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INTRODUCTION

Understanding what drives variation in abundances 
of species in space and time is a core aim of ecology 
(Krebs, 2009). Populations respond to a combination of 
density- dependent and density- independent processes 
(Ohlberger et  al.,  2014; Sæther et  al.,  2016; Thibaut & 
Connolly,  2020). Species- to- environment interactions, 
such as variable species responses to environmental fluc-
tuations, and covariations in those responses, are drivers 
of relative abundance dynamics. (Elmqvist et  al.,  2003; 
Thibaut et  al.,  2012; Thibaut & Connolly,  2013). 
Particularly, if species are not perfectly positively cor-
related in their responses to environmental fluctuations, 
their fluctuations in abundance will be less pronounced 
at the community level than at the individual species level 
(a phenomenon referred as ‘response diversity’, Elmqvist 
et al., 2003; and a key driver of diversity- stability relation-
ships: Hautier et al., 2020; Zhao et al., 2022).

Interspecific interactions, such as competition and fa-
cilitation, also can influence species- abundance dynam-
ics (Butterfield, 2009; Roughgarden, 1974; Tilman, 1994). 
Indeed, some of community ecology's classic studies 
identify species interactions with important demo-
graphic consequences (e.g., competitive [Connell, 1961], 
keystone species [Paine,  1966], predator–prey cycles 
[Stenseth et al., 1997; Krebs et al., 2017]). Conversely, sev-
eral recent studies have found evidence of mainly weak 
or negligible interspecific interactions in time series data 
for marine microorganisms, moths, temperate fishes, 
crustaceans, birds and rodents communities (Mutshinda 
et al., 2009; Ovaskainen, Tikhonov, Dunson, et al., 2017; 
Sandal et al., 2022; but see Almaraz & Oro, 2011).

Evaluating the importance of interspecific interactions 
on community dynamics, and disentangling their effects 
from those of environmental covariances across species 
is critical for addressing many questions in community 
ecology (Loreau & de Mazancourt,  2013; Thébault & 
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Abstract
Species- to- species and species- to- environment interactions are key drivers of 
community dynamics. Disentangling these drivers in species- rich assemblages is 
challenging due to the high number of potentially interacting species (the ‘curse 
of dimensionality’). We develop a process- based model that quantifies how 
intraspecific and interspecific interactions, and species’ covarying responses to 
environmental fluctuations, jointly drive community dynamics. We fit the model 
to reef fish abundance time series from 41 reefs of Australia's Great Barrier Reef. 
We found that fluctuating relative abundances are driven by species’ heterogenous 
responses to environmental fluctuations, whereas interspecific interactions are 
negligible. Species differences in long- term average abundances are driven by 
interspecific variation in the magnitudes of both conspecific density- dependence 
and density- independent growth rates. This study introduces a novel approach 
to overcoming the curse of dimensionality, which reveals highly individualistic 
dynamics in coral reef fish communities that imply a high level of niche structure.
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Loreau, 2005; Tredennick et al., 2017). However, estimat-
ing these effects is particularly challenging in species- rich 
communities, due to the ‘curse of dimensionality’. That is, 
the number of potential interspecific interaction strengths, 
and covariances in species’ response to environmental 
fluctuations, that need to be estimated, increases qua-
dratically with the number of species in the community 
(e.g., from 12 to 90 to 380 interaction terms and 6 to 45 to 
190 environmental covariances as a community increases 
from 4 to 10 to 20 species, respectively).

In the absence of practical methods to estimate so 
many parameters, community ecologists have developed 
parsimonious biodiversity models that make strong sim-
plifying assumptions about community dynamics. For 
instance, neutral theory of biodiversity assumes that in-
dividuals are demographically identical regardless of 
species, and all the variability in a community is driven 
by demographic stochasticity—random variation in 
the fates of individuals (e.g., birth, death and dispersal 
events; Hubbell,  2001). However, neutral models’ abil-
ity to explain biodiversity patterns in real communities 
has been challenged (e.g., Brown et  al.,  2013; Chisholm 
et al., 2014; Connolly et al., 2014). Somewhat less restric-
tive, the stochastic community- dynamic theory of Engen 
and colleagues (Engen & Lande, 1996; Engen et al., 2002; 
hereafter the ‘Engen model’) allows for species differences 
in demographic rates and their fluctuations with environ-
mental conditions. However, this theory still has restric-
tive assumptions (e.g., all species have equal intraspecific 
density dependence and temporal variance of fluctuations 
in population growth rate among species; interspecific 
interactions are negligible; responses to environmental 
fluctuations are independent [Engen & Lande,  1996]). 
How strongly these assumptions are violated, and how 
robust the inferences made from such models (e.g., Engen 
et al., 2002; Solbu et al., 2018), has been assessed only for a 
narrow range of parameter values (Tsai et al., 2022).

Such dimension- reduction approaches have been ap-
plied previously to coral reef fish assemblages. Static 
analyses of patterns of commonness and rarity reveal 
these communities do not follow species- abundance dis-
tributions expected from neutral dynamics (Connolly 
et  al.,  2014, 2017). Furthermore, the analysis of tempo-
ral dynamics of species- abundance distributions, using 
the Engen model, suggests that most of the variability 
in coral fish abundances is due to persistent heterogene-
ity in demographic characteristics among species, with 
smaller contribution due to environmental fluctuations 
(Tsai et  al.,  2022). However, species differences in the 
strength of density- dependence has been hypothesized to 
be an important driver of variation in abundance in other 
high- diversity assemblages like tropical forests (Comita 
et  al.,  2010; Johnson et  al.,  2012; LaManna et  al.,  2017; 
Mangan et al., 2010), and differential sensitivity of species 
to environmental fluctuations have been widely docu-
mented, including for reef fishes (Emslie et al., 2011; Hoey 
et al., 2016; Pratchett et al., 2011, 2015). Ideally, to draw 

robust inferences about community structure, we would 
like to confront community data with models that can 
account for such heterogeneities and interactions, where 
they are present (see, e.g., Hui et al.,  2015; Ovaskainen, 
Tikhonov, Norberg, et al., 2017; Warton et al., 2015).

This study aims to evaluate the importance of among- 
species heterogeneity in demographic rates (particularly 
the strength of density dependence, and the sensitivity 
of species’ density- independent growth rates to environ-
mental fluctuations), species interactions, and response 
diversity as drivers of the temporal dynamics of reef fish 
assemblages on the Great Barrier Reef (GBR), Australia. 
Specifically, we develop a community dynamics model 
that is tractable, but that can estimate both species in-
teractions and the variances and covariances of species’ 
response to environmental fluctuations, without strong 
homogeneity assumptions, while making plausible biolog-
ical assumptions about how those heterogeneous quanti-
ties are distributed among species. We fit this model to 
reef fish assemblage data, then evaluate the magnitude 
and importance of species interactions and response di-
versity as drivers of changes in abundance, and the rela-
tive importance of heterogeneity in density- independent 
and density- dependent demographic parameters in driv-
ing persistent variation in abundances among species. 
Additionally, we test our approach against simulated 
data, where we know a priori the interspecific interactions 
and species covariances in environmental fluctuations, to 
evaluate whether the model can successfully recover the 
‘true’ parameters used to simulate the data, and in partic-
ular, to distinguish between covariation in species’ abun-
dances that is mediated by species interactions versus 
covariation mediated by environmental fluctuations. Our 
findings highlight highly heterogeneous and individual-
istic dynamics, with species interactions overwhelmingly 
negligibly small and response diversity relatively high. 
We also find that the substantial heterogeneity in species’ 
long- term abundances is driven approximately equally 
by interspecific differences in density- dependent and 
density- independent components of population growth.

M ETHODS

Data collection

The GBR's reef fish communities have been surveyed 
by the Australian Institute of Marine Science’ Long- 
Term Monitoring Program (LTMP) since 1995 (Emslie 
et  al.,  2020). Underwater visual surveys were conducted 
annually on the same 41 reefs (Figure 1) between 1995 and 
2005, so here we focus on these reefs for this 11- year period. 
At each reef, there were three sites on the reef slope, usu-
ally on the north- east flank of the reef. Each site contained 
five permanently marked 50 m transects, approximately 
parallel to the reef crest between 6 m and 9 m. Observers 
recorded abundances of 208 species of reef fishes from 
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9 families: Labridae (including Scarine parrotfishes), 
Pomacentridae, Siganidae, Chaetodontidae, Acanthuridae, 
Serranidae, Lutjanidae, Lenthrinidae and Zanclidae. All 
fish estimated to be at least 1 year old were counted. All 
families were counted on 50 × 5 m transects, except poma-
centrids, which were counted on 50 × 1 m transects, due 
to their small body sizes and site- attached life habits (see 
Emslie & Cheal, 2018 for detailed methodology).

The model

Abundance dynamics are assumed to follow the multi-
variate Gompertz model (Ives et al., 2003). This model 
has been used previously to model the dynamics of reef 
fishes (Thibaut et al., 2012; Tsai et al., 2022), and it char-
acterizes the density- dependent dynamics of reef fishes 
better than models of logistic form, (Thibaut et al., 2012), 
as it does for many other taxa (Sibly et al., 2005; Thibaut 
& Connolly, 2020). The model follows:

or, in the matrix form:

where log(μt) is a vector containing species’ estimated 
log- abundances at time t, μt = (μ1,t, μ2,t, μ3,t,…, μi,t). 
a is a vector containing species’ estimated intrinsic 
rates of increase, a = (a1, a2, a3,…, ai). B is a species- 
by- species interaction matrix whose off- diagonal el-
ements, bij, indicate the effect of the abundance of 
species j on the per capita population growth rate 
of species i (bij = 0 for no interaction; bij <0 for neg-
ative effects (e.g. competition); bij >0 for positive ef-
fects (e.g. facilitation)), and whose diagonal elements, 
bii, represent the effect of the abundance of species 
i on its own population growth (bii = 1 for density- 
independent growth; 0 < bii <1 implies compensatory 
density- dependence, bii <0 implies over- compensatory 
density- dependence). et is a vector of process error 
for each species, et = (e1,t, e2,t, e3,t,…, ei,t), which has a 
multivariate normal distribution with mean vector 0 
and covariance matrix Σ. This represents stochastic 
f luctuations in the intrinsic growth rate from year- to- 
year. Our use of fixed a, B, and Σ implies stationarity 
of the stochastic community- dynamic process; this 
assumption is consistent with the lack of clear abun-
dance trends in the absolute or relative abundances of 
species (Figure S1).

We accounted for observation error by modelling the 
observed fish counts as Poisson- distributed:

where yi,t is the observed count of fish of species i at time 
t, μi,t is the (unobserved) abundance of species i at time t 
from Equation 1. Although we pooled fish counts at the 
reef scale to reduce the effect of overdispersion (i.e., extra- 
Poisson variation due to observation error), to the extent 
that such overdispersion is present in the data, we would 
expect it to be subsumed within the environmental co-
variance matrix, yielding some upward bias in the esti-
mated species- specific variances due to environmental 
stochasticity.

Due to the use of different transect sizes to count 
Pomacentrids (50 × 1 m transect) and non- Pomacentrids 
(50 × 5 m transect), we modelled the Pomacentrid counts 
as:

where y(pom)i,t is the observed number of fish of the 
pomacentrid species i at time t, μ(pom)i,t is the mean 
abundance of the pomacentrid species i at time t per 
250 m2 (the area of the larger transect). The division by 
5 accounts for the fact that pomacentrids were counted 
on transects that were a fifth the size of the normal 
transects. This obviates the need to exclude informa-
tion by subsampling fishes counted on the larger tran-
sects (e.g., as in Connolly et al., 2005, 2009, 2017; Tsai 
et al., 2022).

(1)log
(

�i,t

)

= ai +

S
∑

j=1

bi,j log
(

�j,t−1

)

+ ei,t

(2)log
(

�t

)

= a + B log
(

�t−1

)

+ et

(3)yi,t ∼ Poisson
(

�i,t

)

,

(4)y(pom) i,t ∼ Poisson
(

�(pom) i,t ∕5
)

,

F I G U R E  1  Map of the GBR showing the 41 sampled coral reefs 
in our analysis as yellow points. Mainland Australia and islands are 
represented in grey and coral reefs and cays are in light blue.
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Reducing dimensionality of the model

As species richness increases, the number of parameters 
in the interaction matrix B and the covariance matrix 
Σ increase quadratically. The interaction matrix B has 
S2 free parameters, where S is the number of species. 
The covariance matrix Σ has S(S + 1)/2 free parameters. 
Estimating that many parameters in species- rich assem-
blages would require long time- series data, which gener-
ally do not exist for community time series, particularly 
in marine systems.

To reduce the dimensionality of the covariance ma-
trix, Σ, we used a factor analysis approach, similar 
to two previous analyses of high- diversity time series 
(Ovaskainen, Tikhonov, Dunson, et  al.,  2017; Sandal 
et al., 2022). This approach assumes that the observed 
data can be explained by a small number of latent vari-
ables, D (D < < S), while still explaining the covariance 
of the observed data (Hui et  al.,  2015; Ovaskainen, 
Tikhonov, Norberg, et  al.,  2017; Warton et  al.,  2015). 
The logic is that environmentally- mediated fluctu-
ations in abundances should be driven by a common 
set of environmental drivers (e.g., climatic variables, 
or other biological variables such as benthic composi-
tion), which in general may not be known or measured. 
Therefore, the variance–covariance matrix was esti-
mated as

where Λ is an S × D matrix of factor loadings, which 
can be interpreted as the response of species to the un-
known drivers (i.e., latent variables). Φ is the variance–
covariance matrix of the latent variables and it is a D × 
D matrix (see Appendix  S1). The covariance matrix Ψ 
is a diagonal matrix explaining the remaining variation 
(residual error) not captured by the factor loadings and 
the latent factors. The correlation in species responses 
to environmental fluctuations, P, can be calculated from 
the variance–covariance matrix Σ as Pij = �ij ∕

√

�ii�jj. This 
changes the number of free parameters in the covariance 
matrix (Σ = ΛΦΛ’ + Ψ) from S(S + 1)/2 to D(S + (1 − D)/2). 
Provided that D < <S, this substantially reduces the 
number of parameters required to calibrate the covari-
ance matrix Σ (See Appendix S1 for further details and 
Figure 2 for prior choices and model structure).

With respect to the interaction matrix, B, we seek 
an approach in which most interactions will be weak 
or negligible, but which allows some interactions to be 
strong, and potentially asymmetric. To do this, we im-
plemented the ‘regularised horseshoe prior’ (Piironen & 
Vehtari, 2017) as a prior distribution for our interspecific 
interaction terms. This distribution has high density 
around 0, but with heavy tails that allow some terms to 
be regularized far from zero (Figure S2). Here we apply 
the regularized horseshoe prior to estimate a full inter-
action matrix. See appendix S2 for further justification 

for our approach, and details about this prior and its 
implementation.

Because the main diagonal elements of the interaction 
matrix B represent effects of competition within spe-
cies, which may come from a different distribution than 
the between- species effects, we estimate those terms 
using a Gaussian prior (see, e.g., Mutshinda et al., 2009; 
Bunin, 2017) (Figure 2).

Model fitting to data

To estimate the relative importance of interspecific in-
teractions, intraspecific density dependence, and re-
sponse diversity, we fitted our model (Figure  2) to the 
fish counts pooled at the reef scale. We also fitted a ver-
sion with reef level random effects (see Appendix S3 and 
Figure S3).

We used the software program Stan (Stan Development 
Team,  2023), which uses Hamiltonian Monte Carlo 
(HMC) sampling, because this approach provides a 
greater range of tools to detect potential model patholo-
gies that are not available for other MCMC algorithms, 
such as Gibbs samplers (Betancourt,  2016; Monnahan 
et al., 2017).

From the 208 species in the LTMP, we generated 
data subsets with 20 and 40 species, prioritizing spe-
cies with the smallest proportion of zero counts ob-
served across reefs and time (Table  S1). Collectively, 
these represent 52.49% and 64.93% of the total num-
ber of observed individuals in the data, respectively. 
All counts were analysed at species level except for 
Ctenochaetus species, whose counts were grouped 
at the genus level and analysed as a pseudo- species, 
Ctenochaetus spp, due to the resemblance between 
the two occurring species in the GBR, C. binotatus 
and C. striatus. For each dataset we ran 4 chains, 
each with 10,000 iterations, 5000 iterations as warm 
up and 5000 as sampling. This left 20,000 samples in 
the posterior distribution of each parameter. We used 
weakly informative priors and prior predictive checks 
(see Figure  2 and Appendix  S4), to ensure that pos-
terior estimates were informed by the data. Model 
convergence was monitored by examining posterior 
chains and distributions, running 4 chains with dif-
ferent randomly chosen initial values, checking that 
the potential scale reduction factor (R- hat) was close 
to 1 for all parameters, and checking that the effec-
tive sample sizes were large (Figure S4). Model fit was 
assessed by posterior predictive checks (Figure  S4). 
Model predictive accuracy and model selection were 
evaluated by leave one out cross validation (LOO- CV) 
(Vehtari et al., 2017), using the R package loo (Vehtari 
et al., 2023; Appendix S5). Comparing parameter esti-
mates for the fits with 20 versus 40 species allowed us 
to assess the extent to which the use of only a subset of 
a community could bias those estimates.

(5)� = ���
� + Ψ
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Simulation study

To assess the robustness of the parameter estimates 
and inferences produced in our analyses, we fit our 
models to simulated data with known parameter 
values. Specifically, we wished to verify that our ap-
proach could accurately estimate the off- diagonals of 
the interaction matrix B and the covariance matrix Σ, 
and thereby successfully distinguish between covari-
ances in abundance produced by species interactions 
versus correlated responses to environmental f luctua-
tions. In the baseline simulation, we set interspecific 
interactions and environmental covariances to zero 
to determine whether model fits would erroneously 
identify non- zero interactions or covariances. In other 
simulations, we simulated non- zero environmental co-
variances and set the interspecific interactions terms 
to zero; we simulated communities where a subset of 
interspecific interactions was non- zero (this subset 
was small, ca. 10% of interactions, to allow interaction 
terms to be moderately large without compromising 
coexistence), but there were no environmental co-
variances; and we simulated communities with both 
non- zero environmental covariances and with some 
non- zero interspecific interactions. See Appendix  S6 
for further details.

RESU LTS

Model fit to LTMP data

Model fits indicated very weak interspecific interactions, 
relative to conspecific density- dependence, but high re-
sponse diversity. For interspecific interactions around 
97% of estimated posterior means had magnitudes be-
tween −0.01 and 0.01, more than an order of magnitude 
smaller than the mean intraspecific density- dependence 
(Figure  3). In contrast, intraspecific density depend-
ence was detected in all species, with mean bii <1 and 
centred around 0.86 (i.e., the mean strength of density- 
dependence 1 − 0.86 = 0.14: Figure 3).

In contrast to species interactions, species pairs ex-
hibited a broad range of correlations in their responses 
to environmental fluctuations, with most weakly to 
moderately positively correlated, indicating reasonably 
strong response diversity: most of the posterior mean es-
timates for the correlation values were between 0 and 0.5 
(Figure 4). The model with only 2 latent variables had 
the highest support. Model support decreased with in-
creasing number of latent variables (Table  S2) and the 
models with 10 and 12 latent variables did not converge. 
Model diagnostics indicated no convergence issues for 
the models with 2, 4, 6 and 8 latent variables. Thus, we 

F I G U R E  2  Schematic of the Poisson multivariate autoregressive Gompertz model. The blue box shows the random effects for the intrinsic 
growth rate and the within- species density dependence. There are two levels: the metacommunity parameters, and the parameters for each 
species. The red box shows the regularized horseshoe prior used to estimate the off- diagonal elements of the interaction matrix (between 
species density dependence). The black box shows the factor analysis component used to estimate the variance–covariance matrix. Note that 
λd stands for the diagonal elements of the factor loadings matrix Λ, whereas λt stands for the lower triangular elements of the factor loadings 
matrix Λ. Normal distributions are denoted with the standard deviation formulation (e.g., N(0, 2) indicates a normal distribution with mean 0 
and standard deviation of 2, not a variance of 2).

 14610248, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14424 by Jam

es C
ook U

niversity, W
iley O

nline L
ibrary on [26/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 14 |   RESPONSE DIVERSITY DRIVES REEF FISH DYNAMICS

selected the model with two latent variables for our anal-
ysis. Overall, however, the number of latent variables had 
a small effect on the estimated interspecific correlations, 
with estimates remaining similar as the number of latent 
variables increased from 2 to 12 (Figure S5).

Overall, GBR fish assemblages exhibited similar 
magnitudes of variation in their species’ mean intrinsic 
growth rates (CVa = 0.58), intraspecific density depen-
dence (CVb = 0.64) and sensitivity to environmental fluc-
tuations (CVσ = 0.59; Figure 5). The intrinsic growth rate 
parameter, a, varied among species but was consistently 
above zero (indicating capacity for recovery from low 
population density, i.e., persistence) with mean values 
from 0.03 to 0.5 (Figure  5a,b). Most species had mean 
intraspecific values (1- bii) below 0.25 and above 0, with 
only 3 species having intraspecific density dependence 
values above 0.25 (Figure 5c,d), indicating weakly com-
pensatory density- dependence. The standard deviations 
of the temporal variation in the density- independent 

growth rate (i.e., the square root of the diagonal of Σ) 
was right- skewed, with most species’ mean values close 
to the overall metacommunity mean value 0.54, and 
species- specific posterior means ranging from 0.19 to 
1.45 (Figure 5e,f).

We obtained consistent results regardless of whether 
models were fitted with or without reef- level random 
effects (Figure  S6). Surprisingly, we found evidence of 
limited variability among reefs in intrinsic growth rates 
or intraspecific density dependence, for any species 
(Figure 6, Appendix S3) with overlapping posterior dis-
tributions. Similarly, results are robust to the number of 
species included in the analysis. Figure S7 compares pa-
rameter estimates from the model fits to 20 species and 
40 species, for those species that appeared in both analy-
ses: this shows that the model parameters were extremely 
similar in the two analyses (Figure S7a,c,d). The inter-
specific species interaction parameters did appear to ex-
perience somewhat stronger shrinkage towards zero for 

F I G U R E  3  (a) Mean posterior estimates for the elements of the interaction matrix, B. (b) Distribution of posterior mean estimates for the 
elements of the interaction matrix. The off- diagonal elements are shown in the top boxplot (NB: bij = 0 for no interaction; bij <0 for negative 
effects (e.g. competition); bij >0 for positive effects (e.g. facilitation)).The diagonal elements are shown in the bottom, green boxplot (NB: the 
diagonal elements are presented here as 1 − bii [i.e., 1 minus the diagonal element], such that zero implies density- independent growth, and 
positive values imply negative density- dependence). The marks displayed along the horizontal axis represent each of the estimated posterior 
means for the diagonal elements in green and off diagonal elements in purple.
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the model with a higher number of species (Figure S7b). 
However, most interactions were close to 0 in both anal-
yses, and the few values farther away from zero did not 
show this shrinkage, indicating that the regularized 
horseshoe prior successfully allows nonzero interactions 
to escape the shrinkage to zero (see the following section 
‘Simulation study’).

Simulation study

The simulation study indicated that the models success-
fully distinguished between zero and non- zero environ-
mental correlations and interactions terms. Specifically, 
where these terms were zero, posterior means tended to be 
close to zero and had credible intervals encompassing zero. 

Conversely, when true parameter values were far from zero, 
posterior means and credible intervals correctly captured 
the direction and approximate magnitude of these effects, 
even when there were non- zero effects in off- diagonals of 
both the environmental correlation matrix and the interac-
tion matrix (see Appendix S7 for detailed results).

DISCUSSION

We found that coral reef fish assemblages on the GBR 
exhibit a classically Gleasonian community structure 
(Gleason, 1939), with highly heterogenous responses to 
environmental fluctuations and no evidence of inter-
specific interactions playing a strong role in the dynam-
ics of species relative abundances. Conversely, these 

F I G U R E  4  (a) Correlation plot showing the diagonal and the lower triangular elements of the correlation matrix, calculated from the 
variance–covariance matrix Σ as Pij = Σij ∕

√

ΣiiΣjj. Each square shows the mean correlation estimate for a pair of species. (b) Density plot 
showing the distribution of posterior mean correlations. The black marks displayed along the horizontal axis represent each of the estimated 
posterior correlation means.
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F I G U R E  5  Interspecific heterogeneity in population- dynamic parameters. Panel (a) shows in blue each species posterior estimates for 
the density independent growth rate (i.e., intrinsic growth rate). Each dot represents a species posterior mean and the vertical lines represent 
the 95% credible intervals. Panel (b) shows the distribution across species of the posterior mean estimates from panel (a). Each of the black 
lines displayed along the vertical axis in panel (b) correspond to each species posterior mean density independent growth rate (i.e., the dots in 
panel (a)). The dashed horizontal line in panels (a) and (b) show the higher hierarchical metacommunity mean (see Figure 2 and Equations 1–3) 
and the two horizontal solid lines represent the upper and lower 95% credible intervals for that estimate. The same is displayed in orange 
for the species density dependent growth rate (i.e., intraspecific density dependence) estimates in panels (c) and (d), and black for the species 
environmental standard deviation (i.e., standard deviation in temporal abundance) estimates in panels (e) and (f). The species names on the 
horizontal axis for panels (a), (c) and (e), are sorted from the species with the lowest proportion of zero counts across reefs and years on the left, 
Scarus niger, to the species with the highest proportion of zero counts on the right, Zanclus cornutus.
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assemblages exhibited strong evidence of intraspecific 
density regulation, with detectable conspecific density- 
dependence for all species. There was, moreover, a high 

degree (i.e., CV ~ 0.5 or larger) of demographic het-
erogeneity among species in density- independent and 
density- dependent components of population growth, 

F I G U R E  6  Each of the red panels represent a species posterior distribution for the density- independent growth rate parameter across all 
reefs (41 reefs). Within a panel, one red line represents the posterior distribution of the intrinsic growth rate for one reef (i.e., 41 lines). The black 
vertical line shows the mean intrinsic growth rate at the species level (mean intrinsic growth rate parameter for the level above). The same is 
represented in the light blue panels for the intraspecific density- dependent (DD) growth rate parameter.

 14610248, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14424 by Jam

es C
ook U

niversity, W
iley O

nline L
ibrary on [26/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 14 |   RESPONSE DIVERSITY DRIVES REEF FISH DYNAMICS

as well as in their sensitivity to environmental fluctua-
tions (i.e., the diagonal terms in the variance–covari-
ance matrix Σ). This suggests that species differences 
in both deterministic (i.e., persistent through time), and 
stochastic (i.e., responses to environmental fluctuations) 
components structure patterns of commonness and rar-
ity in fish communities, contrary to biodiversity theory 
based on approximate ecological equivalence, such as 
the lottery hypothesis (Sale,  1977, 1978), and Neutral 
Theory of Biodiversity (Hubbell, 2001). It also suggests 
more complex interspecific heterogeneity than assumed 
in at least some tractable alternative theories of biodi-
versity (Engen & Lande, 1996; Kalyuzhny et al., 2015). 
Conversely, among- reef variability in both the intraspe-
cific density dependence and intrinsic growth rates was 
very small, relative to the estimated among- species vari-
ation, suggesting that life- history differences among spe-
cies are more important determinants of demographic 
variation than geographical variation in environmental 
conditions.

Our study also demonstrated successful fit of a multi-
variate community- dynamics model to time series data 
and accurate estimation of interspecific interactions and 
covariances in responses to environmental fluctuations 
even over a decadal time frame (ca. 10 years). We achieved 
this by leveraging the high degree of spatial replication, 
along with the dimension- reduction techniques of the 
regularized horseshoe prior and a latent environmental 
variable approach. In particular, using the regularized 
horseshoe prior, in lieu of a discrete mixture modelling 
approach (Mutshinda et  al.,  2009), allowed us to use 
Hamiltonian Monte Carlo and thereby exploit the more 
extensive model diagnostics available for such models, 
relative to alternatives such as Gibbs samplers, for which 
model pathologies can occur without tools to identify 
them (Betancourt, 2016; Monnahan et al., 2017). These 
diagnostics, along with our simulation study, indicated 
that our approach yields robust estimates of community 
dynamics parameters for species- rich communities, and 
can do so even for relatively short time series when suffi-
cient replication is available.

Our finding that interspecific interactions were 
negligible seems at odds with classic and recent stud-
ies documenting strong interspecific interactions in 
nature (Connell,  1961; Krebs et  al.,  2017; Paine,  1966; 
Stenseth et  al.,  1997). In reef fish communities in par-
ticular, interspecific interactions have been considered 
to play a major role in structuring reef fish commu-
nities based on both field experiments (Jones,  2005; 
Robertson,  1996; Shulman,  1985) and observational 
studies (Ebersole, 1977). However, other reef fish stud-
ies have argued that interspecific interactions play a 
more limited role (Choat & Bellwood, 1985; Mumby & 
Wabnitz,  2002; Robertson & Sheldon,  1979). A feature 
of these past reef fish studies is that they have focused 
on small scales, where particular interactions are fre-
quent, and on response variables whose changes can be 

measured readily at such scales, such as home range size 
or location (Jones, 2005). However, such effects may be 
restricted in time or space, and thus have effects that do 
not scale up to the population level. For instance, strong 
heterospecific aggression does not necessarily translate 
into competitive release at the population level, when 
dominant competitors are removed (Blowes et al., 2017). 
Similarly, highly diffuse interactions may likewise lead to 
negligible population- dynamic effects (e.g., the piscivore 
in our data, Plectropomus leopardus is a generalist feeder 
that consumes both demersal and water- column species 
across numerous fish families: St John et al., 2001).

In contrast to interspecific interactions, we found 
strong evidence for compensatory intraspecific den-
sity dependence in fish assemblages, with mean values 
more than an order of magnitude larger than those 
estimated for interspecific interactions, and similar 
in magnitude as earlier estimates for insects, fishes, 
birds and mammals from analysis of single- population 
time- series (Thibaut & Connolly,  2020; Figure  S8). 
This finding of much stronger intraspecific than inter-
specific density dependence is consistent with a recent 
meta- analysis of pairwise interactions in plant studies 
(Adler et al., 2018). Similar findings also have been ob-
tained from time series analysis of temperate vertebrate 
and invertebrate communities (Mutshinda et al., 2009; 
Ovaskainen, Tikhonov, Dunson, et  al.,  2017; Sandal 
et al., 2022). However, it is important to note that our 
study, like those cited above, focuses on interactions 
within a particular taxonomic group. Thus, the phe-
nomenology of strong intraspecific against weak in-
terspecific interactions could emerge from the action 
of species- specific natural enemies from other tax-
onomic groups, such as parasites and viruses, whose 
effects could become stronger as species become more 
abundant. Additionally, our analysis characterizes 
abundance as a function of abundances in the previous 
year. Although analysis of individual time series across 
a broad range of taxa has suggested that lagged density 
effects are not widespread (Thibaut & Connolly, 2020), 
the presence of such lagged effects, particularly for 
species whose abundances f luctuate substantially over 
short time scales (such that abundance in the previous 
year is relatively uncorrelated with abundance at the 
most relevant time lag), could potentially lead to under- 
estimates of the relevant species’ density- dependent ef-
fects (Thibaut & Connolly, 2020; Ziebarth et al., 2010).

Our finding of large (CV >0.5) and compara-
ble degrees of heterogeneity in temporal average 
density- independent growth rate (ai), intraspecific 
density- dependence (bii), and sensitivity to environ-
mental f luctuations (σii), and substantial variation 
in pairwise correlations in environmental responses 
is inconsistent both with the demographic equiv-
alence assumed by neutral theory of biodiversity 
(Hubbell,  2001), and with the Engen model (Engen 
et al., 2002; Engen & Lande, 1996), which assumes that 
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interspecific heterogeneity is confined to the mean in-
trinsic growth rate term. However, the partitioning of 
variance in species abundances between deterministic 
and stochastic component, the principal application of 
this latter theory (Bellier et al., 2022; Engen et al., 2002, 
2011; Solbu et al., 2018), appears to be fairly robust, at 
least for our system, as calculating these component 
using our full fitted model yields similar variance pro-
portions to a previous application of the Engen model 
(Tsai et al., 2022; Appendix S8, Figure S9).

There has been considerable debate about the ex-
tent to which variation in the strength of conspecific 
negative density- dependence (CNDD) can explain 
variances in abundance in tropical forest assemblages. 
The CNDD has been reported to be stronger for rare 
species than for common species (Comita et al., 2010; 
Johnson et al., 2012; LaManna et al., 2017; LaManna 
et  al.,  2021; Mangan et  al.,  2010; but see Detto 
et  al.,  2019; Hülsmann et  al.,  2021), independent of 
abundance (Chen et al., 2019; Fricke & Wright, 2017), 
or stronger for common than rare species (Zhu 
et al., 2015). In our data, more abundant species tend to 
experience less density- dependence than rarer species, 
a pattern that remains even when accounting for po-
tential effects of body size (Figure S10; see also Rovere 
& Fox, 2019; Yenni et al., 2017 for other examples using 
population time series). However, the relationship is 
somewhat weak, indicating that the variability in spe-
cies intraspecific density dependence likely underlies a 
relatively small proportion of the abundance variation 
observed in this system.

In contrast to CNDD and species interactions, pat-
terns of covariation in species’ responses to environ-
mental f luctuations have received less attention, either 
theoretically or in previous analyses of community time 
series (Mutshinda et al., 2009; Ovaskainen, Tikhonov, 
Dunson, et al., 2017; Sandal et al., 2022). Our finding 
that a relatively small number of latent variables (as 
few as two, Figure S5) captures the overall pattern of 
variances and covariances in response to environmen-
tal f luctuations suggests that a relatively small set of 
common drivers (or multiple drivers whose correlated 
dynamics produce relatively few important axes of vari-
ation) explains much of the environmentally- induced 
variation in population fluctuations in this system.

Additionally, the weak to moderate correlations in 
environmental responses indicate a relatively high de-
gree of response diversity (i.e., asynchrony in popula-
tion fluctuations) in this system, and thus a reasonably 
strong portfolio effect (Elmqvist et al., 2003; Thibaut & 
Connolly, 2013; Tilman et al., 1998). Because interspecific 
interactions were negligible, this heterogeneity in spe-
cies responses to environmental fluctuations is the over-
whelming driver of community asynchrony for fishes on 
the GBR. However, a more detailed look at our results 
does reveal that environmentally- mediated correlations 
between species from the same trophic groups (Table S1) 

are slightly higher, on average, than those between spe-
cies from different functional groups (Figure  S11a,b). 
Similarly, more closely related species have slightly more 
positive environmental correlations than distantly related 
species (Figure  S11c,d, Figure  S12 and Appendix  S9). 
Nonetheless, these differences are small and explain lit-
tle of the overall variation in the structure of the envi-
ronmental correlation matrix, suggesting that the factors 
driving these correlations are highly idiosyncratic and 
not strongly conserved phylogenetically, nor dependent 
on the nature of a species’ trophic role.

Species interactions have been hypothesized to play 
strong roles in the ecology and evolution of commu-
nities, shaping phenomena from equatorward range 
limits (Darwin, 1964; Paquette et al., 2021), to the lati-
tudinal diversity gradient (Dobzhansky, 1950; Schemske 
et al., 2009; Zvereva & Kozlov, 2021), to macroevolution-
ary trends in taxonomic diversity, and ecosystem func-
tion (Bush & Payne, 2021; Vermeij, 2019). However, the 
curse of dimensionality has complicated assessing the 
role of such interactions at the whole- assemblage level in 
species- rich ecological communities. Our approach of-
fers a way to confront community- dynamics models with 
time series from such high- dimensional systems, to rigor-
ously explore the robustness of the models’ performance, 
and to infer the relative importance of such interactions, 
alongside other factors such as response diversity and 
other sources of demographic heterogeneity among spe-
cies. For coral reef fishes, population regulation is driven 
overwhelmingly by intraspecific density- dependence, 
whereas interspecific interactions have negligible effects 
on population- level dynamics, suggesting a high degree 
of niche differentiation in this assemblage. We hope our 
work prompts similar analyses in other systems, to more 
comprehensively assess the factors that drive the dynam-
ics of species abundances in high- diversity systems like 
coral reefs.
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