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Abstract

Explainable Artificial Intelligence (XAI) is a burgeoning research domain dedicated to
aiding users in comprehending, trusting, and managing AI systems. Fundamentally,
XAI strives to align with two core principles: enhancing human understanding and
collaboration with AI, and empowering AI systems to augment human capabilities.
XAI algorithms aim to provide insights into the underlying decision-making processes
inherent in AI models. This not only enables the establishment of trust but also facil-
itates the identification of any unintended correlations that the network might have
acquired to make its decisions. However, explanations produced by existing XAI al-
gorithms are not always well-defined, some of these algorithms produce explanations
that are difficult to comprehend, while others emphasize information from irrelevant
or noisy regions. Novel algorithms dealing with these challenges will facilitate the
applications of deep models for safety-critical applications.

This thesis proposes four novel contributions that address these challenges in im-
proving the explainability of AI models across several domains. Our methods can
handle various challenging real-world problems in computer vision tasks, such as han-
dling inaccurate or noisy explanations, accommodating existing black-box models, and
facilitating interactive explanations.

As the first contribution, we first analyze the reason for inaccurate/noisy explana-
tions and describe a discovery that the utilization of intermediate features in a model
with multi-scale fusion will improve the quality of explanations. We then build a novel
explainable model with the proposed dual-attention module to learn and discover
class discriminative and interpretable representations. We show that the proposed
model is able to achieve state-of-the-art performance in terms of accurate explanations.
The second contribution is an explainable vision transformer with pixel-wise attention.
To enable richer representations of interpretable attention maps that align with input
patterns, a set of attribute features for the target object is learned. In addition, a novel
attribute-guided loss to facilitate the learning process in a self-supervised manner is
introduced. This loss implicitly adds the regularization to force the representations
to focus on various attributes of each target class through the attribute discriminabil-
ity mechanism and attribute diversity mechanism. Simulation results are presented
to illustrate that the proposed model achieves comparable performance to supervised
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baselines, while surpassing the accuracy and interpretability of state-of-the-art black-
box methods. Our third contribution is to propose an explainable model pruning tech-
nique to incorporate explainability into large well-trained models. We first introduce
an explainability-aware mask for each prunable unit to quantify its contribution to
predicting each class. Specifically, the proposed mask is fully differentiable and can
be learned in an end-to-end manner. We demonstrate many benefits of the proposed
mask, including more accurate pruning and fewer computational costs compared with
existing black-box pruning methods. Then, this thesis describes how to learn the layer-
wise pruning thresholds that differentiate the important and less-important units via
a differentiable pruning operation. Experimental results on various models are pro-
vided to demonstrate the efficacy of the proposed method. The fourth contribution
presents an interactive explanation method to edit generative models to obtain high-
quality results. Given the overwhelming popularity of text prompting in numerous
Generative AI scenarios, how to effectively support such inputs with explanation and
guidance presents a significant challenge. End-users often lack knowledge about the
quality of the text prompt they use to obtain the desired results from generative AI. We
first propose the multi-view score consistency method to enable 3D editing by use of a
diffusion prior, which is effective in providing additional supervision signals for learn-
ing 3D-consistent geometry. Then, we leverage the diffusion process to learn semantic
representations and better edit a scene that faithfully aligns with the information of the
text prompt. Lastly, experimental results on various real-world datasets are presented
to illustrate the efficacy of the proposed framework across a range of text prompts.

In summary, these contributions push the boundaries of explanation approaches,
paving the way for new avenues of progress in computer vision tasks. By addressing
the limitations inherent in prior methods, this thesis lays the groundwork for enhanc-
ing the robustness and explainability of real-world applications.
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to produce the classification label ŷi. Subsequently, visual explanations
AHAM are obtained via HAM by multi-stage aggregation, and PCR is
used to retrieve three reference samples R1, R2 and R3 most similar to
the input volume, which are displayed as the evidence with ground-
truth labels y1, y2, y3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Block diagram of the Dual Attention Module (DAM), which is embed-
ded into several stages of MAXNet, with the objective of capturing both
voxel-wise and depth-wise dependencies and variations of feature maps
Pn and Dn in hidden layers simultaneously. . . . . . . . . . . . . . . . . . 27

3.4 Block diagram of the Multi-resolution Fusion Module (MFM), which ag-
gregates multi-resolution features Pn, Dn, and G5 by use of several fully-
connected layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Block diagram of the High-resolution Activation Mapping (HAM). Each
arrow shows the gradient of the classification logit. Our method takes
intermediate activations as inputs, and considers the maximum values
from the intermediate features F3 and F4 as well as the final activation
G5, which offers more accurate localization. . . . . . . . . . . . . . . . . . 30

3.6 Visual results of visualization methods. Note that (a)-(f) were performed
over a 3D CNN with an AUC of 0.992 [82]. (a) input with "AD" label.
Ground truth of cerebral cortex, lateral ventricle and hippocampus via
FreeSurfer are highlighted, (b) Grad-CAM [19], (c) Grad-CAM++ [38],
(d) CAMERAS [22], (e) RISE [107], (f) Score-CAM [26], (g) proposed
HAM-generated heatmaps which highlight enlarged sulcal spaces caused
by atrophy and pathological abnormalities of cerebral cortex and hip-
pocampus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 (a) Visualization results of different methods given an input with "Nor-
mal" label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



xvii

3.8 (a) The deletion curve for Grad-CAM [19], Grad-CAM++ [38], CAM-
ERAS [22] , RISE [107], Score-CAM [26], and HAM. The x-axis repre-
sents the percentage of removed voxels, while the y-axis is the corre-
sponding predicted score. Specifically, a steeper slope indicates a better
explanation. (b) The insertion curve for Grad-CAM [19], Grad-CAM++
[38], CAMERAS [22] , RISE [107], Score-CAM [26], and HAM. The x-axis
shows the percentage of added voxels, and the y-axis is the correspond-
ing predicted score. Specifically, a fast-rising slope implies a better ex-
planation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Given the mT
k , the explainable tool provides HAM-generated heatmaps

and three reference samples Rc, c ∈ [1, 2, 3] whose latent features are
most similar to mT

k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Illustration of the proposed eXplainable Vision Transformer (eX-ViT) ar-
chitecture. x and x

′
are two different random transformations of an in-

put image. We use a transformer backbone as the encoder to extract fea-
ture maps, the backbone contains consecutive L encoding layers with
Explainable Multi-Head Attention (E-MHA) as the attention block. θ

is the trainable module, while E is an exponential moving average of
θ. The Attribute-guided Explainer (AttE) is proposed atop the encoder
to decompose the attention maps into features of attributes through di-
verse attribute discovery, to facilitate the generation of more faithful
and robust interpretations. We also design a self-supervised attribute-
guided loss function for our eX-ViT, which aims at learning robust se-
mantic representations via the attribute diversity mechanism and at-
tribute discriminability mechanism. . . . . . . . . . . . . . . . . . . . . . 49

4.2 The architecture of Explainable Multi-Head Attention (E-MHA). We use
⊗ to denote matrix multiplication. . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Illustration of Attribute-guided Explainer (AttE). We aggregate the in-
terpretable attention maps from the last K transformer layers to generate
a fused attention map with good precision on the complete object con-
text information. The attribute features are regarded as the complement
information to better guide the localization of the object context, thus
producing robust attribute features in a weakly supervised manner. . . . 52

4.4 Visual comparison of localization maps generated by different methods
on PASCAL VOC 2012 training set. From left to right: original image,
ground-truth, CAM [21], SIPE [111], AdvCAM [127] and our eX-ViT. . . 58



xviii

4.5 Qualitative segmentation results on the validation set of PASCAL VOC
2012. From left to right: original image, ground-truth, SIPE [111] and
our eX-ViT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Qualitative segmentation results on the validation set of MS COCO 2014.
From left to right: original image, ground-truth, SIPE [111] and our eX-ViT. 62

4.7 Visualization results on the MS COCO 2014 validation set. . . . . . . . . 63
4.8 Illustration of misclassified samples. . . . . . . . . . . . . . . . . . . . . . 63
4.9 Evaluation of object localization maps generated by fusing the class-

specific attentions from the last K transformer layers in eX-ViT’s en-
coder Eθ in terms of false positives (FP), false negatives (FN) and mIoU.
The larger FP and FN values denote having more over-activated pixels,
while the higher mIoU value indicates the generated localization maps
have fewer over-activated pixels and more complete object coverage. . . 66

4.10 Visualization of the learned attributes on the PASCAL VOC 2012 valida-
tion set, and MS COCO 2014 validation set, respectively. In each row, the
left part is the input image, and the rest of images visualize the top-5 at-
tributes, which shows that AttE attends to the discriminative attributes
with a high degree of detail. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Pipeline of our proposed X-Pruner framework. We first train a trans-
former with the proposed explainability-aware masks, with the goal of
quantifying each unit’s contribution to predicting each class. Then we
explore the layer-wise pruning threshold under a pre-defined cost con-
straint. Finally, a fine-tune procedure is executed for the pruned model. 75

5.2 Visual explanations generated by a variety of pruned networks on the
ILSVRC-12 validation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Explainability-aware mask values in varying layers for DeiT-S. . . . . . . 81
5.4 Top-1 accuracy for DeiT-S on CIFAR-10 with various pruning rates. "Base-

line" denotes the unpruned baseline model. . . . . . . . . . . . . . . . . . 83
5.5 The pruning rate of units on each block when the pruning rate is set at

0.3 for DeiT-S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Visualization of the attention maps produced by the 4-th layer for DeiT-

B. Red box means the head is pruned based on our learned mask values. 85



xix

6.1 Our pipeline of Edit-DiffNeRF, which is a two-stage framework consist-
ing of a frozen diffusion model, a proposed delta module, and a NeRF.
In the first stage, we train the delta module h(t) to edit the latent space of
a pretrained diffusion model. After training, it is able to produce edited
images based on the input text instruction. Then we freeze the weights
of the delta module and train the NeRF using those edited images, lever-
aging the modifications made through the delta module. . . . . . . . . . 92

6.2 We plot the trade-off between the CLIP Direction Consistency and the
CLIP Text-Image Direction Similarity. For both metrics, higher is better. . 95

6.3 Visual comparisons with a collection of recent state-of-the-art methods. . 97
6.4 Comparisons of editing results between CLIP-NeRF [168] and our Edit-

DiffNeRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5 Comparison with Instruct-NeRF2NeRF [172]. Edits were performed with

a text instruction "Give him a checkered jacket". . . . . . . . . . . . . . . 99





xxi

List of Tables

3.1 List of symbols and their descriptions. . . . . . . . . . . . . . . . . . . . . 24
3.2 Comparative results of various interpretable models on ADNI. . . . . . . 36
3.3 Comparative evaluation of HAM and other methods . . . . . . . . . . . 39
3.4 Comparative evaluation of PCR. . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Contributions of individual modules in the proposed MAXNet on sub-

set 1. Values indicating mask collapse are blank. . . . . . . . . . . . . . . 42

4.1 mIoU (%) of localization maps on the PASCAL VOC 2012 training set. . 57
4.2 Performance comparison of various methods in mIoU (%) on the PAS-

CAL VOC 2012 validation and test sets. Sup. indicates supervision type.
F : full supervision; I : image-level labels; S : saliency maps. . . . . . . . 59

4.3 Performance comparison of the state-of-the-art WSSS methods in mIoU
(%) on the MS COCO 2014 validation set. Sup. indicates supervision
type. I : image-level labels; S : saliency maps. . . . . . . . . . . . . . . . . 60

4.4 Performance comparison of various methods on the MS COCO valida-
tion set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Performance comparison of various methods in mIoU (%) on the PAS-
CAL VOC 2012 training set. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Effect of the contributions from various modules in mIoU (%) on the
PASCAL VOC training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 The influence of the number of attributes in mIoU (%) on the PASCAL
VOC and MS COCO 2014 validation sets. . . . . . . . . . . . . . . . . . . 68

4.8 The influence of hyperparameters in mIoU (%) on the PASCAL VOC
validation and test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Comparison with the state-of-the-art methods on the ILSVRC-12 dataset.
FLOPs remained denotes the remained ratio of FLOPs to the full-model
FLOPs. ∗ indicates utilizing knowledge distillation in the training process. 80

5.2 Pruning results of Swin Transformer on the ILSVRC-12 dataset. . . . . . 80
5.3 Main results for pruning Swin-T under different configurations on ILSVRC-

12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Main results of learnable pruning rate on DeiT-S. . . . . . . . . . . . . . . 83



xxii

6.1 Quantiative evaluation on real-captured scenes . . . . . . . . . . . . . . . 95
6.2 FID scores on real-captured scenes from Instruct-NeRF2NeRF [172] . . . 96
6.3 Ablation study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



1

Chapter 1

Introduction

1.1 Background

Explainable Artificial Intelligence (XAI) is an emerging research area that aims to help
users understand, trust, and manage AI systems [1]. At its core, XAI seeks to develop
with two of the primary tenets: humans can better understand and collaborate with
AI, while AI systems can empower humans and augment our capabilities [2]. From
skilled Go players to autonomous vehicles, AI has realized capabilities reminiscent of
science fiction from the past decade. These advancements showcase the remarkable
progress in the AI field, pushing the boundaries beyond what was once deemed spec-
ulative. Despite substantial advancements, unlocking the full transformative potential
promised by AI systems to our society remains elusive. The rising utilization of black-
box Machine Learning (ML) models for crucial predictions in various contexts has led
to an escalating demand for transparency from diverse stakeholders in AI. With the
increasing prevalence of AI technologies, there is a growing necessity for users to un-
derstand AI, driven by the unpredictable nature of AI models and the potential conse-
quences, particularly in critical domains such as healthcare, finance, self-driving cars,
and law enforcement [3].

The primary objective within XAI domain is the development of reliable explain-
able algorithms capable of unraveling the complexities associated with black-box mod-
els. These algorithms aim to provide insights into the underlying decision-making
processes inherent in deep neural network models. For instance, in scenarios where
an AI system is utilized to detect malignant tumors from CT scans, it becomes cru-
cial for medical professionals to understand the rationale guiding the decision-making
process [5]. This involves a meticulous examination of the image regions detected by
the AI system in the diagnostic process. Fig. 1.1 shows DARPA’s conceptualization of
explainable AI and the needs of a user that the model should address when explaining
itself. This not only enables the establishment of trust but also facilitates the identifica-
tion of any unintended correlations that the network might have acquired to make its
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Figure 1.1: Explainable AI, as conceptualized in a DARPA program report [4].

decisions. Over the last few decades, the computer vision community has witnessed
various endeavors in this direction, as elaborated in the review in [3].

Recent advances in XAI have led to its integration with various advanced AI tech-
niques, enhancing the applicability and reliability of AI models across diverse do-
mains. For instance, XAI has been combined with federated learning in 6G systems to
develop secure and automated vehicular networks [6], [7]. The incorporation of XAI
into FL models is anticipated to offer substantial benefits by facilitating decentralized,
lightweight, and communication-efficient intelligence. In the cybersecurity domain,
XAI outputs have proven useful for generating adversarial and poison samples de-
signed to evade underlying classifiers [8]. Concurrently, defensive strategies such as
focused data sampling [9], [10] and model regularization [11] have been proposed to
counteract these attacks. Overall, these advancements underscore the critical role of
XAI in enhancing both the functionality and security of AI systems, paving the way
for more resilient and trustworthy applications across various domains.

The recent development of Generative AI, encompassing large language models
(LLMs) [12] and visual generation techniques [13], [14], promises to revolutionize var-
ious human tasks. This interest is escalating with the availability of generative AI tools
such as ChatGPT [15], DALL.E 2 [14], Github Copilot [16], and others. For example,
OpenAI’s Codex [17], an LLM capable of generating functional code snippets, adopt-
ing a scenario-based approach to understand developers’ requirements for explana-
tions when employing Generative AI in diverse programming situations, including
natural language to code, code translation, and code auto-completion. However, there
is a limited body of work addressing how to combine explainability with generative AI
models in the field of computer vision. For example, an explanation could be necessary
when specific prompts fail to yield desired results. A successful explanation should
empower users to refine their prompts, leading to higher satisfaction with the newly
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Figure 1.2: Explanation heatmaps obtained using Grad-CAM [19] corresponding to the pre-
dicted category for an image.

generated contents. Thus, effective approaches that can address these challenges are
desired to facilitate wide-ranging generative applications.

1.2 Challenges and Research Gaps

An intriguing avenue for advancing the understanding of deep neural networks in-
volves developing models that autonomously generate explanations for their deci-
sions. This approach addresses the challenge of reconciling high-performance yet
opaque black-box models with lower-performing but interpretable models, a trade-off
known as the accuracy-interpretability trade-off. This trade-off is pivotal as it ensures
that AI systems not only excel in performance but also provide comprehensible and
justifiable decisions [18]. In many practical scenarios, there exists a dilemma between
achieving high precision, often associated with complex and opaque systems like deep
neural networks, and ensuring that these models’ decisions are understandable and
explainable to humans. Models that are intrinsically explainable in visual analysis of-
fer professionals and users a deeper understanding and confidence in utilizing deep
learning-based systems. However, there is a notable scarcity of research exploring the
effectiveness of explainable models in real-world applications. A common approach
in current works is to design explainable models by leveraging feature selection tech-
niques to concentrate on a subset of relevant features. Nevertheless, these manual
selection methods introduce bias by favoring certain features over others, potentially
overlooking crucial factors contributing to the model’s predictions.

Meanwhile, while post-hoc explanation techniques (see Fig. 1.2), such as visualiza-
tion methods, can offer insights into a model’s outputs and discover important input
features [20]–[22], it is crucial for these explanation algorithms to be robust if we in-
tend to rely on them for holding deep neural networks accountable. Ghorbani et al.
[23] conducted a study showcasing the feasibility of introducing imperceptible adver-
sarial perturbations to input images. Surprisingly, this resulted in identical predicted
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Figure 1.3: Post-hoc explanation algorithms are susceptible to adversarial attacks. Here, an im-
age of a "Monarch" is perturbed with imperceptible noise such that the model still predicts the
image as a "Monarch", however, the explanation (feature importance map) does not highlight
the semantic pixels corresponding to "Monarch".

labels but vastly different explanations (see Fig. 1.3). Moreover, much of the existing
research has predominantly focused on developing universal explanation techniques
that are expected to perform well across all instances. However, as highlighted in this
thesis, the pursuit of such universal solutions may resemble a quest for the mythical
El Dorado. It’s evident that no single technique can adapt effectively to all data and
user contexts. According to Singh et al. [24], if we use post-hoc methods to generate
explanations, there is a dependency on correlated contextual features and background
information, potentially introducing biases into an explanation. For instance, images
categorized as "microwave" may frequently appear alongside "refrigerator" or "sink" in
the background, which inadvertently becomes a contextual cue used by the model to
identify a "microwave". Explanation heatmaps obtained using Grad-CAM highlights
this correlated contextual bias. Fig. 1.4 provides an example of such a heatmap. If we
plan to deploy deep models for safety-critical applications, it is crucial for the model
to have accurate explanations for its decisions.

Furthermore, large-scale models such as foundation models have become the cor-
nerstone of many AI applications, powering various tasks such as text summarization,
question answering, and visual analysis. They have also been fine-tuned for specific
domains or applications, further enhancing their performance and adaptability. If the
foundation model’s outputs are used by humans to make decisions or take actions, ex-
plainability must be considered to enhance trust in the system and facilitate its accep-
tance. However, how to make these well-trained models explainable remains under-
explored. These models are typically so large that scholars typically lack the necessary
computational resources or cannot afford the associated costs to study or understand
them. For instance, the Generative Pre-trained Transformer 3 (GPT-3) language model
is estimated to require an expenditure of 4.6 million dollars and consume hundreds of
MWh of energy for a single training session on a cloud GPU [15]. Although Google’s



1.2. Challenges and Research Gaps 5

Figure 1.4: An explanation algorithm such as Score-CAM [26] demonstrates that the model’s
accurate classification of an image into the "dog" category depends on the existence of back-
ground objects such as a "table".

Bidirectional Encoder Representations from Transformers (BERT) [25] was made open
source, its black-box nature makes it inaccessible for many researchers. Due to their
size and lack of explainability, foundation models have limitations and are unsuitable
for certain applications where trust is crucial. Consequently, the question of how to
effectively explain these models and reduce their size remains open, as it contributes
to the democratization of science and aligns with the principles of data processing and
algorithmic transparency.

Given the overwhelming popularity of text prompting in numerous Generative AI
scenarios [27], how to effectively support such inputs with explanation and guidance
presents a significant challenge. End-users often lack knowledge about the quality of
the text prompt they use to obtain the desired results from Generative AI. Similar to
how adversarial examples lead to unexpected errors in Discriminative AI, Generative
AI also faces a comparable issue when modifications made by users in the text prompt
fail to produce the anticipated changes in the generated content or, in some cases, re-
sult in undesirable alterations [28]. The obscure and unexplainable relationship be-
tween the input text prompt and the generated output often compels end-users to en-
gage in unguided trials, consuming their time and wasting computational resources.
Consequently, users may find it difficult to establish trust and acceptance towards the
generated content. Therefore, it is crucial to conduct further studies to comprehend
how humans utilize prompts to interact with Generative AI.

Research gaps: XAI has gained significant attention due to the increasing complex-
ity of AI models. Various methodologies have been developed to make AI systems
interpretable, including model-specific approaches such as feature importance analy-
sis [29], model-agnostic techniques like SHAP [30], and post-hoc explanation methods
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such as LIME (Local Interpretable Model-agnostic Explanations [31]). Despite these
advancements, several research gaps persist within the field of explainable AI:

• There is a critical trade-off between interpretability and performance, as some
explainability techniques may increase model complexity or reduce accuracy.

• As neural networks grow in size and complexity, there is a notable gap in de-
veloping computationally efficient explainable techniques that can preserve the
essential features and layers critical to the model’s decision-making process, al-
lowing for optimal model compression without sacrificing accuracy.

• The field lacks robust methodologies for assessing and improving the quality
of samples generated by generative models. Tailored explainable methods are
needed to provide insights into the generation process and sample quality, en-
abling systematic evaluation and enhancement of generative model outputs.

1.3 Research Questions

According to the research gaps outlined in the preceding section, this thesis aims to
study the following research questions:

• How can we improve the transparency and explainability of deep neural net-
works without compromising their performance?

• How can XAI methods be leveraged to optimize the compression of large-scale
models while maintaining or enhancing model performance?

• How can XAI techniques be developed and integrated into the training and eval-
uation of generative models to enhance the quality, reliability, and interpretability
of generated samples?

1.4 Contributions

We have proposed novel approaches to address the aforementioned research ques-
tions. The advancement of knowledge and related publications are summarized as
follows:

• We propose an explainable framework that identifies regions of interest influenc-
ing class categories, thereby enhancing the interpretability of neural networks. It
consists of a predictor and an explainable tool, that is able to provide accurate
visualization maps and prediction basis. Specifically, the predictor is designed
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by applying attention mechanisms to multi-scale features to learn and discover
class discriminative latent representations. Meanwhile, to explain our predictor,
we propose a novel explainable tool that includes a high-resolution visualization
method and a prediction-basis module. The former effectively integrates the fea-
ture maps of intermediate layers as well as the last convolutional layer, which
surpasses state-of-the-art visualization approaches in producing high-resolution
representations with more accurate localization of discriminative areas. The prediction-
basis module provides prediction basis evidence via retrieved samples that are
accessible to end-users.

Related publication: L. Yu, W. Xiang, J. Fang, Y. P. Chen, and R. Zhu, “A novel
explainable neural network for Alzheimer’s disease diagnosis,” Pattern Recogni-
tion, vol. 131, pp. 1-12, Jun. 2022 (IF = 8.0).

• We propose a vision transformer dubbed the eXplainable Vision Transformer (eX-
ViT), a transformer model with enhanced explainability by jointly discovering ro-
bust interpretable features and performing the prediction accurately. Specifically,
eX-ViT is composed of the Explainable Multi-Head Attention (E-MHA) module,
and the Attribute-guided Explainer (AttE) module. The E-MHA tailors explain-
able attention weights that are able to learn semantically interpretable represen-
tations from tokens in terms of model decisions with noise robustness. Mean-
while, AttE is able to encode discriminative attribute features for the target object
through diverse attribute discovery, which constitutes faithful evidence for the
model predictions.

Related publication: L. Yu, W. Xiang, J. Fang, Y. P. Chen, and L. Chi, “eX-ViT: A
Novel eXplainable Vision Transformer for Weakly Supervised Semantic Segmen-
tation,” Pattern Recognition, vol. 142, pp. 1-13, Oct. 2023 (IF = 8.0).

• We propose an explainable pruning framework dubbed X-Pruner, which is de-
signed by integrating the explainability into the pruning process for a well-trained
model. Specifically, to measure each prunable unit’s contribution to predicting
each target class, a novel explainability-aware mask is proposed and learned in
an end-to-end manner. Then, to preserve the most informative units and learn
the layer-wise pruning rate, we adaptively search the layer-wise threshold that
differentiates between unpruned and pruned units based on their explainability-
aware mask values.

Related paper: L. Yu, and W. Xiang, “X-Pruner: eXplainable Pruning for Vision
Transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Vancouver, Canada, Jun. 2023, pp. 24355-24363.
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Figure 1.5: The overall structure of this thesis.

• We propose the Edit-DiffNeRF framework, that leverages explainability to allow
users to interact with the generative process using text prompts. Instead of train-
ing the entire diffusion for each scene, our method focuses on editing the latent
semantic space in frozen pretrained generative models by the delta module. This
fundamental change to the standard framework enables us to make fine-grained
modifications to the rendered views and effectively consolidate these instructions
in a 3D scene via NeRF training. As a result, we are able to produce an edited 3D
scene that faithfully aligns to input text instructions.

Related paper: L. Yu, W. Xiang, and K. Han, “Edit-DiffNeRF: Editing 3D Neural
Radiance Fields using 2D Diffusion Model,” https://arxiv.org/abs/2306.09551.

1.5 Thesis Outline

This thesis will be divided into five parts. As depicted in Fig. 1.5, Chapters 3 and 4
will be focused on improving explainability, while Chapters 5 and 6 will concentrate
on incorporating explainability. Specifically, Chapter 3 will cover the works focused
on addressing model explainability, and Chapter 4 will focus on addressing model
explainability for weakly supervised segmentation tasks. Chapters 5 and 6 will focus
on enabling explainability. Chapter 7 will conclude this thesis.

Chapter 2 provides a comprehensive overview of explainable AI, including its def-
inition, guiding principles, methodology, design considerations, and evaluation tech-
niques.



1.5. Thesis Outline 9

Chapter 3 analyzes the issue of blurry visual explanations and presents a novel
approach for enhancing the interpretability of neural networks through the aggrega-
tion of multi-scale intermediate features. A quantitative analysis is given to show that
fused features with multi-scale information have a positive effect on generated ex-
planation. We then formulate the proposed Dual Attention Module (DAM) to learn
and discover class discriminative latent representations. This chapter also introduces
a high-resolution visualization method that produces high-resolution visual explana-
tions for the precise localization of target areas. Experimental results are presented in
this chapter to show that the proposed model is able to achieve state-of-the-art perfor-
mance in terms of accuracy.

Chapter 4 describes the novel explainable vision transformer (eX-ViT) with en-
hanced explainability and high performance. Starting with standard black-box models,
this chapter discusses the problem of existing models, and how the proposed eX-ViT
solves that problem. To enable richer representations of interpretable attention maps
that align with informative input patterns, we present the Attribute-guided Explainer
(AttE) to decompose the feature representation into a set of learnable attribute features
for the target object, capable of capturing diverse and discriminative object features.
In addition, a novel attribute-guided loss to promote the learning process inside AttE
in a self-supervised manner is introduced. More precisely, this loss implicitly adds the
regularization to force the representations to focus on various attributes of each target
class through the attribute discriminability mechanism and attribute diversity mecha-
nism. Simulation results are presented to illustrate that the proposed model achieves
comparable performance to supervised baselines, while surpassing the accuracy and
interpretability of state-of-the-art black-box methods using only image-level labels.

Chapter 5 presents a model pruning technique that incorporates explainability into
the pruning process of a well-trained model. This chapter first introduces an explainability-
aware mask for each prunable unit in a model, with the goal of quantifying its contri-
bution to predicting each class. Specifically, the proposed mask is fully differentiable
and can be learned in an end-to-end manner. We demonstrate many benefits of the
proposed mask, including more accurate pruning and fewer computational costs com-
pared with existing black-box pruning methods. Then, this chapter describes how
to learn the layer-wise pruning thresholds that differentiate the important and less-
important units via a differentiable pruning operation. Finally, experimental results are
presented for various models to showcase the effectiveness of the proposed method.

Chapter 6 introduces a framework that leverages explainability to facilitate 3D edit-
ing through text prompts with high fidelity and multi-view consistency. This chapter
centers on altering the latent semantic space within frozen pretrained diffusion mod-
els via the delta module. This fundamental modification to the standard diffusion
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framework enables precise adjustments to rendered views and their consolidation in
a 3D scene via NeRF training. Consequently, we achieve the production of an edited
3D scene that accurately aligns with input text instructions. Additionally, to ensure
semantic consistency across different viewpoints, we propose a novel multi-view se-
mantic consistency loss, which extracts a latent semantic embedding from the input
view as a prior and endeavors to reconstruct it in various views. The effectiveness
of our proposed framework in editing real-world 3D scenes across a variety of text
prompts is demonstrated through experimental results on diverse real-world datasets.

Chapter 7 concludes this thesis and discusses possible future work in XAI field
from different points of view.
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Chapter 2

Background

2.1 Definitions of Explainability

While existing concepts of explainability primarily focus on human comprehension,
they vary regarding which aspect of the model is to be explained: its internal workings,
operations, data mapping, or representation [32]. Consequently, a formally agreed-
upon definition remains elusive. An explanation comprises features from an inter-
pretable domain that establish a connection between a data instance and the output of
a model [33]. Explanations can vary in truthfulness, accuracy, and success, sometimes
being deceptive or inaccurate. Therefore, multiple explanations are often utilized to
achieve a comprehensive interpretation of a model. Miller suggests that explainability
research should draw upon insights from philosophy, psychology, and cognitive sci-
ence to understand how explanations are defined, generated, selected, evaluated, and
presented [34]. Arrieta [35] proposed that the characterization of XAI should highlight
how the clarity of a model’s explanation relies explicitly on the audience: an AI system
is considered explainable when it furnishes specific details or rationales tailored to ren-
der its operations clear or readily comprehensible to a given audience. In this thesis,
we follow the existing literature on explainability by adopting a human-centered ap-
proach to elucidate why data scientists require explainability, how they utilize it, and
how explainable methods can aid in designing interfaces to elucidate models.

2.2 Guidelines of XAI Systems

The recent inclusion of the "right to explanation" in the GDPR has sparked discussions
regarding its practical implications and the potential impact on industry and research
areas [36]. Although the updated GDPR mandates explanations only in specific con-
texts, AI and policy experts anticipate explanations to play a crucial role in future AI
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system regulations [32]. To address the vagueness of the GDPR, researchers have pro-
posed a framework to translate its language into actionable guidelines. These guide-
lines include (1) identifying the factors influencing a decision, (2) understanding how
variations in these factors affect the decision, and (3) comparing similar inputs with dif-
ferent predictions [1]. However, according to this framework, an AI system only needs
to fulfill one of these guidelines to be deemed explainable. Additionally, alternative
post-hoc techniques for explaining decisions have been suggested, including the use
of counterfactuals (i.e., "What if" questions), textual explanations, visualizations, local
explanations, and representative data examples [37].

2.3 Method, Design, and Evaluation of XAI Systems

The ability to generate explanations relies on the model’s capability to enable or inte-
grate interpretations. Existing literature draws a distinct line between models that are
inherently explainable and those that are elucidated externally through explanation
techniques.

2.3.1 Post-hoc Techniques in XAI

When machine learning models fall short of transparency standards, an alternative
approach must be developed and implemented to elucidate their decisions. This is
the objective of post-hoc explainability techniques, specifically tailored for models that
lack interpretability by default. In the literature, two categories of post-hoc explain-
ability methods are identified: model-agnostic and model-specific approaches [35],
[38]. Model-agnostic explanation methods enhance the versatility of the explanation
technique by not being tied to a particular kind of model, thereby increasing its gener-
alizability.

Model-agnostic explanations: These explanation methods serve to offer a general
estimation of the behavior of a black-box model, indicating its typical behavior for
a given dataset. Techniques like LIME [39], SHAP [40], Anchors [41], counterfactual
explanations [42], and partial dependence plots [43] offer valuable insights into the
decision-making processes of machine learning models without necessitating knowl-
edge of their internal architectures. For instance, LIME approximates a model’s local
behavior using interpretable models, while SHAP values allocate feature contributions
based on cooperative game theory principles. Anchors provide interpretable rules that
reflect the model’s predictions, and ICE plots visualize changes in instance predictions
with varying feature values. Counterfactual explanations and partial dependence plots
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offer supplementary perspectives on model behavior. These model-agnostic meth-
ods empower users to trust and comprehend predictions made by black-box models,
thereby facilitating informed decision-making and model refinement endeavors [44],
[45].

Model-specific explanations: There are also explanation methods specifically tai-
lored for particular machine learning or deep learning models. Methods such as Grad-
CAM [19] highlight crucial regions within input images corresponding to specific classes,
offering visual insights into the decision-making process of the model. Layer-wise Rel-
evance Propagation (LRP) [20] dissects predictions by assigning relevance scores to
individual neurons or input features, illuminating the most influential aspects of the
input. Integrated Gradients [46] assesses the contribution of each feature to the pre-
diction by integrating gradients along a direct path from a baseline input to the ac-
tual input. DeepLIFT [47] attributes disparities in neuron activations to input features,
elucidating the impact of input variations on predictions. SmoothGrad [48] enhances
gradient-based attribution methods by mitigating noise in gradients, whereas saliency
maps identify significant regions in input data that steer model predictions. These
methodologies deepen comprehension of deep learning model behavior, facilitating
model interpretation and debugging endeavors.

2.3.2 Explainable Models

These models provide users with the ability to analyze and grasp the mathematical
transformation of inputs into outputs, allowing them to connect input attributes or
features to their corresponding output. Users can gather and comprehend technical
details regarding this mapping to a certain extent. For instance, Support Vector Ma-
chines (SVMs) and other linear classifiers offer explainability as they delineate data
classes based on their positioning relative to decision boundaries [49]. However, as
models grow in complexity, there arises a need for explanations alongside model out-
puts. Lipton [50] describes the transparency among these models across three levels:
the ability to simulate the entire model, the decomposability of individual components,
and algorithmic transparency.

Simulatability refers to the ability of a model to allow a user to fully understand
its structure and operation. For a model to be considered entirely understandable,
a human should be able to take the input data along with the model’s parameters
and analyze every computation necessary to generate a prediction within a reasonable
timeframe. The extent of simulatability is influenced by the overall size of the model
and the computational complexity required for inference. For example, in decision
trees [51], the model’s size may increase much faster than the time needed for inference.
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Due to the limited capacity of human computation, this discrepancy may span several
orders of magnitude. Consequently, high-dimensional models, extensive rule lists, and
deep decision trees are not easily explainable and may exhibit lower explainability
compared to more compact neural networks.

Decomposability refers to the extent to which a model can be broken down into its
constituent parts (such as inputs and parameters), thereby facilitating a more intuitive
approach to explainability [52]. For example, in a decision tree, each node could be as-
sociated with representations describing similar nodes sharing the same features. Sim-
ilarly, the parameters of a linear model might reflect the relationship between features
and the output. This form of transparency necessitates that inputs are individually ex-
plainable; features that are highly engineered or anonymous may not lead themselves
well to decomposability.

Transparency refers to the level of confidence regarding an algorithm’s ability to
function sensibly in unforeseen scenarios [53]. For instance, linear models are deemed
transparent since we can comprehend the shape of the error surface and make deduc-
tions based on it. This level of understanding provides a degree of confidence that the
model will behave as anticipated in unfamiliar situations. Conversely, current deep
learning techniques limit this aspect of algorithmic transparency as they cannot be
completely observed. The main challenge for algorithmic transparency in such models
is the necessity for mathematical analysis and features to be observed.

2.3.3 Evaluating XAI Methods

The introduction of diverse explanation methods has prompted researchers to de-
vise diverse evaluation metrics for assessing a model’s effectiveness in specific aspects
of explainability. A comprehensive examination of these studies unveiled two pri-
mary approaches to evaluating XAI methods: functionally-grounded evaluations and
human-centered evaluations [54], [55]. Furthermore, we correlate different attributes
and characteristics of explanations to be evaluated within each group, as depicted in
Fig. 2.1.

Functionally-grounded Evaluations: This form of evaluation utilizes specific char-
acteristics of explainability as indicators of explanation quality. Objective experiments
offer certain advantages, particularly as conducting human-subject studies often re-
quires significant time, funding, and approvals, which may exceed the resources avail-
able to a machine learning researcher. Functionally-grounded evaluations are partic-
ularly useful when a set of baseline models has already been validated, potentially
through human experiments. However, they can also be relevant during the early
stages of method development or when human subject studies are impractical due
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Figure 2.1: Useful XAI for humans in practice [56].

to ethical considerations [57]. In such instances, the properties of explanation meth-
ods outlined below can be employed to compare various approaches and assess their
strengths and weaknesses.

The faithfulness metric assesses the precision with which the explanation mirrors
the behavior of the model [58]. A prevalent approach to evaluating faithfulness, in-
spired by image interpretation practices, involves computing the smallest sufficient re-
gion (i.e., the smallest region containing an instance that supports a correct prediction)
or the smallest destroying region (i.e., the smallest region whose removal leads to an
incorrect prediction). High faithfulness is consistently desirable. When the model ex-
hibits high accuracy and the explanation maintains high faithfulness, the explanation
consequently achieves high accuracy as well. Conversely, low explanation accuracy is
anticipated when the accuracy of the machine learning model is also low [59].

Robustness denotes the dependability and coherence of explanations offered by a
method across diverse scenarios and circumstances [60]. A model is deemed robustly
explainable if its explanations retain significance and consistency despite alterations
in input data, model parameters, or environmental variables [61]. This robust inter-
pretability ensures that the explanations provided by the model genuinely represent
the underlying decision-making process and are not unduly affected by noise or dis-
turbances.

Furthermore, there are additional metrics that may be pertinent to consider includ-
ing consistency [62], compactness [63], and algorithmic complexity [61]. Algorithmic
complexity is related to computational demands, particularly when computation du-
ration presents a bottleneck in generating explanations. Consistency measures the de-
gree of variation in explanations between two distinct models trained on the same task
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and producing similar output predictions.
Human-Grounded Evaluations Human-grounded evaluations involve human in-

put or judgment to assess machine learning models or algorithms [64]. Participants are
often asked to provide feedback, ratings, or assessments on aspects like interpretabil-
ity, usability, or task effectiveness. These evaluations may include user studies and sur-
veys. They complement objective evaluations by offering insights into user perceptions
and interactions with machine learning models in real-world scenarios. This under-
standing aids researchers in identifying areas for improvement from a user-centered
perspective and in gauging the practical implications of model behavior [65]. Here we
explore several properties that contribute to the quality of explanations.

Clarity refers to the extent to which the resulting explanation is explicit [66]. This
attribute holds particular significance in safety-critical applications, where ambiguity
must be minimized. Justifiability indicates the extent to which an expert can assess the
explanations to verify whether the model aligns with domain knowledge [67]. Informa-
tiveness relates to the capacity of an explanation method to furnish relevant information
to an end-user [68].

2.4 Boosting Model Performance through XAI

The integration of explainable AI (XAI) techniques has shown promise not only in en-
hancing transparency but also in improving the generalizability, efficiency, and fairness
of AI models. For example, in domain generalization, end-to-end deep models often
exploit biases unique to their training dataset, which leads to poor generalization. In
fact, increasing the explainability of a deep classifier can improve its generalization, es-
pecially to novel domains. different works [69], [70] have proposed ways to learn more
general representations by utilizing explainability as a means for bridging the visual-
semantic gap between different domains, models can be made more robust across dif-
ferent datasets and environments. Additionally, XAI contributes to data-efficient train-
ing by identifying the most influential features or data points in a model’s predictions
[71]. This insight can guide the prioritization of high-impact data collection, reduce
redundancy within training datasets, and concentrate computational resources on the
most informative samples [72], [73]. As a result, models can achieve high performance
with less data, thereby lowering the costs and time associated with extensive data
collection and processing. Furthermore, biases in AI models, often originating from
imbalances or undesirable patterns in training data, can be identified through explain-
ability techniques. By elucidating how different features influence predictions across
demographic groups, XAI facilitates the identification and mitigation of biases through
strategies such as re-weighting, data augmentation, or adversarial training, leading to
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fairer and more equitable model outcomes [74], [75]. In addition, explainability meth-
ods, such as saliency maps, can be used to identify and retain critical components of a
model, thereby facilitating more effective and targeted pruning strategies [19], [26]. By
highlighting redundancies and low-impact parameters, XAI enables adaptive pruning
processes that maintain model accuracy while significantly reducing computational
costs.

2.5 Applications of XAI Systems

Explanation algorithms could significantly advance research in computer vision and
machine intelligence, powering many innovative applications. An explanation for the
decision process is very helpful in facilitating numerous groundbreaking applications.
The elucidation of decision processes proves particularly beneficial in the realm of
computer vision, a field with diverse applications like object detection in autonomous
vehicles, contributing to collision avoidance and traffic reduction. By integrating XAI
techniques like SHAP [76], LIME [39], and gradient-weighted class activation mapping
(Grad-CAM) [19], these systems can elucidate various traffic situations to drivers. This
not only enhances user trust in the technology but also assists drivers in making criti-
cal decisions in complex traffic scenarios. Additionally, XAI algorithms are quite useful
in monitoring suspected criminals, thereby mitigating criminal activities, as well as in
structural monitoring and disaster management. In essence, the adoption of XAI algo-
rithms addresses key challenges in computer vision-based applications by providing
transparency, interpretability, and justification for classification results. This, in turn,
opens up new possibilities for the responsible and effective deployment of AI tech-
nologies in diverse fields.

One of the important applications of the XAI is Google’s What-If tool [77], which is
an open-source visualization tool that allows users to analyze the behavior of various
machine learning models. It provides an interactive interface to explore and under-
stand model predictions, investigate the impact of input changes, and assess the im-
pact of changes on outcomes. To further broaden engagement in the community, the
What-If Toolkit offers insights into model behavior, data sources, and potential biases,
enhancing transparency and accountability in AI systems, and facilitating communi-
cation about models’ ethical and performance aspects.

Captum [78] is another interpretable product of the XAI. Captum is a powerful,
flexible, and user-friendly model interpretability library for PyTorch. It makes state-
of-the-art algorithms for explainability readily accessible to the entire PyTorch com-
munity, so researchers and developers can better understand which features, neurons,
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and layers are contributing to a model’s predictions. Captum supports model inter-
pretability across modalities such as vision and text, and its extensible design allows
researchers to add new algorithms. Captum also allows researchers to quickly bench-
mark their work against other existing algorithms available in the library.

As we have explored the foundational concepts and methodologies in the broader
field of explainable AI, it is essential to examine how these principles are applied
within specific application domains. One such domain where explainability plays a
crucial role is medical imaging. In recent years, the integration of AI into medical imag-
ing has revolutionized diagnostic processes, offering unprecedented accuracy and ef-
ficiency. However, the complexity and opacity of AI models present unique challenges
in ensuring that these systems are both reliable and interpretable by clinicians. Chap-
ter 3 will delve into the application of explainable AI techniques in medical imaging,
discussing how XAI methods can enhance diagnostic accuracy and improve model
transparency.
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Chapter 3

An Explainable Framework Based on
Learned Latent Features

In this chapter, we construct an explainable framework for medical image analysis,
especially the Alzheimer’s disease diganosis. We analyze the issue of blurry visual
explanations and discover that the utilization of intermediate features in a model with
multi-scale fusion will improve the quality of heatmaps. Based on this analysis, we
propose the MAXNet that uses attention mechanisms to learn discriminative latent
representations of brain volumes, and introduce the explainable tool to generate high-
resolution visualization maps and prediction basis evidence to explain the predictor’s
decisions. We demonstrate that the proposed framework is effective in dealing with
inaccurate visual explanations, and user-friendly due to its explainability.

3.1 Introduction

Alzheimer’s disease (AD), the most common form of dementia, which could induce
movement disorders and a series of subsequent syndromes, has affected over 50 mil-
lion people universally and is growing rapidly [79]. Traditionally, the computer-aided
detection of AD using machine learning methods develops feature descriptor and clas-
sification systems. However, the hand-crafted features suffer from subjectivity and
cannot generalize well across instances. Thanks to extensive research on applications
of deep learning (DL) such as CNNs, medical scientists have sought a new era of en-
gagement with AI-based diagnosis of detecting AD at an early stage automatically
[80]. With the advance of magnetic resonance technology, magnetic resonance imag-
ing (MRI) data are often provided to observe the development of brain tissue morphol-
ogy related to AD [81]. Plenty of DL architectures have been proposed to classify AD
using brain MRIs and gained satisfactory performance [82]. However, despite their
significant achievements, the predictions of existing models are not faithful with the
expected reasoning. That is, they do not provide any explicitly visual or other forms of
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(a) (b) (c) (d)

Figure 3.1: Visualization results of state-of-the-art methods for a AD patient: (a) CAMERAS
[22]; (b) Grad-CAM [19]; (c) Grad-CAM++ [38]; (d) Score-CAM [26]. All of them provide blurry
visual explanations or recognition of irrelevant noise.

explainable information associated with the final output. This becomes a major hurdle
to apply these techniques on a mass scale due to the lack of humans’ trust.

XAI is an emerging sub-field of AI pursuing to capture the properties that have in-
fluence over the decision of a model [35]. To fully uncover the CNNs, several works
have proposed to build interpretable CNN models. Zhang et al. [26] proposed a
general approach to train interpretable convolutional filters in CNN models, wherein
each filter represents a certain part of the object. Lee et al. [83] designed to make
final decisions based on the regional abnormality representation by use of complex
nonlinear relationships among voxels. However, most existing methods only provide
blurry heatmaps or recognition of atrophy with irrelevant noise (Fig. 3.1), this can be
attributed to the fact that the leveraged last convolutional layer only extracts global
features and misses the small attributes and discrepancies. Therefore, they are not able
to provide enough details to precisely recognize crucial areas, and fail to localize small
differences in medical imaging diagnosis.

Different from existing XAI works in the literature, we aim to develop an explain-
able framework for automated diagnosis of AD capable of providing accurate pre-
dictions with fine-grained heatmaps and prediction reasoning. We first build an ex-
plainable network dubbed MAXNet with two novel modules, Dual Attention Mod-
ule (DAM) and Multi-resolution Fusion Module (MFM), to capture and fuse multi-
resolution features. Intuitively, we hope the MAXNet can learn representations con-
taining all the necessary voxel information for the correct predictions. Therefore, we
design the cluster and contrastive loss functions to make the model learn and extract
semantically informative latent features of the target label. Second, to provide high-
resolution heatmaps and prediction reasoning, we propose an explainable tool that
consists of a novel visualization method termed High-resolution Activation Mapping
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(HAM), and a Prediction-basis Creation and Retrieval (PCR) module. The former is for
yielding fine-grained heatmaps for disease areas, while the latter creates a prediction
reference-set during training, in which subjects similar to a query volume are retrieved
during testing, to enhance the explainability of predictions.

3.2 Related Work

Traditional methods for AD diagnosis There has been much interest in feature selec-
tion techniques to assist the diagnosis of AD using individual brain MRIs. A group
of studies are proposed to utilize hand-crafted features extracted from MRI data in
combination with different models. Zhang et al. [84] proposed a multi-task feature
selection (MTFS) method that selects subsets of features from each modality. Based
on this, Liu et al. [85] developed an inter-modality feature selection method (IMTFS)
to process the complementary inter-modality features. Zhu et al. [86] adopted man-
ifold regularized multi-task learning for AD diagnosis. Moreover, Shi et al. [79] first
developed a nonlinear feature engineering module, then used the support vector ma-
chine (SVM) to identify AD patients. Cao et al. [87] explicitly extracted subset features
and Region-of-Interests (ROIs), then combined these features in a multi-task learning
framework for AD diagnosis. Gerardin et al. [88] modeled the shape of hippocampus
regions via spherical harmonics and developed a classification procedure to automati-
cally discriminate between patients. Stefan et al. [89] employed various measurements
to obtain expressive MRI biomarkers and fed them into a linear discriminant analy-
sis system. However, these traditional computer-aided methods learn hand-crafted
representations can be prone to subjectivity, and are difficult to be optimized.

Deep learning methods for AD diagnosis Recently, deep learning techniques have
made great progress on AD diagnosis with the benefit of automatic abstraction of
multi-level latent features. Chen et al. [90] jointly used iterative spare and DL meth-
ods to learn representations of critical cortical regions that are used to diagnose AD.
Su et al. [91] introduced domain adaptation to utilize feature distributions of brain
images across multiple sites for binary classification. Pan et al. [92] devised a joint
deep learning architecture to model the disease-image specificity as well as the disease
diagnosis using incomplete MRI and fluorodeoxyglucose positron emission tomogra-
phy (PET) images. Basaia et al. [82] built a 3D CNN for MRI data to distinguish among
AD, c-MCI and s-MCI without any prior feature design. Lei et al. [93] introduced a
convolutional network based on longitudinal multiple time points data for identifying
AD subjects. Lian et al. [94] proposed a hierarchical fully convolutional network that
automatically learns multi-scale feature representations in the whole brain structural
magnetic resonance imaging (sMRI) data for AD diagnosis. Kröll et al. [95]employed
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various residual structures to facilitate training and obtain information from previous
layers. Gopinath et al. [96] proposed a new graph convolutional network for process-
ing surface-valued data to output subject-based classification and regression. Despite
the promising results of these models, almost all the prior approaches are designed
with complex modules that are difficult to interpret.

Explainability A number of papers have been proposed to visualize a model’s pre-
dictions by highlighting important regions that are believed to be intuitive to end-
users. If we consider an image classification task as an example, a "good" visual expla-
nation based on the model should be able to be (a) class-discriminative (i.e., localize
the category in the image) and (b) high-resolution. Zhou et al. [21] introduced a tech-
nique called Class Activation Mapping (CAM) for identifying informative areas by a
certain kind of classification CNNs that do not have fully-connected layers. Substan-
tially, it utilized the last convolutional layer before the global pooling layer and com-
bined weighted activation maps to produce explainable heatmaps, it turned out to be
highly class-discriminative, but with quite blurry outputs as an undesirable attribute.
Beyond that, Grad-CAM [19] generalized CAM to a relatively large set of CNN models
without requiring a specific architecture, by backpropagating the gradient of a target
class with respect to the pixel intensities. Jalwana et al. [22] proposed a mechanism
to generate high-resolution heatmaps with improved activation map upsampling that
corresponds to a model’s logic. However, gradients for a deep learning model can be
noisy and also easily to get vanished in sigmoid function or an activation function like
ReLU. So Wang et al. [26] acquired each weight regarding individual activation map
through feeding it into the network, and the heatmaps are yielded by the association
between corresponding weights and maps. Although these algorithms achieved re-
markable level of improvements, they either did not combine the advantage of both
sides (class-discriminative and high-resolution), or get stuck into one of them.

In the domain of medical image analysis, Hannun et al. [97] utilized the electro-
cardiogram tool to interpretate the clinical ECG process in an end-to-end manner. Af-
shar et al. [98] took advantage of capsule networks to model nodule features and pro-
vide potential interpretability of the model. Malhotra et al. [49] proposed a multi-task
model to predict COVID-19 in chest X-ray images and segmented the lung regions with
COVID-19 symptoms. Xie et al. [99] conducted three iterations of design activities to
formulate a system, which enables clinicians to explore and understand AI-based chest
X-ray analysis. Chittajallu et al. [100] presented a human-in-the-loop XAI system for
content-based image retrieval of video frames similar to a query image from invasive
surgery videos for surgical education. Jin et al. [101] introduced an attention guided
network to localize image biomarkers and provide intuitive explanations. Hu et al.
[102] developed an interpretable multimodal fusion model by utilizing the Grad-CAM.
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Nevertheless, existing DL methods do not provide high-resolution heatmaps and thus
can not give reliable explanations. In our proposed method HAM, we aim to produce
visual explanations with fine-scale information as well as being class-discriminative.

3.3 Proposed Methodology

In this section, we formulate the problem under consideration and introduce our pro-
posed MAXNet, HAM and PCR.

3.3.1 Problem Formulation

Firstly, given labeled training data {mi, yi} M
i=1 containing M samples wherein yi ∈

{0, 1} is a binary class label referring to the presence/absence of the AD and mi ∈ R3

is an MRI volume, the proposed MAXNet aims to predict the corresponding diagnosis
label ŷi given input mi.

On the other hand, the fine-grained visualization task is to provide heatmap AHAM

by integrating the activation maps in intermediate layers as well as the last convolu-
tional layer

AHAM = ∑n U
(

ReLU
(

N( 1
Zn

∑ ∂si
∂Fn

)Fn
))

, (3.1)

where Zn is the number of filters in the n-th layer, si is the predicted score, and Fn is
the n-th activation map. N(·) and U(·) represent the normalization and up-sampling
functions, respectively. Moreover, the task of evidence presentation is to firstly create
a reference set

{
Ri

ref

}
for each label yi from the training dataset {m, m}, where Ri

ref j

m. Afterwards, we can retrieve samples {Rc, yc} 3
c=1 that have the most similar latent

features compared to the input volume during the test phase.

3.3.2 Framework Overview

We propose an explainable framework for automated diagnosis of the AD from MRI
volumes, which is capable of providing accurate classification results with fine-grained
visualization maps and a prediction basis. The schematic of our framework including
MAXNet, HAM, and PCR is in Fig. 3.2. We first craft the so-called Multi-scale At-
tention eXplainable Network (MAXNet), to address the aforementioned challenging
issues and power the visual interpretability elaborately. Then we present a new high-
resolution visualization approach, referred to as High-resolution Activation Mapping
(HAM), which extracts salient features related to the AD (e.g., the atrophy of cerebral
cortex and hippocampus.) to interpret model decisions. Furthermore, a reference set
Rref is created by the Prediction-basis Creation and Retrieval module during training
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Table 3.1: List of symbols and their descriptions.

mi The i-th MRI volume in the training dataset

yi Label of mi

ŷi Predicted label of mi

Ri
ref Reference set for label yi

Rc Reference sample where c = 1, 2, 3

mT
k The k-th MRI volume in the testing dataset

ŷT
k Predicted label of mT

k

pk Latent features for the k-th MRI volume mT
k

pc Latent features for the c-th reference sample Rc

to extract and save relevant samples for certain labels, and is then used during testing
to provide evidence of samples Rc with labels yc.

3.4 MAXNet Architecture

There are several essential modules that constitute the MAXNet: 1) the staged feature
extraction flow; 2) the Dual Attention Module (DAM); 3) the Multi-resolution Fusion
Module (MFM); 4) the cluster and contrastive loss functions. In comparison to main-
stream CNN models, MAXNet has multi-resolution fields as highly complementary
to capture accurate localization of homogeneous areas. It is also able to learn latent
representations that are close to each volume’s label with the proposed cluster and
contrastive loss functions.

3.4.1 Staged Feature Extraction

We start our network with a high-to-low convolutional stream, which would be de-
vised as five stages in the MAXNet as shown in Fig. 3.2. Each stage is a convolutional
block, which is sequentially made of a convolutional layer, a batch normalization (BN)
layer, a rectified linear unit (ReLU), and a max-pooling layer. We make several adap-
tations to create our high-to-low stream. First, as in stages 1 and 2 which produce
larger spatial outputs compared to their higher counterparts, the kernel size is set to be
3× 3× 3 and the number of filters is set to 15 and 25 respectively to save computational
resources. Upon these, since the DAM would be applied to stages 3 and 4, we increase
the express capacity across these two blocks with the number of convolutional kernels
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Figure 3.2: Schematic of the overall framework, which consists of the explainable model
MAXNet and the explainable tool, i.e., HAM and the PCR module. In MAXNet, the high-
to-low convolutional stream forms several stages (stages 1-5). We define Fn, (n ∈ [1, 2, 3, 4, 5])
as the intermediate activation response of the n-th stage before the max-pooling layer, and Gn
as the final output of each stage n after max-pooling. F3 and F4 are leveraged to form the voxel-
wise feature maps P3, P4, and the depth-wise feature maps D3 and D4 via the DAM respectively.
Note that G5 from the last convolutional layer only extracts global features of the pathological
abnormalities and misses the small subjects and discrepancies. Eventually, P3, D3, P4, D4, and
G5 are fused via the MFM to produce the classification label ŷi. Subsequently, visual expla-
nations AHAM are obtained via HAM by multi-stage aggregation, and PCR is used to retrieve
three reference samples R1, R2 and R3 most similar to the input volume, which are displayed
as the evidence with ground-truth labels y1, y2, y3.

to be the same as in stage 5, i.e., 50. We use convolutional layers with kernel size of
3× 3× 3 for stages 3 and 4, and 1× 1× 1 for stages 5.

3.4.2 Dual Attention Module (DAM)

In a classical classification model, which usually extracts features by looking at each
sub-area equivalently, much information about local context clues could be excluded
via upper layers. Thus, our intention is to devise a Dual Attention Module (DAM),
as demonstrated in Fig. 3.3, to capture both voxel-wise and depth-wise dependencies
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from both high and low resolution feature maps. Consequently, the multi-resolution
relationships can be well represented for the model decisions.

Voxel-wise attention

For voxel-wise dependencies and differences between different stages, a voxel-wise
attention module is applied to both current stage and the final stage as depicted in
Fig. 3.3(a). Specifically, the encoding process for stage n (n ∈ [3, 4]) involves three
steps: Firstly, we map Fn and G5 onto a mutual embedding space:

F̂n = W f (Fn), GA = Wa(G5), (3.2)

where W f (·) contains one convolution layer as Conv(filter=25, kernel-size=1, strides=1),
and Wa(·) is composed of one learnable convolution layer Conv(filter=25, kernel-size=1,
strides=1) followed by one up-sampling layer. After projection, we obtain F̂n ∈ RD

′
n×Cn×H

′
n×W

′
n

and GA ∈ RD
′
n×Cn×H

′
n×W

′
n . Secondly, an element-wise product is applied for GA and F̂n

to get the following interaction-aware attention matrix:

ci,j = F̂n(i)×GA(j), (3.3)

where ci,j represents the correlations of voxels <i, j> for all elements in the activation
feature maps. Note that feature G5 should have coarser but semantically stronger fea-
ture responses. Thus, F̂n and GA have the same resolution but different temporal con-
textual coverage. Subsequently, we normalize ci,j by

ri,j =
ci,j −min(ci,j)

∑i,j[ci,j −min(ci,j)]
. (3.4)

The above normalization operation bears some resemblance to the soft-max function
but does not generate a sparse output. Finally,we define a more discriminative repre-
sentation Pn by

ri,j =
ci,j −min(ci,j)

∑i,j[ci,j −min(ci,j)]
. (3.5)

The above normalization operation bears some resemblance to the soft-max function
but does not generate a sparse output. Finally,we define a more discriminative repre-
sentation Pn by

Pn = ∑N
i=1 r× F i

n. (3.6)

Through the use of this attention module, the proposed network is able to tell exactly
where to look at the slice level, and further retrieve the visual explanation of a finer
scale.
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Figure 3.3: Block diagram of the Dual Attention Module (DAM), which is embedded into sev-
eral stages of MAXNet, with the objective of capturing both voxel-wise and depth-wise depen-
dencies and variations of feature maps Pn and Dn in hidden layers simultaneously.

Depth-wise attention

As depicted in Fig. 3.3(b), we propose a depth-wise attention module to perceive 3D
context between slices. With F̂n and GA acquired by Eq. (3.2), we do a transpose op-
eration on them to get F̂T

n ∈ RH
′
n×W

′
n×D

′
n×Cn and GT

A ∈ RH
′
n×W

′
n×D

′
n×Cn . Then the inner

product is taken
cD

i,j = F̂T
n (i)G

T
A(j), (3.7)

and the obtained cD
i,j is normalized by Eq. (3.4) to get rD

i,j. Subsequently, a depth-wise
feature map Dn is computed by

Dn = ∑N
i=1 rDF i

n. (3.8)

By predicting the result based on all Pn and Dn with finer and diverse receptive fields
for views at both the voxel and channel levels, the network is enhanced to concen-
trate on the most considerable partial regions, boost the influence of subtle distinc-
tions, and inhibit the background or trivial noise. Briefly speaking, the advantages of
this proposed mechanism can be proclaimed on three fronts: 1) employing the voxel-
wise attention allows low-scale stages to pay more attention on learning both local and
global context attributes; 2) with the elaborate design of a depth-wise attention block,
the model is extended to learn complex and flexible correlations between 3D features;
3) the DAM is significant since data of medical imaging are intrinsically noisy. In this
case, a trainable block other than a linear parameter may be easier to achieve the global
optimum.
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Figure 3.4: Block diagram of the Multi-resolution Fusion Module (MFM), which aggregates
multi-resolution features Pn, Dn, and G5 by use of several fully-connected layers.

3.4.3 Multi-resolution Fusion Module (MFM)

In order to encourage the diversity of learned feature activations and enforce these
features to be close to the label of its input, we construct the Multi-resolution Fusion
Module (MFM) to combine multi-resolution features. The structure of the MFM is
illustrated in Fig. 3.4.

We argue that a fusion module is supposed to be adaptive and can be fine-tuned
in accordance with specific application scenarios. Firstly, we combine Pn and Dn as
follows:

F̂n = β1Pn + β2Dn, n ∈ [3, 4], (3.9)

where β1 and β2 are set to be 0.5 initially and learnable by the back propagation algo-
rithm.

Secondly, we define a set of important class discriminative latent features p for the
input mi as follows:

p(mi) = max
(

ReLU
(

N
(

1
Zn

∑
m

∑
p∈Ri,j,k

F̂n(i, j, k)
))

,

U
(

ReLU
(

N
(

1
Z5

∑
m′

∑
p∈Ri,j,k

G5(i, j, k)
))))

, n ∈ [3, 4],
(3.10)

where Zn/Z5 is the number of convolution filters in F̂n/G5. By using Eq. (3.10), p offers
more accurate localization of important features by considering maximum values both
from the intermediate features and the last convolutional features. We then project
these latent features as

zj = − log(||ẑj − pj||22) + η, j ∈ {1, ..., N} , (3.11)
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where ẑj is extracted from F̂3, F̂4 and G5 after FC layers. η is empirically set to 1e− 4.
The final output is produced by

ŷi = argmax(softmax(FC(z))). (3.12)

The intuition behind this is that the predicted score FC(z) w.r.t. ŷi is high when latent
features p preserved by z are important. In that case, the model is able to learn good
representations by merely asking the latent features p to be close to its predicted label.

3.4.4 Loss Function

Although both DAM and MFM provide a strong capacity for feature learning, it is
non-trivial to obtain interpretable representations without additional regularization.
Therefore, we propose to learn a meaningful latent space via additional objective con-
straints i.e., cluster loss Lcls and contrastive loss Lctr. With which the most important
features are clustered around the ground-truth label, and are well separated from fea-
tures related to other labels. We achieve this goal by jointly optimizing the following
loss function

L = Lce + α1Lcls + α2Lctr, (3.13)

Lcls =
1
n

n

∑
i=1

minẑi ||ẑ− pi||22, pi ∈ pyi , (3.14)

Lctr = −
1
m

m

∑
i=1

minẑi ||ẑi − pi||22, pi /∈ pyi , (3.15)

pyi = max
(

ReLU
(

N
(

1
Zn

∑
m

∑
p∈Ri,j,k

syi
n F̂n(i, j, k)

))
,

U
(

ReLU
(

N
(

1
Z5

∑
m′

∑
p∈Ri,j,k

syi
5 G5(i, j, k)

))))
, n ∈ [3, 4],

(3.16)

where syi
n is the predicted score, Lce is the cross-entropy loss and α1, α2 are hyper-

parameters. Intuitively, minimizing the Lcls encourages the model to have at least
one representation similar to its true label’s latent features, while the contrastive loss
Lctr penalizes the similarity between its representations and other labels’ features.

Consequently, with the Lcls and Lctr terms, the loss function in Eq. (3.13) encour-
ages our model to learn and cluster the latent features into a semantically meaningful
space, which facilitates the prediction of MAXNet and the generation of fine-grained
interpretable heatmaps.
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Figure 3.5: Block diagram of the High-resolution Activation Mapping (HAM). Each arrow
shows the gradient of the classification logit. Our method takes intermediate activations as
inputs, and considers the maximum values from the intermediate features F3 and F4 as well as
the final activation G5, which offers more accurate localization.

3.5 Explaining the MAXNet Predictions

In this section, we propose HAM to capture fine-grained heatmaps AHAM from a dif-
ferent perspective. Also, this section will elaborate on the PCR module, to provide
supplemental evidence of reference samples with ground-truth labels.

3.5.1 Proposed HAM for High-resolution Heatmaps

Most existing visualization methods only consider the last convolutional layer, which
extracts global features of the pathological abnormalities and misses the small subjects
and discrepancies. Instead, we propose High-resolution Activation Mapping (HAM),
which consider values from both the intermediate features and the last convolutional
features, to offer more accurate localization. The detailed structure is depicted in
Fig. 3.5. Recall ŷi is the model’s predicted label for the input mi, and si is its corre-
sponding predicted score before the soft-max function. Based on the proposed DAM
operated onto Fn in stages 3 and 4, it follows

∂si

∂Fn
= W1

n + W2
n , (3.17)

where ∂si
∂Fn

is the gradient of si w.r.t. Fn, and it is decomposed into two terms. One is
W1

n derived from stages, and W2
n is the gradient flowing back from the DAM. Then the

visualization map AHAM is given by

AHAM = U
(

max
(

ReLU
(

N
(

1
m ∑

m

∂si

∂F3
F3(i, j, k)

))
,

U
(

ReLU
(

N
(

1
m′ ∑m′

∂si

∂Fn
Fn(i, j, k)

)))))
, n ∈ [4, 5],

(3.18)
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where F5 = G5, m and m′ are the number of convolution filters for F3 and Fn.
Overall, this method takes intermediate activations as well as the features from

the last convolutional layer as input, which is certainly different from state-of-the-art
methods which only employ the last convolutional features. Therefore, compared to
other techniques that produce blurry maps and lose too much discriminative informa-
tion, our HAM approach is able to learn and identify high-resolution features of brain
areas through capturing diverse cues successfully.

3.5.2 Prediction-basis Creation and Retrieval (PCR)

Fig. 3.2 illustrates the proposed PCR module for our explainable model MAXNet. Our
intuition is that we want to identify samples that have morphologically similar features
compared to the input volume. First, let us define the so-called reference sample and
formulate the problem that the PCR aims to tackle.

Definition 1 (Reference Sample) Given an MRI volume mT
k , k ∈ [1, 2, ..., K] in the test

dataset and the proposed model MAXNet ψ(·), Rc is called a reference sample of mT
k when

Rc = argminRc
D(Rc, mT

k ) s.t. ψ(mT
k ) = ψ(Rc), (3.19)

where D(·) is a function of evaluating the similarity between Rc and mT
k .

Problem 1 Given the mT
k and our model ψ(·), let ŷT

k = ψ(mT
k ), and pk are the latent features

of mT
k . The goal is to retrieve reference samples {Rc, yc} 3

c=1 and corresponding latent features
pc similar to pk, with the objective of providing instance-level justifications for the model output
ŷT

k .

We found that the well-trained model MAXNet is able to learn pivotal and var-
ious features in brain images, e.g., the atrophy of cerebral cortex and hippocampus,
the enlargement of frontal and temporal horns of the lateral ventricles, and the en-
larged sulcal spaces with atrophy of gyri. These pathological changes are believed to
be important for AD diagnosis by expert clinicians [80]. As a result, we consider the
similarity of two generated latent representations since they consist of a set of repre-
sentative features for predictions. That is, the retrieved pc is minimally different from
pk.

Firstly, given each of training data {mi, yi}, MAXNet predicts its label ŷi and calcu-
lates its latent representation pŷi by Eq. (3.16). In what follows, we construct an auxil-
iary diagnosis reference set based on the training dataset, which contains both volumes
Rref as potential reference samples and corresponding latent features p. Specifically,
Rref consists of subsets Ri

ref, and p contains subset pyi for yi, i ∈ [0, 1].
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Secondly, given an input mT
k during testing, MAXNet yields the prediction ŷT

k and
PCR retrieves reference samples Rc with label yc by Eq. (3.19). Where define the simi-
larity evaluation function D(·) as follows

D(Rc, mT
k ) =

1
n

n

∑
j=1
||pc

j − pk
j ||22, pk

j ∈ pyT
k , pc

j ∈ pyc , (3.20)

where || · ||2 is the L2 norm, pyT
k and pyc are calculated by Eq. (3.16). This applies to

our intuition that a reference sample should contain the discriminative features that
are highly aligned with the input sample’s.

With Eq. (3.19) and Eq. (3.20), PCR is able to retrieve samples Rc with latent rep-
resentations pc that are morphologically similar to mT

k ’s features pk. pc can be par-
ticularly beneficial for internists since the most important features for classifying are
retained. By utilizing the PCR module, it will not only help us gain trust and acknowl-
edgment of human users in evidence-centered fields such as medical imaging, but
also provide scientific confidence in real-world applications. Moreover, we believe this
module can be extended to benefit other interpretable processes for multi-classification
problems.

3.5.3 Reasoning Process of our PCR Module

In this section, we present a probabilistic explanation for the proposed PCR’s reasoning
process.

Firstly, we consider the classification task as a problem of estimating conditional
probabilities, in which our goal is to obtain the conditional distribution P(Y = yk, X =

mT
k ). Inspired by Bayes’ Theorem, the problem can be further expressed as:

P(Y = yk|X = mT
k ) =

P(X = mT
k |Y = yk)P(Y = yk)

∑i P(X = mT
k |Y = yi)P(Y = yi)

. (3.21)

Then we define a group of latent features zk
i (m

T
k ) = argminzi

||zi − pi||22, pi ∈ pyk ,
where zi is sampled from ẑi, pyk is computed by Eq. (3.16). Here we assume that
for any input mT

k , there exists only one latent representation zi that is most similar to
pi. As a result, we can make a reasonable assumption that zk(mT

k ) contains sufficient
information about yk. Then we prove the label-conditional probability P(X = mT

k |Y =

yk) can be written as follows:

P(X = mT
k |Y = yk) = P(X = mT

k |zk
1(m

T
k ) = z1, ..., zk

n(m
T
k ) = zn, Y = yk)

· P(zk
1(m

T
k ) = z1, ..., zk

n(m
T
k ) = zn|Y = yk).

(3.22)
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Based on Eq. (3.22) it can be concluded that if X = mT
k , then the probability of

zk
1(m

T
k ) = z1, ..., zk

n(mT
k ) = zn should be 1. Subsequently, we make another assumption

P(X = m|zk
1(m) = z1, ..., zk

n(m) = zn, Y = yk)

= P(X = m|zj
1(m) = z1, ..., zj

n(m) = zn, Y = yj), ∀m ∈ mT, ∀yk, yj ∈ {0, 1} ,
(3.23)

which means that for a given label yk or yj, the probability that m’s latent features z(m)

are most similar to yk or yj is essentially the same. Plugging Eq. (3.22) and Eq. (3.23)
into Eq. (3.21) gives rise to

P(Y = yk|X = mT
k ) =

P(zk
1(m) = z1, ..., zk

n(m) = zn|Y = yk)P(Y = yk)

∑j P(zj
i(m) = zi, ..., zj

n(m) = zn|Y = yj)P(Y = yj)
, (3.24)

where P(zk
1(m) = z1, ..., zk

n(m) = zn|Y = yk) = µ(||z− pyk ||22) is the optimal distribu-
tion based on our loss function in Eq. (3.14).

Based on the above equations, it can be concluded that a reference sample Rc which
has latent representations pc theoretically guarantees the accurate information of instance-
level explanations provided by Rc if it satisfies Rc = argminRc

1
n ∑n

j=1 ||pc
j − pk

j ||22.
We further analyze the impact of a reference sample on the original prediction ac-

curacy.

Theorem 3.5.1 Given an MRI volume mT
k and model ψ(·), Rc is a reference sample of mT

k
with label yc. ŷT

k = ψ(mT
k ), the latent representations for ŷT

k and yc are pk and pc, respectively,
and zyk

j is extracted using Eq. (3.11). Assume that:

• ∃ 0< ξ <1, ||pc
j − pk

j ||2 ≤ (
√

1 + ξ − 1)||zyk
j − pk

j ||2 and ||zyk
j − pk

j ||2 ≤
√

1− ξ

j ∈ {1, ..., n};

• the weight in the last FC layer is 1 for zyk
j = −argmaxẑj

log(||ẑj − pyi
j ||

2
2) + η, and 0

otherwise.

Then using pc in lieu of pk can modify ψ(·)’s predicted logit for at most ∆k = ∑j log(1 +

ξ), j ∈ {1, ..., N}. If the logit score between correct and incorrect labels are at least 2∆k, then
the latent features pc of the reference sample Rc can be used to correctly explain ψ(·)’s decision
about mT

k .

Proof 1 Denote by sk ψ(·)’s logit score with the correctly predicted label ŷT
k . Then it follows

from Eq. (3.11) that

sk = −∑
j

log(||zyk
j − pk

j ||22) + η, j ∈ {1, ..., N} . (3.25)
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Let ∆k be the logit change by choosing reference sample Rc to explain ψ(·)’s decision about mT
k .

Then we have

∆k = sk − sc = ∑
j

log
( ||zyk

j − pc
j ||22

||zyk
j − pk

j ||22

)
(3.26)

According to the assumptions in Theorem 1, we have ||pc
j − pk

j ||2 ≥ (
√

1 + ξ − 1)||zyk
j −

pk
j ||2, and ||zyk

j − pc
j ||2 ≤ ||z

yk
j − pk

j ||2 + ||pc
j − pk

j ||2, which in turn gives us

∆k = ∑
j

log
( ||zyk

j − pc
j ||22

||zyk
j − pk

j ||22

)
≤∑

j
log(1 + ξ). (3.27)

Subsequently, we suppose that the corrected logic score sk is 2∆k larger than any other incorrect
score si, i.e., sk ≥ si + 2∆k. Therefore, when using the reference sample Rc’s latent features pc

to explain ψ(·)’s decision about mT
k , we have

sc ≥ sk − ∆k ≥ si. (3.28)

Given Eq. (3.28), we can claim that model ψ(·) still can correctly classify the volume with the
provided latent representations pc from the reference sample Rc.

It is noted in the experiments that in our well-trained MAXNet, the assumption
always holds that sk ≥ si + 2∆k. Moreover, the distance ||pk

j − pc
j ||2 is generally smaller

than ||zyk
j − pk

j ||2, which verifies our assumptions and in turn confirms the effectiveness
of our PCR module. Empirically, the value of ξ is set to 0.24.

3.5.4 Metrics for Evaluation of PCR

In order to evaluate the accuracy of the reference set Rc, we design two evaluation
metrics and conduct a series of experiments to quantify the effectiveness of reference
samples.

Definition 2 (Swap Deletion Confidence)

ρD
mk,rc =

(s(mT
k )− s(mT

k � K))� (s(mT
k )− s(mT

k � C))

||s(mT
k )− s(mT

k � K)||2 − ||s(mT
k )− s(mT

k � C)||2
, (3.29)

where s(·) is the predicted score, � is the hadamard product. K, C are with the
same dimension as mT

k . For each ki ∈ K, ki = 0 if the position i is located in pk,
otherwise ki = 1. For cj ∈ C, cj = 0 if the position j is located in pc, otherwise cj = 1.
Consequently, ρD

mk,rc measures the similarity between γi
o and γ

j
c.

As is detailed in Theorem 1, pc and pk have been proved to be expressive features
for mT

k ’s prediction. Therefore, our intuition here is to evaluate if there are similar
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changes of the predictions by removing features pc/pk from mT
k . Arguably, a larger

ρD
mk,rc indicates pc causes a similar decrease compared to pk in prediction accuracy

when removed.
Following Definition 2, we define the so-called Swap Insertion Confidence from a

different yet complementary angle.

Definition 3 (Swap Insertion Confidence)

ρI
mk,rc =

s(mT
k � K′)� s(mT

k � C)

||s(mT
k � K′)||2 − ||s(mT

k � C)||2
, (3.30)

where for ki ∈ K′, ki = 1 if the position i is located in pk, otherwise ki = 0. For cj ∈ C,
cj = 1 if the position j is located in pc, otherwise cj = 0. Likewise, the intuition behind
this is to evaluate the similarity of prediction changes by adding features from pc/pk

into mT
k . A larger ρI

mk,rc means pc causes a similar increase compared to pc in prediction
accuracy when added. In the following sections, we will provide experimental results
concerning these two evaluation metrics.

3.6 Experimental Results

3.6.1 Dataset

The datasets used in our experimental studies is the the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset [103], [104]. We select the T1 weighted, pre-processed,
baseline MRI data in the ADNI dataset, and a single scan per subject visit was selected.
To address the issue of explainability and keep the classification task simple, we only
select two diagnosis groups in ADNI, which contain 826 cognitively normal individ-
uals and 422 Alzheimer’s patients with at least one session’s MRI volumes available.
With the consideration of data heterogeneity, we carefully extract data samples from
the ADNI dataset to form three non-overlapping subsets. Each subset is further split
into 1779 images for training, 427 for validation, and 575 for testing. In order to avoid
biased generalization estimates due to same subject image similarities, each subject is
only selected into just one of the sets (i.e., the training, validation, and test sets) for
each subset. Finally, each of the volume is further cropped into size 169 × 208 × 179
for training and validation, and test.

3.6.2 Implementation Details

Our proposed MAXNet is implemented in PyTorch and executed on two Nvidia Volta
V100 GPUs with 16 GB memory each. It is trained using the Adam optimizer with a
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weight decay value of 0.0005, and the batch size is fixed to 8 samples. The initial learn-
ing rate is set to be 0.0001 and will be decayed according to a polynomial schedule. We
pre-train the model with the cross-entropy loss function Lce in Eq. (3.13) for the initial
20 epochs and fine-tune it with the cluster and contrastive losses for 50 epochs. The
value of hyper-parameter α1, α2 are set to be 0.6 and 0.06 respectively after conducting
extensive experiments.

3.6.3 Performance of MAXNet

We compare the classification performance of the proposed architecture with other
interpretable models. Following [105], we resort to two XAI properties, i.e., continuity
and selectivity (more details can be found in [105]), to qualify the interpretability of the
MAXNet.

Table 3.2: Comparative results of various interpretable models on ADNI.

Model Subject-
(AD / NC) ACC AUC Continuity Selectivity

Lee et al. [83] 198 / 229 0.9275 0.9804 - -

3DAN [101] 227 / 305 0.861 0.912 - -

Kroll et al. [95] 153 / 306 - 0.815 - -

VGGNet 3D [106] 47 / 56 0.766 0.863 - -

ResNet 3D [106] 47 / 56 0.854 0.794 - -

AlexNet 2D+C [105] 422 / 826 - 0.923 30.361 -0.059

AlexNet 3D [105] 422 / 826 - 0.898 37.887 0.215

VGG16 2D+C [105] 422 / 826 - 0.892 24.928 0.224

VGG16 3D [105] 422 / 826 - 0.886 41.879 0.039

MAXNet(Subset 1) 422 / 826 0.928 0.959 14.61 -0.79
MAXNet(Subset 2) 422 / 826 0.953 0.978 15.22 -0.87
MAXNet(Subset 3) 422 / 826 0.954 0.980 15.27 -0.71

The comparison results are presented in Table 3.2. It is noted that the existing inter-
pretable models perform evaluation with different cohorts of subjects and the indices
of those subjects were not disclosed. To take into account data heterogeneity, we train
and evaluate our model on the three non-overlapping subsets extracted from the ADNI
dataset. Tables 3.2 reports not only the classification results of the comparison mod-
els, but also the number of subjects used by each model. As can be observed from the
table, AlexNet 3D [105] shows a slightly better classification performance compared
to VGGNet 3D [106]. Lee’s model in [83] yields better prediction outcomes compared
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to its VGG or AlexNet counterparts, as it derives complex nonlinear relationships for
predefined regions. The experimental results presented in Table 3.2 demonstrates that
our proposed MAXNet clearly outperforms its competitors, as it obtains the highest ac-
curacy of 95.4%, and second highest AUC of 98.0% on subset 3 from the ADNI subset.
Although Lee’s model in [83] achieves a slightly higher AUC score than our MAXNet,
its accuracy is lower than ours and its results were validated on much less MRI data
(427 vs. 1248 subjects). As a result, the experimental results reported in Table 3.2 sug-
gests that our proposed model MAXNet is capable of offering accurate diagnoses for
AD vs. NC classification. Last but not the least, it should be noted that the hetero-
geneity among the data samples drawn from ADNI is not considered in [83], [101],
[95], [106], [105], while our work proves to be robust across the samples in the ADNI
dataset.

The results of continuity and selectivity metrics are also shown in Fig. 3.2. Note
that we did not provide some models’ results because they are not reported in relevant
papers. Lower values for continuity suggest that similar MRI scans have more similar
heatmaps. The continuity value of our proposed model is notably lower compared to
other models, it reveals that our MAXNet achieves a continuity of 15.27 on subset 3,
and a selectivity of -0.87 on subset 2. Both are consistently superior to the models con-
sidered in [105]. This means MAXNet is able to capture distinctive patterns of disease
areas by use of the latent feature representations and produce consistent results given
similar MRI scans. Moreover, selectivity quantifies the changes in prediction probabil-
ity of classification when removing the related features gradually, lower values for se-
lectivity means similar MRI volumes have similar relevant features in heatmaps [105].
As is observed, the selectivity value obtained via AlexNet 2D+C, AlexNet 3D, VGG16
2D+C, VGG16 3D [105] varies slightly, this confirms that there is a low correlation be-
tween the heatmaps and the predictions in these models. Instead, our model MAXNet
achieves the lowest value of selectivity, which indicates the learned latent features are
closed related to its final outputs, and well demonstrates its distinctive interpretability.

3.6.4 Qualitative Evaluation of HAM and PCR

Faithfulness and complexity evaluation of HAM

It has been confirmed by neurologists that AD often causes at least moderate cortical
atrophy, enlargement of lateral ventricles, and temporal enlarged horns which are most
macroscopic in MRI volumes [97]. For fair comparison against recent state-of-the-art
methods, we implemented these approaches based on the provided source code on the
same network with an AUC of 0.992 [82], the results can be found in Fig. 3.6. Fig. 3.6(a)
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Figure 3.6: Visual results of visualization methods. Note that (a)-(f) were performed over a
3D CNN with an AUC of 0.992 [82]. (a) input with "AD" label. Ground truth of cerebral cor-
tex, lateral ventricle and hippocampus via FreeSurfer are highlighted, (b) Grad-CAM [19], (c)
Grad-CAM++ [38], (d) CAMERAS [22], (e) RISE [107], (f) Score-CAM [26], (g) proposed HAM-
generated heatmaps which highlight enlarged sulcal spaces caused by atrophy and pathologi-
cal abnormalities of cerebral cortex and hippocampus.

shows ground truth segmented areas of the cerebral cortex, lateral ventricle, and hip-
pocampus for an MRI volume with AD. Subjective comparisons shown in Fig. 3.6(b)
and Fig. 3.6(c) indicate that one nearly cannot identify distinct areas from the heatmaps
generated by both the Grad-CAM [19] and Grad-CAM++ [38]. The heatmaps iden-
tify most of the white matter, whose lesions are not macroscopic when evaluating the
brain disease and thus are not trustable visualization evidence. In addition, the CAM-
ERAS [22] presented in Fig. 3.6(d) shows heatmaps with larger brain areas, but fails
to identify pathological abnormalities and discriminative disease areas. Subsequently,
RISE [107] and Score-CAM [26] obtain relatively unambiguous views of heatmaps, but
still show known patterns of atrophy and fail to highlight the lateral ventricles and
hippocampus. Finally, our proposed method HAM generates high-quality heatmaps
(Fig. 3.6(g)), which show discriminative localizations of brain abnormalities instead of
blurry heatmaps, making it outperform the existing works remarkably. This can be at-
tributed to the effective latent features of aggregated representations from intermediate
layers as well as the last convolutional layer.

Meanwhile, we also apply the above visualization methods to our proposed MAXNet.
Fig. 3.7(a) shows an example of a normal MRI scan, while Figs. 3.7(b) - (f) present
heatmaps produced by the state-of-the-art approaches. As can be observed, these
methods do not perform well and some of them even render strange visual outcomes.
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Figure 3.7: (a) Visualization results of different methods given an input with "Normal" label.

Table 3.3: Comparative evaluation of HAM and other methods

Visualization method Insertion Deletion Runtime

Grad-CAM [19] 0.492 0.822 0.027

Grad-CAM++ [38] 0.554 0.743 0.030

RISE [107] 0.603 0.576 29.32

Score-CAM [26] 0.761 0.362 19.06

CAMERAS [22] 0.676 0.523 3.25

HAM 0.801 0.263 0.092

More importantly, some areas such as lateral ventricles and hippocampus are still em-
phasized even this is a normal case without AD (Fig. 3.7(d)). Therefore, we realize
that existing visualization methods do not work well with our proposed explainable
model MAXNet. By contrast, the proposed HAM shows significant better visualiza-
tion results that can highlight small regions and ignore most of non-neuropathy areas
as shown in Fig. 3.7(g).

We further evaluate HAM on three metrics: runtime, deletion and insertion, which
are adopted in several recent works [105]. An example of the deletion and insertion
curves for a test volume is illustrated in Fig. 3.8, and the average performance for 2500
perturbed volumes is given in Table 3.3. As is observed, compared to both Grad-CAM
[19] and Grad-CAM++ [38], CAMERAS [22] provides better performance, this is po-
tentially caused by the noisy heatmaps due to up-sampling operation. Score-CAM
[26] obtains the state-of-the-art performance on both deletion and insertion metrics,
but the deletion curve is steeply convex, which means its feature selection is not sta-
ble. Instead, our proposed HAM outperforms other approaches on both deletion and
insertion metrics. This is also proof that the heatmaps generated via HAM are able to
capture most of the salient features of brain disease areas and contain less noise. For
the runtime metric, It can be observed that RISE [107], Score-CAM [26] and CAMERAS
[22] all make considerable demands on the time. This is because augmented feature
maps or inputs were fed into models multiple times. As expected, Grad-CAM [19] and
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(a) (b)

Figure 3.8: (a) The deletion curve for Grad-CAM [19], Grad-CAM++ [38], CAMERAS [22] ,
RISE [107], Score-CAM [26], and HAM. The x-axis represents the percentage of removed voxels,
while the y-axis is the corresponding predicted score. Specifically, a steeper slope indicates a
better explanation. (b) The insertion curve for Grad-CAM [19], Grad-CAM++ [38], CAMERAS
[22] , RISE [107], Score-CAM [26], and HAM. The x-axis shows the percentage of added voxels,
and the y-axis is the corresponding predicted score. Specifically, a fast-rising slope implies a
better explanation.

Table 3.4: Comparative evaluation of PCR.

Swap Deletion Confidence Swap Insertion Confidence

W/O PCR PCR W/O PCR PCR

ρm,r1 0.275 0.784 0.297 0.771

ρm,r2 0.182 0.803 0.254 0.755

ρm,r3 0.345 0.818 0.278 0.764

Grad-CAM++ [38] are the fastest methods, because they do not need to make multiple
model predictions with perturbed inputs in theory. Although Grad-CAM [19] achieves
a faster runtime than our HAM, it obtains substantially lower insertion (0.492 vs. 0.801
insertion) and higher deletion (0.822 vs. 0.263 deletion) than ours. These promising re-
sults suggest that our proposed approach HAM is able to identify the saliency features
that are responsible for the model decisions.

Qualitative analysis of PCR

Table 3.4 compares the average values of the proposed metrics Swap Deletion Confi-
dence and Swap Insertion Confidence that are generated with and without PCR (i.e.,
retrieve samples randomly from MRI scans with the same label). Compared to the
baseline which provides relevant samples stochastically, the PCR module is able to find
MRI cases with similar pathological abnormalities. As a result, it obtains higher val-
ues of the Swap Deletion Confidence and Swap Insertion Confidence. Fig. 3.9 displays
an example of a test MRI volume with the label "AD" and three reference samples.
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Input R1 R2 R3

Figure 3.9: Given the mT
k , the explainable tool provides HAM-generated heatmaps and three

reference samples Rc, c ∈ [1, 2, 3] whose latent features are most similar to mT
k .

It is noted that the heatmaps of the reference samples are quite similar to the input’s
heatmaps. PCR highlights the atrophy of the cerebral cortex, the pathological abnor-
malities of the hippocampus, and the enlargement of the lateral ventricle, which have
salient features related to the model decision. This confirms PCR’s ability to retrieve
samples with similar disease areas.

3.6.5 Ablation Study

We evaluate the contribution of each constituent module in our proposed MAXNet
and HAM method on the subset of ADNI data, i.e., Lcls + Lctr, DAM and MFM by
removing at least one module at a time. The detailed results are shown in Table 3.5.
Several observations are made. (1) If we eliminate the loss Lcls + Lctr, then the model
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Table 3.5: Contributions of individual modules in the proposed MAXNet on subset 1. Values
indicating mask collapse are blank.

Lcls + Lctr DAM MFM ACC Insertion Deletion

X 0.725±0.003 0.445 0.398

X 0.752±0.075 0.546 0.446

X 0.763±0.008 0.327 0.338

X X 0.899±0.140 0.762 0.636

X X 0.856±0.021 0.526 0.553

X X 0.916±0.012 0.678 0.703

X X X 0.953±0.002 0.801 0.263

actually adapts to make predictions or produce heatmaps primarily based on the last
convolution features, which fails to achieve high classification accuracy as MRI vol-
umes are difficult to classify using coarse feature maps; (2) If we abandon the DAM,
each sample can only be learned with single-resolution activation features stemming
from the high-scale level. Consequently, there is a drastic drop on both average ac-
curacy and insertion score; (3) Finally, if we discard the MFM and concatenate all the
multi-resolution feature maps, the model is trapped into local optima and cannot be
further improved.

3.6.6 Discussions

There are mainly two factors which may limit the performance of our work. First,
since the ground-truth annotations of pathological abnormalities such as the bound-
ing boxes in the brain regions are not publicly available, our model learns the class
discriminative latent features in a weakly supervised manner (i.e., under the super-
vision of image-level class labels), which leads to inaccuracy in the identification of
different types of pathologies. Second, the proposed model does not incorporate any
medical domain knowledge as inputs. As a result, our model may not learn features
that exactly match prior knowledge from relevant professionals such as doctors and
clinicians.

3.7 Conclusion

In this paper, we integrated several novel modules to constitute a novel explainable
framework by employing 3D deep learning techniques. A novel explainable network
dubbed MAXNet was proposed to classify AD. Among which, we introduced the
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DAM and MFM blocks to aggregate multi-resolution feature activation maps into the
latent space, which was not only representative for high-resolution explanations but
also crucial for model predictions. Besides, the proposed cluster and contrastive losses
encouraged the model to learn interpretable features w.r.t. target labels in the latent
space. Additionally, we provided an explainable tool which comprises HAM to gen-
erate voxel-wise information, and the PCR module to provide similar samples as the
prediction basis. By comparing the proposed model to other state-of-the-art methods
through extensive experiments, we validated the effectiveness of our model with good
diagnostic accuracy. Moreover, the model was capable of providing insightful explana-
tions about its decisions. Both factors are conducive to applying deep learning models
to clinical applications.

Despite the encouraging performance gained by our work, it suffers two limita-
tions. Firstly, the proposed model does not incorporate medical domain knowledge.
For future studies, the model should potentially be further improved if prior domain
knowledge from medical professionals is integrated. Secondly, the latent features are
learned by our model in a weakly supervised manner due to the lack of publicly avail-
able annotations of pathological abnormalities, which may neglect possible patholog-
ical locations in the brain. Therefore, we plan to develop approaches to learn and
integrate expert knowledge in our future work.
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Chapter 4

Explainable Vision Transformer with
Pixel-wise Attention

In this chapter, we propose the explainable vision transformer model for achieving
accuracy-explainability trade-off. An effective way to discover robust interpretable
features and perform the prediction accurately is a pivotal step for building an intrin-
sically interpretable model. We obtain such interpretable representations by explain-
able attention weights that are able to learn semantically interpretable representations
from tokens in terms of model decisions with noise robustness. We also propose a
self-supervised attribute-guided loss for our architecture, which utilizes both the at-
tribute discriminability mechanism and the attribute diversity mechanism to enhance
the quality of learned representations.

4.1 Introduction

Over the last few years, transformer models have attracted increasing attention with
encouraging results in a multitude of challenging domains, such as natural language
processing, vision, or graphs [108]. The Multi-Head Attention (MHA) and Multi-Layer
Perceptron (MLP) modules in transformers effectively model global representations
without convolution [109]. The effectiveness of this framework lies in its ability to cap-
ture long-range dependencies. Despite their excellent performance, most transformer
architectures are usually expressed as black boxes [110]. Specifically, the large number
of parameters and complex interactions between modules make it challenging to pro-
vide explanations for the model predictions. Given the high applicability of transform-
ers in high-risk decision-making domains, such as healthcare and autonomous driv-
ing, there is a strong necessity for gaining insights into the model’s decision-making
process [111]. An interpretable solution is able to aid in debugging the models and
identifying crucial features for downstream tasks.

XAI is an emerging sub-field of AI pursuing to capture the properties that have in-
fluence over the decision of a model [35]. Depending on the phases where predictions
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and explanations are performed, these methods can be categorized into two types:
intrinsically explainable models and post-hoc explanation methods. Several previ-
ous studies have pointed out that explainable models outperform post-hoc methods
in faithfulness and stability [112]. Unfortunately, little work has been done so far in
the field of explainable transformers. In order to leverage advantages of explainability,
recent research efforts have been made to explore the possibility of building inherently
explainable transformers [113]. However, the explicit expressive features were not ex-
plored to obtain faithful explanations w.r.t. model decisions.

Recently, transformers have shown promising results in weakly supervised seman-
tic segmentation (WSSS) tasks [114]. The generation of pixel-level pseudo segmen-
tation ground-truth labels based on image-level labels is a pivotal step for this task.
Transformers employ MHA and MLP to effectively capture long-range semantic cor-
relations, which play a critical role in localizing the target object. Despite the fact that
different attention heads in the transformer can attend to diverse semantic areas of an
image, it is still unclear how to correctly align these features with a particular semantic
class [110]. One common issue among existing transformer-based works is the utiliza-
tion of a token for each class, which often highlight the most discriminative region of
an object instead of the entire object region [108].

In this chapter, we propose the so-called eXplainable Vision Transformer (eX-ViT)
with the inherent attribute of explainability and high performance for WSSS tasks.
Specifically, the eX-ViT comprises the Explainable Multi-Head Attention (E-MHA) mod-
ule, which can inherently provide interpretable attention maps that align with infor-
mative input patterns with noise robustness. Furthermore, the Attribute-guided Ex-
plainer (AttE) module is integrated into the eX-ViT, to learn discriminative attribute
features for the target object. Intuitively, we assume each object is made up of sev-
eral attributes, which could be basic elements including color, shape, and texture, or
higher-level local features such as body parts. Our key idea is to decompose the feature
representation into a set of learnable attribute features for the target object, capable of
capturing diverse and discriminative object features. Besides, a novel attribute-guided
loss is designed to promote the learning process inside AttE in a self-supervised man-
ner. More precisely, this loss implicitly adds the regularization to force the representa-
tions to focus on various attributes of each target class through the attribute discrim-
inability mechanism and attribute diversity mechanism. We then verify and evaluate
our method on several WSSS tasks. To the best of our knowledge, this is the first work
to develop an intrinsically explainable vision transformer for WSSS tasks.

The remainder of the chapter is organized as follows. Section 4.2 briefly describes
some recent related works on vision transformers, XAI techniques for transformers,
and weakly supervised semantic segmentation methodologies. Section 4.3 presents the
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explainable architecture, i.e., eX-ViT, and introduces its main modules. Experimental
results and discussions are presented in Section 4.4, followed by concluding remarks
drawn in Section 4.5.

4.2 Related work

4.2.1 Transformers for Vision

Transformer-based models have recently been introduced to vision tasks and achieved
remarkable progress. One of purely transformer-based models is the ViT [109], which
has exhibited impressive performance without convolution. However, the ViT is infe-
rior to CNNs when capturing local details. DeiT [115] addressed this issue by employ-
ing a strong image classifier as the teacher model to train data-efficient transformer
models. Li et al. [114] designed the TransCAM, which explicitly utilizes the attention
weights produced from the transformer to refine CAM results. Moreover, there are
some research studies with modified ViT architectures that benefit downstream vision
tasks such as semantic segmentation. However, most of the existing designs focus
on efficient and effective frameworks for downstream tasks without considering inter-
pretability. Thus these methods tend to be less faithful to the users. Recently, Peng et
al. [116] proposed the Conformer to aggregate both the convolutional operations and
self-attention mechanisms into a unified framework. However, Conformer results in
a more complicated design and additional computational cost. Xu et al. [108] added
extra class tokens and enforced them learning the activation maps of different classes,
it has limited ability to encode more information when it comes to a larger data set,
e.g., COCO [117]. In this chapter, we aim to address these issues by proposing the so-
called eX-ViT, which exploits explainable features that are robust to noise and provides
faithful explanations.

4.2.2 XAI for Transformers

There are mainly two sub-fields of explainable techniques: intrinsically explainable
models and post-hoc explanation methods. Unlike post-hoc models, intrinsically ex-
plainable models aim to directly incorporate interpretability in the structure of the
models, thus revealing the intrinsic reasoning process of the models [112]. Several
previous studies have pointed out that explainable models outperform post-hoc meth-
ods in faithfulness and stability [112]. Unfortunately, little work has been done so far
in the field of explainable transformers. Caron et al. [113] utilized a self-supervised
approach called DINO based on vision transformers and concluded that the attention
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maps contain features about the semantic information of the image. But the expressive
features were not explored to obtain faithful explanations. Different from the majority
of previous studies, we attempt to build the first explainable transformer architecture
with the objective of learning interpretable features.

In terms of post-hoc explanation approaches, there are a variety of recent studies
that explore the explainability for transformers. Chefer et al. [112] proposed a layer-
wise relevance propagation (LRP) method by introducing a relevancy propagation rule
that is applicable to both positive and negative contributions. This approach, however,
is not able to provide the interpretation for attention modules besides self-attention.
Abnar et al. [118] proposed to combine the attention scores across multiple layers, but
this method fails to distinguish between positive and negative attributions. Recently,
Chefer et al. [52] also proposed a generic approach to explain transformers including
bi-modal ones. However, most of the existing post-hoc methods tend to be fragile,
sensitive, and less faithful. Since they cannot faithfully uncover the decision making
process of the trained models, and the explanations can be easily impaired by different
input schemes (e.g., perturbations or transformations).

4.2.3 Weakly Supervised Semantic Segmentation

Compared to supervised learning methods, WSSS aims at training models with weak
labels such as bounding boxes and image-level labels. As the cornerstone of WSSS,
The Class Activation Mapping (CAM) technique is widely used in the design of WSSS
tasks to extract object localization maps and approximate the segmentation mask [21].
Despite the encouraging results, CAM suffers from the issue of incomplete object ac-
tivation [108]. To address this drawback, several approaches have been proposed as
the CAM expansions to remove the most discriminative parts of CAM and discover
more complete object localization maps. Chen et al. [119] designed the ReCAM, which
a method that leverages CAM to extract pixels belonging to specific classes and subse-
quently incorporates them into a fully-connected layer along with the corresponding
class label for further learning. Yuan et al. [120] proposed the multi-strategy contrastive
learning framework to discover the similarity and dissimilarity of contrastive sample
pairs. Lee et al. [121] learned pixel-level feedback by use of saliency map generated
from the off-the-shelf detection model. Chen et al. [111] introduced several image-
specific prototype features for WSSS learning with favorable performance. The above
methods are commonly based on CNNs, which reveals the inherent drawback of con-
volution. Xu et al. [108] introduced the transformer attention to learn class-specific
localization maps. Ru et al. [110] adopted the semantic affinity in self-attentions in
transformers to produce more integral pseudo labels for WSSS. However, there is still a
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Figure 4.1: Illustration of the proposed eXplainable Vision Transformer (eX-ViT) architecture.
x and x

′
are two different random transformations of an input image. We use a transformer

backbone as the encoder to extract feature maps, the backbone contains consecutive L encoding
layers with Explainable Multi-Head Attention (E-MHA) as the attention block. θ is the train-
able module, while E is an exponential moving average of θ. The Attribute-guided Explainer
(AttE) is proposed atop the encoder to decompose the attention maps into features of attributes
through diverse attribute discovery, to facilitate the generation of more faithful and robust in-
terpretations. We also design a self-supervised attribute-guided loss function for our eX-ViT,
which aims at learning robust semantic representations via the attribute diversity mechanism
and attribute discriminability mechanism.

large gap between fully supervised semantic segmentation and previous transformer-
based WSSS methods. In our work, we propose a transformer-based model to extract
explainable features to localize class-specific feature maps. We attempt to build a novel
transformer architecture with the objective of learning interpretable representations in
a self-supervised manner to narrow the supervision gap.

4.3 Method

This section details our proposed network architecture, i.e., the eX-ViT. First, we intro-
duce the overall architecture. Second, we describe the intuition and design of the E-
MHA and discuss several important properties of the E-MHA. Furthermore, The AttE
is proposed to integrate into our eX-ViT to decompose the attention maps into fea-
tures of attributes through diverse attribute discovery, and a self-supervised attribute-
guided loss is adopted to learn robust semantic representations via the attribute diver-
sity mechanism and attribute discriminability mechanism, which constitutes faithful
evidence for model predictions.
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4.3.1 Architecture of the eX-ViT

The overall architecture of our proposed eX-ViT is depicted in Fig. 4.1. In particular,
the eX-ViT is a siamese network, which comprises two branches for a pair of input
images (two data augmentations from an original input) to learn interpretable atten-
tion maps in a self-supervised manner. Each branch comprises a transformer encoder
with L transformer layers consisting of the novel Explainable Multi-Head Attention (E-
MHA) module, and the Attribute-guided Explainer (AttE) module atop the encoder.
Specifically, the parameters E in the lower branch use a momentum update with the
upper θ. Empirically, the proposed architecture can conveniently replace the backbone
networks in existing methods for WSSS tasks.

4.3.2 Explainable Multi-Head Attention (E-MHA)

In this section, we introduce our novel Explainable Multi-Head Attention (E-MHA)
module as shown in Fig. 4.2, which consists of H parallel heads. Specifically, given an
input feature map X ∈ RT×d where T is the spatial size and d is the feature dimension,
each head Hh holds an explainable attention weight Ah ∈ RN×d (N is the spatial size
of Ah.) that represents the relative importance of input features. That is, Ah aims to
learn explainable features for the output through the proposed E-MHA module.

In particular, we structure this section around two crucial attributes of the E-MHA
module: Noise robustness: The E-MHA is computed as a dynamic alignment between
the input tokens and the attention weight. When the module is optimized, the atten-
tion weight is driven to focus on the most discriminative and class-related patterns
from the input tokens. Instead of directly removing the irrelevant noises from the in-
put image, we adopt a dynamic alignment mechanism in E-MHA to extract discrimi-
native features from the input, thus reducing the noise information gradually and then
preserving the key input patterns.

Inherent explainability: Given input X, the E-MHA aims to learn the attention
weight that maximizes the alignment between input tokens and the attention weight.
During the optimization process, maximizing this alignment means encoding the pro-
jected input values as eigenvectors of the attention weight. As a result of this property,
the model-inherent attention weight is learned with the discriminative input patterns
and thus directly used to explain model decisions without needing any external tools.

First, given input X, the projected key, query and value are obtained as follows

Q = XW Q, K = XWK, V = XWV , (4.1)

where W Q ∈ Rd×d, WK ∈ Rd×d, and WV ∈ Rd×d are trainable transform matrices.
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Figure 4.2: The architecture of Explainable Multi-Head Attention (E-MHA). We use⊗ to denote
matrix multiplication.

Second, the self-attention operation is constructed by

W =
QKT
√

d
, (4.2)

where the obtained matrix W implies how much attention is paid on each token.
Third, the attention weight A is defined as follows

A = fθ(W + b)T, (4.3)

where b is a trainable bias term, which is introduced as an initial alignment for the
input patterns. fθ(·) is a non-linear function that scales the L2 norm of its input, i.e.,
fθ(x) = x

||x||2
and || fθ(x)|| ≤ 1. In our case, L2 norm is applied to the vector of (W + b).

In what follows, the self-attention feature S is formally expressed as

S = ATV , (4.4)

According to Eq. 4.3, ||A|| ≤ 1. Therefore S in Eq. 4.4 is upper-bounded as follows

S = ||A|| ||V || cos(A, V) ≤ ||V ||. (4.5)

Where both A and V are reshaped to a row-wise feature vector before applying the L2
norm function || · ||. When Eq. 4.5 is optimized, the attention weight A is proportional
to V . In order to achieve maximal output, A is driven to align with the discriminative
features in V , instead of the uninformative noise. Therefore, S can only achieve this
upper bound if all possible solutions of v ∈ V are encoded as eigenvectors in the
weight A. This maximization suggests with the attention weight A, we will obtain an
inherently explainable decomposition of input patterns.
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Figure 4.3: Illustration of Attribute-guided Explainer (AttE). We aggregate the interpretable
attention maps from the last K transformer layers to generate a fused attention map with good
precision on the complete object context information. The attribute features are regarded as the
complement information to better guide the localization of the object context, thus producing
robust attribute features in a weakly supervised manner.

Overall, the computation in layer l is expressed as

Sl = E−MHA(LN(F l−1)),

Zl = Sl + F l−1,

F l = MLP(LN(Zl)) + Zl,

(4.6)

where LN(·) is the LayerNorm layer, MLP(·) denotes the multi-layer perceptron layer,
and F l is the output of layer l.

Our key motivation of E-MHA is to dynamically align its attention weights with
the discriminative patterns from input values while reducing the impact of noise. The
cascade transformer layers in the encoder enable the model to suppress the noise in-
formation gradually and learn discriminative input patterns. As a result, the model
is able to discover robust representations from the input image. With the attributes of
noise robustness and inherent explainability, E-MHA produces the transformer atten-
tion map which inherently provides an explainable combination of contributions from
discriminative input patterns w.r.t. the model predictions.

4.3.3 Attribute-guided Explainer (AttE)

Although the proposed E-MHA provides the intuitive process for explainable feature
learning, it is non-trivial to obtain intrinsically interpretable representations that ben-
efit the WSSS tasks without additional regularization. Inspired by the pixel-wise pre-
diction scheme used in semantic segmentation frameworks to localize objects, we pro-
pose the Attribute-guided Explainer (AttE) module for our eX-ViT with the objective
of decomposing the attention map into attribute features based on the diverse attribute
discovery. By which, the learned feature maps can be viewed as a set of attributes at a
granular level that capture more complete object information.
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Given that the transformer structure tends to learn more uniform representations
across all layers, we propose to utilize the transformer attention maps from the last
layer in eX-ViT’s encoder, to learn a set of trainable attribute features. Concretely, to
model the context attention, given the feature map FL ∈ RH×W×d produced by the
encoder Eθ, we first calculate a set of spatial feature maps that capture the relative
importance of all HW locations as follows

Ci,j = fφ(FL), ∀{i, j} ∈ H ×W, (4.7)

where fφ(·) is implemented by a 2-layer MLP block, with one hidden layer followed
by a LN layer and the ReLU activation layer. Ci,j ∈ RH×W×c is the obtained feature
map with the channel dimension c. We will investigate the influence of c on the model
performance in Section 4.4.3.

Furthermore, we apply the `2-norm function to Ci,j along the channel dimension,
which is formally expressed as

Ci,j =
Ci,j

||Ci,j||2
, (4.8)

where || · ||2 denotes the L2 norm, Ci,j is the normalized representation indicating
which spatial features to emphasize or suppress.

Subsequently, C is sliced into S groups on the channel dimension, i.e., (C1, C2,...,
CS), where Cs ∈ RH×W× c

S stands for the feature map of the s-th attribute, S is the total
number of attributes. To this end, we can apply Cs of attribute s to the feature FL by

Gs = Cs � FL, (4.9)

where� is the element-wise product, and the Cs is broadcast along the channel dimen-
sion to match the shape of FL. G = [G1, G2, ..., GS] is the final output that is concate-
nated along the channel dimension. By this means, each feature map FL is projected
into S attribute representations that explicitly reveal which pixels are related to the at-
tribute s. Likewise, we follow the same procedure described from Eqs. 4.7 - 4.9, the
attribute representation G

′
of the second augmented input can be generated accord-

ingly with the momentum encoder EE . And our AttEE is also the exponential moving
average of the trained AttEθ.

In summary, the output of AttE can be seen as the decomposed contributions for
individual attributes. By this means, our model is able to encode semantically explain-
able features for the target object in an explicit manner, which facilitates the learning
of complete object context information. Moreover, we elaborately design our attribute-
guided loss function to guide the learning of AttE, which will be presented in next
subsection.
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4.3.4 Attribute-guided Loss Function

A challenging problem for typical vision transformers is that they are not intrinsically
interpretable due to lack of the representational power. In our work, we propose to
improve model interpretability by regularizing its representations with the attribute-
guided loss function, i.e., the global-level attribute-guided loss Lglobal, the local-level
attribute discriminability loss Ldis loss and the attribute diversity loss Ldiv. On one
hand, the Lglobal encourages the predicted attribute features to approximate the tar-
get object, which ensures the faithfulness of the global representations. On the other
hand, the Ldis and Ldiv aim to localize fine-grained attributes through the attribute dis-
criminability mechanism and attribute diversity mechanism, thus enabling the robust
feature learning.

Since higher layers discover high-level concepts like objects or scenes, we propose
to fuse transformer attention maps from the last K encoder layers to achieve good
accuracy on the complete object context information. Hence, given the obtained feature
map F l in l-th encoder layer, the fused attention map is expressed as

F̂ =
1
K

K

∑
l

F l, (4.10)

where F̂ is the fused transformer attention map. By this means, we aggregate cascaded
encoder blocks to produce a reliable attention map for complete object localization.
As the aggregated attention map F̂ is attribute-agnostic, we propose to couple it with
the attribute features G to generate the attribute-guided attention map. The process is
defined as follows

M = F̂ �G, (4.11)

where M represents the final output of the attribute-guided feature map.
Based upon M, the global-level attribute-guided loss Lglobal is computed by the

multi-label soft margin loss

Lglobal =
1
C

C

∑
c=1

(yc log(ŷc) + (1− yc) log(1− ŷc)), (4.12)

where the prediction ŷc is obtained by feeding the feature map M into a classification
layer followed by a generalized mean pooling operation. By optimizing the Lglobal,
the interpretable features are gathered as a summation of the important scores of all
attribute features, which ensures the faithfulness of the explanations.
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In addition, to improve the ability of network for learning diverse and discrimina-
tive attribute representations for the target object, we propose the local-level attribute-
guided loss through the attribute discriminability mechanism and attribute diversity
mechanism in a self-supervised manner. Intuitively, the attribute discriminability mech-
anism aims to make attribute features consistently discriminative between two types
of input views, while the attribute diversity mechanism enables the model to learn the
effective decomposition with the attribute diversity. Formally, the attribute discrim-
inability loss Ldis is defined by

Ldis = |d−
S

∑
s=1

ds|,

d = `(g(G), g(G
′
)),

ds = `(g(Gs), g(G
′
s)),

(4.13)

where g(·) is the generalized mean pooling. And we adopt the normalized Mean
Square Error as the `(·) function to calculate the distance between two features. As
can be seen from Eq. 4.13, d is leveraged to minimize the difference between attribute
features, while ds is used to guarantee the consistency between G and G

′
for each indi-

vidual attribute. Empirically, this attribute discriminability loss function Ldis is able to
facilitate the model to discover discriminative class-specific attributes and obtain more
comprehensive localization maps. Meanwhile, we introduce the attribute diversity
loss Ldiv is formally defined by

Ldiv =
1

S(S− 1)

S

∑
i=1,j=1

S

∑
i 6=j

< Gi, Gj >

||Gi||2||Gj||2
, (4.14)

The intuition behind the Ldiv is to make attribute features to the maximally indepen-
dent from each other, so as to make attribute features focus on different discriminative
object regions.

Overall, the loss function for the proposed eX-ViT is given below

L = Lglobal + αLdis + βLdiv, (4.15)

where Lglobal is the multi-label soft margin loss. α and β are the coefficient of Ldis and
Ldiv, respectively.

As a result, our attribute-guided loss promotes the learning of attribute features.
The global-level loss Lglobal ensures a faithful transformer model, while the Ldis and
Ldiv enable discriminative and robust attribute features. The effectiveness of the loss
function is further verified in the experimental section.
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4.4 Experimental Results

In this section, we first introduce the experimental settings including datasets and im-
plementation details. Second, we evaluate the efficiency of our proposed eX-ViT and
compare it with the recent state-of-the-art methods. Third, we conduct a series of ab-
lation studies to discover the performance contribution from different modules in our
framework.

4.4.1 Setup

Datasets

We conduct experiments on PASCAL VOC 2012 dataset [122] and MS COCO 2014
dataset [117]. PASCAL VOC 2012 dataset includes 20 object classes and one back-
ground class for the semantic segmentation task. Following the common experimen-
tal configuration from others, we adopt the augmented dataset which contains three
subsets, training, validation, and testing sets, each having 10582, 1449, and 1464 im-
ages, respectively. MS COCO 2014 dataset uses 81 classes, its training and validation
sets have 82081 images and 40137 images respectively. Note that image-level labels
are only used during training and ground-truth bounding box annotations are solely
used during the inference time. In line with previous works [110], we report the mean
Intersection-over-Union (mIoU) to evaluate the performance of our proposed model.

Implementation Details

We use PyTorch for implementation and conduct experiments. The encoder param-
eters are pre-trained on ImageNet. During training, we use the AdamW optimizer.
For the transformer encoder Eθ, the initial learning rate is set to be 5× 10−5, which is
further decayed via a polynomial schedule. The learning rate for the rest of the pa-
rameters is 5× 10−4. For the training on the PASCAL VOC 2012 dataset, the batch size
is set as 16, and the training process lasts 40k iterations. On MS COCO 2014 dataset,
we trained the models for 80k iterations with a batch size of 8. For data augmentation,
we used random scaling with a range of [0.5,2.0], random horizontally flipping, and
random cropping.

The default hyper-parameters are set as follows. For encoders Eθ and EE , it contains
12 layers, 6 heads within each E-MHA, and the hidden dimension is set to 384. Em-
pirically, we set α and β in Eq. 4.15 as 0.5 and 1.0 respectively throughout this chapter.
In line with previous works, we use the ResNet38 [123] as the backbone for semantic
segmentation. At test time, only the branch with encoder Eθ is needed. Following the
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Table 4.1: mIoU (%) of localization maps on the PASCAL VOC 2012 training set.

Method Local. Maps +denseCRF

SCE [125] 50.9 55.3
SEAM [124] 55.4 56.8
EDAM [126] 52.8 58.2
AdvCAM [127] 55.6 62.1
ECS-Net [128] 56.6 58.6
CSE [129] 56.0 62.8
SIPE [111] 58.6 64.7
ReCAM [119] 56.6 -
(Ours) eX-ViT 59.1 65.3

common practice in prior studies [124], we use multi-scale testing and CRFs to obtain
pseudo segmentation results.

4.4.2 Comparison with State-of-the-arts

Comparison on Localization Maps

We first evaluate the qualitative results of CAM in mIoU(%) on localization maps. Ta-
ble 4.1 reports the results of our proposed method as well as other recent state-of-the-
art approaches on the PASCAL VOC 2012 training set. As can be seen from the table,
SIPE [111] achieves the state-of-the-art result with a mIoU of 58.6%. eX-ViT outper-
forms all compared methods in terms of both metrics. Concretely, the results show
that our eX-ViT improves the mIoU to 59.1%. We also conduct experiments based on
eX-ViT with denseCRF post-processing, and the gain becomes up to 65.3%. Fig. 4.4
shows visual comparisons of object localization maps on the PASCAL VOC 2012 train-
ing set. As shown in Fig. 4.4, the fused class-specific attribute-guided localization map
can effectively capture the discriminative features within the object context of the tar-
get class with more useful clues. As a result, the fused localization map by use of our
eX-ViT brings notable visual improvements to produce complete and precise localiza-
tion maps.

Comparison on Segmentation Results

The comparison results among the fully-supervised and weakly supervised state-of-
the-art methods on PASCAL VOC 2012 validation and test sets are reported in Ta-
ble 4.2. Among the compared methods, the eX-ViT is able to remarkably improve the
segmentation performance using only image-level labels on the validation and test
sets, respectively. As can be observed, compared to the fully-supervised methods, the
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Input Ground-truth CAM [21] SIPE [111] AdvCAM [127] Ours

Figure 4.4: Visual comparison of localization maps generated by different methods on PASCAL
VOC 2012 training set. From left to right: original image, ground-truth, CAM [21], SIPE [111],
AdvCAM [127] and our eX-ViT.

eX-ViT is able to obtain comparable performance with 71.2% mIoU on the validation
set and 71.1% mIoU on the test set. Compared with the recent state-of-the-art weakly
supervised models, e.g., EPS [121] and EDAM [126] that use both additional saliency
maps and image-level labels as supervision signals, eX-ViT still shows superior perfor-
mance. The qualitative segmentation results on the validation set are shown in Fig. 4.5.
Based on our model, DeepLabV2 can produce accurate and complete object segmen-
tation results in various challenging scenarios, including different object scales and
multiple objects.

Table 4.3 reports the semantic segmentation results on the MS COCO 2014 dataset.
It is observed that methods with the supervision of saliency maps such as DSRG [141]
and AuxSegNet [134] do not provide results comparable or superior to the WSSS meth-
ods with only image-level labels. The poor performance is caused by the limitation of
saliency maps generated by pre-trained models. Instead, our method that leverages
image-level labels achieves a segmentation mIoU of 42.9% with ResNet38 backbone,
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Table 4.2: Performance comparison of various methods in mIoU (%) on the PASCAL VOC 2012
validation and test sets. Sup. indicates supervision type. F : full supervision; I : image-level
labels; S : saliency maps.

Method Sup. Backbone validation test

Fully-supervised methods
DeepLab [130] F ResNet101 77.6 79.7
WideResNet38 [123] F WR38 80.8 82.5
Segformer [131] F MiT-B1 78.7 -

Weakly-supervised methods
SEAM [124] I ResNet38 64.5 65.7
RRM [132] I ResNet101 66.3 66.5
CONTA [133] I ResNet38 66.1 66.7
AuxSegNet [134] I + S ResNet38 69.0 68.6
EPS [121] I + S ResNet101 70.9 70.8
EDAM [126] I + S ResNet101 70.9 70.6
CDA [135] I ResNet38 66.1 66.8
ECS-Net [128] I ResNet38 66.6 67.6
CSE [129] I ResNet38 68.4 68.2
AdvCAM [127] I ResNet101 68.1 68.0
RIB [136] I ResNet101 68.3 68.6
A2GNN [137] I ResNet101 66.8 67.4
LIID [138] I ResNet101 66.5 67.5
SIPE [111] I ResNet101 68.8 69.7
ReCAM [119] I ResNet101 68.5 68.4
Ru et al. [110] I MiT-B1 66.0 66.3
MCTformer[108] I ResNet38 71.9 71.6
Kho et al. [139] I ResNet38 66.4 66.8
RRM-ResNet [140] I ResNet101 69.3 69.2
MuSCLe [120] I EfficientNet 66.6 68.8
TransCAM [114] I ResNet38 69.3 69.6
(Ours) eX-ViT I ResNet38 71.2 71.1

which surpasses most recent state-of-the-art WSSS methods including SEAM [124],
CSE [129], and MCTformer [108] by a large margin. Several qualitative segmentation
results are shown in Fig. 4.6. These results confirm the effectiveness of our model,
which is consistent with our intuition. Specifically, our eX-ViT remarkably improves
the overall performance with the indispensable block of E-MHA and the AttE mod-
ule. Adding these modules explicitly encourages eX-ViT to gain insightful clues on
the complete object scene, and boost the model efficiency in producing accurate and
complete object boundaries. It is noted that both the RIB [136] and SIPE [111] outper-
form our proposed eX-ViT model on the COCO validation set. This is mainly because
that vision Transformers are a relatively new model architecture for WSSS compared
to their traditional CNNs counterparts. Therefore, ViTs still require further refinement
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Table 4.3: Performance comparison of the state-of-the-art WSSS methods in mIoU (%) on the
MS COCO 2014 validation set. Sup. indicates supervision type. I : image-level labels; S :
saliency maps.

Method Sup. Backbone mIoU (%)

CNN
DSRG [141] I + S VGG16 26.0
AuxSegNet [134] I + S ResNet38 33.9
EPS [121] I + S ResNet101 35.7
CONTA [133] I ResNet101 33.4
SEAM [124] I ResNet38 31.9
CSE [129] I ResNet38 36.4
CDA [135] I ResNet38 33.2
ReCAM [119] I ResNet101 39.4
SIPE[111] I ResNet38 43.6
RIB [136] I ResNet101 43.8

Transformer
Ru et al. [110] I MiT-B1 38.9
MCTformer [108] I ResNet38 42.0
(Ours) eX-ViT I ResNet38 42.9

and optimization to achieve the state-of-the-art performance. We hope that the eX-
ViT’s promising performance will inspire further research efforts to enhance ViTs’ per-
formance for WSSS tasks.

Comparison on Interpretability

To compare our method with other explainable methods, we also adopt two common
metrics, i.e., average precision (AP) and average recall (AR). Which are commonly
used in the literature to measure interpretability. We evaluate our method using the
DeiT backbone [115] and conduct the weakly-supervised image segmentation experi-
ments, which is in line with earlier work [52]. The quantitative results are shown in
Table 4.4. We can see that our model clearly surpasses the ViT model which contains
the raw attentions, it reveals that our MAXNet achieves an AP of 15.7%, and an AR
of 22.3%. We also observe that the post-hoc interpretability methods such as Rollout
[118], GradCAM [19], and partial LRP [142] do not obtain faithful results compared to
the counterparts. Which is possibly caused due to the extensive noises introduced by
gradients or propagation rules.

Fig. 4.7 shows three cases of visualization results along with their ground truth seg-
mentation label maps. Compared to the original CAM without AttE, attention maps
produced with our model perform well in precisely locating both small and large ob-
jects with more complete object boundaries. This verifies our intuition with the design
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Input Ground-truth SIPE [111] Ours

Figure 4.5: Qualitative segmentation results on the validation set of PASCAL VOC 2012. From
left to right: original image, ground-truth, SIPE [111] and our eX-ViT.

of eX-ViT and suggests that our proposed model is effective on learning comprehen-
sive features for complete target objects.

Analysis of Misclassified Examples

Fig. 4.8 shows two misclassfied examples along with the learned attributes. In the first
row of Fig. 4.8, the object "tv" is misclassified to a similar category "laptop". The im-
portance of the screen as a feature for a laptop could be the reason for this. The second
row shows a more complicated example. We can observe while the attention map pro-
duced by our model captures most of details in the image, it is unable to distinguish
class-specific features required to make accurate predictions for the target class, i.e.,
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Input Ground-truth SIPE [111] Ours

Figure 4.6: Qualitative segmentation results on the validation set of MS COCO 2014. From left
to right: original image, ground-truth, SIPE [111] and our eX-ViT.

Table 4.4: Performance comparison of various methods on the MS COCO validation set.

Method AP AP_mediumAP_large AR AR_mediumAR_large

GradCAM [19] 2.3 2.3 4.7 5.5 5.9 10.7
Partial LRP [142] 4.7 8.0 5.1 10.4 19.9 8.0
ViT [109] 5.6 9.6 6.9 11.7 21.8 10.8
Rollout [118] 0.1 0.1 0.2 0.4 0.1 0.9
Trans. attribution [112] 7.2 10.4 12.4 13.4 21.0 19.4
Chefer et al. [52] 13.1 14.4 24.6 19.3 23.9 33.2
(Ours) eX-ViT 15.7 15.3 26.5 22.3 24.3 36.1
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Input Grouth-truth E-MHA w/o AttE w AttE

Figure 4.7: Visualization results on the MS COCO 2014 validation set.

Figure 4.8: Illustration of misclassified samples.
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Table 4.5: Performance comparison of various methods in mIoU (%) on the PASCAL VOC 2012
training set.

Method mIoU(%)

ResNet50-CAM [143] 48.30
ResNet38-CAM [124] 47.43
Conformer-S-CAM [116] 51.70
(Ours) E-MHA 52.31

"broccoli". In future work, we must explore a more compatible feature extractor that
can generate more robust local features.

4.4.3 Ablation Studies

This section presents ablation studies to analyze the contributions of each compo-
nent in our eX-ViT, including the transformer encoder with the proposed Explainable
Multi-Head Attention (E-MHA), the Attribute-guided Explainer (AttE), the global-
level attribute-guided loss function Lglobal, the local-level attribute discriminability
loss function Ldis, and the attribute diversity loss function Ldiv.

Effectiveness of E-MHA

It is an intuition that the improved transformer attention mechanism in E-MHA will
improve the model’s ability to generate pseudo segmentation labels. In order to verify
this idea, we simply apply CAM to the last transformer encoder layer. Table 4.5 re-
ports the mIoU results of the pseudo labels generated by CAM with the backbone of
ResNet38, ResNet50, Conformer-S [116], and the encoder Eθ in our proposed eX-ViT.
As can be seen, the backbone of the E-MHA module shows superior performance to
its CNN counterparts. Specifically, E-MHA-CAM achieves the mIoU of 52.31%, which
is a significant gain of +4.92% and +4.01% over ResNet38-CAM and ResNet50-CAM,
respectively. By comparing the E-MHA with the recent state-of-the-art architecture,
i.e., Conformer-S [116], we find that our proposed E-MHA still achieves a promising
result. In details, compared to CrossFormer-S [116] which explicitly uses multi-scale
representations with convolutions to localize object details, E-MHA-CAM achieves the
best mIoU of 52.31%, which is 0.61% points higher than CrossFormer-S-CAM. The per-
formance improvement shows that exploiting the most frequent and robust features by
use of E-MHA is highly effective for WSSS tasks that require discriminative features to
localize instances.
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Table 4.6: Effect of the contributions from various modules in mIoU (%) on the PASCAL VOC
training set.

Eθ Lglobal Ldis Ldiv training validation

X 44.72 50.20
X X 53.71 55.43
X X 51.25 54.63
X X 52.13 55.50
X X X 55.27 58.10
X X X 58.08 59.82
X X X X 59.13 61.20

Effectiveness of the AttE and Attribute-guided Loss

Table 4.6 gives an ablation study of each component in our proposed eX-ViT. We con-
sider the first row as a baseline, where the results of the object localization maps are
obtained via the CAM approach. As is observed from the table, the baseline can be fur-
ther improved to 53.71% and 55.43% on the training and validation set, respectively by
using the attribute features obtained via AttE to refine the learned transformer atten-
tion from the eX-ViT. Empirically, with attribute-guided discriminability loss Ldis the
pseudo segmentation label maps can be improved by +6.53% compared to the baseline
on the PASCAL VOC training set (51.25% vs. 44.72%) even without the global supervi-
sion Lglobal. Moreover, the Ldis further improves the mIoU to 54.63% on the validation
set. By incorporating the attribute diversity loss function Ldiv to explicitly regularize
the attribute structure of the feature space, our full model gains promising results. Par-
ticularly, the results in Table 4.6 indicate that the proposed model performs better with
the diversity constraint Ldiv on the local consistency, which brings +4.37% and 4.39%
mIoU improvements on the training and validation sets, respectively compared to the
global-level loss. This also confirms our theory that improving the diversity among
attributes promotes the learning of comprehensive localization maps.

Influence of the Number of Fused Transformer Layers

We further explore the impact of the number of fused transformer layers in Eq. 4.10
on the PASCAL VOC training set. Following the common practice in the prior work
[124], we adopt three metrics to evaluate the performance, i.e., false positives (FP),
false negatives (FN), and mIoU. The larger FP and FN values denote higher degrees
of over-activated and under-activated areas, respectively. In Fig. 4.9, we compare the
performance of the model variants using different numbers of the fused transformer
layers. As is observed, when fusing layers with more than 10, we obtain localization
maps with a larger FN value, which suggests the generated localization maps have
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Figure 4.9: Evaluation of object localization maps generated by fusing the class-specific at-
tentions from the last K transformer layers in eX-ViT’s encoder Eθ in terms of false positives
(FP), false negatives (FN) and mIoU. The larger FP and FN values denote having more over-
activated pixels, while the higher mIoU value indicates the generated localization maps have
fewer over-activated pixels and more complete object coverage.

more over-activated pixels and less complete activation coverage. This is mainly due
to the limited ability of lower layers to encode high-level representations. By reducing
the number of fused layers from the encoder Eθ, the performance of predicted local-
ization maps becomes much better, i.e., more complete activation coverage (lower FN
value) or fewer over-activated regions (lower FP value). Overall, the evaluation results
indicate that using the last three attention layers can achieve the best mIoU of 71.2%
with lower FN and FP values. Therefore we set K = 3 throughout this chapter.

Influence of the Number of Attributes

The attribute-guided scheme allows the model to encode richer semantics into each at-
tribute feature at a granular level. In order to discover the most suitable S concerning
different datasets, we conduct extensive experiments to compare the performance of
the model variants with different settings of hidden dimension c and the number of
attributes S. As shown in Table 4.7, when c = 128, the model learns weaker represen-
tations for both datasets. In contrast, the performance becomes much better when the
hidden dimension is enlarged to 512. However, as the number of attributes increases
to 16, the model exhibits poor mIoU accuracy. In the end, we find that c = 256 achieves
consistently superior performance across a range of attribute numbers. The best per-
formance is achieved when S = 8 on the PASCAL VOC 2012 val set, and S = 16 on
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Figure 4.10: Visualization of the learned attributes on the PASCAL VOC 2012 validation set,
and MS COCO 2014 validation set, respectively. In each row, the left part is the input image,
and the rest of images visualize the top-5 attributes, which shows that AttE attends to the
discriminative attributes with a high degree of detail.

the MS COCO 2014 val set. These observations suggest that images in MS COCO 2014
tend to contain more local features that are discriminative for object localization.

Additionally, we use the Grad-CAM as a tool to visualize the learned attributes and
use Fig. 4.10 to present the visualization results. In each row of Fig. 4.10, the left column
is the input image, and the images in the rest columns visualize the top 5 attributes. The
first two rows are from the PASCAL validation set, whereas the last two rows are from
the COCO validation set. By examining the visualization results presented in Fig. 4.10,
several observations can be made regarding the effectiveness of the AttE in localizing
object attributes. Firstly, the AttE is able to effectively focus on the compact regions
of most objects, which is consistent with human observations. Secondly, for large-area
attributes such as the table and ceiling, the learned attributes can accurately attend to
the corresponding areas. Finally, the AttE is capable of attending to the regions of small
but important attributes such as the fork and head. With these observations, we can
ascertain how the AttE decomposes the feature map into different attributes.
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Table 4.7: The influence of the number of attributes in mIoU (%) on the PASCAL VOC and MS
COCO 2014 validation sets.

c S PASCAL VOC 2012 val MS COCO 2014 val

512 8 69.42 40.31
512 16 69.03 38.92

256 4 63.48 36.69
256 8 71.23 41.23
256 16 70.29 42.92

128 4 68.63 37.25
128 8 68.56 38.79

Table 4.8: The influence of hyperparameters in mIoU (%) on the PASCAL VOC validation and
test sets.

Hyperparameter value PASCAL VOC 2012 val PASCAL VOC 2012 test

α

0.1 69.8 69.4
0.3 70.5 70.6
0.5 71.2 71.1
1.0 70.6 70.4

β

0.1 69.5 69.1
0.3 70.1 70.3
0.5 70.6 70.2
1.0 71.2 71.1

Influence of Hyperparameters

In this section, we explore how variations of hyperparameters can impact the perfor-
mance of our model. For this purpose, we train models on PASCAL with each hyper-
parameter modification and report the accuracy in Table 4.8. It is observed that when
α is small (<0.5), there is a slight performance drop. On the other hand, there is a sig-
nificant accuracy drop when β is smaller than 1.0. This confirms that our model learns
better features when our diversity loss enforces the attribute features to the maximally
independent of each other to capture broader visual clues of objects.

4.5 Conclusion

In this chapter, we proposed the eX-ViT, a new explainable vision transformer for
weakly supervised semantic segmentation. In our framework, a novel Explainable
Multi-Head Attention (E-MHA) module is proposed to produce discriminative feature
representations with inherent explainability and noise robustness. Which is achieved
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by optimizing the dynamic alignment between the input tokens and attention weights.
Moreover, a new Attribute-guided Explainer (AttE) module is designed to decompose
the attention maps into the contribution of each individual attribute, empowering the
feature representation with a set of attribute maps at a granular level. Based on AttE,
we develop a self-supervised attribute-based loss to guide the learning of attribute
features with the attribute discriminability mechanism and attribute diversity mecha-
nism, which promotes the generation of diverse and discriminative object attributes.
Extensive experiments were presented to demonstrate that the eX-ViT surpasses the
state-of-the-art CNNs and transformers on two well-known benchmarks. We hope
that the eX-ViT’s superior performance on WSSS tasks will inspire future research on
the exploitation of the explainability of transformers.

Although our work has shown promising results, a limitation is that the proposed
model does not incorporate attribute-level ground-truth labels. For future studies, the
model should potentially be further improved if prior fine-grained knowledge of var-
ious attributes is integrated. Therefore, we plan to develop approaches to learn and
integrate the knowledge in our future work.





71

Chapter 5

Explainability-driven Model
Compression for Deep Neural
Networks

Recently, deep learning research community has proposed several deep neural net-
works like transformers that become the cornerstone of many AI applications, power-
ing various tasks such as text summarization, question answering, and visual analysis.
If the model’s outputs are used by humans to make decisions or take actions, explain-
ability can enhance trust in the system and facilitate its acceptance. However, how
to make these models explainable remains underexplored. This chapter investigates a
model pruning technique aimed at enhancing the explainability of these well-trained
models. We first introduce an explainability-aware mask for each prunable unit in a
model, with the goal of quantifying its contribution to predicting each class. Specif-
ically, the proposed mask is fully differentiable and can be learned in an end-to-end
manner. We demonstrate many benefits of the proposed mask, including more accu-
rate pruning and fewer computational costs compared with existing black-box pruning
methods. Then, this chapter describes how to learn the layer-wise pruning thresholds
that differentiate the important and less-important units via a differentiable pruning
operation. Lastly, experimental results on various models are provided to demonstrate
the efficacy of the proposed method.

5.1 Introduction

Over the last few years, transformers have attracted increasing attention in various
challenging domains, such as natural language processing, vision, or graphs [109],
[144]. It is composed of two key modules, namely the Multi-Head Attention (MHA)
and Multi-Layer Perceptron (MLP). However, similar to CNNs, the major limitations
of transformers include the gigantic model sizes with intensive computational costs.
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Which severely restricts their deployment in resource-constrained devices like edge
platforms. To compress and accelerate transformer models, a variety of techniques
naturally emerge. Popular approaches include weight quantization [145], knowledge
distillation [146], filter compression [147], and model pruning [148]. Among them,
model pruning especially structured pruning has gained considerable interest that re-
moves the least important parameters in pre-trained models in a hardware-friendly
manner, which is thus the focus of this chapter.

Due to the significant structural differences between CNNs and transformers, al-
though there is prevailing success in CNN pruning methods, the research on pruning
transformers is still in the early stage. Existing studies could empirically be classi-
fied into three categories. (1) Criterion-based pruning resorts to preserving the most
important weights/attentions by employing pre-defined criteria, e.g., the L1/L2 norm
[149], or activation values [150]. (2) Training-based pruning retrains models with hand-
crafted sparse regularizations [151] or resource constraints [146], [152]. (3) Architecture-
search pruning methods directly search for an optimal sub-architecture based on pre-
defined policies [144], [153]. Although these studies have made considerable progress,
two fundamental issues have not been fully addressed, i.e., the optimal layer-wise
pruning ratio and the weight importance measurement.

For the first issue, the final performance is notably affected by the selection of prun-
ing rates for different layers. To this end, some relevant works have proposed a series
of methods for determining the optimal per-layer rate [154], [155]. For instance, Michel
et al. [156] investigate the effectiveness of attention heads in transformers for NLP tasks
and propose to prune attention heads with a greedy algorithm. Yu et al. [146] develop
a pruning algorithm that removes attention scores below a learned per-layer thresh-
old while preserving the overall structure of the attention mechanism. However, the
proposed methods do not take into account the inter-dependencies between weight.
Recently, Zhu et al. [151] introduce the method VTP with a sparsity regularization
to identify and remove unimportant patches and heads from the vision transformers.
However, VTP needs to try the thresholds manually for all layers.

For the second issue, previous studies resort to identifying unimportant weights by
various importance metrics, including magnitude-based, gradient-based [157], [158],
and mask-based [159]. Among them, the magnitude-based approaches usually lead to
suboptimal results as it does not take into account the potential correlation between
weights [147]. In addition, gradient-based methods often tend to prune weights with
small values, as they have small gradients and may not be identified as important
by the backward propagation. Finally, the limitation of current mask-based pruning
lies in two folds: (1) Most mask-based pruning techniques manually assign a binary
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mask w.r.t. a unit according to a per-layer pruning ratio, which is inefficient and sub-
optimal. (2) Most works use a non-differentiable mask, which results in an unstable
training process and poor convergence.

In this chapter, we propose a novel explainable structured pruning framework for
vision transformer models, termed X-Pruner, by considering the explainability of the
pruning criterion to solve the above two problems. As stated in the eXplainable AI
(XAI) field [35], important weights in a model typically capture semantic class-specific
information. Inspired by this theory, we propose to effectively quantify the impor-
tance of each weight in a class-wise manner. Firstly, we design an explainability-aware
mask for each prunable unit (e.g., an attention head or matrix in linear layers), which
measures the unit’s contribution to predicting every class and is fully differentiable.
Secondly, we use each input’s ground-truth label as prior knowledge to guide the
mask learning, thus the class-level information w.r.t. each input will be fully utilized.
Our intuition is that if one unit generates feature representations that make a positive
contribution to a target class, its mask value w.r.t. this class would be positively acti-
vated, and deactivated otherwise. Thirdly, we propose a differentiable pruning opera-
tion along with a threshold regularizer. This enables the search of thresholds through
gradient-based optimization, and is superior to most previous studies that prune units
with hand-crafted criteria. Meanwhile, the proposed pruning process can be done au-
tomatically, i.e., discriminative units that are above the learned threshold are retained.
In this way, we implement our layer-wise pruning algorithm in an explainable manner
automatically and efficiently. In summary, we make the following contributions:

• We propose a novel explainable structured pruning framework dubbed X-Pruner,
which prunes units that make less contributions to identifying all the classes in
terms of explainability. To the best knowledge of the authors, this is the first work
to develop an explainable pruning framework for vision transformers;

• We propose to assign each prunable unit an explainability-aware mask, with the
goal of quantifying its contribution to predicting each class. Specifically, the pro-
posed mask is fully differentiable and can be learned in an end-to-end manner;

• Based on the obtained explainability-aware masks, we propose to learn the layer-
wise pruning thresholds that differentiate the important and less-important units
via a differentiable pruning operation. Therefore, this process is done in an ex-
plainable manner;

• Comprehensive simulation results are presented to demonstrate that the pro-
posed X-Pruner outperforms a number of state-of-the-art approaches, and shows
its superiority in gaining the explainability for the pruned model.
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5.2 Related Work

5.2.1 Pruning for Transformers

Pruning has been a popular approach for removing the least important weights in
transformer models. The existing methods can be mainly categorized into unstruc-
tured and structured pruning. For unstructured pruning, techniques such as magnitude-
based and hessian-based have been proposed [154], [160]. However, they result in
irregular sparsity, causing sparse tensor computations that are difficult to align with
hardware efficiency.

The above problem can be alleviated by structured pruning, where uninformative
contiguous structures of a pre-trained model such as attention heads, rows of weight
matrix, are removed. For instance, Michel et al. [156] found that a large percentage
of attention heads can be pruned without scarifying much performance. Fan et al.
[153] proposed a structured dropout, which selects sub-structures of a model during
the inference time. Wang et al. [159] pruned rank-1 components inside large language
models using a parameterization method. Liu et al. [161] assembled several model
compression techniques on a range of pre-trained language models, and gained im-
pressive results.However, these works focus on pruning transformers for NLP tasks.

For vision transformers, Chen et al. [150] explored unstructured and structured
sparsity, and proposed a first-order importance approximation method to remove at-
tention heads. Recently, Yu et al. [146] propose a structured pruning method for vision
transformers, which involves a 0/1 mask that differentiates unimportant/important
parameters based on the magnitude of the model parameters. Although it uses a dif-
ferentiable threshold, the mask is non-differentiable, which could cause the gradients
to be biased and result in suboptimal results of the remaining weights. Yu et al. [152]
proposed to integrate three efficient approaches including pruning, layer skipping, and
knowledge distillation into a unified framework to produce a compact transformer.
Although these existing methods have made significant advances, the designing of
importance metrics remains an open problem to explore.

5.3 Method

5.3.1 Problem Definition

Our proposed X-Pruner aims to explore structured pruning by removing prunable
units (e.g., rows of weight matrix and attention heads) in vision transformers. LetD be
a training dataset, which consists of N training pairs {(x1, y1), ..., (xN, yN)}. Consider-
ing an L-layer transformer f (W), its parameters are represented by W = (W1, W2, ..., W L),
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Figure 5.1: Pipeline of our proposed X-Pruner framework. We first train a transformer with the
proposed explainability-aware masks, with the goal of quantifying each unit’s contribution to
predicting each class. Then we explore the layer-wise pruning threshold under a pre-defined
cost constraint. Finally, a fine-tune procedure is executed for the pruned model.

where W l ∈ Rdl , 1 ≤ l ≤ L, dl is the number of prunable parameters in the l-th layer.
Given a target pruning ratio α, the pruning process can be regarded as the form of
layer-wise operation with pruning rates {rl}L

l=1:

(r1, r2, ..., rL)
∗ = argminL( f (W ; r1, r2, ..., rL; x), y),

s.t.
P( f (W ; {rl}))

P( f (W))
≥ α, (5.1)

where rl is the l-th layer’s pruning rate, and P(·) is a resource evaluation metric.

5.3.2 The Proposed X-Pruner

Explainability-aware Mask

To fully utilize the class-level information, we propose to assign each prunable unit an
explainability-aware mask, which is used to quantify the contribution of each unit to
identifying every class. Specifically, the proposed mask is a class-level mask for each
class instead of a scalar mask for all classes. For instance, given the weights in the
l-th self-attention layer consists of query W Q

l ∈ Rn×d, key WK
l ∈ Rn×d, and value

WV
l ∈ Rn×d, where n and d are the number of input and output dimension. The mask

for head h is formulated as MH
l,h ∈ RC×d, where C is the total number of classes. That is

to say, MH
l,h,i is built to quantify the contribution of head h for recognizing the i-th class.
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Evidently, a scalar mask used in prior works is a special case of our method where
values of MH

l,h,i are the same. Thus, given input xi with its class label yi, to apply the
mask, the product between weight and its corresponding mask is performed. That is,
the self-attention operation for head h can be expressed as follows:

αl,h = S(
(W Q

l,hxi)
TWK

l,hxi√
d

), (5.2)

Attnl,h(x) = αl,hWV
l,hxi, (5.3)

MHA(x, MH
l ) = ∑H

h=1MH
l,h,yi

Attnl,h(x), (5.4)

where S(·) is the softmax function, αh is the h-th attention weight, and H is the total
number of attention heads.

Meanwhile, we apply the similar idea to the MLP and other linear projection layers.
Let us denote the weight matrix in a linear layer by Wl ∈ Rm×n, where the m and n are
the dimensions. Its corresponding mask is defined by MF

l ∈ RC×m×n. Then, the feed
forward process in the linear layer is expressed as:

FC(Zl, MF
l ) = Ml,yiW

F
l Zl, (5.5)

where Zl is the input to the l-th layer. We omit the bias across all layers for simplicity.
Recall that our explainability-aware mask aims to identify weights influential to the

predicted label. As such, it is desirable for mask M:,c to vary slowly if input images all
belong to the same class c, rendering a smooth explainability-aware mask. Therefore,
we propose to add a smoothness-aware constraint for the mask. More specifically, we
take the second derivative of the mask values w.r.t. the input and predicted class, and
choose its L1 norm as the smoothness-aware constraint:

Lsmooth(M) =
L

∑
l=1

C

∑
c=1
|∇2M l

:,c|1. (5.6)

Moreover, to address the issue of redundancy among the prunable units, rather
than declaring all units as relevant to the model’s prediction, we impose the following
sparsity constraint on the masks:

Lsparse(M) =
L

∑
l=1

C

∑
c=1
||M l

:,c||2. (5.7)

Overall, the total loss function is defined as follows:

Ltotal = Lce + λsmLsmooth + λspLsparse(M), (5.8)
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where Lce is the cross-entropy loss, λsm and λsp are the hyperparameters.
Unlike prior works that use a binary mask to quantify the contribution of each unit

for all classes, we propose to capture the importance of every unit w.r.t. each class with
a differentiable mask. After training, the sum value of each learned mask explicitly de-
notes its contribution to identifying all classes. In this way, our learned explainability-
aware masks gain the representation ability for revealing the inner reasoning process in
transformers in an end-to-end manner, which essentially offers a global examination
of the importance of every single unit in an intuitively explainable manner. Notice-
ably, the weights of the pre-trained model remain fixed during the training procedure.
Therefore, we empirically observe that only a few epochs are required to train our
proposed explainability-aware mask.

Explainable Pruning

The goal of the proposed X-Pruner is to preserve the most important units for identi-
fying target classes in a pruned model. This is achieved by removing units with the
least-impact explainability-aware masks. Previous works resort to measuring the im-
portance of individual units with a manually chosen per-layer threshold, which is com-
putationally intractable as the parameter search space is exhaustive [152]. In this work,
we propose to learn the layer-wise threshold by designing a differentiable pruning op-
eration along with a threshold regularizer, which is superior to most prior studies with
better control over the non-uniform sparsity.

Intuitively, with the obtained explainability-aware masks, the less-important units
with mask values below a certain threshold should be pruned, while important ones
are preserved. However, most of current approaches use a manually selected thresh-
old, which is difficult to optimize in a trainable process. To tackle this issue, we propose
a differentiable pruning operation for explainability-aware masks. Mathematically, the
differentiable pruning operation is expressed as follows:

M̂ l =

{
M l tanh(n(M l − θl)), M l ∈ Φ(M l|1− rl),

p tanh(n(M l − θl)), otherwise,
(5.9)

where rl is the pruning ratio for layer l, and Φ(M l|1 − rl) is a function that returns
the top (1− rl)% sorted elements in M l. With a proper setting of n and p, the value
of tanh(·) asymptotically approaches one for M l ∈ Φ(M l|1 − rl), which results in
M̂ l ≈ M l. In that case, our proposed differentiable pruning operation implies that dis-
criminative units that contribute more to identifying classes above an adaptive thresh-
old are retained, while those that contribute less are suppressed. By assigning a large
positive value to n, our proposed pruning function enables learning the threshold θl
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with the backward gradient. In our experiments, we empirically verify that letting
p = 500 and n = 10 guarantees a stable training process and yields good results for
pruning.

Subsequently, we compute the accumulated pruning rate R across all prunable lay-
ers as follows:

R =
L

∑
l=1

rl ∗ nl

N
, (5.10)

where nl represents the total prunable parameters of the layer l and N denotes the
number of all unpruned parameters.

To learn the layer-wise pruning rate with the given pruning rate α in an end-to-
end manner, we propose a novel regularization term LR in the augmented Lagrangian
method, which converts the optimization problem in Eq. 5.1 to an unconstrained pe-
nalized expression. Specifically, it is expressed as

LR = β(α− R)2 + γ(α− R), (5.11)

where β and γ are trainable parameters, and the unconstrained problem of Eq. 5.11 can
be solved using gradient descent-based techniques. Overall, the total loss function for
the proposed X-Pruner is given by

L = Lce + LR. (5.12)

The optimization problem of Eq. 5.12 allows us to lift up units with discriminative
masks that are important to the model decisions while suppressing less-important
ones. Moreover, it implies that the layer-wise pruning rate rl tends to be larger when
it has larger nl, which is natural for exploiting the dynamic sparsity across all layers.

After training, we accordingly remove the least-impact units with the learned prun-
ing rate {r1, r2, ..., rL}, and integrate the left explainability-aware masks M into the
pruned model per layer by setting W = W ∗ M, and further fine-tune the pruned
model. In summary, our proposed explainable pruning method X-Pruner that is capa-
ble of identifying and preserving important units in an explainable and trainable way,
which overcomes the drawbacks of existing black-box pruning methods and provides
empirical guarantees on the accuracy of the pruned model.

5.4 Experiments

To evaluate the performance of the X-Pruner, we conduct experiments on the CIFAR-
10 [162] and ILSVRC-12 datasets [163]. CIFAR-10 includes 10 classes, consisting of 50K
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training and 10K validation images. ILSVRC-12 contains images of 1K classes, and
its training and validation sets have 1.28M images and 50K images, respectively. For
a fair comparison with existing methods, we prune the DeiT [164] and Swin Trans-
former [165] architectures on classification tasks [146], [152]. Additionally, we conduct
a series of ablation studies to discover the performance contribution from different
components in our framework.

5.4.1 Implementation Details

All experiments are implemented using PyTorch on NVIDIA Tesla V100 GPUs. We use
pre-trained weights to initialize vision transformer models and use them as baseline
models. During the training process for explainability-aware masks, the learning rate
is set to be 0.01 with a batch size of 128, and we use the SGD optimizer with momentum
0.9. Empirically, the mask training process is 50 epochs for the DeiT and 30 epochs for
the Swin Transformer. Which takes around 300 V100 GPU hours. In the explainable
pruning process, we initially set all rl to α. The learning rate for θl and rl is set to be 0.02
and fine-tuned with the AdamW optimizer. The learning rate for the other parameters
and momentum are 5 ×10−4 and 0.9, respectively. The DeiT models are trained for
80 epochs and Swin Transformers are trained for 30 epochs. We follow the training
strategies used in the original DeiT and Swin Transformers [165] except knowledge
distillation. β and γ are initialized to be zero and then optimized during training.

5.4.2 Main Results

Table 5.1 shows the superiority of X-Pruner over other state-of-the-art methods on
ILSVRC-12. We observe that most existing pruning methods cannot provide notice-
able FLOP savings without too much accuracy degradation. Instead, by learning the
differentiable explainability-aware masks, our X-Pruner can reduce the computational
costs by 51.3%-66.1% with much lower accuracy drops (0.72%-1.1%). Specifically, when
pruning the DeiT-T, compared with WDPruning [146] that can only save 46.2% FLOPs,
it is observed that our proposed X-Pruner achieves much larger FLOP saving (66.1%
vs. 46.2%) with less accuracy degradation (1.1% vs. 1.86%). For the larger model
DeiT-S, while UVC [152] achieves the state-of-the-art top-1 accuracy among the ex-
isting methods, which is 78.82% with a 49.6% reduction in FLOPs, the X-Pruner re-
duces the FLOPs by 51.3% while obtaining the top-1 accuracy of 79.04%. These results
demonstrate that the proposed X-Pruner outperforms existing pruning methods with
more compact model sizes and better performance.

Meanwhile, we investigate the efficacy of our proposed method on another popular
transformer, i.e., Swin Transformer [165]. The experimental results are presented in
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Table 5.1: Comparison with the state-of-the-art methods on the ILSVRC-12 dataset. FLOPs
remained denotes the remained ratio of FLOPs to the full-model FLOPs. ∗ indicates utilizing
knowledge distillation in the training process.

Model Method Top-1 Acc. (%) Top-5 Acc. (%) FLOPs (G) FLOPs remained (%)

DeiT-T

Baseline 72.2 91.10 1.3 100
SCOP [147] 68.9 89.00 0.8 61.5
HVT [148] 69.7 89.40 0.7 53.8
UVC∗ [152] 70.6 - 0.5 39.1
WDPruning [146] 70.3 89.82 0.7 53.8
X-Pruner 71.1 90.11 0.6 49.2

DeiT-S

Baseline 79.8 95.00 4.6 100
SCOP [147] 77.5 93.50 2.6 56.5
HVT [148] 78.0 93.83 2.4 52.2
UVC∗ [152] 78.82 - 2.3 50.4
WDPruning [146] 78.38 94.05 2.6 56.5
X-Pruner 78.93 94.24 2.4 52.1

DeiT-B

Baseline 81.8 95.59 17.6 100
SCOP [147] 79.7 94.50 10.2 58.3
UVC∗ [152] 80.57 - 8.0 45.5
WDPruning [146] 80.76 95.36 9.9 56.3
X-Pruner 81.02 95.38 8.5 48.5

Table 5.2: Pruning results of Swin Transformer on the ILSVRC-12 dataset.

Method Top-1 FLOPs Top-1 ↓ FLOPs ↓ (%)

Sw
in

-T

Baseline 81.2 4.5 0.0 0.0
STEP [166] 77.2 3.5 4.0 22.2
ViT-Slim [144] 80.7 3.4 0.5 24.4
X-Pruner (Ours) 80.7 3.2 0.5 28.9

Sw
in

-S

Baseline 83.2 8.7 0.0 0.0
STEP [166] 79.6 6.3 3.6 27.6
WDPruning [146] 81.8 6.3 1.4 27.6
X-Pruner (Ours) 82.0 6.0 1.2 31.0

Table 5.2. For the Swin-T, the X-Pruner yields significantly better top-1 accuracy with
substantially fewer FLOPs. More specifically, our method obtains 28.9% FLOPs saving,
and the top-1 accuracy only drops by 0.5%. When pruning the Swin-S, compared to the
state-of-the-art method WDPruning [146] which considers the dimensions for pruning,
our X-Pruner also shows impressive superiority thanks to the use of the explainability-
aware mask.
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Input Heatmap WDPruning [146] UVC [152] Ours

Input Original heatmap WDPruning [146] UVC [152] Ours

Figure 5.2: Visual explanations generated by a variety of pruned networks on the ILSVRC-12
validation set.

Figure 5.3: Explainability-aware mask values in varying layers for DeiT-S.



82 Chapter 5. Explainability-driven Model Compression for Deep Neural Networks

Table 5.3: Main results for pruning Swin-T under different configurations on ILSVRC-12.

Setting Top-1 ↓ (%) FLOPs ↓ (%)
w/o mask 2.65 28.9
w/o Lsmooth 1.02 29.3
w/o Lsparse 1.92 29.1
X-Pruner 0.51 28.9

5.4.3 Visualization and Analysis

We visualize the class-level visual explanation maps based on the DeiT-S as well as its
pruned models by the LRP-based relevance method [118]. Fig. 5.2 provides a visual
comparison based on randomly chosen ILSVRC-12 validation images. As can be seen
from the figure, most of the visual explanation results of the full model still appear
noise-like patterns to humans. However, the maps produced on the pruned model
obtained by WDPruning [146] and UVC [152] are distorted. Though the predictions
of the pruned models are correct, they produce incorrect explanation maps after the
pruning process. Instead, we observe that the visual explanation maps produced on
the pruned model of our X-Pruner are more compact and contain less noise.

Moreover, the learned mask values of attention layers shown in Fig. 5.3 demon-
strate that the proposed X-Pruner discovers the head importance appropriately with-
out per-layer pruning ratio. Notably, the masks at higher layers (Layers 11 and 12) have
higher values compared to the masks in Layer 2. Which indicates that in transformers,
the lower layers attend to both local and global information, whereas the higher layers
attend to global information. Thus rich semantic-level features are captured at higher
layers, which are essential for the final predictions.

We further compare our X-Pruner with the state-of-the-art method WDPruning
[146] on CIFAR-10. Fig. 5.4 depicts the top-1 accuracy of the DeiT-S with various prun-
ing rates. As can be seen from the figure, at lower pruning rates, e.g., 10%, both meth-
ods achieve slightly higher accuracy compared to the baseline. When it comes to larger
pruning rates, compared to WDPruning [146], our X-Pruner suffers less accuracy loss
with the same pruning rates (e.g., 50% or 70%).

5.4.4 Ablation Studies

In this subsection, we first evaluate the effectiveness of explainability-aware masks in
our proposed method based on the Swin-T model. Table 5.3 shows the detailed re-
sults, all of which are pruned using similar FLOPs pruning rates for a fair comparison.
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Figure 5.4: Top-1 accuracy for DeiT-S on CIFAR-10 with various pruning rates. "Baseline" de-
notes the unpruned baseline model.

Table 5.4: Main results of learnable pruning rate on DeiT-S.

Method Top-1 ↓ (%) FLOP ↓ (%)
Random pruning 2.28 47.2
Uniform pruning 4.05 47.4
X-Pruner 0.87 47.9

We first employ a class-agnostic strategy to train the explainability-aware mask, de-
noted as a w/o explainability-aware mask. That is, use the same mask for all the input
given different classes. However, this strategy causes serious performance degradation
(2.65%) since it loses the class-wise signal to identify each unit’s contribution. We fur-
ther explore the impact of optimization constraints. Moreover, as is observed from Ta-
ble 5.3, when the masks are trained without the sparrse regularizer λsparse, the trained
model suffers a drop of 1.92% in top-1 accuracy. Which proves our method effectively
alleviates the problem of over-fitting and improves the performance. Finally, if the
smooth constraint λsmooth is removed, the top-1 accuracy is decreased by 1.02%. Over-
all, our proposed method X-Pruner is able to prune models effectively with desirable
accuracy.

In Table 5.4, we further investigate the layer-wise pruning rate on ILSVRC-12 and
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Figure 5.5: The pruning rate of units on each block when the pruning rate is set at 0.3 for DeiT-S.

compare it with both random pruning and uniform pruning. In our method, the num-
ber of pruned units for each individual layer is determined adaptively according to the
global budget. The top-1 accuracy of uniform pruning is decreased by 4.05%. We also
apply the random pruning to the DeiT-S, which also achieves an inferior performance.
Lastly, our proposed X-Pruner outperforms these two methods with minor top-1 accu-
racy drop (0.87%).

We visualize the layer-wise pruning rate for the DeiT-S in Fig. 5.5. We observe
that our method automatically learns the pruned architecture by taking into account
the explainability-aware mask values, which is superior to estimating the importance
of individual prunable units. Moreover, by visualizing the attention maps produced
by the 4-th layer in DeiT-B model in Fig. 5.6, we observe that the proposed X-Pruner
indeed removes the redundant heads that mainly focus on background and contribute
less to the final prediction.



5.5. Conclusion 85

Figure 5.6: Visualization of the attention maps produced by the 4-th layer for DeiT-B. Red box
means the head is pruned based on our learned mask values.

5.5 Conclusion

We proposed the X-Pruner, a novel explainable transformer pruning framework. In
X-Pruner, a novel explainability-aware mask is proposed to evaluate each prunable
unit’s contribution to predicting every class, which is fully differentiable and learned
with a proposed class-wise regularizer to mitigate over-fitting. Then, a new explain-
able pruning process was introduced to learn layer-wise pruning rate until a resource
constraint is reached. Extensive experiments demonstrate that the X-Pruner is able to
significantly reduce the computational costs of several transformers in terms of model
explainability. Moreover, it surpasses the state-of-the-art pruning methods with a mi-
nor accuracy drop.
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Chapter 6

Improving Sample Quality in
Generative Models via Explainable
Techniques

In this chapter, we focus on evaluating and improving the quality of samples gen-
erated by generative models based on visual explanations. Given the overwhelming
popularity of text prompting in numerous Generative AI scenarios, how to effectively
support such inputs with explanation and guidance presents a significant challenge.
The application of explainable methods to enhance the quality of samples generated by
generative models establishes a crucial link between interpretability and performance
improvement. To address this challenge, we undertake a comprehensive analysis of
the factors shaping sample generation. This exploration serves as the foundation for
our pioneering solution: the delta module. This module is introduced as a means to
refine the generation process, leveraging attention maps derived from an explainable
method. Then, this chapter describes the multi-view score consistency method to en-
able 3D editing by use of a diffusion prior, which is effective in providing additional
supervision signals for learning 3D-consistent geometry. By capitalizing on these in-
sights, our framework is empowered to optimize sample generation, enhancing both
its coherence and fidelity. Lastly, experimental results on various real-world datasets
are presented to illustrate the efficacy of the proposed framework across a range of text
prompts.

6.1 Introduction

With the growing prevalence of efficient 3D reconstruction techniques like Neural
Radiance Fields (NeRFs), generating photo-realistic synthetic views of real-world 3D
scenes has become increasingly feasible [167]. Meanwhile, there is a surging demand
for the manipulation of 3D scenes driven by the broad range of content re-creation use
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cases [168]. Recent research endeavors have introduced various methods to enhance
the capabilities of NeRFs for editing purposes. These approaches include operating
on explicit 3D representations [169], training models to enable color modifications or
the removal of certain objects [170], or utilizing diffusion models to perform text-to-
3D generation [171]. These advancements have significantly expanded the versatility
of implicit volumetric representations. However, it has been observed that the edited
scenes produced by those methods may not always follow the semantic meanings of
the provided prompt accurately.

We observe two key issues in state-of-the-art methods for editing NeRF scenes. (1)
"Over-editing", where excessive or unnecessary alterations of the prompt are gener-
ated; and (2) "inconsistent editing", where the large inconsistencies within 2D edits
lead to the model’s failure to consolidate in 3D. Illustrative cases demonstrating the
aforementioned issues are provided in Figure 2, where the edited scenes are gener-
ated employing the state-of-the-art IN2N [172] method. In the left column, we present
an example of over-editing, a scenario in which the model erroneously associates the
"blue" attribute with the wrong subject. In the right column, we provide a demon-
stration of the inconsistent editing, where the model produces renderings that exhibit
inconsistencies when viewed from different perspectives.

Recently, diffusion models have been proposed as a promising approach to gen-
erate multi-view consistent images [173]. Notably, the diffusion process aims at pro-
ducing high-fidelity images through successive denoising steps applied to images ini-
tialized with Gaussian noise. This method effectively addresses prevailing limitations
of traditional generative models, marking a notable advancement in image genera-
tion techniques. Editing 3D scenes using diffusion models can be achieved through
two primary methods: either by optimizing NeRFs via a pretrained diffusion model
such as DreamFusion [171], or via employing an unconditional generative diffusion
model that can be trained with 2D images [174]. Although these approaches can gen-
erate 3D models from any given text prompts, they currently lack fine-grained control
over the synthesized views. More importantly, they cannot be directly used to edit
real-captured NeRFs of fully observed 3D scenes. Haque et al. [172] propose Instruct-
NeRF2NeRF, which extracts shape and appearance features from a pretrained 2D dif-
fusion model (i.e., InstructPix2Pix [175]) to gradually edit the rendered images while
optimizing the underlying 3D scene. This method, however, shares several limitations
with InstructPix2Pix [175], such as significant multi-view inconsistencies and notable
rendering artifacts including noise and blurring. Although recent diffusion variants
show improved performances, the diffusion process still makes mistakes, such as un-
realistic images, artifacts, biases, and drops for required concepts [175]. Therefore, the
decision-making process of the diffusion model should be interpretable to trust the
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outcomes of the algorithm. However, existing explainable methods mostly special-
ize in classifiers. How to interpret the diffusion process in terms of generated visual
concepts and attended regions at each time step remains unexplored.

Our method. To solve the aforementioned problems and perform high-fidelity text-
to-3D editing with pretrained NeRFs, we propose a framework dubbed Edit-DiffNeRF
to optimize a pretrained diffusion model based on attention maps generated by an
explainable method to controllable and 3D-consistent scene edits. Which enables us
to make fine-grained modifications to the rendered views of NeRF, offering enhanced
control and accuracy in the optimization process of an underlying scene. Our Edit-
DiffNeRF is composed of a frozen diffusion model, a proposed delta module to edit
the latent space of a diffusion model, and a NeRF. Our proposed framework for text-
to-3D editing involves two key steps. First, in order to perform the editing for the
rendered views, we utilize the diffusion prior to generate a latent semantic embedding
for each view and then apply our proposed delta module to edit the embedding. This
delta module is optimized using a CLIP distance loss function. After training, it is able
to produce edited images based on the input text instruction. Second, we proceed to
train the NeRF using those edited images, leveraging the modifications made through
the delta module. In order to ensure the multi-view consistency of a 3D scene, we
propose a multi-view semantic consistency loss to reconstruct consistent latent features
in the latent space from different views. To evaluate its effectiveness, we evaluate our
Edit-DiffNeRF on a variety of real-captured NeRF scenes published by [172]. Extensive
experimental results demonstrate 25% improvement in the alignment of the performed
3D edits with the text instructions compared to Instruct-NeRF2NeRF [172].

6.2 Related Work

6.2.1 Neural 2D & 3D Scene Editing

Recent advances in neural networks have opened new frontiers in content editing, pro-
viding users with a range of user-friendly editing options. These include the manip-
ulation of facial attributes [176]–[179], stroke-based editing techniques [180], [181], or
style transfer between images [182]. However, similar capabilities in editing 3D scenes
represented by NeRF are still limited. Existing methods either depend on meticulous
manual annotation [183]–[185], explicit object deformation [186], [187], or global style
transfer [188]. The advent of 3D Generative Adversarial Networks (GANs) [189], [190]
and semantic NeRF editing [191]–[193] have marked significant progress in the field.
For example, EditNeRF [170] enables modifications to be made to both the shape and
color of objects in a scene. CLIP-NeRF [168] and NeRF-Art [194] further extend this by
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promoting alignment between the CLIP representations of a scene and an input text
prompt. Nonetheless, these methods mainly focus on texture or color modification.
Blended-NeRF [195] performs localized editing in a NeRF along with a predefined 3D
region of interest (ROI) box. Despite its effectiveness, the rigid box shape of the 3D
ROI can sometimes be restrictive. SINE [192] requires one image from a scene edited
by the user and edits a NeRF with a mesh for geometric supervision. IN2N [172] is an-
other method for editing NeRFs with text prompts based on a pre-trained model IP2P
[175]. Although promising, the edited scenes suffer from excessive or unnecessary al-
terations and view inconsistency. Moreover, these methods cannot assess or evaluate
the quality of generated samples and identify areas for improvement. In this work,
we focus on view consistent editing and the manipulation of the editing direction that
aligns closely with the text prompt.

6.2.2 NeRF 3D generation

The recent advances in pre-trained large-scale models have significantly accelerated
the field of 3D content generation from scratch, allowing for fast and effective creation
of 3D scenes. Some works optimize NeRFs by vision-language models such as CLIP
[196]. One such method is Dream Fields [197], which leverages multi-modal image
and text representations from CLIP to train NeRFs for synthesizing 3D objects. CLIP-
Forge [198] uses a two-stage training process based on an unlabeled shape dataset and
a pre-trained image-text model CLIP to generate 3D shapes. CLIP has also been used
in the recent state-of-the-art (SOTA) model DreamFusion [171] and its variants [199]–
[201] to generate 3D contents. While these SOTA models are able to produce 3D scenes
based on arbitrary text inputs, they often grapple with challenges such as inadequate
detailing and unrealistic outputs. To address these issues, IT3D [202] utilizes powerful
text-to-image diffusion models to generate high-quality 3D scenes. In parallel, recent
works such as SparseFusion [203] leverages a view-conditioned latent diffusion model
to distill a 3D consistent scene. In our work, we aim to edit real-world 3D scenes by
a pre-trained 2D diffusion prior. Furthermore, we propose a novel multi-view score
distillation method to ensure 3D consistency across different viewpoints of a scene.

6.3 Preliminaries

6.3.1 Denoising diffusion probabilistic models (DDPMs)

Given a set of training views
{

xi}N
i=1 ∈ I for a 3D scene, The goal of generative mod-

els, e.g., Denoising Diffusion Probabilistic Models (DDPMs) [204] is to optimize the
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parameters θ of a model that closely approximates the data distribution p(x). DDPM
proposes to learn the data distribution by gradually transforming a sample from a
tractable noise distribution toward a target distribution. Diffusion models typically
include a deterministic forward process q(xt|xt−1) that gradually adds noise to the
sample such that:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βt I), t ∈ (0, T], (6.1)

where βt is the t-th variance schedule. The model then learns the reverse (denoising)
process with a neural network Dθ(xt, t), which performs denoising steps by progres-
sively removing noise and predicts x̂0 from xt. The denoising process similarly uses a
Gaussian distribution:

pθ(xt−1|xt) := N (xt−1; µθ(xt, t), Σθ(xt, t)), (6.2)

where µθ and Σθ are the mean and variance, respectively.

6.3.2 Latent diffusion models

Latent diffusion models [173] obtain efficiency improvements compared to DDPMs
[204] by leveraging the latent space of a pretrained variational autoencoder. In par-
ticular, given an input image xi, the forward process adds noise to the encoded latent
embedding z = ε(xi), where ε(·) is an encoder and zt is the noisy latent embedding
at timestep t. The neural network Dθ(·) is optimized to predict the presented noise
based on image and text instruction conditioning inputs. Formally, the latent diffusion
objective is expressed as follows:

L = Eε(xi),ε(CI),cT ,ε∼N (0,1),t

[
||ε−Dθ(zt, t, ε(CI), cT)||22

]
, (6.3)

where CI is the conditioned image, CT is the text editing instruction, and ε̂t = Dθ(zt, t, ε(CI), cT)

is the predicted noise at timestep t. Once trained, the estimated latent ẑt−1 can be de-
rived with a noisy input zt and a predicted noise ε̂t at timestep t.

6.4 Method

Given a pretrained NeRF scene along with the input text instruction, we aim to edit
the NeRF scene through controlled manipulation of a pretrained diffusion model as a
score function estimator. Which allows us to produce an edited version of the NeRF
scene in accordance with the provided edit instruction. At the core of our method lies
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Figure 6.1: Our pipeline of Edit-DiffNeRF, which is a two-stage framework consisting of a
frozen diffusion model, a proposed delta module, and a NeRF. In the first stage, we train the
delta module h(t) to edit the latent space of a pretrained diffusion model. After training, it is
able to produce edited images based on the input text instruction. Then we freeze the weights
of the delta module and train the NeRF using those edited images, leveraging the modifications
made through the delta module.

the concept of semantic-aware diffusion, wherein we gradually guide the noised latent
code at each timestep denoted by t towards a more semantically faithful and consistent
generation.

We describe the calculation of the relevancy score in Section 6.4.1. The relevancy
score is to determine subject tokens in the text prompt, and is used as a guidance in
Section 6.4.2 to strengthen the activations of the neglected subject tokens at different
timesteps. In Section 6.4.3, we introduce our view-consistent rendering to allow similar
edit localization for 3D scene editing.

6.4.1 Computing 2D Score on 3D Scene

Given a source model with parameters θsrc, which is an implicit representation of a
source 3D scene, our goal is to model and convert θsrc to θtgt along with the target text
prompt.

Given an image, denoted as I belonging to an image space I representing a scene,
and a text editing instruction CT, we employ the IP2P framework to calculate the rel-
evancy score associated with each token present within CT. This score serves as an
indicator that a pixel should be changed based on the specific token. First, we obtain
the noisy latent zt with noise level t:

zt =
√

αtε(I) +
√

1− αtε, (6.4)

where ε ∼ N (0, 1) is a random noise sample, αt is a pre-defined variable that con-
trols the noise schedule. Subsequently, we employ IP2P’s noise approximation model
denoted as εθ to yield two different predictions: 1) the predicted noised εI,CT(zt) =

εθ(zt, t, I, CT), and 2) the predicted noise under the absence of the specific token Ck,
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εI,CT\Ck
(zt) = εθ(zt, t, I, CT\Ck). Notably, the key difference between εI,CT and εI,CT\Ck

lies in the fact that only the former is aware of the token Ck. We then compute the
relevancy score for all tokens C1, C2, ..., CK.

Furthermore, an intuitive idea to edit x is simply updating xt to optimize NeRF
based on the score distillation sampling loss∇LSDS as proposed in DreamFusion [171].
However, it results in a 3D scene with more artifacts or distorted views. We believe
this is due to a pretrained diffusion model with the fixed semantic latent space may
not achieve feasible results in realistic scenarios [205].

6.4.2 Editing semantic latent space in diffusion models

In order to manipulate the latent semantic space with the input text instruction and cir-
cumvent the process of training an entire diffusion model, we propose to utilize a delta
module h(t), which learns the shifted latent semantic space ∆zt given a frozen and
pretrained diffusion model and offers significantly reduced computational demands.
h(t) is implemented as a small compact neural network with two convolutional layers.
Which have the same number of channels as the bottleneck layer of the U-Net in the
diffusion model. Formally, the parameterization for µθ(xt, t) given the delta module
h(·) becomes:

µθ(xt, t, ∆zt) =
1√
αt

(
xt −

βt√
1− αt

Dθ(zt|∆zt, t, ε(CI), cT)

)
. (6.5)

Essentially, by introducing the information of cT to the latent semantic space with ∆zt,
the predicted ε̂ = Dθ(zt|∆zt, t, ε(CI), cT) is modified. Which, in turn, produces the
shifted mean value µθ(xt, t, ∆zt) to bridge the gap and facilitate the reverse process of
reconstructing the provided instructional information in the samples.

We utilize the architecture of CLIP [206], which comprises an image encoder εI and
a text encoder εT that project inputs to a shared latent space. Building on this, we
propose a cross-modal CLIP distance function to evalute the cosine similarity between
the input text instruction and the edited image:

Lclip = 1−
〈
εT(tsrc)− εI(ttgt), εI(xsrc)− εI(xtgt)

〉
, (6.6)

where the input image and its text description are represented by xsrc and tsrc. The text
instruction and the edited image are denoted as ttgt and xtgt, respectively, and 〈·〉 is the
cosine similarity operator. In addition, we add an L1 loss to regulate the produced x0

from the original input and the edited one by:

Lreg = λreg|x̂0 − x̃0|, (6.7)
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where x̂0 is obtained via the frozen diffusion prior, x̃0 is generated with the modified
latent embedding, and λreg is the hyper-parameter.

6.4.3 View-consistent rendering

Another fundamental challenge when it comes to editing a 3D scene with a 2D diffu-
sion model is that the diffusion models lack 3D awareness, which leads to a generated
NeRF with inconsistent and distorted views. Seo et al. [207] tried to close this gap
by utilizing viewpoint-specific depth maps from a coarse 3D structure. However, this
embedding needs to optimize a 3D model for each text prompt. This is a computa-
tionally intensive process that can still produce blurred and distorted images despite
optimization.

To account for the inconsistency challenge, we propose to encode the latent seman-
tic embedding for each view using the pretrained diffusion model and our proposed
delta function h(·). Specifically, given a pretrained diffusion model and the optimized
h(·), each rendered image is encoded into a latent embedding zi. Inspired by condi-
tional NeRFs [168], the color c in NeRF [167] is extended to a latent-dependent emitted
color cz:

(σ, czi) = Fθ(x, d, zi), (6.8)

where the embedding zi is a conditional input, and Fθ is the NeRF model.

6.4.4 Multi-view semantic consistency loss

To achieve our goal, the optimized delta module h(·) is supposed to produce consistent
latent semantic embeddings as much as possible across different camera poses. There-
fore, we propose a novel multi-view semantic consistency loss, denoted as Lc. Which
involves using a latent embedding zi extracted from image xi as the conditional input
to reconstruct images from different views. The formal expression of our proposed loss
Lc is given as follows:

Lc = ||h(Czi)− zi||1, (6.9)

where Czi is the rendered output based on Eq. 6.8. Thus the total loss for training a
NeRF becomes:

L = Lphoto + λcLc, (6.10)

where λc is the hyper-parameter. By leveraging this strategy, our method ensures con-
sistency across different views while also preserving the integrity of the underlying
latent embeddings.
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6.5 Experiments

In this section, we first introduce the datasets and implementation details in Section 6.5.1.
Subsequently, we evaluate the performance of our approach against other methods in
Section 6.5.2. Finally, to further understand the impact of the key designs, we conduct
an ablation study in Section 6.5.3.

(a) Results with larger training datasets (b) Results with smaller training datasets (less
than 100 images)

Figure 6.2: We plot the trade-off between the CLIP Direction Consistency and the CLIP Text-
Image Direction Similarity. For both metrics, higher is better.

Table 6.1: Quantiative evaluation on real-captured scenes

CLIP Text-Image
Direction Similarity

CLIP Direction
Consistency

Per-frame IP2P [175] 0.1603 0.8185
SDS w/ IP2P [175] 0.0266 0.9160
One-time DU [172] 0.1157 0.8823
Instruct-NeRF2NeRF [172] 0.1600 0.9191
Ours 0.2031 0.9376

6.5.1 Experimental setup

Datasets. We conduct 3D editing on a set of scenes with varying degrees of complexity,
including 360-degree scenes of environments and objects, faces, and full-body portraits
that are released by [172]. These scenes were captured using two types of cameras: a
smartphone and a mirrorless camera. We use the camera poses that were extracted via
the COLMAP [208]. Following CLIP-NeRF [168], we also evaluate the effectiveness of
our approach on two publicly available datasets: Photoshape [209] with a collection of
150K chairs and Carla [210], [211] consisting of 10K cars.
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Table 6.2: FID scores on real-captured scenes from Instruct-NeRF2NeRF [172]

Chairs Cars

Before After Before After

EditNeRF [170] 36.8 40.2 102.8 118.7
CLIP-NeRF [168] 47.8 48.4 66.7 67.8

Ours 32.1 32.5 48.6 49.0

Implementation details. We choose the official InstructPix2Pix [175] as our diffu-
sion prior, which contains a large-scale text-to-image latent diffusion model StableDif-
fusion [173]. During the training stage, we uniformly sample timesteps ranging from
t = 1 to T = 1000 for all experiments. The variances of the diffusion process are lin-
early increased, starting from β1 = 0.00085 and reaching β1 = 0.012. We optimize our
proposed delta module h(t) using 50 steps for each view. The training process requires
approximately 15 minutes and is performed on four RTX 3090 GPUs. After training,
we use the edited images as the supervision to train our NeRF. As the underlying
NeRF implementation, we use the nerfacto model from NeRFStudio [212], which is a
recommended real-time model tuned for real captures. We follow the training strategy
in NeRFStudio and the NeRFs are optimized for 30000 steps with L1 and directional
CLIP losses in [206].

Metrics. It should be noted that unlike dynamic NeRF methods, acquiring ground
truth views for view synthesis results after editing poses significant challenges, partic-
ularly when performing with real scenes. This is primarily because the edited views
as a product of user manipulation do not physically exist. Following the evaluation
metrics employed in Instruct-NeRF2NeRF [172], we evaluate two crucial quantitative
metrics, namely (1) CLIP Text-Image Direction Similarity, i.e., the alignment between
the edited 3D views and the corresponding text instruction, and (2) CLIP Direction
Consistency, the temporal consistency of the edit across multiple views [175]. Besides,
we compute the Fréchet Inception Distance (FID) scores [213] for 2000 rendered im-
ages before and after the editing process, which allows us to quantitatively assess the
quality and fidelity of the edited scenes.

6.5.2 Quantiative evaluation

Tables 6.1 and 6.2 show the superiority of Edit-DiffNeRF over other state-of-the-art
methods on real scenes. We observe that by learning the optimal delta module to
edit the latent semantic space, our Edit-DiffNeRF can have notably higher CLIP Text-
Image Direction Similarity and Consistency. In Fig. 6.2, we also plot the trade-off be-
tween the CLIP Direction Consistency and the CLIP Text-Image Direction Similarity
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Figure 6.3: Visual comparisons with a collection of recent state-of-the-art methods.
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Figure 6.4: Comparisons of editing results between CLIP-NeRF [168] and our Edit-DiffNeRF.

over two scenes. As these two metrics compete with each other, when the degree to
which the output images align with the desired edit increases, the consistency with the
input image decreases. As is observed from Fig. 6.2, compared to the recent state-of-
the-art method Instruct-NeRF2NeRF [172], the CLIP Direction consistency obtained by
our Edit-DiffNeRF is significantly higher, even with similar CLIP Text-Image Direction
Similarity values. Furthermore, we observe that when the training dataset for a scene
is smaller (consisting of less than 100 images), both the Instruct-NeRF2NeRF [172] and
our method yield similar results, with lower directional similarity.

In Table 6.2, we report the FID scores for measuring the image quality of synthe-
sized views before and after editing. To calculate the FID scores for rendered images,
we employ a set of 2000 randomly selected test images. Subsequently, we apply var-
ious edit instructions similar to CLIP-NeRF [168] to these images and recompute the
FID scores for the edited results. On the chair dataset, When evaluated on the chair
dataset, EditNeRF [170] demonstrates improved performance in terms of reconstruc-
tion compared to CLIP-NeRF [168]. However, it is worth noting that the quality of the
edited images noticeably decreases after the editing process. When evaluated on the
car dataset, CLIP-NeRF [168] exhibits a significant improvement over EditNeRF [170]
in terms of reconstruction quality before and after editing. Finally, compared to those
two methods, our Edit-DiffNeRF not only greatly improves the overall quality but also
effectively preserves the image quality after the editing process.

Editing results. We show edited results rendered from different views in Fig. 6.3
for real-captured scenes. For comparison, we also show the original NeRF rendering
results under the same views before editing. In Fig. 6.3, the first set is a campsite scene.
We edited it by a text instruction “Make it look like just snowed”. On the one hand, as
is observed from Fig. 6.3, the generated results via the InstructPix2Pix [175] are with
ambiguity on what exactly to edit and exhibit considerable inconsistencies across dif-
ferent views. On the other hand, although the Instruct-NeRF2NeRF [172] appears to
produce feasible views, some of them tend to show significant variance, resulting in a
3D scene that is blurry and highly distorted. Instead, the rendered multiple views ob-
tained via our Edit-DiffNeRF show its capability to effectively edit real-world scenes,
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Figure 6.5: Comparison with Instruct-NeRF2NeRF [172]. Edits were performed with a text
instruction "Give him a checkered jacket".

surpassing the achievements of previous approaches by delivering photo-realistic re-
sults while maintaining 3D consistency. In the second set of Fig. 6.3, the images were
edited by instruction "Delete the bear statue and the stage". According to the figure,
neither InstructPix2Pix [175] nor Instruct-NeRF2NeRF [172] are able to obtain the in-
tended editing results effectively. This limitation primarily arises from the incapacity
of InstructPix2Pix to handle large spatial manipulations.

Moreover, we present additional experimental results along with NeRF rendering
results in Figs. 6.4 and 6.5 to further illustrate our findings. The comparisons in Fig. 6.4
were performed with a text instruction “Turn it into a car with red front wheels and
green rear wheels”. It can be noted that CLIP-NeRF [168] is not able to handle fine-
grained edits. Instead, our edited result (right column) is quite consistent with the
instruction. In Fig. 6.5, we can further observe the presence of inconsistent edits within
Instruct-NeRF2NeRF [172] that fail to consolidate in a 3D scene (middle column). In-
stead, our model provides a superior solution (right column), rendering consistent
results and allowing for significant visual manipulations.

6.5.3 Ablation study

We validate the effectiveness of our Edit-DiffNeRF by conducting a comprehensive
comparative analysis between our approach and several other variants.

Impact of delta module. We first compare our model with against Instruct-NeRF2NeRF
[172]. We use the official code released by [175] and fine-tune the entire UNet model
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Table 6.3: Ablation study results

CLIP Text-Image
Direction Similarity

CLIP Direction
Consistency

Instruct-NeRF2NeRF [172] 0.1120 0.7805
Ours w/o Lc 0.1703 0.9198
Ours 0.2031 0.9376

in InstructPix2Pix [175] to edit real images. Table 6.3 demonstrates that our proposed
Edit-DiffNeRF outperforms InstructPix2Pix in all aspects. We attribute this superior-
ity to the fact that fine-tuning the entire model for each scene is challenging, thereby
resulting in inferior results.

Impact of multi-view semantic consistency loss. In addition, we perform experi-
ments where we exclude the consistency loss Lc. As is observed from Table 6.3, even
in the absence of the multi-view semantic consistency loss Lc, our method still sur-
passes Instruct-NeRF2NeRF [172] with a trained delta module. Nevertheless, without
this loss, our method still lacks 3D consistency and only achieves a slight performance
gain. In contrast, incorporating this loss yields substantial improvements in the results.

6.6 Limitations

Despite the encouraging performance gained by our work, it suffers from two limita-
tions. First, our model is subject to the visual quality of the rendered images generated
using NeRF techniques, as well as the diffusion model’s ability to generalize to arbi-
trary edits. Second, the quality of edited images decreases when the input images have
low resolution or are out of focus.

6.7 Conclusion

In this paper, we outlined the underlying challenges in achieving accurate NeRF scene
modifications with pretrained 2D diffusion models. To address this limitation, we in-
troduce the Edit-DiffNeRF framework, which specifically targets editing the seman-
tic latent space within pretrained diffusion models. Specifically, the Edit-DiffNeRF
framework is devised to learn latent semantic directions using a delta module, guided
by provided text instructions, which allows for the effective consolidation of these in-
structions within a 3D scene through NeRF training. Furthermore, we introduce a
multi-view semantic consistency loss to ensure semantic consistency across different
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views. Extensive experiments demonstrate that our approach consistently and effec-
tively enables edits across a wide range of real-captured scenes. Moreover, it signifi-
cantly improves the text-image consistency of the edited results.
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Conclusion and Future Work

7.1 Conclusion

This thesis presented elaborately designed and learning-based algorithms to address
model explainability for the broad deployment of AI applications. Our contribution to
the field includes the development of innovative visual explainable tools and empirical
studies aimed at identifying unclear or inaccurate explanations within deep learning
algorithms. Additionally, we investigated the role of AI explanations in facilitating
the model compression process and explored their application in the scene generation
domain.

In this thesis, we demonstrated the potent capabilities of deep learning models in
accurately and efficiently classifying medical images. Despite the notable potential
that deep learning holds, the inherent complexity of these models poses a consider-
able challenge in establishing the necessary trust in their decision-making processes
for clinical implementation. Our contribution takes a stride towards understanding
these intricate models and gaining trust through the introduction of our proposed ex-
plainable framework, including an explainable tool and a prediction basis module in
Chapter 3.

In Chapter 4, we have taken crucial strides towards understanding existing intri-
cate models and fostering humans’ trust. We initiated the process by showcasing how
visual attribution can serve to validate the classification decisions made by deep learn-
ing. Subsequently, we introduced an explainable model, named eX-ViT, represent-
ing our innovative approach for visually explaining weakly supervised segmentation
models. Through validation on various datasets, we illustrated how our proposed
model is able to provide superior comprehensive explanations for model decisions.

In Chapter 5, we illustrated the effectiveness of an explainable pruning method that
we developed, showcasing its direct utility in model compression. Our explanations,
coupled with empirical validation, highlight that over-parameterization in deep net-
works, especially in the spatial convolution layer, is not essential for achieving high
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performance. A substantial number of spatial weights can be removed from the net-
work before both training and inference. The creation of compact and accurate net-
works aligns seamlessly with the importance of explanations, as discussed in Chapter
1. In terms of legal relevance, compact and accurate models address the data process-
ing principles of "data minimization" and "accuracy" outlined in the General Data Pro-
tection Regulation (GDPR). Our explainable approach offers solutions to the GDPR’s
requirement for transparency. The future application of compression or smaller models
holds the potential to counteract the prevailing trend in deep learning toward exces-
sively large models. Understanding which parameters are dispensable contributes to
eliminating the lack of transparency in model structures.

In Chapter 6, we demonstrated how to incorporate explanations into generative
models instead of discriminative models, resulting in notable improvements in the
quality of generated samples. Despite the promise held by Generative AI in seam-
lessly delivering on-demand content throughout a user’s workflow, the optimal use,
methodologies, and the comparative utility of incorporating generated content over
traditional approaches remain uncertain. For instance, there may be a need for ex-
planation when specific prompts fail to yield desired generated content. A successful
explanation could empower users to enhance their prompts, leading to greater satis-
faction with the newly generated samples.

To sum up, this dissertation presents several novel contributions to the field of ex-
plainable AI, these contributions have been validated across multiple application do-
mains. In the domain of medical imaging, we focused on enhancing diagnostic accu-
racy and interpretability in models used for Alzheimer’s disease analysis. And our
methods demonstrated a significant improvement in model interpretability without
compromising diagnostic accuracy on ADNI dataset. In the domain of object detec-
tion, the focus was on improving the accuracy and reliability of AI models used in
safety-critical applications, such as autonomous driving. Our methods were evaluated
on the COCO and Pascal VOC datasets, demonstrating a significant reduction in false
positives. For generative models, the thesis explored XAI techniques to enhance the
quality and diversity of generated samples. Using real-captured scenes, the proposed
methods resulted in a 25% increase in image quality, as measured by the Fréchet In-
ception Distance (FID). The integration of XAI facilitated targeted model adjustments,
leading to more realistic and diverse generated outputs. It is our aspiration that the
frameworks and methods introduced in this dissertation will lay a robust foundation
for constructing explainable models within the computer vision community.
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7.2 Future Work

In future research endeavors within the realm of explainable AI, there emerges a press-
ing need for the development of unified representations or data structures tailored to
organize explainable features. This necessity particularly arises to effectively grapple
with the challenges posed by increasingly large and intricate models. As AI models
continue to expand in both size and complexity, the conventional methods for orga-
nizing and interpreting explainable features may prove insufficient. Hence, there is
a call for innovative approaches that can effectively capture and communicate the in-
tricate decision-making processes underlying these sophisticated models. Such novel
representations or data structures would not only facilitate a deeper understanding
of AI model behavior but also pave the way for more robust and comprehensive ex-
planations that can be readily understood and utilized by stakeholders across various
domains.

Furthermore, while our proposed methods have yielded excellent results, current
exploration has primarily focused on improving visual explanations. However, the
landscape of AI systems is dynamically evolving towards the integration of multi-
modal capabilities. This transition introduces a significant layer of complexity, de-
manding a fundamental rethinking of how we conceive and implement explainability.
It would be intriguing to extend the concept of explainability beyond visual modalities
and explore how humans can effectively leverage multi-modal explanations to interact
with AI models. In addition, in scenarios where users engage in text-based conversa-
tions with chatbots, further studies should strive to provide empirical evidence that
offers tangible insights into the effectiveness of prompting strategies. By providing
explanations on how humans can harness prompts to facilitate more meaningful and
intuitive interactions with AI systems, future research can significantly enhance our
understanding of explainability in AI environments, ultimately fostering more trans-
parent and trustworthy AI systems.





107

Bibliography

[1] C. Rudin, “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead,” Nature Machine Intelligence,
vol. 1, no. 5, pp. 206–215, 2019.

[2] P. Schramowski, W. Stammer, S. Teso, A. Brugger, F. Herbert, X. Shao, H. Luigs,
A. Mahlein, and K. Kersting, “Making deep neural networks right for the right
scientific reasons by interacting with their explanations,” Nature Machine Intel-
ligence, vol. 2, no. 8, pp. 476–486, 2020. [Online]. Available: https://doi.org/
10.1038/s42256-020-0212-3.

[3] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (XAI): to-
ward medical XAI,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 11, pp. 4793–4813, 2021. [Online]. Available: https://doi.org/10.
1109/TNNLS.2020.3027314.

[4] D. Gunning and D. W. Aha, “Darpa’s explainable artificial intelligence (XAI)
program,” AI Magazine, vol. 40, no. 2, pp. 44–58, 2019.

[5] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition,” in Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security, 2016,
pp. 1528–1540. [Online]. Available: https : / / doi . org / 10 . 1145 / 2976749 .
2978392.

[6] A. Renda, P. Ducange, F. Marcelloni, D. Sabella, M. C. Filippou, G. Nardini, G.
Stea, A. Virdis, D. Micheli, D. Rapone, et al., “Federated learning of explainable
ai models in 6g systems: Towards secure and automated vehicle networking,”
Information, vol. 13, no. 8, p. 395, 2022.

[7] Y. Zhang and H. Yu, “Lr-xfl: Logical reasoning-based explainable federated
learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38,
2024, pp. 21 788–21 796.

[8] Z. Wang, H. Wang, S. Ramkumar, P. Mardziel, M. Fredrikson, and A. Datta,
“Smoothed geometry for robust attribution,” Advances in neural information pro-
cessing systems, vol. 33, pp. 13 623–13 634, 2020.



108 Bibliography

[9] S. Ghalebikesabi, L. Ter-Minassian, K. DiazOrdaz, and C. C. Holmes, “On lo-
cality of local explanation models,” Advances in neural information processing sys-
tems, vol. 34, pp. 18 395–18 407, 2021.

[10] P. Chalasani, J. Chen, A. R. Chowdhury, X. Wu, and S. Jha, “Concise explana-
tions of neural networks using adversarial training,” in International Conference
on Machine Learning, 2020, pp. 1383–1391.

[11] A. Boopathy, S. Liu, G. Zhang, C. Liu, P.-Y. Chen, S. Chang, and L. Daniel,
“Proper network interpretability helps adversarial robustness in classification,”
in International Conference on Machine Learning, 2020, pp. 1014–1023.

[12] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M.
Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learn-
ers,” in Advances in Neural Information Processing Systems, 2020.

[13] R. Mihalcea and C. W. Leong, “Toward communicating simple sentences using
pictorial representations,” Machine Translation, vol. 22, no. 3, pp. 153–173, 2008.
[Online]. Available: https://doi.org/10.1007/s10590-009-9050-0.

[14] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-
conditional image generation with CLIP latents,” 2022. arXiv: 2204.06125. [On-
line]. Available: https://doi.org/10.48550/arXiv.2204.06125.

[15] R. Dale, “GPT-3: what’s it good for?” Natural Language Engineering, vol. 27,
no. 1, pp. 113–118, 2021. [Online]. Available: https : / / doi . org / 10 . 1017 /
S1351324920000601.

[16] M. Wermelinger, “Using github copilot to solve simple programming prob-
lems,” in Proceedings of the ACM Technical Symposium on Computer Science Ed-
ucation, 2023, pp. 172–178. [Online]. Available: https://doi.org/10.1145/
3545945.3569830.

[17] W. F. Godoy, P. Valero-Lara, K. Teranishi, P. Balaprakash, and J. S. Vetter, “Eval-
uation of openai codex for HPC parallel programming models kernel gener-
ation,” in Proceedings of the International Conference on Parallel Processing, 2023,
pp. 136–144. [Online]. Available: https://doi.org/10.1145/3605731.3605886.

[18] C. Rudin, “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead,” Nature machine intelligence, vol. 1,
no. 5, pp. 206–215, 2019.



Bibliography 109

[19] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based local-
ization,” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 618–626.

[20] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek,
“Pixel-wise explanations of non-linear classifier decisions with deep taylor de-
composition,” in International conference on machine learning, PMLR, 2015, pp. 286–
294.

[21] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep
features for discriminative localization,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2921–2929.

[22] M. A. Jalwana, N. Akhtar, M. Bennamoun, and A. Mian, “Cameras: Enhanced
resolution and sanity preserving class activation mapping for image saliency,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2021, pp. 16 327–16 336.

[23] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of neural networks is frag-
ile,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, 2019,
pp. 3681–3688.

[24] A. Singh, S. Sengupta, and V. Lakshminarayanan, “Explainable deep learning
models in medical image analysis,” Journal of Imaging, vol. 6, no. 6, p. 52, 2020.
[Online]. Available: https://doi.org/10.3390/jimaging6060052.

[25] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidi-
rectional transformers for language understanding,” in Proceedings of the North
American Chapter of the Association for Computational Linguistics, 2019, pp. 4171–
4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423.

[26] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X.
Hu, “Score-cam: Score-weighted visual explanations for convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020, pp. 24–25.

[27] P. Hacker, A. Engel, and M. Mauer, “Regulating ChatGPT and other large gen-
erative AI models,” in Proceedings of the 2023 ACM Conference on Fairness, Ac-
countability, and Transparency, 2023, pp. 1112–1123.

[28] A. Zador, S. Escola, B. Richards, B. Ölveczky, Y. Bengio, K. Boahen, M. Botvinick,
D. Chklovskii, A. Churchland, C. Clopath, et al., “Catalyzing next-generation
artificial intelligence through neuroai,” Nature communications, vol. 14, no. 1,
p. 1597, 2023.



110 Bibliography

[29] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger, and S. Friedler, “Prob-
lems with shapley-value-based explanations as feature importance measures,”
in Proceedings of the International conference on machine learning, 2020, pp. 5491–
5500.

[30] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J.
Himmelfarb, N. Bansal, and S.-I. Lee, “From local explanations to global under-
standing with explainable ai for trees,” Nature machine intelligence, vol. 2, no. 1,
pp. 56–67, 2020.

[31] Q. Ai and L. Narayanan. R, “Model-agnostic vs. model-intrinsic interpretabil-
ity for explainable product search,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 5–15.

[32] P. Wang and N. Vasconcelos, “A generalized explanation framework for visual-
ization of deep learning model predictions,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 45, no. 8, pp. 9265–9283, 2023.

[33] A. Kumar, K. Sehgal, P. Garg, V. Kamakshi, and N. C. Krishnan, “MACE: model
agnostic concept extractor for explaining image classification networks,” IEEE
Transactions on Artificial Intelligence, vol. 2, no. 6, pp. 574–583, 2021.

[34] T. Miller, “Explanation in artificial intelligence: Insights from the social sci-
ences,” Artificial Intelligence, vol. 267, pp. 1–38, 2019.

[35] A. B. Arrieta, N. D. Rodríguez, J. D. Ser, A. Bennetot, S. Tabik, et al., “Explainable
artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges
toward responsible AI,” Information Fusion, vol. 58, pp. 82–115, 2020.

[36] P. Voigt and A. Von dem Bussche, “The EU general data protection regula-
tion (GDPR),” A Practical Guide, 1st Ed., Cham: Springer International Publishing,
vol. 10, pp. 10–5555, 2017.

[37] F. Doshi-Velez, M. Kortz, R. Budish, C. Bavitz, S. Gershman, D. O’Brien, S.
Schieber, J. Waldo, D. Weinberger, and A. Wood, “Accountability of AI under
the law: The role of explanation,” 2017. arXiv: 1711.01134. [Online]. Available:
http://arxiv.org/abs/1711.01134.

[38] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional
networks,” in Proceedings of the IEEE Winter Conference on Applications of Com-
puter Vision, 2018, pp. 839–847.



Bibliography 111

[39] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should I trust you?": Explaining
the predictions of any classifier,” in Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144.
[Online]. Available: https://doi.org/10.1145/2939672.2939778.

[40] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774,
2017.

[41] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-agnostic
explanations,” in Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems, 2018, pp. 337–348.

[42] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations without
opening the black box: Automated decisions and the gdpr,” Harvard Journal of
Law & Technology, vol. 31, no. 2, pp. 841–887, 2017.

[43] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,”
in Annals of statistics, 2001, pp. 1189–1232.

[44] C. J. Anders, L. Weber, D. Neumann, W. Samek, K. Müller, and S. Lapuschkin,
“Finding and removing clever hans: Using explanation methods to debug and
improve deep models,” Information Fusion, vol. 77, pp. 261–295, 2022.

[45] Y. Fei, L. Cui, S. Yang, W. Lam, Z. Lan, and S. Shi, “Enhancing grammatical error
correction systems with explanations,” in Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics, Association for Computational
Linguistics, 2023, pp. 7489–7501.

[46] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep net-
works,” in Proceedings of the 34th International Conference on Machine Learning,
2017, pp. 3319–3328.

[47] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through
propagating activation differences,” arXiv preprint arXiv:1704.02685, 2017.

[48] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, et al., “Sanity checks
for saliency maps,” Advances in Neural Information Processing Systems, vol. 31,
pp. 9505–9515, 2018.

[49] A. Malhotra, S. Mittal, P. Majumdar, S. Chhabra, K. Thakral, M. Vatsa, R. Singh,
S. Chaudhury, A. Pudrod, and A. Agrawal, “Multi-task driven explainable di-
agnosis of COVID-19 using chest X-ray images,” Pattern Recognition, vol. 122,
pp. 1–13, 2022.

[50] Z. C. Lipton, “The mythos of model interpretability,” Communications of the
ACM, vol. 61, no. 10, pp. 36–43, 2018.



112 Bibliography

[51] M. Zhou, X. Wei, W. Jia, and S. Kwong, “Joint decision tree and visual feature
rate control optimization for VVC UHD coding,” IEEE Transactions on Image
Processing, vol. 32, pp. 219–234, 2023.

[52] H. Chefer, S. Gur, and L. Wolf, “Generic attention-model explainability for in-
terpreting bi-modal and encoder-decoder transformers,” in Proceedings of the
IEEE International Conference on Computer Vision, 2021, pp. 387–396.

[53] A. Shaban-Nejad, M. Michalowski, J. S. Brownstein, and D. L. Buckeridge, “Guest
editorial explainable AI: towards fairness, accountability, transparency and trust
in healthcare,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 7,
pp. 2374–2375, 2021.

[54] X. Kong, S. Liu, and L. Zhu, “Toward human-centered xai in practice: A survey,”
Machine Intelligence Research, pp. 1–31, 2024.

[55] J. Colin, T. Fel, R. Cadène, and T. Serre, “What I cannot predict, i do not under-
stand: A human-centered evaluation framework for explainability methods,”
in Advances in neural information processing systems, 2022, pp. 2832–2845.

[56] F. Doshi-Velez, M. Kortz, R. Budish, C. Bavitz, S. Gershman, D. O’Brien, K. Scott,
S. Schieber, J. Waldo, D. Weinberger, et al., “Accountability of ai under the law:
The role of explanation,” arXiv preprint arXiv:1711.01134, 2017.

[57] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable ma-
chine learning,” arXiv preprint arXiv:1702.08608, 2017.

[58] C. Agarwal, S. Krishna, E. Saxena, M. Pawelczyk, N. Johnson, I. Puri, M. Zitnik,
and H. Lakkaraju, “Openxai: Towards a transparent evaluation of model expla-
nations,” in Advances in Neural Information Processing Systems, 2022, pp. 15 784–
15 799.

[59] Y. Liu, H. Li, Y. Guo, C. Kong, J. Li, and S. Wang, “Rethinking attention-model
explainability through faithfulness violation test,” in International Conference on
Machine Learning, 2022, pp. 13 807–13 824.

[60] W. Huang, X. Zhao, G. Jin, and X. Huang, “Safari: Versatile and efficient evalu-
ations for robustness of interpretability,” in Proceedings of the IEEE International
Conference on Computer Vision, 2023, pp. 1988–1998.

[61] R. Machlev, M. Perl, J. Belikov, K. Y. Levy, and Y. Levron, “Measuring explain-
ability and trustworthiness of power quality disturbances classifiers using XAI—explainable
artificial intelligence,” IEEE Transactions on Industrial Informatics, vol. 18, no. 8,
pp. 5127–5137, 2021.



Bibliography 113

[62] J. van der Waa, E. Nieuwburg, A. Cremers, and M. Neerincx, “Evaluating XAI:
A comparison of rule-based and example-based explanations,” Artificial intelli-
gence, vol. 291, p. 103 404, 2021.

[63] Q. V. Liao, Y. Zhang, R. Luss, F. Doshi-Velez, and A. Dhurandhar, “Connect-
ing algorithmic research and usage contexts: A perspective of contextualized
evaluation for explainable AI,” in Proceedings of the AAAI Conference on Human
Computation and Crowdsourcing, vol. 10, 2022, pp. 147–159.

[64] S. Jesus, C. Belém, V. Balayan, J. Bento, P. Saleiro, P. Bizarro, and J. Gama, “How
can i choose an explainer? an application-grounded evaluation of post-hoc ex-
planations,” in Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency, 2021, pp. 805–815.

[65] K. Morrison, M. Jain, J. Hammer, and A. Perer, “Eye into AI: Evaluating the
interpretability of explainable AI techniques through a game with a purpose,”
Proceedings of the ACM on Human-Computer Interaction, vol. 7, pp. 1–22, 2023.

[66] U. Ehsan, P. Wintersberger, Q. V. Liao, E. A. Watkins, C. Manger, H. Daumé III,
A. Riener, and M. O. Riedl, “Human-centered explainable ai (HCXAI): Beyond
opening the black-box of ai,” in CHI conference on human factors in computing
systems extended abstracts, 2022, pp. 1–7.

[67] B. Mittelstadt, C. Russell, and S. Wachter, “Explaining explanations in AI,” in
Proceedings of the conference on fairness, accountability, and transparency, 2019, pp. 279–
288.

[68] L. Weber, S. Lapuschkin, A. Binder, and W. Samek, “Beyond explaining: Oppor-
tunities and challenges of xai-based model improvement,” Information Fusion,
vol. 92, pp. 154–176, 2023.

[69] D. Kollias, A. Arsenos, and S. Kollias, “Domain adaptation explainability & fair-
ness in ai for medical image analysis: Diagnosis of covid-19 based on 3-d chest
ct-scans,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2024, pp. 4907–4914.

[70] C. Tang, N. Srishankar, S. Martin, and M. Tomizuka, “Grounded relational infer-
ence: Domain knowledge driven explainable autonomous driving,” IEEE Trans-
actions on Intelligent Transportation Systems, 2024.

[71] C.-H. Chang, J. Yoon, S. Ö. Arik, M. Udell, and T. Pfister, “Data-efficient and in-
terpretable tabular anomaly detection,” in Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023, pp. 190–201.



114 Bibliography

[72] C.-S. Lin and Y.-C. F. Wang, “Describe, spot and explain: Interpretable represen-
tation learning for discriminative visual reasoning,” IEEE Transactions on Image
Processing, vol. 32, pp. 2481–2492, 2023.

[73] Z. Zhang, L. Yilmaz, and B. Liu, “A critical review of inductive logic program-
ming techniques for explainable ai,” IEEE Transactions on Neural Networks and
Learning Systems, 2023.

[74] W. Tang, J. Liu, Y. Zhou, and Z. Ding, “Causality-guided counterfactual debi-
asing for anomaly detection of cyber-physical systems,” IEEE Transactions on
Industrial Informatics, 2023.

[75] G. Cornacchia, V. W. Anelli, G. M. Biancofiore, F. Narducci, C. Pomo, A. Ragone,
and E. Di Sciascio, “Auditing fairness under unawareness through counterfac-
tual reasoning,” Information Processing & Management, vol. 60, no. 2, p. 103 224,
2023.

[76] K. E. Mokhtari, B. P. Higdon, and A. Başar, “Interpreting financial time series
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