidelines. This brings a close coordination between
the study’s literature and its resultant framework modelling. The study also places a close
understanding of the modelling, with the data capture also supporting logical and causal
model outcomes and with the construct and its indicator items together supporting and
contributing towards theory and model precision [45,46].

5. Discussion

Today, dynamic warehousing is a digital intelligences, and real-time demand-process
optimization solution, and smart dynamic warehousing incorporates integrated, automated,
and, where possible, autonomous robotic 3D active machinery to operate without human
workforce participation and to immediately provide and deliver consumer demanded
items in near real-time. This is the direction towards which Amazon, Rio Tinto, My
Chemist/Chemist Warehouse Group, and Walmart are each heading—but from different
current positions! This progression often requires assistance of external software devel-
oper firms.

To assess software developer firm capabilities, Figure 4’s path model can be applied.
Here, the standardized total effects can be stage-grouped, and displayed in 3D, as competen-
cies (X axis), capabilities (Y axis) and sustainability outcomes (Z axis)—with the size of each
software developer firm’s ‘box’ capturing the relative strength of each model’s deliverables.

Figure 4 presents a three-stage model (competencies-to-capabilities-to-sustainability
outcomes). Of the three stage-two Figure 4 intermediate capabilities constructs, only
transformational abilities and new acquisitions directly and significantly affect the stage-
three outcomes constructs. This suggests software developer firms can best focus on
actioning and developing strong transformational abilities, plus building broad-reaching
abilities that source and action new acquisitions as another part of their suite of ongoing
actioning capabilities.

Hence, based on the above Figure 4 modelling solution, Amazon and also other ware-
housing firms can look towards partnering with software developer firms who (1) possess
high competencies in strategic risk management and/or (2) allow staff a high degree of
digital autonomy and/or (3) possess a high degree of proactive capacities and/or (4) con-
tinually acquire significant and relevant collective knowledge and/or (5) encourage staff to
show high degrees of digital creativity. Amazon’s best software development partnering
is most likely where chosen software developer firms positively possess high levels of
all five of these competencies and where the chosen software developer firms remain
focused on developing their transformational abilities and capably optimizing latest new
capabilities acquisitions.

For example, considering Amazon’s ongoing target towards smart, dynamic ware-
housing, where (1) drones can monitor stored items or parcels, (2) shelving can move to
accommodate differing parcel sizes, (3) robots can, as required, place and/or pick parcels
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in-and-out of storage, and (4) laser guided semi-autonomous robots can move any one-off
selected items to logistical conveyors for placement, inclusion, delivery-labelling, pack-
aging, and consumer-demanded shipping. Advancements in this real-time changeable
domain likely require ongoing AI improvements—continually driven by both internal soft-
ware development solutions and external partnering software developer firms’ solutions.
These relative, real-time generative AI system solutions likely target adding to a net-positive
sustainability growth, but they can also be set to deliver a net-static sustainability status or
even to a specific net-negative sustainability position.

For example, the earlier described generation 1–to–4 AI systems are today progres-
sively being integrated into 3D, digitally twinned, remote warehouse management systems,
and these networks can further software-link and allow near-warehouse, AI-supported,
precise drone-specific order fulfillment delivery to specific individual consumers.

Further ongoing developments to such smart dynamic warehousing systems likely
requires software developer staff who possess (1) sound strategic risk management com-
petencies, plus (2) high degree of digital autonomy, plus (3) proactive capacities, plus
(4) digitally creative competencies, plus (5) skills to collectively contribute into growing
body of competitive new knowledge. This competencies suite can be particularly useful if
it is actioned towards appropriately chosen deliverable capabilities.

Both software developer firms and Amazon share the need (1) to dynamically develop
their capabilities into chosen new assimilation pathways, (2) to transform an existing
position into something new, and (3) to acquire further areas of precise, agile capabilities
deliverance. Thus, Amazon can likely consider the intermediate capabilities stages of
Figure 4 when pursuing software changes or when establishing selection criteria that may
help evaluate the potential of additional or new software developer firms. For example,
software development companies like Altium have competencies and capabilities-linked
design, manufacturing, and supply applications aspects into one sustainable solution.

Although Amazon is used as this study’s primary example of software developer firm
ongoing requirements, similar situations likely apply to the study’s other warehousing
examples (Rio Tinto, My Chemist/Chemist Warehouse Group, Walmart), and to many
other substantive leading-edge AI engaging firms.

6. Conclusions

This study advances knowledge in the AI field. It provides deep insight into current
industry generative AI inclusion systems. It shows both literature and practical leading
industry operations can link, overlap, and complement each other when it comes to AI
and its processing complexities. It shows how to model and link AI inclusions towards
a sustainability positioning. It shows how to integrate external AI contributions from
one firm into another firm’s suite of intelligences developments. It shows how to track,
and maybe benchmark, the progress of such AI inclusions from either an external or an
integrated internal software developer perspective. It shows how to understand and create
a more sustainable, AI integrated business positioning.

This study offers a unique perspective through which substantive firms already using
AI can now model and track the relevance of their prospective or existing external software
developer firms and so create rapid internal net AI incorporation, development, and
sustainable solutions.

This study considers warehousing and generative AI deployment as a pathway to-
wards smart ever-developing generative AI systems and towards inclusion into smart
dynamic warehouse-of-the-future solutions. The exemplar Amazon is enlisted to focus
on digital and generative AI prowess. Amazon’s leading-edge warehouses are progres-
sively offering further smart dynamic warehousing solutions into their business model.
This likely necessitates the inclusion of complex internal software development, coupled
with the inclusion of relevant and specifically selected external software developer firms.
Such software developer firms likely consistently attune themselves towards even higher



Sustainability 2024, 16, 3908 20 of 23

performing, sustainable, AI focused entities, and/or towards being higher operationally
productive AI enabling sustainable entities.

This study shows Amazon, and likely other leading-edge warehousing operations,
can specifically select the external software developer firms that likely best help improve
their chosen generative AI advancements. The SEM pathways model of leading-edge soft-
ware developer firms in Pakistan suggests a three-stage software developer firm process
exists and that constructs presented herein offer warehouse pathways that can be applied
when choosing relevant AI competencies and AI capabilities—particularly ones that likely
include latest relevant generative AI systems. These may be associated with relevant au-
tomation, AI enhanced robotics, and/or efficient logistics responses. Warehouse operators
can frame these generative AI systems towards helping them assess and track software
capabilities developments and to further map them against changes in both operational
and performance sustainability outcomes.

7. Limitations

The total effects of the competencies and capabilities constructs on the two outcome-
dependent variables suggests further considerations can be included when determining
and selecting further appropriate external software developer firm item contributions for
inclusion in warehousing and its generative AI developments. However, this study’s
constructs provide a solid starting point. Considering competencies, digital creativity
(68%), collective knowledge (24%), and digital autonomy (10%) deliver strongest signifi-
cant influences onto sustainable operations, whilst digital creativity (26%), strategic risk
management (25%), and digital autonomy (15%) deliver strongest significant influences on
sustainable performance. Further, considering capabilities, assimilation abilities (81%) and
transformational abilities (81%) deliver strong influences on sustainable operations and
around 30% influences on sustainable performance, whilst new acquisitions exert around a
30% influence on sustainable operations and a 50% influence on sustainable performance.

Thus, others can likely use this three-stage SEM approach to software development
and can expand this research model by engaging additional, specifically relevant (and
significant) warehouse-related construct item measures.
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