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Abstract
Clinical coding is a time-consuming task that involves manually identifying and classifying patients’ diseases. This task 
becomes even more challenging when classifying across multiple diagnoses and performing multi-label classification. 
Automated Machine Learning (AutoML) techniques can improve this classification process. However, no previous study has 
developed an AutoML-based approach for multi-label clinical coding. To address this gap, a novel approach, called Clus-
tered Automated Machine Learning (CAML), is introduced in this paper. CAML utilizes the AutoML library Auto-Sklearn 
and cTAKES feature extraction method. CAML clusters binary diagnosis labels using Hamming distance and employs the 
AutoML library to select the best algorithm for each cluster. The effectiveness of CAML is evaluated by comparing its per-
formance with that of the Auto-Sklearn model on five different datasets from the Medical Information Mart for Intensive 
Care (MIMIC III) database of reports. These datasets vary in size, label set, and related diseases. The results demonstrate 
that CAML outperforms Auto-Sklearn in terms of Micro F1-score and Weighted F1-score, with an overall improvement ratio 
of 35.15% and 40.56%, respectively. The CAML approach offers the potential to improve healthcare quality by facilitating 
more accurate diagnoses and treatment decisions, ultimately enhancing patient outcomes.
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1 Introduction

Artificial Intelligence (AI) plays a crucial role in address-
ing healthcare challenges. The integration of AI and big 
data analytics is considered a powerful tool for analyzing 
extensive datasets. AI assists doctors in diagnosing diseases 
with greater precision [1, 2] and accelerates drug and vac-
cine development through real-time diagnosis, monitoring, 
and treatment, as supported by recent research [3, 4] and 
hardware implementation of deep learning algorithms [5]. 
Recently, ChatGPT and Google Gemini have been lever-
aged to address challenges within medical education and 
simulate doctor-patient communication. These applications 
show potential for Clinical Document Improvement (CDI), 
demonstrating the diverse ways in which AI, exemplified 

by ChatGPT, contributes to enhancing various facets of the 
healthcare domain [6–9].

Clinical coding is a critical process in healthcare that 
involves assigning standardized codes to patient diagnoses 
and procedures. Despite advancements in technology, this 
process still heavily relies on human decision-making to 
identify and assign codes accurately. While various machine 
learning models have been implemented to aid clinical cod-
ers, such models still require extensive skills and expertise of 
data scientists to train and optimize them [10, 11]. Thus, the 
current question in the research community is whether clini-
cal coding can be fully automated and whether Automated 
Machine Learning (AutoML) libraries can provide better 
results than the standard methods.

The field of AutoML has seen remarkable growth, result-
ing in the development of many models and tools. AutoML 
libraries take diverse approaches to multi-label classifica-
tion, often using algorithms native to this task or creating 
separate models for each label. However, relying on native 
algorithms sometimes leads to faster processing speeds at 
the cost of lower accuracy. Conversely, building per-label 
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models often yields high accuracy but slower performance 
[12, 13].

This paper examines the feasibility and potential of 
AutoML for automated clinical coding, considering the 
challenges and limitations that exist in clinical coding and 
the capabilities of AutoML libraries. A novel clustered 
AutoML model is proposed, demonstrating significant per-
formance and accuracy enhancements contrasted with a con-
ventional AutoML approach for multi-label clinical coding 
classification.

Several studies have investigated the effectiveness of 
machine learning in comparison to rule-based methods for 
clinical coding, including research by Sheikhalishahi et al. 
[14], Obeid et al. [15], and Yogarajan et al. [16]. These stud-
ies have shown that machine learning methods generally out-
perform rule-based approaches. They used various Natural 
Language Processing (NLP) techniques, such as Bag Of 
Words (BOW), Continuous Bag Of Words (CBOW), skip-
gram, N-gram, and MetaMap. While the majority of algo-
rithms used were Support Vector Machine (SVM) and Naïve 
Bayes, the choice of algorithm had a significant impact on 
the results obtained, particularly for single diagnoses.

The aforementioned studies establish the potential of 
machine learning in clinical coding and motivated our 
research to advance the field through the use of AutoML. In 
particular, AutoML is employed in conjunction with clus-
tering algorithms, leading to the implementation of new 
Clustered Automated Machine Learning (CAML) models 
for clinical coding.

To the best of our knowledge, no previous studies have 
employed AutoML for the classification of medical notes 
across multiple diagnoses. Also, no research employing a 
clustered model in an automated machine learning approach 
has come to our attention. This research is a significant step 
forward in the field of Multi-Label classification using 
AutoML, particularly in the context of clinical coding. The 
proposed approach, which develops a Clustered Automated 
Machine Learning (CAML) Model, involves converting 
unstructured medical reports into a tabular feature set using 
the Unified Medical Language System (UMLS) Concept 
Unique Identifiers (CUIs) through the clinical Text Analy-
sis and Knowledge Extraction System (cTAKES). cTAKES 
[17] is an open-source solution developed collaboratively 
by Mayo Clinic and various universities. It is a Java-based 
application that harnesses Natural Language Processing 
(NLP), Artificial Intelligence (AI), and Role-based algo-
rithms. cTAKES is designed to analyze clinical notes, 
including discharge summaries, using predefined libraries 
like Snomed, ICD10, and many others. It then converts 
many medical terminology elements such as medications, 
symptoms, diagnoses, lab results, and anatomy into Snomed 
codes, ICD10 codes, Concept Unique Identifiers (CUIs), and 
more.

Following this, the model clusters diagnoses using a 
modified Hamming distance. These clusters are fed into an 
AutoML ensemble, selecting the most effective algorithms. 
This approach enhances clinical coding accuracy and effi-
ciency, traditionally a manual and time-consuming pro-
cess. Therefore, our research has the potential to improve 
healthcare quality by enabling more accurate diagnoses and 
treatments.

Previous research results emphasize the potential of 
machine learning in clinical coding, highlighting its superi-
ority over rule-based methods. Using algorithms and feature 
extraction techniques like cTAKES and BOW, these studies 
often focused on single-diagnosis models. The complexity 
of clinical diagnoses necessitates advanced multi-label clas-
sification solutions

However, this study reveals significant limitations in the 
use of machine learning for clinical coding, particularly for 
multi-label classification. The challenge lies in the trade-
off between performance and accuracy. Native multi-label 
classification algorithms offer higher performance models 
compared to constructing a model for each label to achieve 
greater accuracy. Addressing these challenges is crucial for 
improving the performance and accuracy of both types of 
models.

In summary, while prior research has laid the groundwork 
for automated clinical coding, challenges remain in achiev-
ing robust multi-label classification. This study advances 
existing work by introducing the CAML model and assess-
ing its effectiveness in addressing these challenges, thereby 
contributing to the ongoing evolution of automated clinical 
coding.

2  Background

2.1  Clinical coding and computer assisted coding

In the healthcare industry, around 80% of the data gener-
ated by healthcare organizations, is unstructured [18], which 
presents a significant challenge for healthcare providers who 
want to leverage this data for analysis and integration with 
other healthcare solutions. The transformation of unstruc-
tured medical reports into structured data has, therefore, 
become an essential process for healthcare organizations. 
This transformation can be useful in data analysis, integra-
tion with other solutions and processes such as Clinical 
Documentation Improvement (CDI), and Revenue Cycle 
Management (RCM) systems [19, 20]. Machine learning 
models in the form of Computer Assisted Coding systems 
(CACs), can help this transformation by automating the 
clinical coding process.

The use of CACs has numerous advantages, including 
improved clinical coding accuracy, reduced time and cost 
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needed for the coding process, and integration with other 
healthcare systems. Currently, there are a few CAC systems 
available in the market, such as 3 M 360 Encompass [21] 
and DeepMed CodeDoctor [22]. However, despite these 
advancements, CAC systems have not yet reached a level 
of independence where they can function without human 
intervention. Clinical coders are still required to confirm 
the accuracy of diagnoses and procedures before they can 
be used in further processes [23–25].

In addition, building CAC models require human 
skills, such as data science and Natural Language Process-
ing (NLP). Currently, there is no CAC solution that uses 
AutoML technologies to identify the best ML algorithm for 
high accuracy coding based on the healthcare organization’s 
training dataset. This means that the development of CACs 
still requires human input to ensure their effectiveness. A 
potential intriguing automation path is the use of AutoML 
in CAC solutions. This could be a significant step forward, 
allowing healthcare providers to leverage the large amount 
of unstructured data generated in the industry effectively 
[10, 11].

2.2  Machine learning for clinical coding

Clinical coding has been extensively studied in the litera-
ture, with a focus on developing models that improve cod-
ing classification accuracy. These models have utilized vari-
ous techniques at different stages of their machine learning 
development, including data preparation. Gehrmann et al. 
used cTAKES as the main tool to prepare clinical notes data. 
Their work demonstrates that models using cTAKES have a 
comparable F1-score compared to 2-gram and 3-gram mod-
els, with the exception of CNN Models [26, 27]. Feature 
extraction methods, such as Bag of Words (BOW) [28, 29], 
Term Frequency-Inverse Document Frequency (TF-IDF) 
[30, 31], and cTAKES [32, 33], have been employed. These 
models have also made use of feature selection techniques 
like �2 [34], Information Gain (IG) [35], and Leave-One-
Out (LOO) [36], along with algorithm selection techniques, 
including random forest [30, 37], logistic regression [38], 
and Support Vector Machines (SVMs) [39], in addition to 
configuring and evaluating the selected algorithms.

The Deep Neural Network algorithms have demonstrated 
effectiveness as models for clinical coding classifications; 
however, they represent a distinct approach from AutoML, 
which offers an automated solution encompassing all steps 
of the machine learning process [40]. In the extensive exami-
nation of research papers within the realm of clinical coding, 
cTAKES emerged as a noteworthy tool delivering favora-
ble outcomes in the realm of data preparation for clinical 
notes. cTAKES has been widely utilized in numerous studies 
[32, 33]. Interestingly, a notable gap in the literature is the 
absence of any papers employing AutoML in the context 

of clinical coding. This void presents various opportunities 
for enhancing the outcomes of clinical coding classification.

Most of the studies in the literature on diagnosis classifi-
cation problems have focused on single-label classification 
[15, 41–43], with only a few targeting multi-diagnosis clas-
sification [16]. Clinical coding systems are usually evalu-
ated using various metrics such as F1-score [44], recall [38], 
precision [45], and Area Under the Curve (AUC) [46, 47], 
among others [15, 31, 48].

Automated machine learning techniques have been pro-
posed to streamline the development of clinical coding mod-
els and automate the aforementioned model development 
steps. In a previous article [40], An in-depth review of the 
methods and techniques enabling AutoML model develop-
ment for clinical coding and, more broadly, clinical notes 
analysis was provided. Overall, the extensive research in 
clinical coding has produced a range of effective models that 
can accurately classify medical diagnoses, enabling health-
care providers to better manage patient data and improve 
the quality of care.

2.3  International Classification of Diseases

The International Classification of Diseases (ICD) is a com-
prehensive and widely-used tabulated list of diseases issued 
by the World Health Organisation (WHO) [49, 50]. It serves 
as a standardized system for identifying and classifying 
medical conditions and is adopted by healthcare organiza-
tions worldwide [51]. Currently, the most recent revision of 
the ICD is ICD-11, although it has not been adopted by as 
many healthcare organizations as its predecessor, ICD-10 
[52].

ICD-10 is currently used by numerous healthcare organi-
zations worldwide [53, 54]. Some countries, however, have 
modified ICD codes and issued their own revisions of ICD-
10. For instance, Australia issued the ICD-10 AM, which 
stands for Australian Modification [55], the United States 
issued the ICD-10 CM (Clinical Modification) [56], and 
Canada issued ICD-10 CA through the Canadian Institute 
for Health Information (CIHI) [57]. Additionally, there is 
a procedure code version called ICD-10 PCS, which is the 
American version [49, 51].

ICD-9, which preceded ICD-10, has approximately 
13,000 different codes, which belong to 18 main categories 
referred to as Level 1 [58]. For example, codes from 001 to 
139 denote infectious and parasitic diseases, codes from 140 
to 239 denote neoplasms, and additional E and V codes are 
used for external causes of injury and supplemental classi-
fication. Under each category, there are more detailed sub-
categories referred to as Level 2, such as codes from 050 to 
059 for viral diseases accompanied by exanthem. The dis-
ease name constitutes Level 3, such as code 053 for Herpes 
zoster, and goes into further detail for the fourth and fifth 
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levels of the disease, such as 053.1 for Herpes zoster with 
other nervous system complications and 053.11 for Genicu-
late herpes zoster (Fig. 1) [30, 37, 59–62].

2.4  Model’s evaluation

Model evaluation can be approached through various meth-
ods, with the selection of the appropriate method contin-
gent upon factors such as the target labels’ characteristics, 
whether numeric or categorical, the nature of the business 
model, and the specific objectives.

Numerous studies [16, 26, 30, 33, 38] have explored the 
task of classifying clinical diagnoses from clinical notes, and 
this has been well-documented in previous research [40]. 
Among the methods frequently employed in this domain, 
the F1-score stands out as a popular choice.

The F1-score leverages both precision and recall, as 
defined by the following equation:

where precision measures the proportion of true positives 
among predicted positives, and recall represents the propor-
tion of true positives captured among all actual positives.

In the context of multi-label classification, there exist 
three variations of the F1-score. First, the Micro F1-score 
computes the F1-score across all records and all classes. 
Conversely, the Macro F1-score determines the average 

(1)F1 = 2(Precision.Recall)∕(Precision + Recall),

F1-score for each class individually and then computes the 
overall average. Lastly, the Weighted F1-score calculates 
the average F1-score for each class, taking into account the 
weight assigned to each class. The choice of which F1-score 
variant to employ depends on the specific evaluation require-
ments and objectives [63].

2.5  Clinical coding with multi‑label classification 
(MLC)

Clinical coding is an essential task in the healthcare industry. 
This task is challenging due to the large number of labels 
involved in the ICD system [64, 65]. Many studies have 
utilized various neural network techniques and algorithms 
to improve the accuracy of clinical coding in multi-label 
classification, i.e. when more than one ICD code should be 
assigned to one record, namely multi-label coding [16, 38, 
66].

CNN models have been used in several studies. For 
instance, Karmakar [59] used a CNN to classify medical 
reports. Because the ICD fifth level has a large number 
of labels, Karmakar employed two approaches. The first 
approach involved using the 20 most common labels of 
level 5, these labels represent the ICD codes that exhibited 
the highest frequency within the dataset. While the sec-
ond approach utilized all level 1 ICD codes, limiting the 
target set to 17 labels only. The results showed that both 
approaches achieved high accuracy.

Fig. 1  ICD-9 hierarchy
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Similarly, Gehrmann et al. [26] employed a CNN model 
in a phenotyping experiment with 10 phenotype labels, uti-
lizing a binary classification approach for each label. The 
CNN model outperformed models like Linear Regression 
and Random Forest, yielding higher F1-scores. Additionally, 
Xu [67] demonstrated the effectiveness of CNNs in classify-
ing 32 ICD labels, with individual models for each label, and 
found that the CNN model consistently achieved superior 
accuracy compared to other models in their study.

In another study, Huang et al. [30] compared different 
deep neural network algorithms, such as CNN, LSTM, 
Gated Recurrent Unit (GRU), and Feed Forward Neural 
Network, along with other statistical algorithms like Logis-
tic Regression and Random Forest. The study utilized ICD9 
Level 4 (Codes) and ICD9 Level 3 (Categories) and built 
four different models for the top 10 level 4 codes, top 10 
level 3 codes, top 50 level 4 codes, and top 50 level 3 codes. 
The results showed that Recurrent Neural Network (RNN) 
models (GRU and LSTM) achieved the highest accuracy, 
while RNN models along with Linear Regression had the 
highest F1-scores.

Binary relevance, as illustrated in Fig. 2, Section A, is 
an MLC technique that converts labels into a set of binary 
codes, either 0 or 1, and builds a separate model for each 
label in the targeted label set. In this technique, each label is 
independent and does not depend on the relations between 
labels [16, 38, 60]. However, in some cases, clinical diseases 
(labels) can be dependent, and one disease can be an indi-
cation of another disease, as is the case with diabetes and 
hypertension [68].

Classifier Chain is a technique for handling label depend-
ence in MLC problems. It employs a chain of binary classifi-
ers, each trained to predict a label and all preceding labels in 
the chain. Each classifier’s output becomes a feature for the 
next one, incorporating label dependencies into the predic-
tion process [16, 62, 69, 70]. Figure 2, Section B illustrates 
this process. Classifier Chains can work through positive 
chaining, where diseases are linked, or negative chaining, 
where diseases are mutually exclusive [71]. An example of 

negative chaining is hemophilia type A which is related to 
chromosome X and ovarian cancer which is a female-only 
disease [72]. This technique is valuable for complex MLC 
tasks where label dependencies play a crucial role in accu-
rate predictions.

Finding relations between labels is an essential task in 
MLC techniques. However, a major challenge in achieving 
this task is the time complexity involved in identifying these 
relations. As the number of labels increases, the time taken 
to identify these relationships also increases significantly, 

resulting in a big-O complexity of 2
(

n

2

)

= n(n − 1).

Label Powerset is a widely used approach for transform-
ing a multi-label label set into a single label [38].

In comparison, Random K-Labelset (RAKEL) [73] 
extends this approach by randomly selecting label subsets 
for model training and classification. Another approach to 
multi-label classification is the Hierarchy of Multi-label 
Classifiers (HOMER) [74], which aims to convert large 
multi-label target sets into smaller hierarchical label sets. 
The effectiveness of these techniques has been demonstrated 
in various studies [70, 75–77]. Figure 2, Section C illus-
trates the Label Powerset technique, and Fig. 2, Section D 
illustrates the Hierarchy of Multi-label Classifiers technique.

Correlation and Hamming Loss are common techniques 
utilized for MLC [71, 74, 78–80]. Hamming Loss measures 
the percentage of unmatched labels to the total number of 
labels in the target set. Many studies have employed Ham-
ming Loss as a measure to compare the actual and predicted 
label values [69, 81]. Huang [30], for instance, compared 
different models using Hamming Loss, AUC, and Precision. 
In another study, Su et al. [82] evaluated ten TPOT models 
using various evaluation methods, including Hamming Loss, 
Kappa Score, and Accuracy, among others [83].

2.6  AutoML with multi‑label classificatioin

The field of automated machine learning has experienced 
significant growth, with a multitude of models and tools 

Fig. 2  Multi-label classification 
techniques. A Binary relevance 
(BR). B Classifier chain (CC). 
C Label power (LP). D Hierar-
chal labels
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being developed [84]. Some of these tools are limited to 
predetermined models and workflows, exemplified by Rapid 
Mine [85]. Alternatively, there exist tools that possess the 
ability to identify the optimal algorithm based on the char-
acteristics of the training dataset and the desired outcome. 
Auto-WEKA [86, 87] is one of these tools. Auto-WEKA is 
a Java-based application that builds upon the functionality 
of WEKA. Specifically, it is designed to address the Com-
bined Algorithm Selection and Hyperparameter Optimiza-
tion (CASH) problem using single label classifiers. WEKA 
has undergone significant improvements since its initial 
release, culminating in the development of an extended 
version called MEKA [88]. This updated platform includes 
multi-label classifiers, multi-label targeted label transforma-
tion techniques (e.g., binary relevance and classifier chain), 
and multi-label evaluation methods. MEKA has also paved 
the way for the development of Auto-MEKA, an automated 
machine learning application that builds on the functional-
ity of MEKA. Recently, De Sa et al. [89] developed Auto-
MEKAGGP, which is an automated machine learning model 
based on Grammar Genetic Programming that uses MEKA’s 
MLC algorithms and configurations.

Auto-Sklearn [90–92] has emerged as a prominent 
AutoML framework, winning numerous AutoML com-
petitions. However, it lacks native support for multi-class 
multi-label classification, which necessitates the utilization 
of alternative methods to convert MLC labels into another 
form, such as one-vs-all. Nonetheless, not all Auto-Sklearn 
algorithms can be employed with a one-vs-all structure. 
Consequently, Auto-Sklearn must either classify each label 
individually as a single-label model, which significantly 
impacts performance or exclusively employ algorithms that 
support multi-label classification. This issue has been dis-
cussed in prior research [12, 13].

3  The research problem

Clinical coding refers to the process of manually identifying 
and assigning codes to diseases from medical reports such 
as discharge summaries [93]. This process, typically car-
ried out by healthcare professionals including doctors and 
clinical coders, and involves a significant amount of time 
and effort in analyzing medical reports to extract patients’ 
disease information. While various models have been devel-
oped to aid clinical coders in this process, the selection of an 
appropriate algorithm and model often requires the expertise 
of data scientists. For instance, Shi et al. [46] utilized a Long 
Short-Term Memory (LSTM) algorithm based on their prior 
research and personal experience. It should be noted that 
many of these models tend to focus on a specific disease 

rather than the entire range of diseases a patient might have. 
For example, Gehrmann et al. [26] focused solely on the 
primary disease among the list of diseases that patients had 
been diagnosed with.

While several studies have explored multi-label classifica-
tion using deep neural network algorithms, there is no fully 
automated machine learning framework specializing in clinical 
coding that is currently known to us. Therefore, the proposition 
is to use AutoML libraries, such as Auto-Sklearn, in com-
bination with feature extraction methods, such as cTAKES, 
as a viable approach to automate clinical coding processes. 
By utilizing these techniques, it would be possible to identify 
algorithms that offer the highest level of disease identification 
accuracy, without relying on human expertise.

As previously stated in Sect. 2.6, Auto-Sklearn can man-
age multi-label target sets either by employing multiple sin-
gle-label classifications for each label yi ; or by exclusively 
employing algorithms that natively support multi-label 
targets. The first approach involves significant processing 
time because the time required to classify the entire set of 
labels is equivalent to the sum of the individual processing 
times for each label classification, which can be expressed 
as: AutoSklearn(Y) = Σn

i=1
AutoSklearn(yi).

This processing time may be acceptable for smaller label 
sets, but it can significantly decrease performance for larger 
sets of labels. To illustrate, suppose it takes 2 min to process 
a single label; in that case, it would take over 3 h to classify 
a set of 100 labels.

The second approach of restricting Auto-Sklearn to mod-
els that inherently support multi-label classification has also 
been explored [13, 94]. The proposed approach benefits from 
the effectiveness of algorithms tailored for multi-label classi-
fication, enabling their execution in a single iteration encom-
passing all labels simultaneously. However, it is important 
to note that this approach may encounter limitations due to 
the availability of algorithms exclusively designed to han-
dle multi-label classification. Consequently, this constraint 
imposes a restriction on the range of algorithms that can be 
effectively employed.

In summary, clinical coders dedicate considerable time 
to manually identify ICD codes from discharge summaries. 
Presently, various machine learning models, including those 
utilizing deep neural networks, are used to assist clinical 
coders in identifying ICD codes through multi-label clas-
sification. However, no research has been found that uses 
AutoML for the classification of multiple ICD codes. The 
adoption of AutoML in the clinical coding process offers 
the potential to decrease human involvement and allows for 
experimentation with multiple algorithms simultaneously, 
thereby enhancing the accuracy of results.
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4  The proposed approach

The present study introduces a Clustered Automated 
Machine Learning (CAML) model for clinical coding multi-
label classification, which outperforms the Auto-Sklearn 
model’s F1-score for multi-label multi-class classification 
while maintaining a comparable timeframe for a large num-
ber of features. CAML utilizes an ensemble of algorithms 
that collaboratively work on a single dataset, leading to a 
superior model that yields a higher F1-score. Below, the 
details of the proposed approach will be explained.

4.1  NLP process

4.1.1  Building feature set

The initial stage of our methodology entails working with 
clinical records in the form of unstructured data and utiliz-
ing natural language processing techniques to convert them 
into structured data. This process begins with the use of 
the cTAKES to identify medical terminologies and convert 
medical text into a comprehensive set of clinical Concept 
Unique Identifiers (CUIs), which are incorporated into the 
Unified Medical Language System (UMLS). An instance 
of such a transformation is the conversion of the phrase 
“Chief Complaint: headache and neck stiffness Major Sur-
gical or Invasive Procedure: central line placed, arterial line 
placed History of Present Illness” to “C0004482 C0004482 
C0224473 C0004482 C0224473 C0719349 C0230431 
C0420607 C4074814 C0719349”, where each code starting 
with C denotes a CUI. Subsequently, the BOW technique, 
which is one of the feature extraction methods in natural 
language processing, is applied to the CUI list, quantifying 
these CUIs into a structured feature set.

4.1.2  Building labels

Medical reports include diagnoses that are originally pre-
sented in a list format, with each report having multiple diag-
noses. The Binary Relevance (BR) technique is employed to 
transform this list format into a large multi-label binary label 
set. The ultimate dataset comprises a feature set consisting of 
Bag-of-Words (BOWs) of cTAKES Concept Unique Identi-
fiers (CUIs) and binary codes of diagnoses. An illustration 

of the structure of the final dataset is presented in Table 1. 
In this table, each row shows a medical report that has been 
transformed into a feature set using cTAKES and BOWs rep-
resentation. The features in this table are presented in CUI 
format. Additionally, the table displays the ICD codes asso-
ciated with each medical report. A value of 1 is assigned to 
an ICD code if the medical report has been diagnosed with 
that particular code. Conversely, a value of 0 is assigned if 
the medical report does not have a diagnosis for that specific 
ICD code. In this table, one can observe that report 1012 
details a patient’s diagnosis with both ICD 300 and ICD 303. 
Additionally, report 1013’s patient has received diagnoses of 
ICD 295, ICD 300, and ICD 560, while report 1014’s patient 
has been diagnosed with ICD 295 and ICD 303.

4.2  Label clustering

In the proposed approach, a modified Hamming distance 
method is presented for determining the distance between 
each pair of diagnoses. Our approach involves constructing 
a binary array for each label result, which is subsequently 
used to compare each diagnosis in the label set with other 
diagnoses. The distance between diagnoses is expressed as 
a percentage of unmatching results compared to the total 
number of results. Furthermore, it is noted that the inverted 
diagnoses relation shares the same distance as the matching 
relation.

To illustrate the application of the approach, an example 
is provided in which the calculation of distances between 
diagnoses is performed using a binary array (see Table 2). 
Specifically, diagnoses 295 and 303 have 6 matching reports 
out of a total of 9, resulting in a 66.7% match. Diagnoses 
295 and 560 have a 22.2% match, while diagnoses 330 
and 560 have a 55.6% match. In cases where the percent-
age of unmatching results is less than 50%, the distance 
is calculated as the unmatching percentage. However, if 
the unmatching percentage exceeds 50%, the distance is 
expressed as the matching percentage. This is due to the 
negative correlation relation between labels. For example, 
in our example, the distance between diagnoses 295 and 303 
is 33.3%, the distance between diagnoses 295 and 560 is 
22.2%, and the distance between diagnoses 303 and 560 is 
44.4%.

Table 1  Dataset after NLP 
process

Report ID Features ICDs

C0004482 C0224473 C0719349 C0230431 C0420607 295 300 303 540 560

1012 6 0 0 4 2 0 1 1 0 0
1013 0 2 2 8 0 1 1 0 0 1
1014 0 0 4 4 9 1 0 1 0 0
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After the label results set is processed, diagnoses are 
grouped into multiple clusters based on their distances, with 
those diagnoses that are closer to each other being assigned 
to the same cluster. To ensure that only diagnoses that are 
very close to each other are included in a given cluster, a 
threshold or distance limit may be set. Figure 3 illustrates 
the grouping of diagnoses within the specified threshold.

4.3  Algorithm processing

In lieu of incorporating all labels in the classification pro-
cedure, the proposed approach involves selecting a single 
label from each group for model processing. Additionally, 
any labels beyond the prescribed threshold distance are han-
dled individually, in conjunction with the selected label from 
each group. A visual representation of this methodology is 
depicted in Fig. 4.

In this figure, the multi-label dataset undergoes cluster-
ing and grouping based on the distance between labels. The 
result is a partitioning of the multi-label dataset into sets of 
groups, where each group aggregates multiple labels under a 
single representation, while any remaining individual labels 
are left ungrouped. Each group is then subjected to an algo-
rithm designed to optimize label accuracy within that spe-
cific cluster. For the ungrouped individual labels, they are 
treated as separate single-label datasets.

The collection of involves the ensemble of distinct 
algorithms chosen for each group forms an ensemble that 

collectively maximizes label accuracy across the entire 
dataset.

4.3.1  Auto‑Sklearn

The present study employs the Audo-Sklearn classification 
models framework to determine the algorithm that yields 
the highest F1-score for the designated labels within each 
group. This approach allows for all available algorithms 
to be considered in the selection process. Subsequently, 
the identified algorithm is applied to process all labels 
within the respective group. In cases where the chosen 
algorithm supports multi-label classification, the labels 
within that group are amalgamated and processed using 
a single multi-label classification model. However, if the 
selected algorithm does not support multi-label classifica-
tion, each label within the group is processed individually.

5  The experiment

5.1  Dataset

The Medical Information Mart for Intensive Care (MIMIC 
III) is currently the only available dataset that contains 
medical reports. This dataset is composed of over 2 mil-
lion medical reports of various types including radiology 
reports, nursing reports, nutrition reports, and others. For 
the purpose of this research, the focus was on a subset of 
MIMIC III, which comprises 59,652 discharge summary 
reports.

To facilitate testing, the discharge summary dataset 
was randomly split into multiple subsets of varying sizes, 
including 1000, 2000, 4000, 8000, and 16,000 reports. 
This approach allowed us to obtain multiple datasets for 
testing purposes.

5.1.1  Feature set

The current study utilized cTAKES to extract CUIs and 
the BOW method to quantify the extracted CUIs in order 
to construct the feature set. The discharge summary data-
set, comprising 59,652 clinical reports, produced 28,615 

Table 2  Diagnoses binary array Diagnosis Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9

295 1 1 0 0 0 0 1 1 0
303 0 1 0 0 0 1 0 1 0
560 0 0 1 1 0 1 0 1 1

Diagnoses

Threshold

Group of Diagnoses

Group of Diagnoses

Group of Diagnoses

Threshold

Fig. 3  Illustrate the grouping of diagnoses within the threshold
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Fig. 4  Illustration of building 
algorithm ensemble
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distinct CUIs. A graphical representation of the CUI count 
distribution is provided in Fig. 5. The distribution indi-
cates that 15,415 CUIs appeared in less than 10 clinical 
reports, 7690 CUIs appeared in between 10 and 99 clini-
cal reports, 3721 CUIs appeared in between 100 and 999 
clinical reports, 1517 CUIs appeared in between 1000 and 
9999 clinical reports, and 272 CUIs appeared in more than 
10,000 clinical reports. Due to a large number of features, 
only the top 10,000 CUIs, ordered by the sum of their 
appearance counts, were selected for inclusion in the lim-
ited feature set.

5.1.2  Label set

Each report in the MIMIC III dataset contains a list of diag-
noses in ICD9 format. In the discharge summary reports 
subset that has been selected, there are 6918 distinct ICD9 
codes at the most granular level (i.e., 5th, 4th, or 3rd level). 
The diagnoses in these reports are classified into three cat-
egories: 1069 Level 3 ICD9 codes, 165 Level 2 ICD9 codes, 
and 18 Level 1 ICD9 codes. Due to the large number of 
codes, the dataset was further divided into Level 2, as well 
as Level 3 ICD9 codes related to the following categories, 
which are also shown in Table 3: Neoplasms (ICD9: 140-
239), Injury And Poisoning (ICD9: 800-999), Supplemen-
tary Classification of External Causes of Injury and Poison-
ing, and Supplementary Classification of Factors Influencing 
Health Status and Contact with Health Services (ICD9: 
E800-E999 and V01-V82).

In this table, there is a total of 20 datasets grouped into 
four distinct categories. The first group is dedicated to Neo-
plasms (ICD9: 140-239) and features five datasets with vary-
ing sizes: 1000 records, 2000 records, 4000 records, 8000 
records, and 16,000 records. These datasets have targets of 
ICD9 Level 3 labels ranging from 72 to 89 and consist of 
10,000 features, except for the 1000 records dataset, which 
includes 9570 features.

The Injury & Poisoning (ICD9: 800-999) and Supplemen-
tary (ICD9: E & V) datasets are similar to the Neoplasms 
datasets in structure. Each category also includes five data-
sets with sizes ranging from 1000 to 16,000 records. They 
have targets of ICD9 Level 3 labels numbering between 113 
and 192. These datasets consist of 10,000 features, with 
the exception of the 1000 records dataset, which contains 
9364 features for Injury & Poisoning and 9224 features for 
Supplementary.

The fourth group of datasets comprises all ICD9 codes 
and maintains similarities to the Neoplasms category. This 
group also encompasses five datasets of sizes ranging from 
1000 to 16,000 records. The ICD9 labels used are of Level 2 
and range from 141 to 161. Like the previous groups, these 
datasets feature 10,000 features, with the exception of the 
1000 records dataset, which includes 8999 features.

5.2  The environment

In this study, AutoML models were used for the analysis of 
large datasets with up to 10,000 features and more than 100 

Table 3  Final datasets meta-
data

Dataset name Diagnoses ICD level Reports # Features # Used features # Labels #

Neoplasms (L3-1k) 140-239 Level 3 1000 9570 9570 72
Neoplasms (L3-2k) 140-239 Level 3 2000 11,982 10,000 82
Neoplasms (L3-4k) 140-239 Level 3 4000 14,759 10,000 85
Neoplasms (L3-8k) 140-239 Level 3 8000 17,892 10,000 88
Neoplasms (L3-16k) 140-239 Level 3 16,000 18,740 10,000 89
Injury & Poisoning (L3-1k) 800-999 Level 3 1000 9364 9364 121
Injury & Poisoning (L3-2k) 800-999 Level 3 2000 11,801 10,000 136
Injury & Poisoning (L3-4k) 800-999 Level 3 4000 14,581 10,000 156
Injury & Poisoning (L3-8k) 800-999 Level 3 8000 17,653 10,000 166
Injury & Poisoning (L3-16k) 800-999 Level 3 16,000 21,181 10,000 174
Supplementary (L3-1k) E & V Level 3 1000 9224 9,224 113
Supplementary (L3-2k) E & V Level 3 2000 11,585 10,000 130
Supplementary (L3-4k) E & V Level 3 4000 14,529 10,000 156
Supplementary (L3-8k) E & V Level 3 8000 17,790 10,000 167
Supplementary (L3-16k) E & V Level 3 16,000 21,321 10,000 192
All (L2-1k) All Level 2 1000 8999 8999 141
All (L2-2k) All Level 2 2000 11,453 10,000 146
All (L2-4k) All Level 2 4000 14,295 10,000 152
All (L2-8k) All Level 2 8000 17,484 10,000 158
All (L2-16k) All Level 2 16,000 21,030 10,000 161



1517International Journal of Machine Learning and Cybernetics (2025) 16:1507–1529 

labels. Due to the increasing size of datasets, it was essen-
tial to employ high-performance computing resources. To 
ensure the efficient execution of the AutoML models, Tina-
roo [95], a high-performance computer was used, provided 
by the University of Queensland.

Tinaroo consists of 244 compute nodes, each of which 
includes 2 Intel Xeon 12-core CPUs, 128 GB RAM, and 1 
TB disk space, resulting in approximately 6000 CPU cores, 
30 TB RAM, and 0.5 PB disk space. The vast computing 
resources available on Tinaroo allowed us to efficiently 
process and analyze our large datasets. Tinaroo operates on 
CentOS Linux 7 (Core), a widely used open-source operat-
ing system in the scientific computing community. The sys-
tem’s stability and reliability ensured that the execution of 
the AutoML models was consistent across all experiments.

To ensure consistency across all machine learning tech-
niques and models used in the experiments, The models 
were executed on a single node equipped with a maximum 
of 24 core CPU and 120 GB RAM. This approach ensured 
that each model received the same amount of computing 
resources and eliminated any variations that could arise from 
executing the models on different nodes.

5.3  Model preprocessing

The proposed model in this paper is designed to address the 
challenges of medical data classification by using a combi-
nation of preprocessing, clustering, grouping, and classifica-
tion techniques. The model starts with the preprocessing of 
medical data using cTAKES to extract meaningful features 
from the data.

Following preprocessing, as demonstrated in Fig. 4, the 
model applies clustering and grouping techniques to group 
the extracted features into related clusters. This grouping 
helps to reduce the dimensionality of the data and identify 
patterns that can be used for classification. A single repre-
sentative label is then identified for each group, and labels 
that fall outside the selected threshold are eliminated from 
the clustering process.

After grouping and labeling, the model, as shown in 
Fig. 6 applies classification techniques to each selected label 
using the Auto-Sklearn library. The best model that pro-
vides the highest F1-score is then identified for each label. 
In certain instances, the Auto-Sklearn library is unable to 
identify a model that outperforms a dummy model [96]. In 
such cases, the proposed model utilizes the Random Forest 
algorithm. This algorithm is chosen due to its documented 
superior performance in previous studies [15, 37]. This 

Fig. 6  Clustered automated 
machine learning model
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step is crucial in achieving high classification accuracy and 
reducing computational time.

If the best model supports multi-label classification, all 
labels within the cluster are directly classified using that 
algorithm. If not, the model loops through each label in the 
cluster. Finally, all selected models from the aforementioned 
steps are combined into a model ensemble to achieve the 
highest possible accuracy.

The initial step in the conversion of unstructured medical 
reports involves the utilization of cTAKES. Section 4.1.1 
elucidates that medical reports are transformed into a CUI 
format, and subsequently, the BOW method is employed to 
quantify these features. Meanwhile, the list of diagnoses is 
employed to create a label set using the binary relevance 
method, as outlined in Sect. 4.1.2. These preprocessing steps 
are common to both the clustered AutoML model and the 
native Auto-Sklearn model. The subsequent stage involves 
label clustering and grouping, as explicated in Sect. 4.2. The 
duration of this process and the number of clusters generated 
vary, depending on the size of the dataset. Table 4 presents 
the time spent on clustering and grouping for each dataset, 
alongside the number of clusters generated for each. Nota-
bly, the lengthiest duration spent on this process was less 
than 2.5 min, and the number of clusters ranged between 
one and ten. In more detail, the Neoplasms dataset labels 

were consolidated into a single cluster, whereas the Injury 
and Poisoning datasets were grouped into two to ten clusters. 
Supplementary datasets were grouped into two to six clus-
ters, and All Level 2 datasets were grouped into five to eight 
clusters. The time required for clustering is directly linked to 
the dataset’s size, ranging from 2 s for a Neoplasms Level 3 
dataset with 1000 records to 141 s for an Injury & Poisoning 
Level 3 dataset with 16,000 records.

5.4  Configurations

The present model relies solely on the threshold parameter, 
which serves as the key factor affecting its performance. 
Altering this parameter creates a trade-off between accu-
racy and performance, with higher thresholds leading to 
superior performance but lower accuracy and lower thresh-
olds yielding inferior performance but higher accuracy. In 
the context of this model, the optimal threshold was deter-
mined to be 15% since it enabled high accuracy within a 
reasonable timeframe. The remaining parameters, while 
still relevant to the model, are not directly associated with 
it and instead pertain to the Auto-Sklearn library [97]. 
In this study, two Auto-Sklearn parameters were modi-
fied, namely, “time_left_for_this_task,” which represents 
the time limit in seconds for Auto-Sklearn to identify the 
best model, and “per_run_time_limit,” which indicates the 
time limit for each algorithm run in seconds. The values 
of these parameters were varied within the set 120, 240, 
360 for time_left_for_this_task, while per_run_time_limit 
was restricted to 60 s due to limited resources. Given the 
large number of features and labels, these adjustments 
were deemed essential for ensuring optimal performance.

5.5  Comparison

The performance of the CAML model was compared with 
that of the Auto-Sklearn model for the task of multi-label 
classification, utilizing identical datasets (Table 3). Both 
models were allocated equal running time; however, it 
was observed that the Auto-Sklearn model used slightly 
more runtime than the CAML model. This discrepancy 
arises from the initial consideration of the time required 
for the CAML model to complete each experiment. Sub-
sequently, the time_left_for_this_task parameter in Auto-
Sklearn was set to the same duration. However, it should 
be noted that Auto-Sklearn does not consistently terminate 
precisely at the designated time_left_for_this_task limit; 
often, it exceeds this predetermined duration. As a result, 
the elapsed time for each experiment in Auto-Sklearn is 
slightly longer compared to the time consumed by CAML 
for the corresponding experiment.

Table 4  Clustering time and number of clusters

Dataset name Clustering time 
(Sec)

# Clusters

Neoplasms (L3-1k) 2 1
Neoplasms (L3-2k) 4 1
Neoplasms (L3-4k) 8 1
Neoplasms (L3-8k) 18 1
Neoplasms (L3-16k) 21 1
Injury & Poisoning (L3-1k) 3 10
Injury & Poisoning (L3-2k) 11 7
Injury & Poisoning (L3-4k) 31 4
Injury & Poisoning (L3-8k) 66 3
Injury & Poisoning (L3-16k) 141 2
Supplementary (L3-1k) 4 6
Supplementary (L3-2k) 10 4
Supplementary (L3-4k) 31 2
Supplementary (L3-8k) 65 3
Supplementary (L3-16k) 104 3
All (L2-1k) 7 6
All (L2-2k) 11 8
All (L2-4k) 28 6
All (L2-8k) 36 5
All (L2-16k) 77 7
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In our experiments, a comparison of two different 
types of F1-scores was conducted: micro, and weighted 
F1-scores. The micro F1-score was computed by treat-
ing all discharge summaries and diagnoses in the dataset 
equally. This approach aimed to assess the overall perfor-
mance of the models by assigning equal weight to each 
discharge summary and diagnosis. The weighted F1-score 
computed the F1-score for each diagnosis separately. 
However, it also took into consideration the number of 
discharge summaries associated with each diagnosis. In 
other words, it considered the dataset’s imbalance and 
assigned a higher weight to diagnoses that appeared more 
frequently. This approach aimed to provide a better repre-
sentation of each experiment’s performance by accounting 
for the varying instances of diagnoses within the dataset.

5.6  Results

Both CAML and Auto-Sklearn were utilized to classify 
multi-label datasets, with Neoplasms (L3-1k) serving as the 
first dataset used (row 1 of Table 3). For the CAML model, 
the Neoplasms (L3-1k) dataset was configured for a time 
limit of 120 s (2 min) for time_left_for_this_task and a per_
run_time_limit of 60 s (1 min), with a 15% model thresh-
old. The 15% threshold was subsequently employed for the 
remaining datasets. The labels were categorized into a single 
group, and all distances, except for two labels, fell within 
the 15% threshold. The Secondary malignant neoplasm of 
respiratory and digestive systems (ICD: 197) and Second-
ary malignant neoplasm of other specified sites (ICD: 198) 
was 16.1% and 18.3% distant, respectively, from the closest 
label. Random Forest was the algorithm that generated the 
clustered labels list and served as the leader of the ICD 197 
and ICD 198 labels model. The entire process took 6.5 min, 
with a 56.52% Micro F1-score (see row 1 of Table 6).

To compare the efficacy of the CAML model against 
the Auto-Sklearn model in classifying multi-label datasets 
with similar parameters, the time_left_for_this_task param-
eter was set to 8 min, and the per_run_time_limit was set to 
4 min, reflecting a 2 : 1 ratio similar to the CAML model. 
The Auto-Sklearn model required a total of 8.2 min and 
produced a Micro F1-score of 38.33%, with BernoulliNB 
emerging as the most effective algorithm in generating these 
results (see row 1 of Table 10).

For the L3-2k dataset, AdaBoost was identified for both 
of the out-of-the-threshold labels and provided a 55.63% 
Micro F1-score in 6.5 min using the CAML model. In con-
trast, Auto-Sklearn using the MLP algorithm achieved a 
lower Micro F1-score of 36.46% in 8.2 min (see row 2 of 
Tables 6 and 6).

Similarly, the other dataset size comparisons are shown 
in Tables 6 and 6 for a ratio of 2:1. When the dataset size 

increased to 4000 records (L3-4k), 3 Random Forest algo-
rithms took 6.9 min to produce a higher Micro F1-score of 
60.66%. Auto-Sklearn using the Decision Tree algorithm 
achieved a lower Micro F1-score of 42.62%.

CAML model on Neoplasms (L3-8k) dataset demon-
strated a slight reduction in the processing time of 6.4 min 
and achieved a Micro F1-score of 52.32% when utilizing 2 
BernoulliNB and Decision Tree algorithms. In comparison, 
Auto-Sklearn yielded a Micro F1-score of 46.56% using the 
Decision Tree algorithm and required 8.7 min to complete 
processing.

When considering the Neoplasms (L3-16k) dataset, 
CAML achieved a Micro F1-score of 60.44% in 6.3 min 
by employing the Linear Support Vector Classifier (SVC) 
and BernoulliNB algorithms, while Auto-Sklearn yielded a 
Micro F1-score of 49.67% utilizing the Decision Tree algo-
rithm, with a processing time of 10.4 min. It is noteworthy 
that in all datasets examined, CAML exhibited superior 
performance in terms of F1-score when compared to the 
Auto-Sklearn model.

The same experiments as explained above, were also con-
ducted to investigate the efficacy of the CAML and Auto-
Sklearn models on Injury & Poisoning, Supplementary, and 
All Level 2 datasets (see Table 3). These experiments were 
iterated only altering the initial 2:1 timing configurations, 
as 4:1 (time_left_for_this_task=4 min, and per_run_time_
limit=1  min), 4:2 (time_left_for_this_task=4  min, and 
per_run_time_limit=2 min), and 6:1 (time_left_for_this_
task=6 min, and per_run_time_limit=1 min). Tables 6 to 
13 present the outcomes of these experiments.

Overall, these Tables show 73 experimental results across 
20 different datasets of varying sizes and configurations, as 
shown in Table 3. It is worth noting that, out of the 80 pos-
sible experiments (shown in Tables 6 to 13 for the different 
dataset sizes and ratio settings), Seven experiments involv-
ing extended timing configurations could not be executed 
within the established experimental environment, as detailed 
in section 5.2. However, the experimental environment was 
not altered to maintain consistency in comparisons. There-
fore, no results are shown for these experiments.

Both CAML and Auto-Sklearn were evaluated across the 
remaining 73 datasets. Results indicated that CAML out-
performed Auto-Sklearn in the majority of cases, with 66 
out of 73 cases demonstrating superior performance. This 
represents a success rate of over 90%. Furthermore, CAML 
consistently demonstrated higher F1-scores in all dataset 
sizes and configurations compared to Auto-Sklearn. This is 
evidenced by the Micro F1-score improvement ratio depicted 
in Fig. 7, which demonstrates a significant improvement in 
performance achieved by CAML compared to Auto-Sklearn. 
For datasets consisting of 1000 records, an average Micro-F1 
improvement ratio of 23% was observed. This improvement 
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is calculated by taking the average of the improvements 
in all five 1K dataset cases shown in Tables 6, 7, 8, 9, 10, 
11, 12 and 13. The improvement in each of the five cases 
is calculated by dividing the difference in the F1-Score of 
CAML and Auto-Sklearn by the Auto-Sklearn F1-score 
value (i.e. the base value) for that case. For instance, the 
Micro F1-Score improved from 38.33% using Auto-Sklearn 
to 56.52% when utilizing CAML on the Neoplasms 1K data-
set, achieving 47.46% improvement in this case. Similarly, 
for the Injury & Poisoning 1K dataset, an improvement ratio 
of 10.83% was observed, while the Supplementary 1K data-
set showed an improvement ratio of 11.24%. When consider-
ing all level 2 1K datasets, the improvement ratio across the 
board amounts to 24.09%. Evaluating the average improve-
ment ratio for the 2:1 configuration and a dataset size of 1K 
records then yields a value of 23.40%, which is shown as 
23% in the most left bar of Fig. 7. All other improvement 
values shown in this figure are calculated similarly. Overall, 
comparing CAML to Auto-Sklearn across all datasets of 
various sizes reveals an average F1-Score improvement ratio 
of 35.15% for CAML.

The results presented in Tables 6, 7, 8, 9, 10, 11, 12 
and 13 demonstrate instances where the CAML model 
performed less effectively compared to the Auto-Sklearn 
model in seven specific cases. Among these cases, two 
involved datasets on Injury & Poisoning with 8000 and 
16,000 records, respectively, using a 2:1 configuration. 
In these instances, Auto-Sklearn exhibited significantly 

superior Micro F1-score results of 37.89% and 35.38% as 
opposed to CAML’s results of 27.22% and 22.19%. Fur-
thermore, the Supplementary datasets with 4000, 8000, and 
16,000 records, employing a 2:1 configuration, exhibited 
three cases where Auto-Sklearn outperformed CAML. The 
Micro F1-score results for Auto-Sklearn were significantly 
higher at 33.20%, 33.91%, and 22.12% compared to CAML’s 
results of 28.20%, 27.20%, and 13.56%, respectively. Addi-
tionally, there was one case involving 8000 records in the 
Injury & Poisoning datasets with a 4:1 configuration, where 
Auto-Sklearn displayed slightly better Micro F1-score of 
47.79% in contrast to CAML’s 46.81%. Lastly, for the 4000 
records in the Supplementary datasets using a 4:2 configu-
ration, Auto-Sklearn showcased marginally superior Micro 
F1-score results of 33.31% compared to CAML’s results 
of 32.96%. The reason for these findings can be attributed 
to providing Auto-Sklearn with extended time to explore 
a wider range of algorithms, particularly considering the 
substantial availability of algorithms that facilitate single-
label classification.

When considering the Weighted F1-score, compared to 
the micro F1-score, our performance analysis still demon-
strated the superiority of CAML over Auto-Sklearn. Spe-
cifically, CAML achieved a higher Weighted F1-score in 
63 cases out of the overall 73 experiments. The weighted 
F1-score improvement ratios for the various experimental 
dataset sizes and configurations are shown in Fig. 8. These 
values, which were calculated in a similar manner to those in 

Fig. 7  CAML micro F1-score improvement ratio in comparison to Auto-Sklearn
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Fig. 7, result in an average weighted F1-score improvement 
ratio of 40.56%.

To gain a comprehensive understanding of the algorithms 
employed by CAML and Auto-Sklearn models, a thorough 
investigation was conducted. Random Forest (RF) is the 
most frequently utilized algorithm in CAML, appearing 
in 67 CAML ensembles, followed by Ada Boost (Ada) 

and Decision Tree (DT), each appearing in 27 ensembles. 
Extra Trees (ET) is also utilized frequently, appearing in 26 
ensembles. Table 5 provides a breakdown of the frequency 
of algorithm utilization in these ensembles, with a total of 
14 distinct algorithms employed. Conversely, Auto-Sklearn 
models employ only three algorithms, with Bernoulli Naive 
Bayes (BNB) appearing 40 times, Decision Tree (DT) 
appearing 22 times, and Multi-layer Perceptron (MLP) 
appearing 11 times across our experiments.

The superior performance of CAML models over Auto-
Sklearn models can be attributed, in part, to the diversity 
of algorithms utilized in their construction. While Auto-
Sklearn exclusively employs algorithms that natively sup-
port multi-label classification, CAML models are able to 
utilize any classification algorithm, thus increasing the 
likelihood of identifying an algorithm that yields a higher 
F1-score. Ensembles, which consist of a combination of 
multiple algorithms ranging from a single algorithm to as 
many as nine, are commonly utilized in CAML models and 
can be another reason for CAML’s improved performance.

The F1 score exhibits a consistently low performance 
across various tested datasets. This issue arises from the 
inherent difficulty associated with handling a large set of 
labels in Multi-Label Classification models. The inclusion of 
a large label set significantly amplifies the model complex-
ity, subsequently diminishing its accuracy [98, 99]. Many 
prior research endeavors have sought to address this com-
plexity by constraining the clinical coding classification to 
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Table 5  CAML ensemble algorithms

Algorithm Appear-
ance 
count

Random forest (RF) 67
Ada boost (Ada) 27
Decision tree (DT) 27
Extra trees (ET) 26
Gradient boosting (GB) 21
Passive aggressive (PA) 18
Library for linear SVC (LSVC) 14
Bernoulli Naive Bayes (BNB) 11
Stochastic Gradient Descent (SGD) 11
K Nearest Neighbors (KNN) 9
Multi-layer Perceptron (MLP) 6
Library for SVC (LSVMC) 5
Gaussian Naive Bayes (GNB) 3
Linear Discriminant Analysis (LDA) 1
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a more manageable scenario involving a single label, often 
limited to a specific set [26, 27, 33]. While this strategy has 
proven to enhance accuracy in those studies, it comes at the 
cost of overlooking the intricacies and nuances present in 
datasets with a broader range of labels. In contrast to these 
limitations, our model operates with a more expansive label 
set, spanning from 72 to 192 labels, encompassing diverse 
codes. Furthermore, the nature of multi-label datasets intro-
duces an additional layer of complexity through the inher-
ent imbalance among labels. This imbalance is evident as 
certain labels are more prevalent than others, with instances 
where one label may be more frequently observed than its 
counterparts [100].

In summary, the study employed both CAML and Auto-
Sklearn to classify multi-label datasets, starting with the 
Neoplasms (L3-1k) dataset. CAML demonstrated supe-
rior performance, achieving a Micro F1-score of 56.52% 
in 6.5 min, compared to Auto-Sklearn’s 38.33% in 8.2 min. 
This trend continued across various dataset sizes and con-
figurations, with CAML consistently outperforming Auto-
Sklearn in 66 out of 73 cases, representing a success rate 
of over 90%. Notably, CAML exhibited higher F1-scores 
across all dataset sizes, with an average improvement ratio 
of 35.15% compared to Auto-Sklearn. Despite a few cases 
where Auto-Sklearn performed better, the study attributes 
CAML’s superior performance to its diverse use of algo-
rithms in constructing ensembles, enabling a broader explo-
ration of classification algorithms. Overall, CAML’s versatil-
ity and ability to create ensembles contribute to its improved 
performance in multi-label classification tasks.

6  Discussion and conclusion

The process of clinical coding is a labor-intensive endeavor, 
requiring coders to manually extract and categorize patients’ 
diseases. In an effort to enhance this process, various algo-
rithms have been tested to assist clinical coders and medical 
practitioners. However, the majority of these algorithms are 
designed for the classification of individual diseases, and 
those capable of accommodating multi-label classification 
lack full automation.

In this research study, an innovative approach was pre-
sented to automate the clinical coding procedure utilizing 
the AutoML library Auto-Sklearn. A dataset comprising 
approximately 64,000 discharge summary reports from the 
MIMIC III database was subjected to cTAKES to extract 
CUI codes. BOW was employed for the quantification of 
CUI codes and for the development of the feature-set. Given 
the existence of more than 28,000 distinct CUIs, the analysis 
was limited to the top 10,000 CUIs to maintain a manageable 
feature-set. The dataset’s other component was the creation 
of the label-set, derived from the MIMIC III dataset which 

contained multiple diagnoses utilizing ICD9 codes, and 
these were classified into two hierarchical levels, specifi-
cally Level 2 and Level 3. Level 3 codes were utilized for the 
Neoplasms dataset, Injury & Poisoning dataset, and Injury 
& Poisoning dataset, while Level 2 was applied across all 
records.

The computations for this study were executed on Tina-
roo, a high-performance computing system boasting 12-core 
CPUs and 128 GB of RAM. In total, 73 distinct models 
were run, and these models facilitated a comprehensive 
comparison between the CAML model and Auto-Sklearn. 
The CAML model engages in multi-label classification by 
organizing these labels into separate groups based on their 
label-to-label distances. Auto-Sklearn is then employed for 
each of these label groups as a single-label classification 
dataset. The selected algorithms collaboratively form an 
ensemble of methods aimed at delivering the utmost pre-
cision in terms of F1-scores accuracy. In our comparative 
analysis, CAML consistently outperformed Auto-Sklearn 
in the majority of experiments, yielding superior Micro and 
Weighted F1-scores, with an average improvement ratio of 
35.15% and 40.56%, respectively.

Our proposed methodology can be integrated within 
the Auto-Sklearn framework to enhance its proficiency in 
multi-label classification tasks. Additionally, the CAML 
model demonstrates potential for extension beyond the 
confines of Auto-Sklearn, offering integration with other 
AutoML libraries. This expansion could grant access to 
a broader array of algorithms, particularly those harness-
ing neural networks such as CNNs, RNNs, and LSTM 
networks. Such an extension holds promise for even more 
precise and efficient disease identification in the clinical 
coding domain, representing a focal point of our forth-
coming research endeavors.

7  Declaration of generative AI 
and AI‑assisted technologies 
in the writing process

During the preparation of this work, the author(s) used Chat-
GPT in order to improve language and readability. After 
using this tool/service, the author(s) reviewed and edited 
the content as needed and take(s) full responsibility for the 
content of the publication.

Appendix A: Experiments results

See Tables 6, 7, 8, 9, 10, 11, 12 and 13. 
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Table 6  CAML results for 2:1 
configurations

Dataset name Process time 
(min)

Micro F1 Weighted F1 Ensemble algorithms

Neoplasms (L3-1k) 6.5 56.52 54.31 RF
Neoplasms (L3-2k) 6.5 55.63 55.05 PA, Ada
Neoplasms (L3-4k) 6.9 60.66 60.30 RF
Neoplasms (L3-8k) 6.4 52.32 51.68 BNB, DT
Neoplasms (L3-16k) 6.3 60.44 60.41 BNB, LSVC
Injury & Poisoning (L3-1k) 32.6 43.53 40.53 GNB, GB, Ada, RF
Injury & Poisoning (L3-2k) 25.2 43.08 38.75 RF, MLP, GB, ET, Ada
Injury & Poisoning (L3-4k) 17.2 44.63 39.44 RF, MLP
Injury & Poisoning (L3-8k) 15.3 27.22 20.49 RF, BNB, ET
Injury & Poisoning (L3-16k) 12.5 22.19 15.15 RF, GNB
Supplementary (L3-1k) 17.6 34.95 30.84 GB, Ada, RF, ET
Supplementary (L3-2k) 15.8 40.16 34.90 KNN, RF, ET
Supplementary (L3-4k) 10.8 28.20 25.32 ET, RF
Supplementary (L3-8k) 12.9 27.20 18.91 RF, LSVC
Supplementary (L3-16k) 13.0 13.56 6.72 RF, DT
All (L2-1k) 50.2 57.92 52.51 GB, RF, KNN, Ada, PA
All (L2-2k) 55.3 60.35 55.39 Ada, RF, ET
All (L2-4k) 51.7 61.34 56.25 GB, DT, RF
All (L2-8k) 49.8 56.26 46.37 RF, DT, BNB
All (L2-16k) 52.7 48.13 37.82 BNB, RF, DT, GNB, PA

Table 7  CAML results for 4:1 configurations

Dataset name Process time 
(min)

Micro F1 Weighted F1 Ensemble algorithms

Neoplasms (L3-1k) 12.2 57.75 56.43 Ada, RF
Neoplasms (L3-2k) 12.3 54.55 53.66 ET, LSVC, RF
Neoplasms (L3-4k) 13.3 62.09 61.93 RF
Neoplasms (L3-8k) 12.6 65.96 65.85 DT, BNB
Neoplasms (L3-16k) 12.4 65.66 65.30 LSVC, RF
Injury & Poisoning (L3-1k) 59.8 42.21 38.17 Ada, GB, ET, RF
Injury & Poisoning (L3-2k) 45.9 42.33 39.13 RF, MLP
Injury & Poisoning (L3-4k) 33.2 45.87 41.98 RF, DT, Ada, LSVC
Injury & Poisoning (L3-8k) 29.3 46.81 41.14 RF, PA, ET, BNB
Injury & Poisoning (L3-16k) 25.1 49.03 45.10 DT, RF, PA, LSVC
Supplementary (L3-1k) 33.4 42.19 38.20 GB, Ada, RF, DT
Supplementary (L3-2k) 29.0 39.43 34.69 KNN, ET, RF, LSVM
Supplementary (L3-4k) 21.5 34.09 31.96 RF, ET
Supplementary (L3-8k) 25.3 32.38 27.75 RF, DT, PA
Supplementary (L3-16k) 25.1 43.62 35.05 RF, PA
All (L2-1k) 95.9 58.56 53.65 ET, Ada, GB, PA, RF, ET, LSVM, KNN
All (L2-2k) 105.6 61.11 56.64 RF, DT, Ada, ET
All (L2-4k) 100.4 62.67 58.24 RF, GB, DT
All (L2-8k) 96.7 64.42 60.20 DT, PA, RF, SGD, GB, KNN, BNB, LSVC
All (L2-16k) 102.8 61.20 54.31 RF, DT, PA, LSVC, SGD, BNB
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Table 8  CAML results for 6:1 configurations

Dataset name Process time 
(min)

Micro F1 Weighted F1 Ensemble algorithms

Neoplasms (L3-1k) 18.3 55.88 53.16 Ada, SGD
Neoplasms (L3-2k) 18.5 61.25 61.03 RF
Neoplasms (L3-4k) 18.6 65.27 64.78 RF
Neoplasms (L3-8k) 19.6 67.63 67.74 PA, RF, SGD
Neoplasms (L3-16k) 18.8 66.14 65.84 DT, LSVC, SGD
Injury & Poisoning (L3-1k) 86.5 42.07 38.27 RF, DT, GB, BNB, Ada
Injury & Poisoning (L3-2k) 68.5 45.44 41.21 RF, MLP
Injury & Poisoning (L3-4k) 50.8 49.14 46.06 RF, DT
Injury & Poisoning (L3-8k) 43.0 53.61 51.63 RF, PA, GB, LSVC
Injury & Poisoning (L3-16k) 36.6 44.22 37.46 DT, RF, SGD
Supplementary (L3-1k) 49.4 45.19 41.19 RF, SGD, Ada, GB
Supplementary (L3-2k) 44.3 41.80 36.83 RF, ET, LSVM, Ada
Supplementary (L3-4k) 31.6 40.05 37.41 RF, LSVC
Supplementary (L3-8k) 36.9 42.00 38.63 KNN, RF, SGD, LSVC, PA
Supplementary (L3-16k) 36.7 37.20 30.46 RF, DT, PA
All (L2-1k) 142.7 59.28 55.38 GB, LDA, DT, PA, RF, ET, Ada, BNB, KNN
All (L2-2k) 155.3 60.95 56.61 RF, DT, GB, ET, Ada
All (L2-4k) 148.2 63.29 59.32 RF, GB, DT, Ada
All (L2-8k) 143.7 64.72 60.83 MLP, RF, ET, DT, GB, Ada, SGD, PA
All (L2-16k) 153.2 64.49 60.14 DT, RF, Ada, SGD, LSVC, PA

Table 9  CAML results for 4:2 
configurations

Dataset name Process time 
(min)

Micro F1 Weighted F1 Ensemble algorithms

Neoplasms (L3-1k) 12.9 54.81 54.06 Ada, RF
Neoplasms (L3-2k) 13.0 60.53 59.98 ET, LSVC, RF
Neoplasms (L3-4k) 13.2 66.32 65.99 RF
Neoplasms (L3-8k) 12.5 65.69 65.77 RF
Neoplasms (L3-16k) – – – –
Injury & Poisoning (L3-1k) 58.8 42.31 37.92 Ada, GB, ET, RF
Injury & Poisoning (L3-2k) 46.5 46.13 42.50 RF, MLP
Injury & Poisoning (L3-4k) 34.2 48.18 44.83 DT, RF, ET
Injury & Poisoning (L3-8k) – – – –
Injury & Poisoning (L3-16k) – – – –
Supplementary (L3-1k) 33.8 40.00 36.06 GB, Ada, RF, DT
Supplementary (L3-2k) 30.0 42.02 37.21 KNN, ET, RF, LSVM
Supplementary (L3-4k) 21.9 32.96 29.88 RF, ET
Supplementary (L3-8k) – – – –
Supplementary (L3-16k) – – – –
All (L2-1k) 97.1 58.53 52.85 ET, Ada, GB, PA, RF, 

LSVM, KNN
All (L2-2k) 104.3 61.19 57.04 RF, Ada, DT, ET
All (L2-4k) 100.1 64.40 60.65 SGD, Ada, RF, GB, ET
All (L2-8k) – – – –
All (L2-16k) – – – –
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Table 10  Auto-Sklearn results 
for 2:1 configurations

Dataset name Process time 
(min)

Micro F1 Weighted F1 Top algorithm

Neoplasms (L3-1k) 8.2 38.33 32.24 BNB
Neoplasms (L3-2k) 8.2 36.46 33.30 MLP
Neoplasms (L3-4k) 8.6 42.62 38.24 DT
Neoplasms (L3-8k) 8.7 46.56 42.62 DT
Neoplasms (L3-16k) 10.4 49.67 46.24 DT
Injury & Poisoning (L3-1k) 34.2 39.28 36.05 BNB
Injury & Poisoning (L3-2k) 26.2 39.35 31.89 BNB
Injury & Poisoning (L3-4k) 18.4 43.64 40.96 BNB
Injury & Poisoning (L3-8k) 16.9 37.89 31.48 BNB
Injury & Poisoning (L3-16k) 12.3 35.38 31.56 DT
Supplementary (L3-1k) 18.4 31.42 27.02 BNB
Supplementary (L3-2k) 16.6 34.18 28.62 BNB
Supplementary (L3-4k) 12.3 33.20 30.64 BNB
Supplementary (L3-8k) 14.7 33.91 27.64 BNB
Supplementary (L3-16k) 14.4 22.12 16.47 DT
All (L2-1k) 52.2 46.68 45.49 BNB
All (L2-2k) 56.4 35.21 31.15 BNB
All (L2-4k) 54.4 34.04 34.11 BNB
All (L2-8k) 53.2 19.35 15.08 DT
All (L2-16k) 57.2 24.42 19.53 MLP

Table 11  Auto-Sklearn results 
for 4:1 configurations

Dataset name Process time 
(min)

Micro F1 Weighted F1 Top algorithm

Neoplasms (L3-1k) 14.2 40.85 35.51 DT
Neoplasms (L3-2k) 14.4 44.81 41.71 DT
Neoplasms (L3-4k) 14.3 46.81 44.80 BNB
Neoplasms (L3-8k) 13.9 50.38 46.25 DT
Neoplasms (L3-16k) 14.5 49.51 45.95 DT
Injury & Poisoning (L3-1k) 61.1 40.34 35.64 MLP
Injury & Poisoning (L3-2k) 46.8 39.46 32.03 BNB
Injury & Poisoning (L3-4k) 34.3 43.11 38.42 BNB
Injury & Poisoning (L3-8k) 30.6 47.79 44.24 BNB
Injury & Poisoning (L3-16k) 28.5 38.69 34.66 DT
Supplementary (L3-1k) 34.1 34.45 27.05 MLP
Supplementary (L3-2k) 30.1 32.16 28.46 BNB
Supplementary (L3-4k) 22.3 33.71 31.43 BNB
Supplementary (L3-8k) 26.4 27.85 32.16 BNB
Supplementary (L3-16k) 26.4 26.92 20.19 DT
All (L2-1k) 96.4 46.78 45.55 BNB
All (L2-2k) 106.4 32.96 31.51 BNB
All (L2-4k) 102.3 35.32 33.86 BNB
All (L2-8k) 98.3 28.40 21.90 DT
All (L2-16k) 104.5 22.67 17.62 DT
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Table 12  Auto-Sklearn results 
for 6:1 configurations

Dataset name Process time 
(min)

Micro F1 Weighted F1 Top algorithm

Neoplasms (L3-1k) 20.4 41.30 35.73 DT
Neoplasms (L3-2k) 20.2 39.52 36.02 BNB
Neoplasms (L3-4k) 20.3 47.03 43.00 DT
Neoplasms (L3-8k) 21.7 53.01 48.83 DT
Neoplasms (L3-16k) 20.2 57.15 53.34 MLP
Injury & Poisoning (L3-1k) 88.2 38.81 35.46 BNB
Injury & Poisoning (L3-2k) 69.2 40.32 33.77 MLP
Injury & Poisoning (L3-4k) 51.8 43.21 38.00 BNB
Injury & Poisoning (L3-8k) 45.4 39.49 38.94 BNB
Injury & Poisoning (L3-16k) 38.4 41.79 37.96 DT
Supplementary (L3-1k) 51.1 31.59 27.39 BNB
Supplementary (L3-2k) 45.2 32.54 28.52 BNB
Supplementary (L3-4k) 33.3 34.65 31.40 BNB
Supplementary (L3-8k) 38.3 33.39 30.46 BNB
Supplementary (L3-16k) 39.4 29.60 22.54 DT
All (L2-1k) 144.2 46.65 45.46 BNB
All (L2-2k) 156.3 37.41 32.12 MLP
All (L2-4k) 150.5 35.94 31.77 BNB
All (L2-8k) 145.7 29.04 21.74 MLP
All (L2-16k) 155.8 30.51 24.66 DT

Table 13  Auto-Sklearn results 
for 4:2 configurations

Dataset name Process time 
(min)

Micro F1 Weighted F1 Top algorithm

Neoplasms (L3-1k) 14.2 40.56 35.27 DT
Neoplasms (L3-2k) 14.3 42.96 38.65 MLP
Neoplasms (L3-4k) 14.8 55.25 52.54 MLP
Neoplasms (L3-8k) 14.1 51.03 46.62 DT
Neoplasms (L3-16k) – – – –
Injury & Poisoning (L3-1k) 60.2 40.85 35.07 MLP
Injury & Poisoning (L3-2k) 48.4 39.42 32.06 BNB
Injury & Poisoning (L3-4k) 36.3 43.01 40.70 BNB
Injury & Poisoning (L3-8k) – – – –
Injury & Poisoning (L3-16k) – – – –
Supplementary (L3-1k) 34.9 31.93 27.41 BNB
Supplementary (L3-2k) 32.6 31.92 28.19 BNB
Supplementary (L3-4k) 22.4 33.31 31.01 BNB
Supplementary (L3-8k) – – – –
Supplementary (L3-16k) – – – –
All (L2-1k) 98.3 46.70 45.54 BNB
All (L2-2k) 106.2 33.25 31.81 BNB
All (L2-4k) 102.3 33.34 34.64 BNB
All (L2-8k) – – – –
All (L2-16k) – – – –
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