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Abstract
Feeding	 habits	 of	 herbivorous	 fishes	 play	 an	 important	 role	 in	 shaping	 the	 form	
and	 function	 of	 coastal	marine	 ecosystems.	 Rabbitfishes	 (Siganidae)	 are	 important	
consumers	of	macroalgae	on	Indo-	West	Pacific	coral	reefs.	However,	it	is	unclear	how	
their	diet	varies	among	and	within	species	at	biogeographical	scales,	casting	doubt	
on their precise functional roles across different regions. The present study assessed 
the	inter-		and	intra-	specific	diet	variation	of	four	rabbitfishes	(Siganus trispilos, Siganus 
corallinus, Siganus virgatus and Siganus doliatus)	factored	by	morphological	relatedness	
among	populations	 from	Ningaloo	Reef	 (western	Australia),	 the	Great	Barrier	Reef	
(GBR,	eastern	Australia)	and	the	Yaeyama	Islands	(Okinawa	Prefecture,	Japan).	Results	
showed	that	the	region	had	a	strong	effect	on	diet,	effectively	reducing	the	expected	
effect	of	morphologic	similitude.	While	intra-	specific	differences	were	only	significant	
when	 populations	 inhabited	 different	 regions;	 interspecific	 differences	 were	 not	
as predicted, with different morphotypes having similar diets when populations 
inhabited	the	same	regions.	Rabbitfishes	consumed	more	corticated	and	filamentous	
macroalgae	on	the	GBR,	more	foliose	and	membranous	macroalgae	at	the	Yaeyama	
Islands, and more leathery macroalgae at Ningaloo Reef. The findings indicate that 
rabbitfishes	 have	 high	 diet	 plasticity,	 and	 hence	 their	 functional	 role	 as	mediators	
of	 competition	 between	 macroalgae	 and	 corals	 can	 change	 across	 biogeographic	
regions.	Local	context	is	therefore	important	when	assessing	the	diet	and	functional	
role	of	herbivorous	fishes.	As	climate	change	unfolds,	shifts	in	the	distribution,	trophic	
behaviour	and	function	of	species	are	expected,	making	the	study	of	trophic	plasticity	
more important.
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1  |  INTRODUC TION

Primary consumption is an important ecological process that 
greatly	influences	energy	flow	and	habitat	structure	in	natural	eco-
systems.	Herbivores	link	primary	producers	and	higher-	order	con-
sumers, initiating the transfer of energy across the trophic network 
and sustaining, directly and indirectly, the secondary productivity 
of	 higher	 trophic	 levels	 (Zarco-	Perello	 et	 al.,	 2019).	 Herbivores	
can consume the majority of primary productivity, and influence 
the	 standing	 biomass	 and	 composition	 of	 benthic	 communities	
(Spadaro	&	Butler,	2021).	On	coral	reefs,	fish	species	of	the	families	
Acanthuridae	 (surgeonfishes)	 and	Siganidae	 (rabbitfishes),	 as	well	
as	the	subfamily	Scarinae	(parrotfishes),	are	conspicuous	and	abun-
dant	consumers	of	macroalgae,	and	have	been	suggested	to	act	as	
ecosystem	engineers	(Steneck	et	al.,	2017).	It	is	generally	theorised	
that	 abundant	 and	 functionally	 diverse	 communities	 of	 herbivo-
rous	fishes	strengthen	the	resilience	of	coral-	dominated	states	by	
preventing	phase-	shifts	to	macroalgal-	dominated	states	following	
disturbances	 such	 as	 cyclones	 or	 high	 temperatures	 that	 cause	
mass	coral	bleaching	(Cheal	et	al.,	2013);	however,	this	will	be	de-
pendent	on	the	identity	and	relative	abundances	of	the	macroalgae	
and	herbivorous	fish	species	present	in	each	reef	system	(Bellwood	
et al., 2006; Puk et al., 2020).	 Inter-	species	 comparisons	 of	 diet	
and	feeding	behaviour	are	widespread	among	all	the	most	import-
ant	families	of	herbivorous	fishes,	delineating	functional	diversity	
and redundancy within fish communities (Johansson et al., 2013; 
Kelly et al., 2016).	Species	that	feed	substantially	on	leathery	mac-
roalgae	 (browsers)	 can	 shorten	 the	 algal	 canopy,	 enhancing	 light	
penetration	to	the	benthos	and	reducing	physical	damage	to	coral	
colonies (McCook et al., 2001),	whereas	consumers	of	short	foliose	
and	filamentous	macroalgae	(grazers)	can	clear	benthic	space	and	
potentially facilitate coral recruitment (Heenan et al., 2016; Korzen 
et al., 2011).	Generally,	although	there	are	often	many	species	of	
herbivorous	 fishes	 that	 are	 grazers,	 typically	 only	 a	 few	 species	
have	been	 identified	 as	 important	browsers	 in	 reef	 systems	 (Puk	
et al., 2016).

The	specific	diet	of	different	herbivorous	fishes	has	been	linked	
to	 morpho-	functional	 adaptations.	 Parrotfishes	 are	 clearly	 distin-
guished	 from	 other	 families	 by	 their	 beak-	like	 fused	 teeth,	 which	
allows	them	to	not	only	consume	turf	and	cyanobacteria	(Nicholson	
&	Clements,	2023)	but	also	excavate	deep	into	the	substratum	and	
scoop	 sediment,	 detritus	 and	 calcium	 carbonate;	 explaining	 the	
lack	of	 species	 that	 feed	on	 fleshy	macroalgae,	with	a	 few	excep-
tions in the genera Sparisoma, Calotomus and Leptoscarus (Bonaldo 
et al., 2014).	 Surgeonfishes	 exhibit	 a	 greater	 diversity	 of	morpho-	
functional	 adaptations	 for	 feeding	 specialisations.	 For	 instance,	
browsers	of	large	leathery	macroalgae	are	restricted	to	a	few	species	
of the genus Naso with teeth adapted to perforate and rip the algal 
thallus, whereas consumers of detritus and filamentous macroalgae 
are grouped in the genus Ctenochaetus,	who	evolved	brush-	like	teeth	
which allows them to collect particulate material from turf mats 
(Tebbett	 et	 al.,	2022).	 Rabbitfishes	 are	 a	 particular	 case,	 because	

all species are grouped within the genus Siganus spp; nevertheless, 
morphological	and	behavioural	adaptations	differentiate	species	in	
their	trophic	ecology,	and	rabbitfishes	collectively	exhibit	substan-
tial	functional	significance	and	variation	 in	diet	comparable	to	big-
ger	families	of	herbivorous	fish	(Bellwood,	Hoey,	et	al.,	2014; Hoey 
et al., 2013).	For	instance,	flat-	snouted	species	such	as	Siganus can-
aliculatus and S. virgatus	have	been	 identified	as	 important	brows-
ers	 in	Orpheus	 Island	on	 the	Great	Barrier	Reef	 (GBR;	Bennett	&	
Bellwood, 2011;	Fox	&	Bellwood,	2008)	and	coral	reefs	of	the	Indo-	
Pacific region, respectively (Bauman et al., 2017; Müller et al., 2021; 
Plass-	Johnson	et	al.,	2015;	Seah	et	al.,	2021).	On	the	other	hand,	spe-
cies	with	more	slender	bodies	and	elongated	snouts,	such	as	S. coral-
linus and S. vulpinus,	have	been	identified	as	important	consumers	of	
filamentous	algae	and	cyanobacteria	in	open	and	cryptic	reef	spaces,	
allowing them to access unique trophic resources in the ecosystem 
(Brandl	&	Bellwood,	2014;	Fox	&	Bellwood,	2013).

Macroalgae	 consumption	 by	 herbivores	 may	 not	 only	 depend	
on	fish	species	 identity	but	may	also	vary	across	habitats	and	bio-
geographic	 distances.	 Fishes	 are	 regularly	 classified	 into	 trophic	
guilds,	but	feeding	behaviours	and	prey	items	can	change	depending	
on	 the	environmental	 and	biological	 factors	 in	different	 locations.	
Among	fish,	species	of	different	trophic	levels	have	shown	feeding	
plasticity across space (Hamilton et al., 2011),	even	in	species	typi-
cally	considered	to	have	specialised	diets.	Such	as	the	corallivorous	
butterflyfish	Chaetodon octofasciatus, whose populations can differ 
significantly	in	the	number	of	coral	species	eaten	and	the	number	of	
bites	taken	by	each	of	them	(Feary	et	al.,	2018).	Herbivorous	spe-
cies	are	most	 likely	not	 the	exception;	however,	diet	plasticity	has	
rarely	been	assessed	for	herbivorous	coral	 reef	 fishes,	particularly	
at	biogeographical	scales.	Among	the	few	studies	that	have	exam-
ined	spatial	variation	in	feeding	behaviour,	Wilson	et	al.	(2021)	found	
significant	variation	 in	bite	 rates	 for	 the	parrotfishes	Scarus vetula 
and Sparisoma viride	 between	 coral	 reefs	 in	Barbuda,	Antigua	 and	
Bonaire, and Locham et al. (2015)	found	the	parrotfish	Leptoscarus 
vaigiensis	differed	in	diet	diversity	and	breadth	across	coral	reefs	in	
Kenya.	 Similarly,	Duran	 et	 al.	 (2019)	 found	 that	 the	 surgeonfishes	
Acanthurus coeruleus and A. tractus took different proportions of 
bites	on	different	food	items,	such	as	turf,	epiphytes,	or	sessile	in-
vertebrates	among	coral	reefs	of	the	Florida	Keys.	The	spatial	vari-
ability	in	the	trophic	ecology	of	rabbitfishes	has	only	been	assessed	
within the Great Barrier Reef, where diet analyses indicated clear 
inter-	specific	 differences;	 however,	 a	 formal	 assessment	 of	 intra-	
specific	variability	has	not	yet	been	done	(Hoey	et	al.,	2013).	Thus,	
it is unclear how their consumption of algae and their functional 
role,	might	vary	among	and	within	species	at	large	biogeographical	
scales.	 Addressing	 this	 knowledge	 gap	 is	 important	 because	 coral	
reef ecosystems are managed at the local level, and it is necessary 
to	understand	the	spatial	variability	of	the	ecological	processes	re-
lated	to	their	stability.	If	herbivorous	fishes	change	their	feeding	ac-
tivity dramatically among regions, their functional role will likewise 
change, impacting the capacity of the reef to suppress or recover 
from	changes	in	the	benthic	community.
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The	present	 study	aimed	 to	 shed	 light	on	 the	 inter-		 and	 intra-	
specific	 diet	 variation	 factored	 by	 morphological	 similitude	 and	
biogeographic	 region	 by	 comparing	 populations	 of	 closely	 related	
species	 of	 rabbitfishes	 (Siganus trispilos, Siganus corallinus, Siganus 
virgatus and Siganus doliatus)	within	 and	 among	 regions	 separated	
by	thousands	of	kilometres:	Ningaloo	(western	Australia),	the	Great	
Barrier	Reef	(GBR,	eastern	Australia)	and	Okinawa	(Japan).	We	hy-
pothesised	 that:	 (1)	 morphologically	 similar	 species	 (long/short	
snout)	should	have	more	similar	diets	and	functional	roles;	however,	
(2)	intra-		and	inter-	specific	differences	will	increase	between	popu-
lations	of	different	biogeographic	regions	due	to	different	physical	
and	biological	environments	(Figure 1).

2  |  METHODS

2.1  |  Locations and species of study

The	 study	 focused	 on	 four	 closely	 related	 species	 of	 rabbitfish	
(Siganus virgatus, S. doliatus, S. corallinus and S. trispilos;	 Siqueira	
et al., 2019)	 that	 have	 populations	 in	 three	 regions	 set	 apart	 by	
thousands	 of	 kilometres:	 Okinawa	 (Yaeyama	 Islands),	 the	 Great	
Barrier	 Reef	 (GBR;	 Turtle	Group	 and	 Lizard	 Island)	 and	Ningaloo	
Reef (Coral Bay; Figure 2).	Siganus virgatus and S. doliatus have short 
snouts	 and	 are	 considered	 sister	 species	 based	 on	 phylogenetic	
analyses	(Siqueira	et	al.,	2019).	Siganus corallinus and S. trispilos have 
longer	snouts	and	based	on	morphological	similarities,	are	thought	
to	be	sister	species	(Woodland	&	Allen,	1977),	although	their	relat-
edness	has	yet	to	be	confirmed	by	genetic	analyses.	Siganus virga-
tus and S. doliatus	are	distributed	across	the	Indo-	West	Pacific	and	
Western	 Pacific,	 respectively,	 and	 have	 been	 observed	 regularly	
biting	from	assays	of	Sargassum	spp.	(e.g.,	Fox	&	Bellwood,	2013),	
although whether they are targeting the Sargassum itself or epi-
biota	is	unknown.	Siganus corallinus	is	distributed	across	the	Indo-	
West	 Pacific	 and	 has	 been	 described	 as	 an	 ‘algal	 cropper’	 (Hoey	
et al., 2013);	Siganus trispilos	is	endemic	to	northwestern	Australia	
and	 its	diet	has	not	yet	been	described,	but	we	hypothesise	 that	
it	 should	 be	 functionally	 similar	 to	 the	morphologically	 similar	S. 
corallinus	(Fox	&	Bellwood,	2013).

2.2  |  Diet information

Specimens	 of	 S. virgatus and S. trispilos	 were	 collected	 by	 spear	
[Murdoch	 University	 ethics	 permit	 number	 R3349/21	 and	
Department	of	Fisheries	(DPIRD)	exemption	3699]	between	9	am	and	
11	am	in	the	backreef	and	lagoon	habitats	of	Bateman	(23°02′28″S,	
113°47′04″E),	 Five	 Fingers	 (23°10′54″S,	 113°45′51″E)	 and	 Yalobia	
(23°12′22″S,	113°45′33″E)	reefs,	Ningaloo	Reef,	Western	Australia,	
during	 June	 2022	 and	 March–April	 2023	 (Table 1).	 Captured	
specimens were euthanised, stored in ice and dissected fresh at the 
Coral	 Bay	 Research	 Station	 (Murdoch	University).	 The	 alimentary	
tract was removed, dissected open and the gut content preserved 
in	 a	 solution	 of	 80%	 ethanol.	Diet	 data	 from	 these	 samples	were	
collected	 in	 the	 laboratory	 using	 a	 stereo	microscope,	 similarly	 to	
previous studies (Nanami, 2018).	 Food	 items	 were	 spread	 evenly	
over a petri dish divided into a grid of 100 cells, identified to the 
lowest	 taxonomic	 level	 possible	 and	 assigned	 a	 proportion	 of	 the	
total	gut	content	based	on	the	proportional	number	of	grid	squares	
covered using the program ImageJ (rsb.	info.	nih.	gov/	ij/).	Macroalgae	
in	the	diet	were	grouped	into	five	morpho-	functional	groups:	foliose,	
membranous,	 corticated,	 filamentous	 and	 leathery.	 Categories	
other	 than	macroalgae	 comprised	 seagrass,	 cyanobacteria,	 sessile	
invertebrates	and	detritus.	Diet	 information	for	the	populations	of	
rabbitfishes	from	the	GBR,	was	obtained	from	a	diet	database	created	
by	Hoey	et	al.	(2013).	Diet	data	from	Okinawa	were	obtained	from	
Nanami (2018)	using	the	software	Datathief	III	(Flower	et	al.,	2016; 
Table 1).

2.3  |  Statistical analysis

Differences	in	diet	between	species	and	populations	across	regions	
were	 analysed	 with	 non-	metric	 multidimensional	 scaling	 (NMDS)	
based	 on	 Bray-	Curtis	 distances	 using	 the	 functions	 vegdist and 
metaMDS of the R package vegan (Oksanen et al., 2022).	Statistical	
differences were tested with permutational analysis of variance 
(PERMANOVA),	 considering	 ‘region’	 and	 ‘taxa’	 with	 sister	 species	
nested	in	2	levels	(‘S. virgatus + S. doliatus’	and	‘S. trispilos + S. corallinus’)	
as	fixed	factors,	using	the	function	adonis2 of the R package vegan 
(Oksanen et al., 2022),	 followed	 by	 pairwise	 comparisons	 among	
species-	region	 combinations	with	 adjusted	 p-	values	 based	 on	 the	
Hommel method using the functions pairwise.adonis2 and p.adjust.m 
of	the	R	package	pairwiseAdonis	(Martinez,	2017).

3  |  RESULTS

The	 diets	 of	 rabbitfishes	 differed	 among	 species	 and	 geo-
graphic	 location,	 with	 most	 of	 the	 variance	 explained	 by	 region	
(PERMANOVA;	 region:	 pseudo-	F3,83 = 27.0833,	 p =	 .0001;	 taxa:	
pseudo-	F1,83 = 4.9176,	p =	.0001;	species:	pseudo-	F2,83 = 3.0200,	p 
=	.0138;	Table S1).	Every	pairwise	comparison	of	rabbitfish	popula-
tions	between	regions,	both	intra-	specific	and	inter-	specific,	yielded	

F I G U R E  1 Hypothesised	magnitudes	of	dissimilitude	(size	
of	arrows	and	colours)	in	diet	within	(intra-	specific)	and	among	
(interspecific)	species	of	rabbitfish	as	a	factor	of	shared	geographic	
distribution	and	morphologic	similitude.
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statistically significant differences. However, within regions, no sig-
nificant	differences	were	detected,	except	for	interspecific	compari-
sons at Turtle Group and Lizard Island in the GBR (Table S2).

3.1  |  Interspecific differences in diet

The diet of S. corallinus from Lizard Island was significantly differ-
ent	from	all	other	species	of	rabbitfishes.	Whereas	S. corallinus from 
Turtle	Group	(inner-	shelf	GBR)	differed	in	diet	from	all	populations	
but	S. doliatus	from	Lizard	Island	(mid-	shelf	GBR).	Similarly,	the	diet	
of S. corallinus from Okinawan reefs differed from all populations 

apart from S. virgatus	inhabiting	the	same	region.	Overall,	S. coralli-
nus and S. doliatus	from	the	GBR	had	very	similar	diets	dominated	by	
corticated and filamentous algae (63.2 ± 3.4%,	mean	±	se),	followed	
by	 foliose	 and	 membranous	 macroalgae	 (24.0	 ± 3.2%).	 Okinawan	
rabbitfishes	also	had	similar	diets	but	with	an	inverse	pattern,	having	
higher	 proportions	 of	 foliose	 and	membranous	macroalgae	 (~60.1 
± 4.3%),	 and	 less	 corticated	 and	 filamentous	 algae	 (~27.4	± 2.8%;	
Figure 3).	S. trispilos from Ningaloo had a diet with equal proportions 
of	 foliose/membranous	 (41.3	 ± 5.1%)	 and	 corticated/filamentous	
algae (45.6 ± 9.1%),	 followed	by	 leathery	macroalgae	 (13.1	± 4.4%;	
Figure 3).	 This	 dietary	 composition	made	 it	 significantly	 different	
from	all	the	other	rabbitfishes	of	other	regions,	except	for	S. virgatus, 
also from Ningaloo, which had a high proportion of leathery mac-
roalgae (33.6 ± 6.8%),	followed	by	foliose/membranous	(49.5	± 6.7%)	
and	corticated/filamentous	algae	(16.9	± 7.6%;	Figure 3).

3.2  |  Intra- specific differences in diet

The diets of conspecific populations within the same region were 
not significantly different (Tables S1 and S2).	Populations	of	S. cor-
allinus from Lizard Island and Turtle Group within the GBR did not 
differ significantly in their diets. Likewise, populations of S. doliatus 
within these two locations in the GBR had similar diets. These pop-
ulations	had	diets	dominated	by	corticated	and	 filamentous	algae,	
seconded	by	foliose	and	membranous	macroalgae;	however,	popu-
lations from the Turtle Group generally displayed less variation in 
diet among individuals than those from Lizard Island (Figure 4).	 In	
contrast,	 intra-	specific	differences	in	the	diet	of	rabbitfishes	sepa-
rated at continental scales were highly significant (Tables S1 and S2).	
Both populations of S. corallinus from the GBR had significantly dif-
ferent diets than those from Okinawa, which tended to feed more on 
foliose	and	membranous	macroalgae	and	sessile	invertebrates	than	
individuals from the GBR (Figures 3 and 4).	Likewise,	populations	of	
S. virgatus from Ningaloo and Okinawa also had marked differences 
in	their	diet,	driven	by	higher	consumption	of	 leathery	macroalgae	
by	Ningaloo	 individuals	and	higher	diet	proportions	of	 foliose	and	
membranous	macroalgae	and	seagrass	by	individuals	from	Okinawa	
(Figures 3 and 4).

F I G U R E  2 Sampling	locations	of	rabbitfishes	for	diet	
comparisons.	(a)	Yaeyama	Islands,	Okinawa	(S. corallinus, S. virgatus);	
(b)	Lizard	Island,	mid-	shelf	northern	Great	Barrier	Reef	(S. corallinus, 
S. doliatus);	(c)	Turtle	Group,	inner-	shelf	northern	Great	Barrier	
Reef (S. corallinus, S. doliatus);	and	(d)	Ningaloo	Reef	(S. trispilos, S. 
virgatus).

Species Region N
Fork length 
(mm) References

S. corallinus Okinawa,	Yaeyama	Islands 10 126–205 Nanami (2018)

S. virgatus 10 159–215

S. corallinus GBR	mid-	shelf	(Lizard	Island) 22 183–234 Hoey et al. (2013)

GBR	inner-	shelf	(Turtle	Group) 6

S. doliatus GBR	mid-	shelf	(Lizard	Island) 20 165–250

GBR	inner-	shelf	(Turtle	Group) 11

S. trispilos Ningaloo, Coral Bay 7 217–269 This study

S. virgatus 6 220–257

Abbreviations:	GBR,	Great	Barrier	Reef;	N,	number	of	specimens	collected.

TA B L E  1 Number	of	specimens	and	
body	size	of	rabbitfishes	included	in	the	
present study.
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4  |  DISCUSSION

We	hypothesised	 that	morphologically	 similar	 species	would	 have	
similar	diets,	and	that	intra-		and	inter-	specific	differences	would	be	
greater	 between	 populations	 of	 different	 biogeographic	 regions.	
We	found	a	strong	effect	of	region	on	diet,	explaining	46%	of	the	
variation,	effectively	 reducing	 the	expected	effect	of	morphologic	
resemblance.	While	intra-	specific	differences	were	only	significant	
when	 populations	 inhabited	 different	 regions	 as	 expected,	
interspecific differences were not as predicted, with different 
species	 having	 similar	 diets	when	 populations	 inhabited	 the	 same	
regions.

The	 significant	 biogeographic	 variation	 in	 diet	 of	 these	 rabbit-
fishes	can	be	attributed	to	high	trophic	plasticity,	enabling	an	adap-
tive	 response	 to	 local	 resource	availability.	Resource	availability	 is	
among the most important factors determining foraging plasticity 
in fish populations. The diet of fish species can vary depending on 
the	interaction	between	the	relative	abundance	and	relative	prefer-
ence of dietary resources (Barrientos et al., 2021).	 Such	examples	
have	been	observed	in	some	surgeonfish	species,	which	usually	pre-
fer	filamentous	turf	algae	but	consume	more	fleshy	and	calcareous	
macroalgae	at	locations	with	greater	abundance	of	these	resources	
(Francini-	Filho	et	al.,	2010).	The	influence	of	resource	availability	on	
the	diet	of	rabbitfishes	has	only	been	documented	in	range-	extending	

species: S. luridus and S. rivulatus	 in	 the	Mediterranean	Sea	and	S. 
fuscescens	 in	western	Australia,	which	 consume	 a	 great	 variety	 of	
macrophytes in temperate reefs that are not found in their original 
habitats	 in	coral	 reefs	 (Azzurro	et	al.,	2007; Bariche, 2006;	Zarco-	
Perello et al., 2019).

Our	 results	 document	 the	 trophic	 plasticity	 of	 rabbitfishes	
within	tropical	 regions	at	biogeographical	scales	and	may	reflect	
the	availability	of	dietary	resources	in	each	location.	At	Ningaloo	
Reef,	algal	communities	are	dominated	by	turfs;	however,	exten-
sive	beds	of	the	canopy-	forming	macroalgae	Sargassum spp. occur 
within	backreef	habitats	 (Evans	et	al.,	2014;	Wilson	et	al.,	2014).	
On	the	Great	Barrier	Reef,	there	is	considerable	cross-	shelf	vari-
ation	in	benthic	communities,	with	macroalgae	rare	or	absent	on	
mid-	shelf	 reefs	 (especially	 canopy-	forming	 macroalgae),	 yet	 ac-
counting	for	upwards	of	50%	of	the	benthic	community	on	inner-	
shelf	reefs	(Hoey	&	Bellwood,	2010;	Wismer	et	al.,	2009).	Indeed,	
the	cover	of	fleshy	macroalgae	was	generally	low	on	the	mid-	shelf	
reefs surrounding Lizard Island at the time of sampling, whereas 
macroalgal	cover	was	generally	greater	and	more	variable	on	the	
inner-	shelf	 reefs	 of	 the	 Turtle	 Group	 (Hoey	 &	 Bellwood,	 2010; 
Wismer	et	al.,	2009).	Likewise,	 there	 is	 considerable	variation	 in	
benthic	 composition	 among	 coral	 reefs	 on	 the	 Yaeyama	 Islands,	
with	most	 dominated	 by	 scleractinian	 corals	 and	 bare	 rock,	 and	
some	(2	of	63	sampling	sites)	with	a	high	cover	of	macroalgae	(e.g.,	

F I G U R E  3 Variation	in	the	gut	contents	
of	populations	of	the	rabbitfishes	Siganus 
corallinus, S. doliatus, S. virgatus and S. 
trispilos from different regions of the 
world: Great Barrier Reef (Turtle Group 
and	Lizard	Island),	Western	Australia	
(Ningaloo)	and	Japan	(Okinawa).	Barplots	
show	means	and	standard	errors	(SE)	of	
different diet items.
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Padina spp. and Sargassum spp.; Nanami, 2018).	Reefs	 in	Nagura	
Bay	and	Sekisei	Lagoon	used	to	be	composed	of	massive	and	en-
crusting	 corals,	 and	 branching	 Acropora	 communities;	 however,	
these	 have	 suffered	 high	mortalities	 following	 bleaching	 events	
in	1998,	2001,	2003	and	2007,	most	likely	leading	to	a	high	cover	
of turf and small foliose macroalgae on the reef surfaces, like the 
diet	of	rabbitfishes	at	this	location	(Roeroe	et	al.,	2013).	The	beds	
of Sargassum	spp.	in	back	reef	habitats	at	Ningaloo	Reef	may	ex-
plain why the gut content of S. virgatus and S. trispilos from this 
region had a high proportion of leathery macroalgae; however, it 
does	not	explain	the	 lack	of	 leathery	macroalgae	 in	the	gut	con-
tent of S. corallinus and S. doliatus	 from	 inner-	shelf	 reefs	 of	 the	
GBR	(i.e.,	Turtle	Group).	The	diet	of	rabbitfishes	likely	reflects	the	
relative	availability	and	palatability	of	potential	dietary	resources	
within their home ranges, and highlights the dangers of infer-
ring diet from algal assays, even when those algae are naturally 
abundant	(Bauman	et	al.,	2017; Müller et al., 2021;	Plass-	Johnson	
et al., 2015;	Seah	et	al.,	2021).

The	availability	and	palatability	of	dietary	resources	can	inter-
act	with	other	habitat	factors,	such	as	topographic	complexity	and	
the risk of predation, to influence an individual's diet. Populations 

living	 in	 habitats	with	 different	 structural	 complexity	 can	 differ	
in	rates	of	consumption	of	different	macroalgal	resources	(Vergés	
et al., 2011),	including	for	the	rabbitfishes	S. doliatus and S. cana-
liculatus on the GBR, whose populations differed in macroalgae 
consumption among the reef slope and reef crest, the latter hav-
ing	 higher	 topographic	 complexity	 (Loffler	 et	 al.,	2015).	 Habitat	
complexity	 can	 also	 interact	 with	 predator-	prey	 dynamics	 and	
have	important	impacts	on	the	foraging	behaviour	of	herbivores,	
where	predation	 risk	can	suppress	herbivory	more	effectively	 in	
topographically	complex	areas;	thus,	populations	residing	in	eco-
systems with differences in predator densities and composition 
can suffer significant changes in macroalgae consumption (Catano 
et al., 2016).	For	instance,	the	foraging	of	S. virgatus and S. javus in 
the	coral	reefs	of	Singapore	was	heavily	affected	by	the	presence	
of a predator decoy, significantly reducing their consumption of 
Sargassum spp. (Bauman et al., 2019).

Consumption	 of	 new	 resources	 could	 be	 limited	 by	 the	 mor-
phological and physiological traits of each species (Bellwood, Hoey, 
et al., 2014).	We	expected	the	flat-	snouted,	robust	species	(S. dolia-
tus and S. virgatus)	would	consistently	consume	important	amounts	
of fleshy and leathery macroalgae, and that species with elongated 

F I G U R E  4 Non-	metric	multidimensional	scaling	ordination	showing	differences	in	diet	composition	between	the	rabbitfishes	Siganus 
corallinus, S. doliatus, S. virgatus and S. trispilos	from	different	regions	of	the	world:	Great	Barrier	Reef	(Turtle	Group	and	Lizard	Island),	
Western	Australia	(Ningaloo)	and	Japan	(Okinawa).	Bigger	dots	represent	centroids	of	each	population.
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snouts	and	slender	bodies	(S. corallinus and S. trispilos)	would	feed	
mostly on filamentous algae, consistent with previous literature 
(Brandl	&	Bellwood,	2014;	Fox	&	Bellwood,	2013).	However,	all	spe-
cies	ingested	a	mix	of	the	same	macroalgae	types,	similar	to	previous	
findings for some surgeonfishes, where no relationship was found 
between	morphology	 and	diet	 specialisation	 (Brandl	 et	 al.,	2015).	
The	 substantial	 amounts	 of	 leathery	 macroalgae	 in	 the	 gut	 con-
tent of S. trispilos	show	that	a	 longer	snout	does	not	exclude	con-
sumption	of	tough	macrophytes	or	restrict	the	trophic	behaviour	of	
rabbitfishes	with	this	morphology	to	grazing.	Rather,	a	 long	snout	
extends	 their	 trophic	niche	 inside	and	outside	cryptic	 reef	 spaces	
(Brandl	&	Bellwood,	2014;	Fox	&	Bellwood,	2013).	Dentition	traits	
are	important	for	the	abilities	of	animals	to	consume	certain	types	
of food (Bellwood, Goatley, et al., 2014),	and	although	no	study	has	
conducted	a	detailed	analysis	of	dentition	among	rabbitfish	species,	
they	 seem	 to	 have	 similar	 traits,	 comprised	 of	 narrow	 incisor-	like	
bicuspid	or	tricuspid	teeth	 (Woodland,	1990).	Our	results	 indicate	
that	they	may	be	suitable	to	crop	a	wide	variety	of	resources.

The	trophic	plasticity	of	rabbitfishes	has	important	repercussions	
for	 their	 functional	 roles	 in	marine	ecosystems.	Herbivory	can	rein-
force	the	stability	and	resilience	of	coral	dominated	states	in	tropical	
reefs,	but	its	effectiveness	is	determined	by	the	suite	of	specific	trophic	
behaviours	of	the	herbivorous	community	(Hoey	&	Bellwood,	2009).	
Currently,	it	is	common	practice	to	assign	herbivorous	fishes	to	trophic	
guilds	based	on	 studies	 conducted	 in	 just	 a	 few	 locations	 (Edwards	
et al., 2014).	Our	results	show	the	importance	of	local	herbivory	as-
sessments	and	indicate	that	the	behavioural	plasticity	of	species	must	
be	 considered	 when	 assessing	 the	 intensity	 of	 different	 herbivory	
functions	at	broad	biogeographic	scales.	In	similitude	to	the	concepts	
of the fundamental versus realised niche, our study highlights the dis-
tinction	between	(a)	fundamental herbivory:	the	ability	of	a	species	to	
perform	herbivory	 functions	 and	 (b)	 realised herbivory: the function 
executed	 by	 one	 population	 under	 specific	 physical	 and	 biological	
conditions.	For	instance,	the	batfish	Platax pinnatus normally feeds on 
benthic	and	planktonic	invertebrates,	but	consumed	high	amounts	of	
Sargassum	sp.	when	it	was	extraordinarily	presented	with	this	resource	
in	a	herbivory-	exclusion	experiment	(Bellwood	et	al.,	2006).	Moreover,	
it is important that local studies collect enough samples that capture 
the	full	extent	of	the	trophic	niche.	In	our	study,	diet	estimations	for	
S. trispilos and S. virgatus from Ningaloo Reef and S. corallinus from 
the Turtle Group reefs were limited (n = 6–7	individuals),	and	as	such	
they	should	be	interpreted	with	some	caution.	Nevertheless,	the	gut	
content for these sample populations was largely consistent among 
individuals	and	is	therefore	likely	reflective	of	their	trophic	niche.	For	
instance, S. corallinus from the Turtle Group reefs had diet proportions 
and	 a	 niche	 centroid	 very	 close	 to	 the	 other	 rabbitfish	 populations	
from	the	Great	Barrier	Reef,	but	the	extent	of	their	trophic	niches	was	
disparate	because	the	latter	had	bigger	sample	sizes.	Thus,	the	trophic	
functions	of	 the	fish	community	must	be	carefully	assessed	at	 local	
scales	 to	 ensure	 that	 the	 species	 responsible	 for	 critical	 ecosystem	
processes are accurately identified and included in management strat-
egies (Chung et al., 2019).

Our	study	explored	the	differences	in	diet	between	populations	
of	 rabbitfishes	 across	 biogeographic	 distribution	 and	morphology.	
We	 found	 significant	 trophic	 plasticity	 among	 the	 four	 rabbitfish	
species	compared,	and	diets	appeared	to	be	strongly	related	to	re-
gion.	The	results	suggest	that	the	trophic	role	among	rabbitfishes,	
and	potentially	species	of	other	herbivorous	fish	families,	is	difficult	
to	extrapolate	across	locations	and	across	species,	even	when	they	
are closely related. These results are particularly important as the as-
sessment	of	coral	reef	resilience	includes	examining	the	abundance	
of	 key	 fish	 herbivorous	 guilds	 that	 can	 prevent	 and	 revert	 phase	
shifts	based	on	which	macroalgae	they	consume.	As	climate	change	
unfolds,	shifts	in	the	distribution,	trophic	behaviour	and	function	of	
species	 are	 expected,	making	 the	 study	of	 trophic	plasticity	more	
important.
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