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a b s t r a c t 

Background: Abdominal aortic aneurysm is a weakening and expansion of the abdominal aorta. Currently, 

there is no drug treatment to limit abdominal aortic aneurysm growth. The glycocalyx is the outermost 

layer of the cell surface, mainly composed of glycosaminoglycans and proteoglycans. 

Objective: The aim of this review was to identify a potential relationship between glycocalyx disruption 

and abdominal aortic aneurysm pathogenesis. 

Methods: A narrative review of relevant published research was conducted. 

Results: Glycocalyx disruption has been reported to enhance vascular permeability, impair immune 

responses, dysregulate endothelial function, promote extracellular matrix remodeling and modulate 

mechanotransduction. All these effects are implicated in abdominal aortic aneurysm pathogenesis. Gly- 

cocalyx disruption promotes inflammation through exposure of adhesion molecules and release of proin- 

flammatory mediators. Glycocalyx disruption affects how the endothelium responds to shear stress by 

reducing nitric oxide availabilty and adversely affecting the storage and release of several antioxidants, 

growth factors, and antithromotic proteins. These changes exacerbate oxidative stress, stimulate vascu- 

lar smooth muscle cell dysfunction, and promote thrombosis, all effects implicated in abdominal aortic 

aneurysm pathogenesis. Deficiency of key component of the glycocalyx, such as syndecan-4, were re- 

ported to promote aneurysm formation and rupture in the angiotensin-II and calcium chloride induced 

mouse models of abdominal aortic aneurysm. 

Conclusion: This review provides a summary of past research which suggests that glycocalyx disruption 

may play a role in abdominal aortic aneurysm pathogenesis. Further research is needed to establish a 

causal link between glycocalyx disruption and abdominal aortic aneurysm development. 

© 2024 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Abdominal aortic aneurysm (AAA) is a condition characterized 

y the weakening and expansion of the abdominal aorta and cur- 

ently there are no established drug therapies to limit AAA growth 

r rupture [1–3] . The only current treatment for AAA is surgi- 

al repair [1] . Open surgical repair involves dissecting out the 
✩ Research led by Jonathan Golledge is supported by grants from Townsville Hos- 

ital and Health Services, National Health and Medical Research Council, Heart 

oundation, Medical Research Futures Fund and the Queensland Government . 
∗ Correspondence to: Jonathan Golledge, Queensland Research Centre for Periph- 

ral Vascular Disease, College of Medicine and Dentistry, James Cook University, 

ownsville, Queensland 4811, Australia. 

E-mail address: jonathan.golledge@jcu.edu.au (J. Golledge) . 

d

t

[

u

t

t

t

p  

ttps://doi.org/10.1016/j.carpath.2024.107629 

054-8807/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article
neurysm neck and the distal arteries, temporarily clamping these 

essels and replacing the weakened aneurysm sac with a pros- 

hetic graft [1] . This major operation has a perioperative mortal- 

ty of 2 to 5% and can be associated with other major complica- 

ions [1 , 4] . The more modern minimally invasive surgical method 

nvolves endovascular repair, whereby covered stents are placed 

ercutaneously from the groin inside the weakening aorta [5] . En- 

ovascular aneurysm repair aims for blood flow to occur through 

he stent grafts and not leak into the remaining aneurysm sac 

5] . Unfortunately in approximately 20% of patients blood contin- 

es to leak into the aneurysm sac after endovascular repair and 

his can lead to continued aneurysm expansion and later rup- 

ure [2 , 5] . Previous randomized controlled trials indicate that nei- 

her open nor endovascular AAA repair reduces mortality in peo- 

le with small aneurysms ( < 55 mm) [6 , 7] . Thus, patients with
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mall AAA ( < 55 mm men; < 50 mm women) are simply moni-

ored by imaging surveillance and surgery is only indicated if pa- 

ients become symptomatic or the aneurysm expands to ≥55 mm 

n men and ≥50 mm in women [8] . Due to continued aneurysm 

rowth, however, up to 70% of small aneurysms ultimately un- 

ergo surgical repair and thus drug therapies are needed to limit 

AA growth and reduce the risk of AAA rupture [9] . Surveys of pa-

ients and health professionals indicate that the absence of drugs 

o limit AAA growth and shrink the aneurysm is their number 

ne research priority [10 , 11] . The lack of treatment options nega- 

ively impacts patients with small AAAs or those who are unfit for 

urgery [1 , 9] . Collaborative research across multiple disciplines in 

he past three decades has significantly advanced the understand- 

ng of aneurysm development, suggesting that alterations in hemo- 

ynamic stress and aberrant vascular remodeling are significant 

actors in the development and progression of AAA [2–4 , 12 , 13] .

AA development involves upregulation of adhesion molecules and 

hemokines, inflammatory cell infiltration, vascular smooth mus- 

le cells (VSMC) apoptosis, oxidative stress, extracellular matrix 

ECM) remodeling, angiogenesis, and intraluminal thrombus for- 

ation [2–4 , 12 , 13] . This article focuses on the potential role of

ysfunction of the glycocalyx (GC) in AAA pathogenesis. 

. Glycocalyx physiology 

The GC is a dynamic brush-like coating on the surface of 

ammalian cells and is mainly composed of glycoproteins and 

lycolipids [14–18] . The endothelial GC (eGC) is a proteoglycan 

omplex, composed of core proteins called syndecans and glypi- 

ans in addition to polymers of glycosaminoglycans (GAGs), such 

s heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronans 

HA) [14–18] . The eGC covers the luminal surface of the endothe- 

ial cell (EC) layer and maintains vascular permeability [14–18] . 

arious enzymes, such as superoxide dismutase, xanthine oxi- 

oreductase and lipoprotein lipase, and coagulation inhibitors like 

ntithrombin III and several growth factors, are stored and regu- 

ated by the GC [14–18] . The eGC acts as a potent mechanosensor 

y transducing blood flow stimulated shear stress to the cy- 

oskeleton within EC and regulating nitric oxide (NO) dependent 

ascular functions [16 , 17] . Local microenvironment influences 

he interactions between GAGs and proteins, while composition 

nd characteristics of GAGs are actively controlled by EC through 

ontinuous metabolic turnover [14–20] . Therefore, an intact eGC 

cts to inhibit thrombosis, inflammation, and atherosclerosis. 

Endothelial GC disruption can be prompted by hemody- 

amic stress, proinflammatory mediators, and matrix degrada- 

ion, stimulated by matrix metalloproteinases (MMPs), heparanase, 

yaluronidase, lipopolysaccharide, and serine proteases, such as 

hrombin [16–28] . GC degradation can lead to release of mutually 

nterconnected mediators that may create a self-perpetuating cycle 

f endothelial dysfunction and GC disruption [16–18] . The proper- 

ies of the GC components have divergent characteristics depend- 

ng on whether they are membrane bound or degraded into frag- 

ents [16 , 20 , 28] . The intact GC has anti-inflammatory properties 

hile in contrast degraded fragments promote inflammation and 

ndothelial dysfunction [16 , 17 , 20 , 28] . 

. Potential association of glycocalyx disruption and abdominal 

ortic aneurysm 

Evidence for a potential role of GC disruption in AAA patho- 

enesis comes from the findings of several previous studies sum- 

arized in Table 1 [30 , 33–37] . Examination of human AAA sam- 

les has suggested substantial changes in the GC in aneurysm 

issue as compared to abdominal aortic samples from individu- 

ls with no AAA [29 , 30] . These differences include reduced con- 
2

ent of HS, CS, and HA in the GC within human AAA tissue com- 

ared to normal aortic samples [28] . Syndecans play a key role in 

egulating several vascular functions, while their expression and 

hedding is associated with vascular inflammation [18 , 20 , 25 , 31–

5] . Chronically accelerated syndecan-1 shedding has been sug- 

ested to generate a sustained proinflammatory and proteolytic 

nvironment which promotes AAA formation in the angiotensin 

I-induced mouse model [33] . In contrast, syndecan-2 has been 

eported to be abundantly expressed in the later stages of an- 

iotensin II-induced AAA and was suggested to be a component of 

he reparative process aimed to maintain vascular integrity [33] . 

yndecan-1 deficiency has been reported to promote AAA for- 

ation in both the elastase perfusion and angiotensin II-induced 

ouse models [34] . Aneurysms were reported to have marked pro- 

ease activity, inflammatory cell infiltration and elastin degrada- 

ion in both mouse models [34] . Downregulation in the expres- 

ion of syndecan-4 has also been reported in both human AAA 

amples and a mouse model of AAA [35] . Deficiency in syndecan- 

 has been reported to promote angiotensin II-induced AAA for- 

ation and rupture, possibly by transforming VSMCs to a syn- 

hetic phenotype [35] . Degradation of other components of the 

C has also been implicated in AAA pathogenesis in rodent mod- 

ls [36 , 37] . Inhibition of hyaluronidase has been reported to in- 

ibit calcium chloride (CaCl2 )-induced AAA formation in mice [36] . 

hile HA fragmentation has been reported in samples from CaCl2 - 

nduced AAAs and implicated in stimulating cluster of differentia- 

ion 44-driven inflammation [36] . HS levels have been reported to 

e low, while expression of heparanase has been found to be high 

ithin human AAA samples as compared with control aortic tis- 

ue [37] . It should be noted that the previous research summarized 

bove focuses on components of the GC but these proteins are also 

xpressed in other tissues and thus it remains unclear whether 

isruption of the GC specifically is involved in AAA pathogenesis 

15–20] . 

In order to be confident of a role of GC damage in AAA patho- 

enesis, it would be ideal to investigate the effect of GC disruption 

pecifically, but currently techniques to achieve this are unclear. 

urthermore, it is acknowledged the human studies outlined above 

ere performed in tissue samples from large AAAs, so the findings 

ay be attributable to the secondary effects of vascular remodeling 

ather than causal in the initiation of AAA development. The ani- 

al models of AAA have a number of limitations [38] . For example, 

he CaCl2 model has limited aortic expansion which usually occurs 

ver 2 weeks after induction and this model does not exhibit aortic 

upture typical of human AAA [38] . The angiotensin II model sim- 

lates aortic dissection and false rather than true aneurysm for- 

ation found in human AAA [38] . Aortic expansion is limited to 

pproximately 4 weeks in the elastase model and aortic rupture 

oes not occur [38] . The β-aminopropionitrile fumarate-elastase 

odel holds promise in better simulating human AAA pathology 

nd aneurysm growth but has not been the focus of GC studies as 

et [38] . Future research using other animal models may provide 

utcomes with greater relevance to human AAA. 

Important risk factors for human AAA, include hypertension, 

moking, dyslipidemia, advanced age and obesity, which have also 

een implicated in GC damage [39–42] . These risk factors could 

ossibly contribute to the GC disintegration which subsequently af- 

ects the vascular integrity of the abdominal aorta, as highlighted 

n Table 2 [43–48] . The relationship between these overlapping risk 

actors, GC disintegration and AAA development requires further 

nvestigation. 

Human observational and animal model studies suggest that 

etformin limits growth of AAA, although this needs to be con- 

rmed in randomized clinical trials [49] . It is possible that met- 

ormin may act to maintain GC integrity but this has not been in- 

estigated as yet [50] . 
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Table 1 

Association of glycocalyx disruption with mechanisms implicated in abdominal aortic aneurysm pathogenesis. 

Samples/model used Study aims Findings References 

Human AAA tissues and control 

normal aortic samples 

GAGs characterization GAGs (HA, HS, CS) content in AAA was reduced as 

compared to normal aortic samples 

[30] 

Ang-II AAA model in ApoE 

knockout mice 

Human AAA tissue 

Analysis of syndecans expression Accelerated syndecan-1 shedding is associated with 

inflammatory responses and proteolytic activities. 

Syndecan-2 was expressed in the later stages of AAA as a 

reparative process 

[33] 

Ang-II and elastase perfusion 

model in ApoE/syndecan-1 

deficient double knockout mice 

Investigation of the effect of 

syndecan-1 deficiency 

Syndecan-1 deficiency promoted AAA formation in both 

the elastase and Ang-II mouse models. Syndecan-1 

deficient macrophages contributed to AAA severity 

[34] 

Human AAA tissue 

Ang-II AAA model in ApoE and 

syndecan-4 double knockout mice 

Investigation of the effect of 

syndecan-4 deficiency 

Syndecan-4 downregulated in human AAA samples. In an 

experimental mice model, syndecan-4 deficiency 

promoted AAA formation and rupture. Syndecan-4 

deficiency led to transformation of VSMCs from a 

contractile to a synthetic phenotype 

[35] 

CaCl2 AAA mice model Investigate effect of hyaluronidase 

inhibitor 

Inhibition of hyaluronidase suppressed AAA progression [36] 

Human AAA and normal aorta 

tissue 

Characterization of HS and 

heparanase 

HS levels reduced but heparanase levels increased in AAA 

compared to normal aortic samples. Heparanase proposed 

to have a role in AAA formation via ECM degradation 

[37] 

AAA, abdominal aortic aneurysm; Ang-II, angiotensin II; ApoE, apolipoprotein E; CaCl2 , calcium chloride; CS, chondroitin sulfate; ECM, extracellular matrix; GAGs, gly- 

cosaminoglycan; HA, hyaluronic acid; HS, heparan sulfate; VSMCs, vascular smooth muscle cells. 

Table 2 

Risk factors overlapping between glycocalyx disruption and abdominal aortic aneurysm pathogenesis. 

Risk factor Study investigation Findings References 

Hypertension Evaluation of GC damage using cationized ferritin 

binding analysis on capillary EC in the hypothalamus 

of SHR 

Damage to the GC was identified in brain slices. 

GC damage was responsible for 

hypertension-induced blood brain barrier 

dysfunction 

[43] 

Atherogenesis Examination of the GC in the carotid arteries of 

ApoE∗3-Leiden mice fed with an atherogenic diet 

GC thickness decreased at sites prone to 

atherogenesis 

[44] 

Smoking Investigation of GC restoration during a 3-month 

smoking cessation program involving 188 current 

smokers randomized to varenicline or nicotine 

replacement therapy 

Smoking cessation therapy resulted in restoration 

of GC 

[45] 

Hyperuricemia Investigation of GC shedding in oxonic rich 

diet-induced hyperuricemic rats and cultured human 

umbilical vein EC 

Uric acid induced EndoMT in cultured EC via ROS 

generation and GC shedding. 

Uric acid promoted EC phenotypic switch through 

oxidative stress and GC shedding 

[46] 

Advanced age Investigation of GC thickness in 

- young and old mice 

- human sublingual microvasculature 

GC thickness was decreased in older age. 

Microvascular dysfunction associated with 

advanced age may accelerate the risk of CVD 

[47] 

Obesity Investigation of GC damage in skeletal muscle using 

high-fat diet induced obese mice 

Early GC damage and glucose intolerance in 

mouse model suggests a potential link between 

GC and impaired insulin action in obesity 

[48] 

ApoE, apolipoprotein E; CVD, cardiovascular disorders, GC, glycocalyx; EC, endothelial cell; EndoMT, endothelial-to-mesenchymal transition; ROS, reactive oxygen species; 

SHR, spontaneously hypertensive rats. 
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The primary biomarkers for GC integrity include fragments of 

yndecans, HS, HA, and CS [15–20] . Elevated levels of shed HS, HA, 

S, and syndecans may signify GC disruption, which could also be 

bserved in AAA patients and used as biomarkers [15–20] . How- 

ver, larger rigorously designed biomarker studies are needed in 

hich findings are validated in multiple cohorts, assay methods 

sed are reproducible and adjustment for confounding factors is 

ncluded [16] . 

.1. Glycocalyx disruption may aggravate vascular inflammation 

Vascular inflammation has been proposed to play a key role in 

AA pathogenesis [2–4 , 12 , 13] . An early event in vascular inflam-

ation is leukocyte tethering to endothelial adhesion molecules 

12 , 20] . Under physiological conditions, the GC shields adhesion 

olecules within its framework, acting as protective barrier lim- 

ting exposure of the adhesion molecules to leukocytes, as shown 

n Fig. 1 [14–21] . 

The GC stores and regulates several enzymes, chemokines, and 

ytokines, and thus GC degradation can induce dysregulation of 
3

hese bioactive molecules [16–20] . GC disruption is regarded as an 

nitial step in inflammation by exposing adhesion molecules pro- 

oting platelet and leukocyte tethering to the endothelium and 

eleasing pro-inflammatory cytokines ( Fig. 1 ) [16–20 , 28 , 51] . 

HS acts as a ligand for L-selectin that is responsible for reg- 

lating leukocyte rolling [18–20 , 52] . In a study in which wounds 

ere induced in diabetic rats, HS downregulated the nucleotide- 

inding domain, leucine-rich repeat containing protein 3 (NLRP3) 

nflammasome mediated immune response [53] . Similarly, HA 

n its polymerized state of high molecular weight-HA possesses 

nti-inflammatory properties as it regulates cluster of differen- 

iation 44 receptor interactions and limits immune cell infiltra- 

ion [20 , 36] . In an osteoarthritis murine model, high molecular 

eight-HA downregulated Toll-like receptor (TLR)-mediated im- 

une response and reduced levels of proinflammatory cytokines 

nd MMPs [54] . CS has also been reported to limit tumor necro- 

is factor-alpha-induced EC and monocyte activation and reduce 

roinflammatory mediator release in obese mice and human cells 

n vitro [55] . Syndecans exhibit protective properties against in- 

ammation by binding and regulating several ligands, including cy- 
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Fig. 1. Comparison of normal GC and disrupted GC. A visual illustration showing the contrasting effects of a healthy and damaged GC on cell adhesion. In the normal state 

(left), the intact GC covers adhesion molecules, acting as a protective barrier and limiting leukocyte and platelet adhesion to the cell surface. However, in the disrupted state 

(right), the collapsed or damaged GC exposes adhesion molecules, leading to enhanced leukocytes and platelets adhesion. AT, antithrombin; CD44, cluster of differentiation 

44; CS, chondroitin sulfate; DAMPs, damage-associated molecular patterns; ECM, extracellular matrix; GC, glycocalyx; HA, hyaluronic acid; HS, heparan sulfate; ICAM, in- 

tercellular adhesion molecule; MMPs, matrix metalloproteinases; ROS, reactive oxygen species; SOD, superoxide dismutase; SS, shear stress; TLRs, toll-like receptors; VCAM, 

vascular cell adhesion molecule; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor. 
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okines, chemokines, and proteases (e.g., MMP, neutrophil elastase 

nd cathepsin G) [20 , 25 , 31–35] . Syndecan-1 deficient mice have el-

vated inflammation as compared to wild type controls [33–35] . 

hese studies suggest that intact components of the GC have anti- 

nflammatory properties. 

In contrast released fragments of GC appear to act as damage- 

ssociated molecular pattern signals to activate the innate im- 

une system [18 , 20] . In murine and human samples, HS frag- 

ents released from the damaged GC can potentiate inflamma- 

ion by binding to TLRs and activating the nuclear factor-kappa B 

athway which induces cytokine release [56] . HS fragments shed 

rom the GC accelerate leukocyte and platelet activation through 

timulating intercellular adhesion molecule and vascular cell ad- 

esion molecule upregulation [18 , 20 , 52 , 57] . Similarly, several stud-

es have confirmed the proinflammatory nature of low-molecular 

eight-HA in both human and murine cell lines resulting in alveo- 

ar macrophages activation and increased chemokine gene expres- 

ion [58] . Similarly, low-molecular weight-HA shed following GC 

egradation leads to TLR activation and stimulated nuclear factor- 

appa B and subsequently upregulates cytokine expression [59] . 

urthermore, syndecan fragments have been suggested to be use- 

ul as a biomarker for inflammation [60] . Overall, these studies 

uggest that GC disruption might potentially stimulate vascular in- 

o  

4

ammation relevant to AAA pathogenesis, as illustrated in Fig. 2 

16–20 , 51 , 61] . It should be acknowledged these studies have been

argely in laboratory models of diseases other than AAA. 

.2. Glycocalyx disruption may alter mechanotransduction 

Biomechanical stress is a key means of signal transduction in 

ealthy blood vessels and changes in biomechanical forces impli- 

ated in development of vascular disease [62] . A potential link 

etween endothelial nitric oxide synthase (eNOS) uncoupling and 

AA was demonstrated in experimental research, as angiotensin II 

nfusion resulted in a significantly higher incidence of AAA forma- 

ion and rupture in eNOS preuncoupled hyperphenylalaninemia-1 

ice than wild type animals [63] . Furthermore, shear stress may 

pregulate vascular inflammation, oxidative stress and ECM degra- 

ation, all implicated in AAA pathogenesis [2–4 , 12 , 13 , 64] . 

The eGC plays a crucial role in maintaining proper eNOS func- 

ion and NO bioavailability. Under normal conditions, the intact GC 

onverts hemodynamic effects into biochemical signals that reg- 

late vascular tone [17 , 21–24] . The GC responds to shear stress 

y influencing mechanotransduction pathways and regulating NO 

roduction through alterations in the presentation and availability 

f cell surface receptors and ligands [16 , 17 , 21–24 , 65–75] . Dysfunc-
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Fig. 2. Potential impact of GC damage on vascular inflammation and possible role in AAA formation. This figure illustrates how GC damage may induce events that contribute 

to vascular inflammation and could be involved in AAA pathogenesis. AAA, abdominal aortic aneurysm; GC, glycocalyx; EC, endothelial cells; ICAM, intercellular adhesion 

molecule; MMPs, matrix metalloproteinases; NLRP3, nucleotide-binding domain, leucine-rich repeat containing protein 3; NO, nitric oxide; RNS; reactive nitrogen species; 

ROS, reactive oxygen species; TIMPs, tissue inhibitors of metalloproteinases; TLR, toll-like receptor; VCAM, vascular cell adhesion molecule. 
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ion of the GC disrupts mechanosensing and affects cytosolic cal- 

ium levels, eNOS activity, and various signaling molecules, such 

s tyrosine kinases [16 , 17 , 21–24 , 65–75] . Studies have shown that

S and HA are potent mechanosensors, as removal of these GC 

omponents through enzyme degradation resulted in decrease or 

omplete block of NO production [68–72] . HA helps in NO pro- 

uction by directly activating eNOS in response to shear stress 

71] . In porcine femoral arteries, enzymatic HA removal suppressed 

hear stress responsive NO bioavailability [71] . Heparanase and 

yaluronidase induced GC degradation has been reported to block 

hear stress stimulated NO production in bovine aortic EC culture 

68–71] . Similarly, enzymatic degradation of GC resulted in de- 

reased NO production from rat abdominal aortic samples exposed 

o high shear stress in vitro [65] . The GC component glypican-1 

as been reported to influence NO production [73 , 74] . Deficiency 

f glypican-1 has been reported to reduce eNOS activation in re- 

ponse to shear stress [73 , 74] . Tarbell and Pahakis [75] have sug-

ested that shear stress signals in a different way in a damaged 

ompared to an intact GC. Based on this past research, it can be 

roposed that GC disruption may change how hemodynamic forces 

nfluence the abdominal aorta, possibly playing a role in AAA initi- 

tion. Further research is needed to test this hypothesis. 

.3. Glycocalyx disruption may induce oxidative stress 

Oxidative stress is linked to elevated levels of reactive oxygen 

pecies (ROS) and reactive nitrogen species and has been impli- 

ated in AAA pathogenesis [2–4 , 12 , 13 , 76] . 

Antioxidants like superoxide dismutase and xanthine oxidore- 

uctase are present within the GC [16] . GC dysfunction may lead 

o loss of protective effects of these antioxidants and result in ele- 
5

ated levels of ROS, leading to endothelial dysfunction [16–20 , 71] . 

s noted above, GC disruption can reduce NO production which 

an promote generation of ROS [16–18 , 67–71 , 75] . Enzymatic re- 

oval of GC components (HS and sialic acid) of femoral arteries in 

igs has been reported to decrease eNOS activity and increase ROS 

evels [71] . In vitro studies in hamster cremaster muscles demon- 

trate that exposing ECs to oxidized low density lipoprotein leads 

o both ROS generation and GC disruption [77] . These studies pro- 

ide some preliminary evidence that GC disruption and ROS gen- 

ration are frequent concurrent events of relevance to AAA patho- 

enesis. 

.4. Glycocalyx disruption may promote vascular smooth muscle cells 

ysregulation 

Disrupted communication between ECs and VSMCs has been 

mplicated in AAA and atherosclerosis pathogenesis [2–4 , 12- 

3 , 78 , 79] . VSMCs isolated from human and animal model AAA 

amples illustrate reduced proliferation and increased apoptosis, 

ompared to control samples [2–4 , 12 , 13 , 35 , 78 , 79] . 

Several growth factors, including tissue growth factor- β , vas- 

ular endothelial growth factor receptor (VEGF), and fibroblast 

rowth factor, which participate in the healthy functioning of 

SMCs are anchored on GC components [16] . The GC also in- 

uences the distribution and activation of VSMCs linked inte- 

rin receptors, thereby controlling downstream signaling pathways 

nvolved in proliferation, cell motility, and phenotype switching 

35 , 79–89] . An intact GC can prevent NLRP3 associated apoptosis 

f VSMCs and GC damage may lead to activation of the NLRP3 in- 

ammasome [16 , 20 , 53 , 79 , 80] . HS acts as a potent mechanosensory

omponent of the GC which regulates shear stress induced con- 
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Table 3 

Relevance of glycocalyx disruption in promoting thrombosis implicated in abdominal aortic aneurysm pathogenesis. 

Coagulation factors Relevance to GC damage Outcomes References 

Adhesion molecule Increased adhesion molecules exposure on EC surfaces Platelets adhesion and aggregation increased [16 , 105 , 106 , 111] 

Tissue factors pathway inhibitors Decreased inhibition of tissue factors Coagulation cascade inhibition decreased [16 , 105–107] 

Heparin cofactor II Decreased activation of Heparin cofactor II Coagulation cascade inhibition decreased [16] 

Thrombomodulin Decreased activation of protein C anticoagulant system Coagulation cascade inhibition decreased [61 , 105–106 , 109] 

Antithrombin III Reduced binding of antithrombin III to EC surface Coagulation cascade inhibition decreased [16 , 105–108] 

vWF vWF release Coagulation cascade activation [110] 

GC, glycocalyx; EC, endothelial cells; vWF, von Willebrand factor. 
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[

ractile responses of VSMCs [83] . GC disruption stimulates inflam- 

atory mediator release which can further contribute to VSMCs 

henotype switching by promoting synthetic marker expression 

nd dysregulating signaling pathways [16 , 20 , 53 , 79] . Degradation of

he eGC may lead to decreased NO production and result in sub- 

equent increased proliferation of VSMCs [79–84] . In shear stress 

xposed human umbilical VSMCs, RhoA-Rho kinase pathway medi- 

ted VSMC contraction was completely blocked due to enzymatic 

egradation of the GC [85] . In human VSMCs, high salt induced GC 

amage resulted in VSMCs remodeling and hypertrophy [84] . Fur- 

hermore, several in vitro studies proposed that VSMCs prolifera- 

ion was manifested in syndecan-1 and HS deficient mice [87–89] . 

ased on these findings, it is suggested that GC damage can pro- 

ote phenotypic changes in VSMCs and possibly contribute to AAA 

athogenesis. 

.5. Glycocalyx disruption may exacerbate angiogenesis 

Angiogenesis is implicated in AAA pathogenesis [2–4 , 12 , 13] . An- 

iogenesis is suggested to promote inflammation and result in ECM 

egradation implicated in AAA development [2–4 , 12 , 13 , 64 , 90 , 91] .

he GC acts as an important regulator of angiogenesis as it stores 

nd interacts with several growth factors [16 , 17] . 

GC damage can lead to enhanced angiogenesis by dysregulating 

rowth factor binding with GAGs, changing cellular signaling and 

nflammatory responses [16–20 , 71 , 90–92] . HS is a critical compo- 

ent involved in regulating angiogenesis by modulating the bind- 

ng and bioavailability of the major angiogenesis stimulant VEGF to 

ts receptors [16 , 17 , 66–70] . Additionally, glypican-1 and syndecan-1 

ave been found to interact with VEGF and modulate its biological 

ctivity [16 , 73 , 93] . Heparanase induced HS removal promoted mi- 

ration and angiogenesis in melanoma cells [94] . In another study, 

S cleavage altered the regulation of VEGF signaling by upregu- 

ating VEGF expression in tumor cells and promoting angiogenesis 

95] . Syndecan-1 shedding also promoted angiogenesis in myeloma 

ells [96] . The disruption of the GC may modulate VEGF signaling 

nd angiogenesis within the aortic wall and may contribute to AAA 

evelopment. 

.6. Glycocalyx disruption may aggravate extracellular matrix 

egradation 

ECM remodeling is a critical process in AAA pathogenesis 

2–4 , 12 , 13 , 90 , 97 , 98] . This remodeling involves the breakdown of

lastin and the degradation of collagen, which are essential com- 

onents maintaining the structural integrity of the artery wall 

90 , 97 , 98] . Upregulation of MMPs is thought to play a crucial role

n ECM degradation [2–4 , 12 , 13 , 97 , 98] . MMPs, including MMP-2 and

MP-9, are enzymes responsible for ECM remodeling by break- 

ng down collagen and elastin [97 , 98] . The GC is itself a special-

zed ECM and interacts with ECM proteins including collagen, fi- 

ronectin, and proteases [16–20] . GC disruption has been identi- 

ed as a factor that upregulates MMP expression and activity in 

Cs, leading to the degradation of ECM proteins and promoting 
6

nflammation [16–20 , 54 , 59 , 70 , 75] . This upregulation of MMPs can

e triggered by oxidative stress and inflammation, both of which 

re associated with GC damage [99 , 100] . Additionally, shedding of 

he GC can downregulate tissue inhibitors of metalloproteinases in 

C culture [101] . Moreover, MMPs themselves can contribute to GC 

egradation, creating a positive feedback loop that exacerbates the 

isease process [71–75 , 101] . It has been suggested that shedding of 

he GC may expose underlying ECM proteins, making them more 

usceptible to MMP-mediated degradation [99 , 100] . The continu- 

us remodeling, driven by GC damage may contribute to the degra- 

ation of the arterial wall and AAA development. 

.7. Glycocalyx disruption may enhance thrombosis formation 

Intra-luminal thrombus is a characteristic feature of AAA which 

s composed of red blood cells, macrophages, fibrins, and platelets, 

nd has been implicated in AAA pathogenesis [2–4 , 12 , 13 , 102] . Ex-

essive activation of neutrophil and subsequent release of neu- 

rophil extracellular traps has been proposed to play a role in AAA 

ormation [12] . 

The GC serves as anticoagulant barrier as it is a repository 

nd interactive medium for multiple coagulation regulators and in- 

ibitors like antithrombin III, tissue factor pathway inhibitor, hep- 

rin cofactor II, thrombomodulin, and von Willebrand factor (vWF) 

16 , 17 , 27 , 51 , 103–110] . Antithrombin binds to HS while thrombo-

odulin that is anchored on CS can stimulate binding of proco- 

gulants to the protein C anticoagulant system [16 , 61] . GC dis- 

uption triggers exposure of adhesion molecules which results in 

latelets adhesion and aggregation [16–20] . Additionally, GC dis- 

uption results in decreased binding of antithrombin to HS, pro- 

oting thrombosis [16 , 61 , 103–110] . In an in vitro study, oxidized 

ow density lipoprotein induced GC degradation leads to accumu- 

ation and adhesion of platelets to EC [77] . GC damage induces 

elease of proinflammatory cytokines and NO impairment which 

re procoagulant in nature [16–20 , 111] . These mechanisms high- 

ight the potential involvement of GC disruption in inducing Intra- 

uminal thrombus formation which has been proposed to promote 

AA progression ( Table 3 ) [16 , 105–111] . 

.8. Critical insight 

The studies outlined above do not directly establish the causal 

ature of GC disruption in AAA pathogenesis. Many of the stud- 

es are not undertaken in AAA disease models and thus the find- 

ngs are indirect and the causal link between GC disruption and 

AA formation is speculative and unproven. The GC is a protec- 

ive covering which is essential for maintaining various physiolog- 

cal functions in the body [16–20] . Its disruption can trigger and 

romote several pathological processes [16–20] . Limiting GC dis- 

uption through restoration and preservation may potentially limit 

AA pathogenesis but effective therapeutics to achieve this are 

urrently unknown. Furthermore, as different components of the 

C may be involved in distinct pathological processes, deciding 

hich components to specifically target is likely to be challenging 

16–20] . 
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.9. Limitations 

This was a narrative review and while every attempt was made 

o include all the key studies, no systematic search of published re- 

earch was performed. Thus it is possible important studies were 

verlooked. As noted above, currently there is no convincing data 

howing a causal link between GC disruption and AAA pathogene- 

is and further research is needed. 

. Conclusion 

GC disruption leads to loss of key hemodynamic signaling, anti- 

nflammatory, anticoagulant and antioxidative stress functions of 

lood vessels. Since inflammation, oxidative stress, ECM remodel- 

ng and angiogenesis, and EC and VSMC dysfunction have been im- 

licated in AAA pathogenesis, it is possible GC disruption may play 

 role in AAA formation [2–4 , 12 , 13 , 14–20] . Currently, however, the

ausal relationship between GC disruption and AAA is speculative 

nd if proven it is unclear how GC repair could be instigated ther- 

peutically. It is important that future GC research employs animal 

odels representative of human AAA. 
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