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A B S T R A C T   

Genomic prediction (GP) has emerged an effective tool for addressing the many shortcomings of traditional 
selective breeding, thereby enhancing the selection process. In this study, we optimized GP methods using 5-fold 
cross-validation to estimate genome-estimated breeding values for the weight traits of olive flounder (Para
lichthys olivaceus). To accomplish our goal, we determined the parentage of the target broodstock and the ability 
of 11 prediction models to predict the weight traits of 1.8-year-old olive flounders, which were genotyped using a 
70 K single nucleotide polymorphism (SNP) array. Moreover, our optimization efforts toward the predictive 
ability of genomic best linear unbiased prediction (GBLUP), Bayesian B (BB), and random forest (RF) methods 
encompassed changes in various aspects such as fixed effects, SNP quantity, population size, and phenotypic data 
collected at different fish ages. Additionally, we assessed the predictive ability for the total length and body 
depth of fish using GBLUP, BB, and RF. Among the 11 prediction methods used in this study, the BB (0.675), 
Elastic Net (0.679), and RF (0.698) methods exhibited the highest predictive abilities, whereas the GBLUP 
(0.637) method demonstrated the lowest. Incorporating information regarding fish sex as a fixed effect sub
stantially improved the predictive ability of GBLUP and BB. For mean models, utilizing 3000–5000 random SNP 
markers resulted in a higher predictive ability, similar to that obtained using 50,000 SNPs. Increasing the 
population size reduced the standard deviation of the predictive ability. Notably, phenotypic records from 1.8- 
year-old fish exhibited a significantly higher predictive ability than those from the other age groups. Further
more, GBLUP, BB, and RF provided higher predictive abilities for length (0.655–0.852) and body depth 
(0.665–0.861). These findings may significantly shape future olive flounder genomic selection programs and 
offer valuable insights into GP in aquaculture.   

1. Introduction 

Olive flounder (Paralichthys olivaceus) is an important carnivorous 
flatfish species in South Korea, where it accounts for 70% of the global 
supply. Flounder is commercially valuable for various reasons, including 
its good flavor, disease resistance, and early economic turnover. 
Although interdisciplinary activities have been undertaken to boost the 
output of flounder aquaculture, considerable mortality has occurred 
owing to the widespread dissemination of new diseases and 

environmental variables (Jung et al., 2020; Sohn et al., 2019). There
fore, selecting the best-performing fish for the aquaculture industry has 
been identified as a necessity and has been promoted through research. 

Genomic prediction (GP) estimates the impact of all loci using 
genome-wide markers and forecasts the genome-estimated breeding 
value (gEBV) of the progeny. Therefore, dispersing markers over the 
genome such that at least one marker is in linkage disequilibrium (LD) 
with each quantitative trait locus (QTL) is necessary (Meuwissen et al., 
2001). Incidentally, single nucleotide polymorphism (SNP) markers 
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have been successfully used to address these constraints. 
Implementing various prediction approaches, such as best linear 

unbiased prediction (BLUP), Bayesian, and machine learning (ML) 
methods, allows for the prediction of animal phenotypes and gEBVs at 
very early stages, reduces production costs variously, and considerably 
improves selection decisions. The cross-validation method has been 
widely used to train models for genomic selection (Schrauf et al., 2021). 
In cross-validation, datasets are divided into reference and validation 
sets, the phenotype of the validation dataset is masked, and prediction is 
achieved by fine-tuning the model using the reference dataset. Model 
optimization can be realized by adjusting parameters such as marker 
density, population size, and prediction method. 

Although GP has been used in many aquaculture species at the 
research scale, salmonid aquaculture has commercially employed it as a 
promising technique for selection (Chaivichoo et al., 2023; D’Agaro 
et al., 2021; Lu et al., 2023; Song et al., 2023, 2022; Verbyla et al., 
2022). Conventional breeding strategies to improve growth parameters 
have been comprehensively studied in olive flounder (Kim et al., 2011; 
Li et al., 2019, 2018). In addition, Microsatellite (MS) marker- and 
pedigree-based selection methods have been evaluated experimentally 
(Kang et al., 2006). Recently, genome-wide association studies of olive 
flounder and other aquaculture species have been conducted for 
different traits, such as growth, viral hemorrhagic septicemia virus 
resistance, and thermal tolerance, using high-density SNP markers 
(Liyanage et al., 2022; Omeka et al., 2022; Udayantha et al., 2023; Wang 
et al., 2023). As growth is a highly polygenic trait, GP is a better 
approach for selecting individuals than marker-assisted or selective 
breeding. In addition, the moderate heritability of olive flounder weight 
can be favorable for genomic selection (Omeka et al., 2022). Therefore, 
we optimized the GP models of olive flounder weight as an approach to 
prediction-based genomic selection. To achieve this goal, we performed 
a parentage analysis for the selected fish; compared different prediction 
methods, including population size, SNP number, and the inclusion of 
fixed effects, in different scenarios; and identified the optimal parame
ters for prediction. 

2. Methodology 

2.1. Study population 

This study used the same farmed population described previously 
(Omeka et al., 2022). Briefly, 37 maternal and 66 paternal candidates 
(oP) were obtained from different regions of Korea and Japan. In 2019, 
the study population (oF0_KW) was produced via strip spawning at the 
Ocean and Fisheries Research Institute (Jeju, South Korea). Fish were 
grown out at a local farm (Jeju, South Korea) in a single tank, wherein 
temperature was regulated by continuously flowing seawater (18–22 
◦C). Fish were fed moist pellets, and at approximately 1 year of age, they 
were tagged with Trovan chips (PIT; Trovan Ltd., Douglas, Isle of Man). 
At different age points (June 2020, 1 year; September 2020, 1.5 years; 
January 2021, 1.8 years; September 2021, 2.3 years), fish were 
randomly selected, and phenotypic measurements, including body 
weight, total length, and body depth, were taken. The sex of the fish was 
recorded during the gonadal maturation stage (January 2021 to 
September 2021). At the age of 1.8 years, the fin was clipped and stored 
at − 80 ◦C until genomic DNA (gDNA) extraction. All the experimental 
steps were performed under the Flounder Genomic Selection Project and 
reviewed and approved by the Animal Care and Use Committee of Jeju 
National University (Approval Number: 2021–0033). 

2.2. Genotyping and quality control 

gDNA extraction, SNP panel design, genotyping, SNP quality 
filtering, and sample isolation were performed as previously described 
(Omeka et al., 2022). A total of 103 parent and 1045 oF0_KW offspring 
fin samples (50 mg) were used to extract the gDNA using a QIAamp 96 

DNA QIAcube HT™ kit and QIAcube HT automated DNA extractor 
(Qiagen, Hilden, Germany). Thereafter, the gDNA was diluted to 
50 ng/µL and sent for genotyping at the Ramaciotti Center of Genomics 
(Sydney, NSW, Australia) using a 70 K Affymetrix Axiom® myDesign™ 
SNP array (Affymetrix, Santa Clara, CA, USA). After quality control (QC) 
using Axiom® Analysis Suite (version 4.0; Affymetrix) and PLINK soft
ware (https://www.cog-genomics.org/plink/) (Chang et al., 2015), 103 
oP and 1009 oF0_KW samples were successfully retained. 

2.3. Parentage assignment and genomic relatedness matrix 

Parentage assignment was performed in R software (R Foundation 
for Statistical Computing, Vienna, Austria) using 4000 SNP markers. The 
SNP data of both offspring (oF0_KW) and parents (oP) obtained from the 
Axiom Analysis Suite were converted to binary files using PLINK soft
ware. The genotype data were quality controlled at a >90% genotype 
rate (geno) and minor allele frequency (MAF) > 5%. Customized R codes 
were used to identify the parents of each individual using the opposite 
homozygote count method. The results were confirmed using Cervus 
v3.0. The genomic relatedness matrix was generated using the genomic 
relationship matrix (GRM) function in the GASTON package of R (http 
s://rdocumentation.org/packages/gaston/versions/1.4.9) and visual
ized using a heatmap. 

2.4. Genomic prediction and cross-validation 

The genotype data obtained from the ped and map files were con
verted to binary format using PLINK 1.9 software. Next, the data were 
quality-filtered based on genotyping rate (>90%) and MAF (>5%). 
Genotype and phenotype were matched for each individual. Missing 
genotypes were imputed by the MNI method, where missing data were 
replaced by the mean allele frequency of the SNP marker. These data 
were used in different models, methods, and scenarios to evaluate gEBV. 
Here, 5-fold cross-validation with three replications was performed, and 
the mean predictive ability was calculated as the Pearson correlation 
between the actual phenotype and gEBV. 

2.5. Prediction methods 

To identify the best prediction method for the weight of the oF0_KW 
fish, we used 11 different prediction methods, including genomic BLUP 
(GBLUP), extended GBLUP (EGBLUP), Bayesian A (BA), Bayesian B (BB), 
Bayesian C (BC), Bayesian Lasso (BL), Bayesian ridge regression (BRR), 
ridge regression (RR), elastic net (EN), reproductive kernel Hilbert space 
(RKHS), and random forest regression (RF). Different R packages were 
used for each method, as described below. The phenotypic records of 
1009 fish at 1.8 years were used in this prediction. A basic mean model 
(without including the fixed effect) with 5-fold cross-validation and 
three replications was run in this step. 

2.5.1. GBLUP 
GBLUP is a widely used method for GP to estimate breeding values 

using genomic data (VanRaden, 2008). This involves solving 
mixed-model equations using a GRM. The key equation is as follows: 

Y = Zg+Xβ+ e  

where “Y” is the vector of phenotypes, “X” is the design matrix for fixed 
effect “β,” “Z” is the incidence matrix for random effects “g” (breeding 
values), and “e” represents the residual error. We assumed that g and e 
follow a normal distribution as g~ N (0, Kσ2

g) and e~ N (0, Iσ2
e), 

respectively. “K” is the genomic relatedness matrix, and “I” is an identity 
matrix. The rrBLUP v 4.6.2 package (https://www.rdocumentation.or 
g/packages/rrBLUP/versions/4.6.2) with the kin.blup function was 
used for GBLUP prediction. 
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2.5.2. EGBLUP 
The EGBLUP model includes additive and epistatic genetic effects 

(Jiang and Reif, 2015). The key equation is similar to that of GBLUP but 
with an additional term for incorporating external information: 

Y = µ+Zx1 +Wx2 + e  

where “µ” is the overall mean of the trait and “e” is the residual error. “Z” 
and “W” are index matrixes of “X1” and “X2” respectively. “X1” is an n- 
dimensional vector of additive genotypic values, and “X2” is an n- 
dimensional vector of additive × additive epistatic genotypic values. For 
EGBLUP prediction, the BWGS v 0.2.1 library (https://www.rdocumen 
tation.org/packages/BWGS/versions/0.2.1) was used for EGBLUP 
prediction. 

2.5.3. BA, BB, BC, BL and BRR 
BA, BB, BC, BL, and BRR were prepared as described previously (Lin 

et al., 2020; Meuwissen et al., 2001). The key equation for the Bayesian 
models is as follows: 

Y = μ1n +Xβ+
∑p

i=1
zigi + e  

where “Y,” “X,” “β,” and “e” are the same as in the equation for GBLUP. 
“µ” is the overall mean, and “1 n” is a vector consisting of ones; “p” 
signifies the total number of genotypes for an individual. “Zi” denotes 
the vector of genotypes at the ith SNP. “gi” stands for the vector of 
random effects, which represents the additive genetic effect for the ith 

SNP. BA employs a scaled t-distribution as its prior distribution, whereas 
BB employs a mixture of a Gaussian distribution and a point mass at zero 
in its prior distribution. BC utilizes a prior distribution consisting of a 
mixture of a scaled t-distribution and a point mass at zero. In contrast, 
the prior distributions for BRR and BL are normal and double expo
nential distributions, respectively. All Bayesian predictions were per
formed using the BGLR v 1.1.0 library (https://www.rdocumentation. 
org/packages/BGLR/versions/1.1.0) implemented in R. 

2.5.4. Ridge regression 
RR is a linear regression method that adds an L2 regularization term 

to a least-squares objective function (Ogutu et al., 2012). The key 
equation for the RR estimates of the β coefficients is as follows: 

β̂ridge = arg minβ

{

||y − Xβ|| 22 + λ||β||22

}

where “y” is the vector of dependent variables (phenotypes), “X” is the 
design matrix for independent variables, and “λ” is the regularization 
parameter. For RR prediction, the glmnet v 4.1.7 library (https://www. 
rdocumentation.org/packages/glmnet/versions/4.1–7) was used. 

2.5.5. Elastic net 
EN is a hybrid regression method that combines L1 and L2 regula

rization terms to achieve both sparsity and shrinkage of coefficients (Zou 
and Hastie, 2005). The key equation for the EN estimate of the β co
efficients is as follows: 

β̂EN = arg minβ

{

||y − Xβ|| 22 + λ1||β||1 + λ2||β||
2
2

}

where “y” is the vector of observed phenotypes, “X” is the design matrix 
for independent variables, and “λ1” and “λ2” are regularization param
eters controlling the strength of L1 and L2 regularization, respectively. 
For EN prediction, the glmnet v 4.1.7 library (https://www.rdocume 
ntation.org/packages/glmnet/versions/4.1–7) was used. 

2.5.6. RKHS 
RKHS is a mathematical framework used in kernel methods, 

including support vector machines and kernel RR (Gianola and Van 
Kaam, 2008). This involves mapping data points to a high-dimensional 

space using a kernel function that allows for nonlinear modeling. The 
key equation for GP using RKHS is as follows: 

f(y) =
∑n

i=1
αik(xi,x)

where “f(y)” represents the predicted phenotype for an individual with 
genotype x, “n” is the number of training individuals in the data set. “αi” 
is the coefficient associated with each individual, “xi” represents the 
genotypes of the ith individual, “k (xi, x)” is the kernel function that 
measures the similarity or relationship between the genotypes of the ith 

training individual and the genotype x of the individual for whom pre
diction is required. For RKHS prediction, the glmnet v 4.1.7 library 
(https://www.rdocumentation.org/packages/glmnet/versions/4.1–7) 
was used. 

2.5.7. Random forest regression 
RF is an ensemble learning method that builds multiple decision 

trees and averages their predictions to make the final predictions 
(Breiman, 2001). In regression, the key equation involves averaging the 
predictions from the individual decision trees as follows: 

ŷ =
1

Ntrees

∑Ntrees

i=1
treei(x)

where “ŷ” is the predicted value for a given input “x,” “treei” is the 
prediction from the “ith” decision tree, and “Ntrees” is the total trees. For 
RF, randomForest v 3.3–4 (https://www.rdocumentation.org/pac 
kages/randomForest/versions/3.3–4) was used. 

2.6. Fixed effects model 

Of the 11 prediction methods, GBLUP and the best-performing 
Bayesian model (BB) were used to include different fixed effects, such 
as family and sex, which optimized the model. Parental information was 
obtained as described in Section 2.4. The oF0_KW fish (1009 fish) 
phenotype records for January 2021 (1.8 years old) were used for 5-fold 
cross-validation. 

2.7. Marker density 

GBLUP and the BB and ML (RF) methods were used to identify the 
effect of marker number on predictive ability. In addition, both fixed- 
effects (GBLUP_fixed and BB_fixed) and mean models (GBLUP_mean, 
BB_mean, and RF) were used. Markers were divided into multiples of 
100—up to 1000 SNP markers—and used for cross-validation. For 
1000–10,000 SNPs, the markers were randomly divided into multiples 
of 1000. Subsequently, markers from 10,000–50,000 were divided into 
multiples of 10,000. SNP files were generated using the random sam
pling reduct.marker.size ((RMR) function in the BWGS v0.2.1 library 
(https://www.rdocumentation.org/packages/BWGS/versions/0.2.1). 
The total population was used, and 5-fold cross-validation was per
formed with three replications. 

2.8. Population size and number of folds 

The population (1009 fish) was randomly split into multiples of 100 
(100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000) by PLINK using 
a fam file, and each dataset was separately subjected to 5-fold cross- 
validation. The number of SNPs used for cross-validation was 54,730, 
and each cross-validation was repeated thrice. The predictive ability was 
estimated for GBLUP_mean, BB_mean, RF, GBLUP_fix, and BB_fix. 

k-fold cross-validation (k = 1–10) was conducted to determine the 
effect of the number of folds on predictive ability. The total population 
and all QC-filtered SNPs were used to identify the fold of cross- 
validation, and each experiment was repeated thrice. 
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2.9. Age 

Fish with phenotypic records were selected for all four measurement 
times (June 2020, 1.2 years old; September 2020, 1.5 years old; January 
2021, 1.8 years old; September 2021, 2.3 years old). All QC-passed SNPs 
were used, and 5-fold cross-validation with three replications was per
formed for the GBLUP_mean, BB_mean, RF, GBLUP_fix, and BB_fix pre
diction formulas. Heritability of weight, length, and width at each age of 
fish was calculated as per the protocol outlined by Omeka et al. (2022). 

2.10. Prediction of length and body depth of the fish 

Prediction of total length and body depth was performed for the 
selected GBLUP_mean, BB_mean, RF, GBLUP_fix, and BB_fix methods. 
The corresponding phenotypic records of 1009 fish for January 2021 
and the total number of SNPs were used with 5-fold cross-validation 
with three replications. 

2.11. Mean squared error of prediction and statistical analysis 

The mean squared error of prediction (MSEP) was calculated for each 
prediction scenario as follows: 

MSEP =
1
n
∑n

i=1
(Yi − Ŷ i)

2  

where “n” is the number of individuals, “Yi” is the observed phenotype 
for the ith individual, and “Ŷi” is the predicted value for the ith indi
vidual. Statistical analysis for each prediction was carried out using one- 
way ANOVA followed by multiple comparisons using Tukey’s post hoc 
method. GraphPad Prism (version 8.0.2) software (GraphPad Software, 
Inc., San Diego, CA, USA) was used to plot graphs and statistical anal
ysis. A p-value of < 0.05 was considered significant. 

3. Results 

3.1. Parentage assignment and genomic relatedness matrix 

The parentage assignment of the 1009 offspring revealed that they 
belonged to 40 families. (Fig. 1 A). Of the total fish, both parents were 
assigned to 786 offspring, and maternal candidates were assigned to 861 
fish. However, we could not assign any parental candidates to 148 of the 
1009 fish. Approximately 37.76% of the population was established 
from two families that were maternal half-sibs (oP_1142). Based on the 
relatedness matrix, the total population was clustered into three sub
populations (Fig. 1B). 

3.2. Predictive ability 

After final QC filtering, 54,730 SNPs were retained from the 1009 
successfully genotyped fish. These were used to estimate predictive 
ability by changing different factors. 

3.2.1. Effect of prediction method and model 
Eleven different prediction methods were used to estimate predictive 

ability. The two BLUP methods used in this study included GBLUP and 
EGBLUP. Five Bayesian methods (BA, BB, BC, BL, and BRR) and four ML 
methods (EN, RR, RKHS, and RF) were also used. According to Fig. 2 A 
and Table S1, all the methods showed predictive abilities ranging from 
63.4% to 69.8%. Most methods used in this study did not significantly 
differ (p < 0.05) in their predictive ability. However, BB (0.675), EN 
(0.679), and RF (0.698) demonstrated significantly higher predictive 
abilities (p < 0.05). In addition, BB (0.164) and RF (0.162) showed the 
lowest MSEP compared with the other prediction methods. Therefore, 
GBLUP, BB, and RF from each category were used for further analyses. 

Including different fixed effects in the model increased predictive 

ability (Fig. 2B and Table S2). However, since the RF model cannot 
include fixed effects manually, we only used the BB and GBLUP models 
in this context. Including animal sex as a fixed effect significantly 
increased the model’s predictive ability by 20%, and MSEP reduced for 
both GBLUP and BB. However, predictive ability did not change 
significantly with familial information. 

3.2.2. Predictive ability by changing SNP marker number 
As shown in Fig. 3 and Table S3, predictive abilities were affected by 

the number of SNPs around the QTL. When the SNP number increased 
from 100 to 1000, predictive ability significantly increased, whereas, at 
a lower marker number, we observed a significant deviation in predic
tive ability (Fig. 3A). GBLUP had the lowest predictive ability compared 
with the other prediction methods but gave stable predictions starting 
from 600 to 50,000 SNPs. BB and RF showed a plateau in predictive 
ability at larger SNP numbers (1000–50,000) and reduced standard 
deviation (SD; Fig. 3B and C). Notably, including sex as a fixed effect in 
GBLUP and BB showed that predictive ability did not considerably 
change with marker number. 

3.2.3. Predictive ability by changing population size and fold 
Predictive ability can be affected by the training and test population 

sizes. The small population size significantly reduced the predictive 
ability of the model (Fig. 4A and Table S4). A maximum of 1009 fish was 
used for the analysis. According to the results, the predictive ability of 
the mean models increased with increasing population size. In contrast, 
predictive ability was stable when more than 300 animals were used as 
the population size in the fixed effects models. 

We then performed k-fold validation of the predictive ability of the 
models. According to the results (Fig. 4B and Table S5), the predictive 
abilities following 3- to 10-fold cross-validation did not significantly 
differ (p < 0.05) for all models. 

3.2.4. Predictive ability by age of fish 
A total of 682 fish with phenotype records (Table 1) and 54,463 QC- 

passed SNPs were used for prediction (Fig. 5 A and Table S6) and her
itability estimation (Table 2). At the age of 1.2 years, the predictive 
ability for weight was reduced compared with that at other ages. In 
addition, at 1.8 years, predictive ability was significantly higher (p <
0.05) for all models and methods. Furthermore, heritability of the 
growth traits increased with age. 

3.2.5. Predictive ability for length and body depth 
The predictive ability for the total length and body depth of 1.8-year- 

old fish was estimated using five prediction models (Fig. 5B and C). 
GBLUP_mean, BB_mean, and RF_mean models had predictive abilities 
for length ranging from 65.5% to 70.1%, and GBLUP_fix and BB_fix had 
predictive abilities of 85.7 and 85.2%, respectively (Table S7). For body 
depth prediction, GBLUP, BB, and RF exhibited predictive abilities of 
66.5, 70.5, and 71.4%, respectively. GBLUP_fix and BB_fix exhibited 
high predictive abilities at 86.8 and 86.1%, respectively. The mean- and 
fixed-effect models significantly differed in predictive ability, which was 
similar to that observed for animal weight. Additionally, in the mean 
models, BB and RF showed significantly higher predictive abilities than 
GBLUP for both length and body depth. 

4. Discussion 

Our study determined the predictive ability for weight using 
different models and methods by changing different parameters. 
Initially, we checked the predictive abilities of 11 prediction methods: 
GBLUP, Bayesian, and ML. We used a basic mean model to test the 
different models without including any fixed effects. In fish, parameters 
such as sex, living temperature, and disease outbreaks can affect growth 
(Honeycutt et al., 2019; Imsland et al., 2019). When we are unable to 
measure these parameters, the mean model is used to get an idea of the 
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Fig. 1. (A) Parentage analysis of oF0_KW fish obtained using 4000 SNPs. (B). Heatmap of the genomic relatedness of oF0_KW fish.  
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prediction. However, the predictive ability was lower than that of the 
optimal model with correctly identified parameters. 

GBLUP is renowned for its simplicity and robustness and has been 
used for many genomic selection studies in plants and animals for years 
(Clark and van der Werf, 2013; de los Campos et al., 2013; Mouresan 
et al., 2019). It does not require computational complexity as in other 
methods, making it accessible for large-scale applications. In addition, 
GBLUP is well-suited for polygenic traits such as growth, as it assumes 
that all markers contribute to the genetic variance of the trait (Clark and 
van der Werf, 2013; Tiezzi and Maltecca, 2015) Correspondingly, we 
observed a moderate predictive ability of GBLUP, similar to other fish 
growth-related studies (Hosoya et al., 2021; Sukhavachana et al., 2021). 
However, its predictive ability was lower than that of BB and RF. This 
could be due to the limitations of GBLUP, which may be unable to 
capture the effect of rare variants with a larger impact on the trait 
because it assumes that all SNP markers contribute equally to the trait. 
In addition, this assumption does not provide insights into the biological 
mechanisms underlying trait variation. Other methods, such as Bayesian 
and ML, can potentially offer greater interpretability in this regard. 

In our study, the predictive abilities of all the Bayesian methods and 
some ML methods, such as RR and RKHS, were not significantly 
different. However, of the Bayesian methods, BB showed a higher pre
dictive ability than that of the other methods. BB encourages sparsity in 
the model, which assumes that only a subset of markers (usually a small 
proportion) has non-zero effects on the trait of interest. This leads to 
improved prediction by reducing the overfitting of large-scale genomic 

data, which could be the reason for the lower deviation and MSEP and 
higher predictive ability. 

Among the ML methods, RF showed lower variance and higher 
predictive ability. ML methods are high-dimensional data-handling tools 
that can be useful in the present and future. They are easy to handle 
because of the automation of model building, learning, and accurate 
predictions (Chen and Ishwaran, 2012; Montesinos López et al., 2022). 
RF can handle nonlinear relationships between genotypic and pheno
typic data and different interactions with genetic markers compared 
with ML methods (Bureau et al., 2003; Stephan et al., 2015; Wang et al., 
2022). In olive flounder, growth is controlled by hormonal and envi
ronmental parameters, as well as genetics (Honeycutt et al., 2019; Ryu 
et al., 2020). Therefore, RF is well-suited for capturing these non
linearities because it can build multiple decisions and combine their 

Fig. 2. (A) Predictive ability for weight by the 11 prediction methods used in 
this study. (B) Predictive ability of models, including different fixed effects. Y is 
a vector of phenotypes, µ is the overall mean, g is a vector of random effects 
calculated using SNPs, f is the fixed effect of the family identified by parentage 
analysis, and S is the fixed effect of the sex of each fish. Different letters indicate 
the significance (p < 0.05) of predictive ability compared with that of the mean 
model of GBLUP or BB. 

Fig. 3. Predictive ability for weight when using (A) 100–1000 SNPs, (B) 
1000–10,000 SNPs, and (C) 10,000–50,000 SNPs. Mean models and fixed effect 
(sex information)-included models of GBLUP and BB were used. 
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predictions. RR and RKHS are useful in this situation but are less 
effective than RF. Although RF can identify the genetic markers 
contributing most to prediction, RR and RKHS provide coefficient values 
for the important markers; therefore, they may not directly translate to 
the actual contribution of those markers (González-Camacho et al., 
2018). In addition, RF is less prone to overfitting when dealing with 

high-dimensional data containing a large number of genetic markers 
(Goldstein et al., 2011). RF is inherently robust for detecting outliers and 
noisy data points, which can critically affect model performance (Brei
man, 2001). Therefore, RF may show a higher predictive ability for olive 
flounder weight than other mean model-derived methods. 

Most ML models use both additive genetic effects and non-additive 
genetic effects to predict the gEBV. Although non-additive genetic ef
fects are not transferred to subsequent generations, this approach can 
still improve predictive accuracy in several ways. This is because non- 
additive genetic effects can capture the phenotypic variation, thus 
improving prediction accuracy by accounting for a larger proportion of 
genetic architecture underlying the trait (de Oliveira et al., 2023). 
Additionally, non-additive genetic effects contribute to the unfolding of 
complex traits (e.g., growth), which are driven by an interplay of various 
extrinsic and intrinsic factors. Specifically, some of these factors (e.g., 
epistasis), interact between genetic loci and play a crucial role in 
shaping phenotypic traits; however, these traits can be missed by models 
that only consider the additive effects (Alves et al., 2020). Therefore, 
incorporating non-additive genetic effects to the model in this study 
increased the accuracy of predicting breeding value and the genetic 
response of individuals (Onogi et al., 2021). 

To include fixed effects, we used GBLUP and BB. By contrast, RF 
automatically builds the model; thus, we could not include fixed effects 
as outside parameters. Including parental information and other iden
tified impactful parameters can significantly improve predictive ability 
(Sarinelli et al., 2019). Compared with GBLUP, BB showed a higher 
predictive ability for both fixed-effects-included and not-included 
models. Although including familial information did not significantly 
affect predictive ability. As expected, including fish sex in the model 
significantly increased the predictive ability of both methods. It is 
widely known that the growth of several fish, including olive flounder, 
depends on their sex, with female fish growing twice as much as males 
(Omeka et al., 2022). In our study, we observed an approximately 20% 
increase in predictive ability compared with that of the mean model 
when sex was included as a fixed effect in the model. Additionally, the 
predictive ability models which incorporated sex as a factor, exceeded 
0.8. In selective breeding populations based on multiple families, a 
predictive ability exceeding 0.8 can be difficult. Few studies have shown 
that growth-related traits in fish such as tiger pufferfish and rainbow 
trout have higher predictive abilities in some models (Hosoya et al., 
2021; Song and Hu, 2022). Predictive ability, often measured by metrics 
such as heritability or correlation coefficients, depends on various fac
tors, including the genetic diversity within the population, accuracy of 
phenotypic measurements, selection criteria, and genetic architecture of 
the trait. In many species, there are differences between males and fe
males in terms of phenotype and genetic expression. If these sexually 
dimorphic traits are under selection and have a high heritability, they 
can contribute to increased predictive ability. By segregating the data on 
the basis of sex, the model can more effectively capture the distinct 
genetic drivers of growth in each sex. This reduction in variability allows 
for more precise genomic predictions. Therefore, sex identification may 
be effective in both genomic and selective breeding. 

However, one drawback in identifying fish sex is the lack of distin
guishable morphological changes in juvenile male and female fish. 
Therefore, there is a need to opt for noninvasive, effective methods for 
sex identification. At mature ages, fish stripping can be used to identify 
sex; however, it takes 1–2 years for the fish to mature, considerably 
delaying the selection plan. In this context, the mean model can be used 
with an average prediction accuracy. 

Our study revealed that the predictive ability was lower with a lower 
number of markers than with all markers for GBLUP and BB; at higher 
marker densities, predictive ability significantly increased by up to 
14.3% and 20.3%, respectively, relative to that obtained with 100 SNPs. 
For 900–50,000 SNPs, predictive ability was higher but increased by 
1.4% and 2.3% in GBLUP and BB, respectively. For RF, even for SNPs as 
low as 100, predictive ability was high, and increasing their number up 

Fig. 4. Predictive ability for weight by changing (A) population size and (B) 
k-fold. 

Table 1 
Growth performance traits of the study population at each age point.  

Year (Age) Sex Average 
weight (g) 

Average length 
(cm) 

Average width 
(cm) 

2020 June 
(1.2 years) 

Total 760.31 
±208.44 

37.65±3.71 15.18±1.65 

Male 544.82 
±108.33 

33.62±2.00 13.51±1.11 

Female 841.119 
±177.19 

39.14±3.01 15.82±1.35 

2020 
September 
(1.5 years) 

Total 1243.63 
±398.19 

45.80±5.65 17.99±2.33 

Male 740.54 
±124.54 

38.27±2.5 14.95±1.08 

Female 1432.29 
±285.61 

48.62±3.52 19.13±1.50 

2021 January 
(1.8 years) 

Total 1859.80 
±680.09 

50.97±5.87 20.82±3.02 

Male 943.69 
±168.62 

42.92±2.35 16.61±1.13 

Female 2203.34 
±438.28 

53.98±3.44 22.40±1.70 

2021 
September 
(2.3 years) 

Total 2139.43 
±687.76 

55.86±5.95 22.23±2.86 

Male 1283.16 
±257.99 

47.94±2.85 18.57±2.02 

Female 2458.8 
±498.84 

58.83±3.64 23.59±1.67  
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to 900 increased predictive ability by 7.6%. For 900–50,000 SNPs, 
predictive ability increased by 1.7%. In addition, the highest predictive 
ability for GBLUP, BB, and RF was observed for 4000, 3000–4000, and 
4000–5000 SNPs, respectively. Other studies have also confirmed that 
3000–5000 SNPs may be ideal for GP in fish (Hosoya et al., 2021; Song 
et al., 2023). In fixed effect-included models, predictive ability was 
greater than 80%, even for 100 SNPs. Increasing SNPs up to 50,000 
increased predictive ability by 2.2%. Using more SNPs often increases 
predictive ability, enhances trait coverage, especially in polygenic traits, 
and captures rare variants that are not effectively identified by 
lower-density arrays. Conversely, increasing the number of SNPs can 
significantly increase genotyping costs and cause overfitting and noise 
when the sample size is limited (Meuwissen et al., 2001). In addition, 

Fig. 5. (A) Predictive ability for weight with age. Predictive ability for the (B) length and (C) width of 1.8-year-old oF0_KW fish using selected models. Different 
letters indicate significant differences at p < 0.05. 

Table 2 
Heritability of fish growth traits at each age point.  

Year Heritability 
weight 

Heritability 
length 

Heritability 
width 

2020 June (1.2 
years)  

0.303  0.237  0.275 

2020 September (1.5 
years)  

0.338  0.363  0.290 

2021 January (1.8 
years)  

0.357  0.356  0.338 

2021 September (2.3 
years)  

0.436  0.422  0.309  
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increasing SNP density improves predictive ability, but at some point, 
additional SNPs (diminishing returns) may not significantly improve 
prediction (Yang et al., 2010). Therefore, for future genomic selection of 
flounder, we could use a lower number of SNPs based on a method that 
could be beneficial in several ways. 

Population size directly affects predictive ability, as described in 
previously (Takeda et al., 2021). Our data showed that increasing 
population size from 100 to 600 increased predictive ability by 16.6% 
for GBLUP, 22.2% for BB, and 9.9% for RF. Additionally, for a popula
tion size of up to 1000, GBLUP, BB, and RF showed increasing patterns of 
predictive ability and reduced SD. In the fixed effect-included GBLUP 
and BB models, predictive abilities tended to be more stable beyond 
population sizes of 400. Increasing the population size can increase 
predictive ability by increasing genetic diversity, improving marker ef
fect estimation, reducing the impact of LD, providing greater statistical 
power, and reducing the variance of predictive ability (Daetwyler et al., 
2010; Goddard, 2009; Heslot et al., 2012; Merrick and Carter, 2021; 
VanRaden, 2008). The optimal population size is case-dependent; 
however, a 3000–5000 population size is recommended for prediction 
(Hayes et al., 2009). Conversely, larger population sizes can also lead to 
challenges, such as increased computational power requirements, data 
management complexities, and cost. 

Typically, 5-fold cross-validation is used in GP studies for several 
reasons. It can improve the balance between over- and under-fitting. 
With fewer folds, such as 2- or 3-fold, the risk of overfitting is higher, 
where the predictive ability is good with reference data; nonetheless, it 
does not generalize well with new data (Schrauf et al., 2021). Therefore, 
using more folds, such as 10-fold, substantially increases the gains in 
accuracy; however, the computational and time costs can also increase. 
In addition, 5-fold cross-validation provides a reasonable compromise 
between a lower number of individuals for model training and reliable 
estimates of model performance. Splitting data into multiple folds can 
increase model performance by alleviating heterogeneity and variation 
due to different factors, such as genetic diversity, environmental in
fluences, and experimental noise (Schrauf et al., 2021). Furthermore, it 
provides statistical consistency for GP, making it easier to compare re
sults across other studies. Our data also revealed that 5–6-fold 
cross-validation reduces the MSEP. 

The age of animals can also be an influential factor in the predictive 
ability of a model. In this study, the prediction accuracy increased from 
1.2 to 1.8 years; however, at 2.8 years, a decrease in prediction accuracy 
was observed even at high heritability. Several factors can be affected by 
the changes in prediction accuracy over the age as flounder growth is 
controlled by hormones and genes activated during sexual maturation 
(Ryu et al., 2020). According to our data, weight gain in male and female 
flounders differ over time (Fig. S2). To be specific, female fish growth 
exponentially increased up to 1.8 years and then decreased at 2.3 years. 
In contrast, male fish, with a lesser growth rate, showed linear weight 
gain throughout the period. Therefore, changes in prediction accuracy 
might be caused by the growth curve differences. Few studies have been 
performed in cattle and boar to identify the effect of growth curve on the 
prediction accuracy of the model (Haraldsen et al., 2009; Yin and König, 
2020). However, extensive studies need to determine which growth 
stage gives the highest prediction accuracy for flounder, and further 
studies on complex modeling for growth curve of olive flounder should 
be performed. In addition, age can be affected predictive ability owing 
to developmental changes characterized by physiological behavior, 
which change over age (Polverino et al., 2016). 

Although fish length and body depth are not commercial parameters, 
they are highly phenotypically and genomically moderately correlated 
with fish weight (Omeka et al., 2022). Therefore, we checked the model 
performance for these traits using the same models as those used for 
weight prediction. We observed that length and body depth traits were 
also well predicted by the selected models. Therefore, when determining 
length and body depth parameters to collect more information, such as 
the condition factor, the same models can be used. The scope for future 

studies might be using multi-trait prediction models weighted with 
important traits such as disease resistance and thermal tolerance. In 
addition, using a larger population with vast genetic diversity would be 
helpful in increasing the accuracy of the prediction. Moreover, the usage 
of the low SNP array should be assessed in depth in future studies as it 
significantly reduces the cost of the experiment. 

In our study, the identified model parameters significantly affected 
model performance, and fine-tuning them can increase the predictive 
ability of the models. The target progeny can be used as brood stock in 
other genomic selection projects. Therefore, the results of this study will 
be valuable for the genomic selection of flounders in Korea. 

5. Conclusion 

This study estimated the GP accuracy of several models and the 
impact of different model components on olive flounder growth. RF 
showed the highest predictive ability in the mean model. Including sex 
as a fixed effect significantly increased the predictive ability of these 
methods. At lower marker numbers, predictive ability was highly vari
able; therefore, using more than 3000 markers could be effective. 
Increasing the population size and k-fold reduces the SD of the predic
tive ability. Overall, our results may be useful for implementing a gEBV- 
based selection strategy in olive flounder aquaculture. 
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González-Camacho, J.M., Ornella, L., Pérez-Rodríguez, P., Gianola, D., Dreisigacker, S., 
Crossa, J., 2018. Applications of Machine Learning Methods to Genomic Selection in 
Breeding Wheat for Rust Resistance. Plant Genome 11, 170104. https://doi.org/ 
10.3835/plantgenome2017.11.0104. 

Haraldsen, M., Ødegård, J., Olsen, D., Vangen, O., Ranberg, I.M.A., Meuwissen, T.H.E., 
2009. Prediction of genetic growth curves in pigs. animal 3, 475–481. https://doi. 
org/10.1017/S1751731108003807. 

Hayes, B.J., Bowman, P.J., Chamberlain, A.J., Goddard, M.E., 2009. Invited review: 
Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci. 92, 433–443. 
https://doi.org/10.3168/jds.2008-1646. 

Heslot, N., Yang, H.P., Sorrells, M.E., Jannink, J.L., 2012. Genomic Selection in Plant 
Breeding: A Comparison of Models. Crop Sci. 52, 146–160. https://doi.org/10.2135/ 
CROPSCI2011.06.0297. 

Honeycutt, J.L., Deck, C.A., Miller, S.C., Severance, M.E., Atkins, E.B., Luckenbach, J.A., 
Buckel, J.A., Daniels, H.V., Rice, J.A., Borski, R.J., Godwin, J., 2019. Warmer waters 
masculinize wild populations of a fish with temperature-dependent sex 
determination. Sci. Rep. 9, 6527. https://doi.org/10.1038/s41598-019-42944-x. 

Hosoya, S., Yoshikawa, S., Sato, M., Kikuchi, K., 2021. Genomic prediction for testes 
weight of the tiger pufferfish, Takifugu rubripes, using medium to low density SNPs. 
Sci. Rep. 11, 20372 https://doi.org/10.1038/s41598-021-99829-1. 

Imsland, A.K.D., Gunnarsson, S., Thorarensen, H., 2019. Impact of environmental factors 
on the growth and maturation of farmed Arctic charr. Rev. Aquac. 12, raq.12404 
https://doi.org/10.1111/raq.12404. 

Jiang, Y., Reif, J.C., 2015. Modeling epistasis in genomic selection. Genetics 201, 
759–768. https://doi.org/10.1534/genetics.115.177907. 

Jung, J.-Y., Kim, S., Kim, K., Lee, B.-J., Kim, K.-W., Han, H.-S., 2020. Feed and Disease at 
Olive Flounder (Paralichthys olivaceus) Farms in Korea. Fishes 5, 21. https://doi.org/ 
10.3390/fishes5030021. 

Kang, J.-H., Noh, J.-K., Kim, J.-H., Lee, J.-H., Kim, H.-C., Kim, K.-K., Kim, B.-S., Lee, W.- 
J., 2006. Genetic relationship between broodstocks of olive flounder, Paralichthys 
olivaceus (Temminck and Schlegel) using microsatellite markers. Aquac. Res. 37, 
701–707. https://doi.org/10.1111/j.1365-2109.2006.01483.x. 

Kim, J.-H., Lee, J.-H., Kim, H.C., Noh, J.K., Kang, J.-H., Kim, K.-K., 2011. Body Shape and 
Growth in Reciprocal Crosses of Wild and Farmed Olive Flounder, Paralichthys 
olivaceus. J. WORLD Aquac. Soc. 42 https://doi.org/10.1111/j.1749- 
7345.2011.00463.x. 

Li, Y., Zhang, B., Lu, S., Tian, Y., Yang, Y., Chen, S., 2018. Genetic parameters estimates 
for growth performance traits at harvest in Japanese flounder ( Paralichthys olivaceus. 
Aquaculture 489, 56–61. https://doi.org/10.1016/j.aquaculture.2018.01.010. 

Li, Y., Zhang, B., Yang, Y., Chen, S., 2019. Estimationof genetic parameters for juvenile 
growth performance traits in oliveflounder (Paralichthys olivaceus). Aquac. Fish. 4, 
48–52. https://doi.org/10.1016/j.aaf.2018.12.001. 

Lin, Z., Hosoya, S., Sato, M., Mizuno, N., Kobayashi, Y., Itou, T., Kikuchi, K., 2020. 
Genomic selection for heterobothriosis resistance concurrent with body size in the 

tiger pufferfish, Takifugu rubripes. Sci. Rep. 2020 101 10 (1), 13. https://doi.org/ 
10.1038/s41598-020-77069-z. 

Liyanage, D.S., Lee, S., Yang, H., Lim, C., Omeka, W.K.M., Sandamalika, W.M.G., 
Udayantha, H.M.V., Kim, G., Ganeshalingam, S., Jeong, T., Oh, S.R., Won, S.H., 
Koh, H.B., Kim, M.K., Jones, D.B., Massault, C., Jerry, D.R., Lee, J., 2022. Genome- 
wide association study of VHSV-resistance trait in Paralichthys olivaceus. Fish. 
Shellfish Immunol. 124, 391–400. https://doi.org/10.1016/J.FSI.2022.04.021. 

de los Campos, G., Hickey, J.M., Pong-Wong, R., Daetwyler, H.D., Calus, M.P.L., 2013. 
Whole-Genome Regression and Prediction Methods Applied to Plant and Animal 
Breeding. Genetics 193, 327. https://doi.org/10.1534/GENETICS.112.143313. 

Lu, S., Liu, Y., Qu, S., Zhou, Q., Wang, L., Zhang, T., Xu, W., Zhang, M., Song, Y., 
Wang, J., Zhu, C., Chen, S., 2023. Genomic prediction of survival against Vibrio 
harveyi in leopard coral grouper (Plectropomus leopardus) using GBLUP, weighted 
GBLUP, and BayesCπ. Aquaculture 572, 739536. https://doi.org/10.1016/J. 
AQUACULTURE.2023.739536. 

Merrick, L.F., Carter, A.H., 2021. Comparison of genomic selection models for exploring 
predictive ability of complex traits in breeding programs. Plant Genome 14, e20158. 
https://doi.org/10.1002/tpg2.20158. 

Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics 157, 1819. https://doi.org/ 
10.1093/GENETICS/157.4.1819. 
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