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ABSTRACT 

IoT DEVICES OPTIMISING CLINICAL SPACE UTILISATION: EFFECTIVE, 
APPROPRIATE, ACCEPTABLE 

 
September 2024 

 
TIMOTHY McNABB, B.ARCH., CARLETON UNIVERSITY, CANADA 

 
 

PhD DISSERTATION, JAMES COOK UNIVERSITY, AUSTRALIA 
 

Directed by: Dr Kristin Wicking, and Professor Trina Myers  
 

Delivering public healthcare is a complex and expensive endeavour. Many categories 

of expenditure compete for limited funding within fixed annual budgets. Similarly, in 

each healthcare system, diverse services compete for limited space. Without 

appropriate clinical space, most clinical services cannot be provided. Clinical space is 

therefore a critical resource to every healthcare system and its utilisation requires 

careful management. Using existing clinical spaces efficiently will optimise consumer 

access to healthcare services. Improved access results in timelier healthcare services 

delivered to healthcare consumers in need.  Receiving healthcare services sooner 

reduces reliance on more intensive and costly downstream services such as the 

emergency department and ambulance services.  

Despite this criticality, prior to this research there has been no sustainable way to 

collect data on the use of clinical spaces, making management of clinical space across 

a health system challenging and nearly impossible at the state level. Previous methods 

of studying clinical space utilisation typically required ongoing human resources to 

manage if fully implemented. Therefore, study periods were typically short and did 

not reflect the dynamic reality of healthcare services delivery which is constantly in 

flux. Also, the findings of previous researchers were challenging to translate into ‘coal 

face’ efficiency gains without significant ongoing human resources funding.  

This research explored the capacity of Internet of Things (IoT) devices to support the 

optimisation of clinical space utilisation by demonstrating how these spaces are used. 

These network-connected sensor devices recorded human activity for 25 months in 25 
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clinical spaces across an operational multidisciplinary outpatient clinic within a 

regional tertiary teaching hospital in Australia. Human-centric data visualisation and 

exploration was facilitated through dynamic data dashboards incorporating analytical 

and predictive support tools. This research demonstrates that IoT devices are effective 

in providing data on clinical space utilisation. Further, by processing this data, 

historical use patterns can be explored, and future vacancies can be predicted.  

This research project also explored the opinions of healthcare workers on both the 

appropriateness of IoT technology in a clinical setting, and its acceptability for use in 

their workplace. Despite the demonstrated success of this technology, the human 

response to their implementation remained unknown. For example, were these 

systems appropriate for use in operational clinical environments? How comfortable 

would staff feel, working in spaces under constant electronic observation? To explore 

their feelings on the potential implementation of these technologies, staff at the host 

HHS for this research were asked for feedback through a series of one-on-one 

interviews and an all-staff survey. Staff responses indicate that this feasible, 

sustainable approach to managing clinical space utilisation was considered 

appropriate for deployment in operational clinical environments. Also, staff were 

comfortable with low-density collection of human activity data to optimise clinical 

space utilisation in their workplace with several critical caveats.  

Clinical space utilisation data can now be sustainably recorded, visualised and 

predicted. Data can be transparently shared within and between healthcare service 

groups. Clinical spaces can be shared by agreement between service groups to 

dynamically manage peak loads without physically expanding the healthcare system. 

Alternatively, with the capacity for near-live feedback, the management of clinical 

space could be re-organised entirely. The capacity to effectively manage clinical 

space has now been demonstrated at the local level. Efficient use of existing spatial 

resources can now also be demonstrated to local and state-level entities prior to 

funding expansion activities.  

Optimising the use of existing clinical spaces means a reduction in the need to expand 

the physical footprint of the healthcare system. At a cost of approximately $240,000 

per consult room to construct, and many more times that to operate, the public service 
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has an obligation to demonstrate efficient use of its spatial clinical resources. This 

obligation is especially true when allocating resources to expand the physical and 

ecological footprint of the healthcare system. Improved access to healthcare services 

reduces wait times and improves the healthcare experience of consumers while 

simultaneously reducing the overall cost of delivering these services. With positive 

implications for financial, social, ecological and quality aspects of healthcare services 

delivery, this research project has demonstrated potential positive impacts to the 

quadruple bottom line of the public healthcare system. The potential benefits from 

this research project’s findings for society could be high if the concerns of occupants 

can be suitably addressed.  
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Providing healthcare at the scale of a large modern hospital is complex, dynamic and 

expensive. Beyond financial costs, there were environmental and societal costs that must 

be considered when seeking to quantify the cost of providing healthcare services at a 

national level. Regardless which area of healthcare services one chooses to consider, the 

physical built form of the healthcare system touches nearly all of them in some way. 

Despite this broad underpinning of the healthcare system, research on the physical 

healthcare environment itself remains underrepresented in the literature. 

First, the cost of providing healthcare in Australia is high and growing, with $220.9 

trillion spent in the 2020/21 financial year. This spending has experienced more than 25 

per cent growth from the 2015/16 to 2021-22 financial years. Though operational and 

financial impacts on the healthcare system from the recent COVID-19 pandemic must be 

acknowledged, growth in healthcare expenditure has outstripped Gross Domestic Product 

(GDP) growth for a long time. To meet the demands of a growing system, ways to reduce 

inefficient practices must be found to ensure the provision of healthcare services are as 

efficient as possible. 

Next, one area of healthcare spending that grew by a 10-year annual average of 3.9 per 

cent to the 2015-16 financial year is capital expenses. These expenses are those spent on 

building, buying and renovating healthcare spaces. These funds are distinct from, but are 

directly related to, the recurring costs of operating and maintaining any expansion of the 

built healthcare environment. Since healthcare contributes seven per cent of Australian 

greenhouse gas emissions [6], reducing the growth of the physical footprint of the 

healthcare system also reduces growth of its environmental footprint. 
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Finally, in any modern healthcare system, independently operated services are 

functionally interconnected with other services, both clinical and nonclinical, in a 

constant ebb and flow. This web of healthcare delivery is experienced sequentially by 

healthcare consumers as they progress through their healthcare journey.  Improved access 

to healthcare services leads to earlier healthcare interventions, and reduced reliance on 

more intensive downstream services.  Each of these services affects the others should 

capacity exceed demand, and in all cases the healthcare journeys of consumers are 

negatively affected. These effects manifest in longer wait times, increased congestion in 

emergency services, and increased backlog in ambulance services, and other negative 

downstream clinical service impacts. 

Each of the above aspects of providing healthcare services, including the overall financial 

costs, environmental costs, and social costs has at least one common critical resource: 

space. Without healthcare spaces to supporting the delivery of modern clinical care, 

delivering healthcare services to the level of the Australian or any modern healthcare 

system would not be possible. This reliance on space is equally true of ambulatory 

outpatient services. Research literature is abundant on the flow of patients through 

respective clinical services. Many of these had the aim of optimising elements of time, 

either patient or provider time. Others seek to optimise the use of limited clinical 

resources, yet few mention ‘the elephant in the room’: the room itself. Despite supporting 

the delivery of outpatient healthcare services around the world, limited research has been 

devoted to optimising the use of the clinical space itself. This may be due to a lack of 

effective tools to study how these spaces are used. Alternatively, it may be due to the lack 

of appropriate methodologies to study these spaces. Perhaps there is a reluctance to 

pursue this type of research due to the vagaries of the primary current tool: human 

observation of human behaviour? Whatever the reasons, research on the optimisation of 

the use of these high-value, limited-quantity resources is underrepresented in the 

literature. 

The aim of this research project is to demonstrate effective tools for healthcare staff to 

better understand how their spaces are utilised. Managers typically understand how the 
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spaces in their care are intended to be used. However, there is currently no long-term, 

cost-effective means to verify intended use against actual use, and adjust accordingly. 

Similarly, the capacity to demonstrate the effectiveness of any optimisation strategies, 

once they were implemented, is also limited.  The suite of technology hypothesised as 

ideal for this role is collectively termed the ‘Internet of Things’ (IoT). These IoT devices 

are increasingly common ‘smart’ objects in everyday life, such as clothes washers, 

vehicles and of course phones. This research demonstrates that IoT devices are effective 

in providing data on clinical space utilisation. Further, by processing this data, historical 

use patterns can be explored, and future vacancies can be predicted.  

Introducing new technology into standard clinical spaces may not be considered 

appropriate in healthcare settings. Similarly, healthcare staff may not feel comfortable 

being under the constant observation of these technologies. Should either of these 

possibilities be demonstrated to be true, the introduction of IoT devices to understand 

patterns of clinical space utilisation may not be feasible at scale. This research project 

also explored the opinions of healthcare workers on both the appropriateness of IoT 

technology in a clinical setting, and its acceptability for use in their workplace. 

By demonstrating the first sustainable, acceptable, and appropriate suite of technology 

capable of identifying historic patterns of occupancy, and predicting future vacancies, 

this research advances the state of the art. Beyond being functionally effective, this 

technology is also lower cost, and more accurate compared with previous manual data-

gathering methods. The technology operates independently with minimal maintenance for 

as long as the hardware lasts. Ambient information collected by electronic devices in 

nonintrusive, non-personally identifiable ways has the potential to revolutionise how 

humans use the built environment.  

Optimising clinical space utilisation means more healthcare services can be delivered 

through existing resources. Increasing healthcare delivery opportunities leads to 

improved access to diagnosis and/or treatment for consumers and allows for earlier 

intervention opportunities. Improved access leads to reduced wait times, and less demand 

to increase the physical size of the healthcare system. Using exiting healthcare facilities 
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more efficiently is cost-effective, potentially freeing up funds to increase core services. 

Beyond positive financial impacts, using our built environment more efficiently helps 

mitigate negative environmental impacts in Australia and worldwide. Using IoT 

technology to optimise clinical space utilisation can positively impact human society both 

individually and collectively. Now that this potential has been realised, implementation is 

inevitable. 

1.2 Research problem 

Few tools exist to support clinical managers to optimise the use of their existing 

healthcare spaces. Without the ability to accurately record space utilisation, clinic 

managers have had little data to demonstrate whether their services were at, or over, 

capacity. For executives, making data-driven decisions on capital allocation is 

challenging when efficiency of existing resources cannot be proven or disproven. The 

documented evidence of the disparity between the intended use of existing spaces and 

their actual use has historically been elusive.  

Human observation, the most prevalent of current methods of determining space 

utilisation, is problematic in clinical settings. When spaces were in use for the 

provision/consumption of outpatient services, the necessarily windowless doors to 

clinical spaces remained closed. Interrupting clinical services to check whether spaces 

were occupied or vacant was equally problematic. Constant human observation inside 

clinical spaces would be equally disruptive. Ongoing self-reporting may negatively 

impact the timely flow of healthcare service delivery and has been demonstrated to have 

low accuracy. Human resources were costly, and therefore study periods tend to be short. 

Snapshot data gathering in a dynamic healthcare delivery environment is suboptimal. By 

the time improvement interventions can be designed and initiated, the state would have 

changed, making demonstrating the effectiveness of interventions challenging if not 

ineffective. Human-based data gathering is also error prone with the monotony of 

continuous monitoring across a clinic likely to further negatively impact the quality of 

data provided. This seemingly intractable problem may be reflected in the lack of clinical 

space use optimisation research in the literature. This research explores solutions to the 
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inherent challenges of optimising clinical space utilisation. Through this exploration, 

emergent technologies were utilised to help resolve these problems by responding to 

several targeted research questions. 

1.3    Research questions 

From the research problems identified above, several research questions emerged.  These 

questions have been provided below, including parenthesised references to where in this 

document they have been answered: 

 Can IoT devices identify patterns of utilisation in operational clinical spaces? 

(Section 4) 

 Can humans gain insight into historical patterns of clinical space utilisation by 

interacting with IoT data through data visualisation artifacts? (Section 4.2.5) 

 Can future utilisation patterns be predicted from historical data? (Section 4.2.7) 

 Do healthcare workers consider IoT devices appropriate to study space utilisation 

in operational clinical environments? (Sections 4.3 and 4.4) 

 How comfortable are staff with being observed by IoT devices gathering human 

activity data in their workplace?  (Sections 4.3 and 4.4) 

 As the density of human activity data gathered by electronic devices increases, is 

there consensus within staff comfort levels? (Sections 4.3 and 4.4) 

1.4 Research aims 

This research responds to the above questions by demonstrating cost-effective solutions 

to challenging, previously irresolvable problems and confirms the viability of these 

solutions when applied to an operational clinical environment. Further, this research not 

only provides a window into historic resource utilisation, but provides a tool to predict 

future utilisation based on ongoing historical data and therefore supports improved spatial 

clinical resource utilisation in future. Such improvements aim to improve operational 

effectiveness of the clinic and help improve the healthcare journey for consumers, reduce 

daily stress on operational staff, and ultimately reduce the cost of providing public 

healthcare services. Abundant research exists exploring human energy consumption 

through the built environment, and the associated environmental impacts. Research into 
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optimising patient scheduling and clinical flow is equally abundant. Finally, this research 

project explores the timely, emergent opportunity for a multidisciplinary approach to 

addressing the intractable challenges associated with optimising clinical space utilisation. 

1.5 Outcomes 

The prediction was that patterns of occupancy would be clear in the data obtained from 

the sensor units through post-report examination and statistical analysis. This data would 

then form the basis for making evidence-based recommendations for strategies targeting 

improvements in outpatient clinical space use. The intent of the final design artefact was 

to provide short-term feedback on the effectiveness of employed space utilisation 

strategies to frontline managers and executive staff alike. 

The capacity for targeted intervention with IoT technology has been demonstrated to 

improve opportunities for clinical space optimisation initiatives. Realising these 

opportunities would provide numerous improvements. First, it would improve access to 

clinical services. Also, it would reduce demand to increase the physical size of the 

healthcare system. Finally, it would provide some mitigation of the inherent 

environmental footprint of providing healthcare in Australia. If access to healthcare 

services could be improved by increasing opportunities to provide healthcare through 

existing spatial assets, consumers of these services can receive clinical attention more 

rapidly. Earlier intervention would reduce reliance on riskier, more intensive, and more 

expensive downstream services, and improve the healthcare journey of consumers. In 

summary, better utilisation of spatial assets improves individual healthcare outcomes 

while reducing the cost of providing healthcare and the impact of providing healthcare on 

the environment. This opportunity can be realised if historical challenges in data 

gathering, data visualisation, dissemination and future use prediction can be overcome by 

the results demonstrated through this research.  

1.6 Motivation 

This research project originated from a simplistic query posed to the author (Principal 

Investigator) as an employee of a regional tertiary teaching hospital in Queensland, 
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Australia: ‘are our clinical spaces well utilised?’ When existing solutions based on human 

observation provided only ‘snapshot’ data resulting in substandard outcomes, the answer 

to this seemingly simple question grew more elusive, not less. Early on, the scale of the 

potential positive worldwide impact that resolving this issue could make for individuals, 

organisations and environment became evident. The potential to make such a positive 

contribution created sufficient drive to progress a formal inquiry through to completion. 

When the inspiration to use sensor devices was included in an awarded research funding 

grant, the hunt for a viable solution began in earnest.  

With abundant support from colleagues, managers and the passion and guidance of two 

incredible advisers, the journey to find an answer to the core research question began. 

Each phase of discovery increased the passion to demonstrate potential solutions to this 

vexing question. This progressively building passion supported a seemingly unstoppable 

momentum, through two moves, family trauma, three house floods, three renovations, 

personal health crises and an international pandemic. In summary, a determination to 

resolve a simple yet apparently intractable question with a cost-effective, scalable 

solution provided sufficient motivation to see this research through to conclusion. 

1.7 Potential solution 

Privacy-preserving, internet-connected sensor devices were proposed for installation into 

clinical spaces to detect human presence and/or provide insight into human activity in 

these high-value clinical spaces. Data collected was nonpersonally identifiable, 

environmentally ambient, and collected by noncontact means without any maintenance 

burden on clinical staff. Once collected, data was presented to staff in a dynamic data 

dashboard to facilitate personal exploration and identification of improvement 

opportunities. Further, the tools of machine learning were applied to the data to explore 

the predictive capacity in identifying future optimisation opportunities for clinical space 

utilisation. Finally, staff opinions on the use of electronic observation to study patterns of 

human activity within clinical spaces were confirmed through one-on-one staff interviews 

and an all-staff survey. 
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1.7.1 Scope 

Sensors were installed in 25 healthcare spaces within a fully operational multidisciplinary 

outpatient suite, on the main campus of a regional hospital and health service (HHS) in 

Queensland, Australia. Data gathering was ceased for practicality purposes after 25 

months of continuous operation. Once the digital survey was completed, nine interviews 

and an HHS-wide survey were undertaken to explore staff perceptions of various data 

gathered by either human or electronic observation. 

1.7.2 Sequence of activities 

Activities outlined in this section and further expanded in Chapter 3 occurred 

sequentially, each building upon lessons learned in previous activities. Except for sensor 

selection and calibration activities, the results of each of the following were either 

presented at an international conference, published through international journal articles, 

were under consideration for publication, or are pending submission for publication. The 

sequence of activities undertaken for this research project are presented in Table 1. 
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Table 1: Schedule of research activities with approximate timing 

Phase/Activity  Description Start 

Phase 1a: RFID 

Access Control 

Exploration  

Explore capacity of existing staff Radio Frequency 

Identification (RFID) badges, and existing door access 

control system to inform space utilisation.  

April - May 

2018 

Phase 1b: Multi-

sensor Calibration 

(24hr. data 

collection) 

Multiple sensor types placed in an enclosed, non-clinical 

administrative space compared data quality from 

numerous sensors 

May 2018 

Phase 2: 

Administrative 

Sensor 

Installation  

(one week data 

collection) 

Sensors placed in a non-clinical space attached to a 

reservation system to compare intended utilisation to 

actual utilisation, 

Data collected on network-isolated, battery-operated 

Pyroelectric Infrared (PIR) Sensors 

June - July 

2018 

Phase 3: Clinical 

Sensor 

Installation 

(100-week data 

collection) 

Sensors placed in operational outpatient clinic captured 

data on human occupancy patterns over time; Data was 

imported to a proprietary cloud-based data dashboard, 

JCU Students in a Workplace Integrated Learning 

subject applied machine learning to IoT data to predict 

future occupancy patterns 

Feb. 2019 -  

Feb 2021; 

Nov 2021 

Phase 4: 

Interviews and 

staff survey 

In-person interviews with nine staff seeking opinions on 

appropriateness and acceptability of IoT sensors 

studying clinical space utilisation, 

All-staff email survey released for 16 days to assess 

perception of a broader audience 

Oct 2022 
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1.8 Research contributions 

This research fills the gap in the literature studying clinical space utilisation in an 

operational multidisciplinary outpatient environment. A multidisciplinary approach 

was taken to resolve this issue, bringing together the fields of building science, 

computer science and healthcare. A summary of the contributions of this research has 

been outlined below.  

1. Demonstration of IoT devices capacity 

Scalable IoT devices collecting space-management data in an operational 

multidisciplinary clinical environment with a focus on the optimisation of 

clinical spaces.  

2. Longest and most comprehensive study of clinical space utilisation 

Long-term study of clinical space utilisation over 25 months continuous 

collection of data. 

3. Demonstrated acceptability of IoT devices by staff in their workplace  

4. Demonstrated appropriateness of IoT devices studying clinical space 

utilisation 

(3&4) qualitative data collected exploring healthcare staff opinions on the use 

of IoT devices in healthcare settings to collect clinical space utilisation data. 

1.9 Thesis structure 

This thesis follows a standard introduction, methods, results, and discussion 

(IMRAD) presentation style. This style was chosen due to its functionality and 

familiarity to most academic audiences. The thesis has been structured as per the 

following five chapters. 

Chapter 1: Introduction 

This chapter introduces the research. The context is established, the research problem 

is identified, and the research questions being addressed are stated. This chapter also 

provides a broad overview of how the research problem has been addressed, and 

outlines what the reader can expect from following chapters.  
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Chapter 2: Background 
Existing research across multiple fields of inquiry are presented, including: 

 types of sensible human qualities and various sensors designed to detect them 

 use of sensors in other fields to detect aspects of human activity 

 use of human observation in related fields of time optimisation 

 a brief exploration of existing research on the optimisation of healthcare space 

both with and without IoT support technology. 

Chapter 3: Methods 
This chapter outlines how each phase of the research was planned and executed. The 

structure reflects the logical sequence of each consecutive phase of research (Table 1). 

Each phase builds on outcomes from previous phases. 

Chapter 4: Results 
This chapter follows the sequential pacing of activities established in Table 1. An 

overview of the results of each research activity is gathered, and conclusions are 

drawn from the data. Results are presented in summary form with additional 

supporting data available in the appendices. 

Chapter 5: Discussion and Conclusion 
Finally, this chapter summarises the thesis, provides context for this research within 

the existing literature, presents future extension opportunities, and presents reflections 

on the implications of the findings. 

1.10 Summary 

This chapter has provided an introduction for readers to the fundamental aspects of 

this research which has emerged to support the resolution of a simple yet challenging 

question ‘Are clinical spaces well utilised?’ Underlying existing problems have been 

explored with the current state of clinical space utilisation data collection. Research 

questions emergent from the core problem have been articulated, and a potential 

solution to resolving the problems by answering the research questions is proposed. 

Initial trials were undertaken to explore the effectiveness of IoT sensors in collecting 

ambient, nonpersonally identifiable data and patterns of clinical space utilisation have 

been demonstrated. Lastly, feedback from staff was sought on the appropriateness and 

acceptability of using IoT sensors in clinical environments. This research project has 

demonstrated a suite of appropriate and acceptable technology that sustainably 

supports the optimisation of clinical space utilisation. 



 

35 
 

CHAPTER 2    

BACKGROUND 

2.1 Introduction 

This literature review seeks to understand how previous researchers studied the use of 

operational clinical spaces. Initial results identified the direct research questions 

under-represented in the literature.  The research questions initially trialled include 

those stated in Section 1.3 above including: 

 Were IoT devices appropriate to study space utilisation in clinical 

environments? 

 Can IoT devices identify patterns of utilisation in operational clinical spaces? 

 Can humans gain insight into historical patterns of clinical space utilisation by 

interacting with IoT data? 

With negligible results from the direct research questions above, the use of IoT 

devices to optimise clinical space utilisation, additional questions were required.  The 

literature search research questions underpinning the review were guided by the 

genesis question of this research: are clinical spaces well utilised? These literature 

search research questions broadened the search from strictly IoT devices, to any 

electronic data gathering technology.  Any method of collecting human presence data 

in clinical space that was (or could be) used for understanding human occupation 

patterns were also sought.  These literature search research questions were as 

follows: 

 What research existed that targeted clinical space optimisation using electronic 

data gathering technology, such as sensors or IoT devices? 

 Which technology has been used by previous researchers to gather data, and 

what were the experiences of the researchers in the use of these technologies? 

 Where was the focus of previous researchers if not directly related to 

optimising clinical space utilisation? 



 

36 
 

This research project sits at the intersection of multiple professions. Consequently, a 

multidisciplinary approach to the literature review was required. Three primary 

research disciplines underpin this research project: healthcare systems, information 

systems, and the built environment (Figure 1). Limited research relating to the core 

subject of this research project emerged from a structured search based on the 

Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 

guidelines [7]. Using the PRISMA literature search guidelines (or similar) is standard 

practice in the healthcare discipline. Due to these limited results, a less structured 

search method common in computer science (information systems) was used, 

focusing on conference proceedings and recent publications. The latter approach used 

Google Scholar to identify relevant research using the same search terminology as the 

PRISMA search identified later in this chapter. In alignment with the PRISMA 

guidelines, methods and results from this search are presented along with a tabular 

summary. Results from all searches overlapped to a high degree, however. 

Consequently, results have been combined and presented as a single body of work for 

the remainder of this chapter. First, a brief introduction to human presence detection 

will ground the reader in aspects that underpin all research discussed through the 

remainder of this chapter.  

 
Figure 1: Venn diagram of research disciplines intersecting to establish the 

area of focus in this research project 
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2.2 Properties of human presence/activity detection 

The observation of humankind through sensor technology comprises many different 

fields of inquiry. Consequently, a common nomenclature and taxonomy of human-

observation technologies would help establish a common language across the various 

fields. In their work, Teixeira, et al. [8] establish a taxonomy of human sensing. Their 

work defines three subcategories of the ‘observable properties’ of humans: 

physiological properties, behavioural properties and spatial-temporal properties.  

Physiological properties of humans, such as blood pressure, heart rate, temperature, 

etc. have generally been widely studied in research. Focus on these properties has 

increased recently with the application of IoT technology. Recording physiological 

properties to ‘address paediatric and elderly care, chronic disease supervision, 

private health, and fitness management’ using IoT has become popular. This data 

gathering technique has formed the basis for a myriad of research, as explored in the 

literature review of Islam, et al. [9].  

Behavioural properties of humans relate to how humans act either alone or in groups. 

Insights have been gained from the study of human behaviour. These studies contain a 

variety of subgenres, such as research on social patterns, and the study of urban 

dynamics. For example, Guo, et al. [10] studied large-scale data mining techniques to 

understand human social patterns, based on the digital traces these interactions create. 

Their results suggest the emergence of an embedded intelligence created by the digital 

traces left by human interaction with IoT devices. There are many kinds of digital 

traces humans leave behind that support this embedded intelligence. The IoT 

interventions proposed by the Principal Investigator (PI) create abundant de-identified 

traces of human activity in both space and time. 

Spatio-temporal properties relate to observable properties of humans that establish 

aspects of human presence at a fixed point of time and space. Within this broad 

subfield of inquiry, many subdisciplines exist in the literature, even when limiting 

literature to research related to indoor presence detection. Each of the sections 

explored below has distinct fields of inquiry with associated bodies of knowledge. 

Consequently, the review of literature in each was necessarily brief, sufficient to 

understand their opportunities and challenges. The taxonomy of Teixeira, et al. [8] 
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defines spatio-temporal aspects of human-sensing in some depth, further splitting 

attributes into ‘intrinsic’ and ‘extrinsic’ human attributes. Intrinsic attributes relate to 

individual human emanations, such as the emission of heat, and CO2 gas, etc. 

Extrinsic attributes exist beyond bodily functions, but still relate to individual 

humans, such as the wearing of electronic ID tags or badges, and mobile device 

interaction, etc. Observable human traits in both intrinsic and extrinsic spatio-

temporal categories can be further broken down into two subcategories. Static 

subcategories (S) reflect slowly changing aspects of humans, such as height and 

weight. Dynamic subcategories (D) reflect typical motion-based attributes of human 

existence such as gait. 

2.2.1 Detecting human presence 

By combining/adapting the taxonomy of Teixeira, et al. [8] with the human presence 

techniques categorised by Yang, et al. [11], the study of human presence detection can 

be represented as per Table 2 below. Each technique detects aspects of human 

presence based on associated human properties, which are categorised in the 

taxonomy. For each technique presented, technology exists to exploit features of the 

techniques. In most cases the technological response to exploiting these techniques is 

the utilisation of one or more sensor types. Each sensor could, in turn, be bundled 

together with power, data and network management systems into an IoT device 

capable of interacting with cloud-based middleware vendors for storage, visualisation 

or further processing. 
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Table 2:  Techniques of presence detection with ‘human trait’ classification 

 Human Feature Categories 

Techniques Benefits Disadvantages 
Intrinsic?  
Extrinsic? 

Static? 
Dynamic? 

Survey 

/Interviews 
Low cost Resource intensive [2] n/a n/a 

Ultrasound  Low cost High false positives Intrinsic Static & Dynamic 

Optical cameras 
Accurate,  

high-res. data 

Privacy issues [commonly noted in the 
literature of ‘Section A’] 

Intrinsic & Extrinsic Static & Dynamic 

CO2 sensors  
HVAC demand 
control 

Slow response time, environmental sensitivity, 
accuracy issues [3] 

Intrinsic Static 

Indoor positioning 
systems (RFID, IR 
tags, etc) 

Target location 
to 1.5m 

Privacy issues, inconsistent connection, 
requires sensor ‘saturation’, resource intensive 
[4], indoor use challenges 

Intrinsic & Extrinsic Static & Dynamic 

Infrared  
low cost, low 
power, mature 

Binary output, signal interference by wearer 
[5] 

Intrinsic Static 

Thermal imaging 
low cost/ 
power/ density  

Constant power required, can operate in low-
to-zero light 

Intrinsic Static 
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One of the ‘techniques’ indirectly referenced by Teixeira, et al. [8] and Yang, et al. 

[11] was the thermal array. These sensors collect infrared emissions but vary greatly 

from the features of the ‘infrared’ category as defined by Yang, et al. [11], relating 

more to ‘thermal imaging’ techniques. In their review Teixeira, et al. [8] mention 

thermal imagers sensing emissivity as a category within intrinsic/static traits. These 

traits were defined as ‘produced whenever a person was present, irrespective of what 

he or she was doing’ specifically measuring emissivity. Emissivity relates to thermal 

radiation emitted by objects. Thermal imagers typically identify and most often 

visualise the differentiation of hot objects within a static background emissivity field.  

2.2.2 Categories of detectable human activity 

The above taxonomy categorises properties of human presence detection. Researchers 

use these properties to focus on aspects of human behaviour as they relate to their area 

of study. Combined with Teixeira’s taxonomy, these sensors provide researchers with 

the capacity to accurately categorise, compare and discuss the aspects of human 

behaviour they were studying. The PI has adapted and represented these categories of 

increasing information density (Figure 2) to include floor plans to establish a 

healthcare context. The latter figure provides a visualisation of these categories to aid 

recognition. Each category of increasing data density contains all aspects of the 

previous category and has been referred to repeatedly throughout this thesis. For 

example, if the location of everyone is known (category 3), the quantity of individuals 

is known (category 2) and the occupation status of the room is known (category 1). 

Each category contains detectable features of human activity (Table 2), which in 

response has driven sensor development. 
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. 

  

 
Figure 2 – Teixeira categories of spatio-temporal properties adapted and extended by McNabb et. al 
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2.3 Guideline-based literature search 

The core focus of this research was the use of technology to improve the utilisation of 

clinical spaces within live healthcare environments. A systemic review was required to 

collate existing research as close to the core research subject area as possible. This 

healthcare-based review utilises the PRISMA guidelines [12] as a basis for undertaking 

and presenting research. This subsection presents the method and summary of results 

from the PRISMA search typical in the healthcare discipline. Results from the PRISMA 

search will be combined with results obtained through the methods of computer science 

described above. 

2.3.1 Eligibility criteria 

To assess if research was to be included in the review, eligibility criteria were used. The 

primary delineation for excluding research on the use of clinical spaces using remote 

electronic data gathering was a time-bar. Sources were time-screened due to the focus on 

IoT technology, from 1990 to present day. The date of the time-bar was informed by 

what was regarded as the first IoT device (a toaster) being accessed and operated 

remotely via. the internet Zhilenkov, et al. [13] in 1990. Only research on clinical space 

utilisation after 1990 was considered eligible due to the lack of available technology prior 

to this year. After this year, numerous prior ‘networked appliances’ existed, but these 

devices were typically limited to monitoring and reporting functions. One early example 

of a networked appliance is the vending machine connected for remote monitoring in 

1982 by students at the Carnegie Mellon University [14]. Research papers were further 

narrowed using the following exclusion criteria: 

 Results NOT relating to outpatient services in healthcare 

 Results NOT directly or closely relating to utilisation of clinical spaces. 

2.3.2 Information sources 

Initial information was sought from ProQuest (https://www.proquest.com) however the 

search produced more than 24,000 results, but far fewer relevant results: 94. Similarly, 

search for the above criterion using MEDLINE 
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(https://www.nlm.nih.gov/medline/index.html) produced only seven studies, with no 

relation to this research context. These searches were performed in mid-2017, followed 

by additional database searching through Google Scholar (www.scholar.google.com) 

with follow-up direct searches using reference which produced additional relevant results 

(59). ProQuest and MEDLINE searches were repeated on 30-09-2021 with two additional 

relevant results found for a total of 61. Two additional references were found on Google 

Scholar and were incorporated into the body of this chapter. 

2.3.3 Search strategy 

The same search string used in each database is identified above (Table 3). This initial 

screening method identified 150 results after duplicates were removed as shown in the 

PRISMA Flow (2009) diagram (Figure 3). Additional results were identified through 30-

09-2021 which have been included in the body of the search results presented in this 

chapter.  

2.3.4 Selection strategy 

Articles were selected through a manual selection process undertaken by the PI due to 

their relevance to the research questions. No automated selection tools were used in the 

process. Relevant articles were considered for inclusion initially by reviewing the 

abstract, and if relevance existed, the remaining paper was evaluated. 

Table 3: Table of databases and common searched terminology used 
Database Search Terms 

Medline 
(optimising physical resource utilisation room space 
outpatient clinic) AND  
(IoT OR internet of things) OR  
RTLS (Real Time Locating System) OR  
RFID (Radio Frequency Identification) OR  
sensor networks or machine learning) 

ProQuest 

Google Scholar 
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Study Selection/Characteristics 

The results from the selection process were contained in the PRISMA Flow diagram 

(Figure 3). This process resulted in seven papers for in-depth review. The characteristics 

of each selection resulting from this process have been summarised in Table 4. Following 

the presentation of these two elements, the results from all search results are combined 

for the remainder of this chapter.

 
Figure 3 - PRISMA flow diagram results of guided literature search 
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Table 4: Summary of Studies 

Author(s) / year / article title / journal 
Aim/Purpose 
(paraphrased) 

Data collection method Study duration 
Analysis/ 
simulation 
technique used 

Limitations / Strengths 
(L: / S:) 

Bratt, John H.; Foreit, James; Chen, 
Pai-Lien; West, Caroline; Janowitz, 
Barbara; De Vargas, Teresa  /1999/  
A comparison of four approaches for 
measuring clinician time use / 
Health Policy and Planning  

Which of the four 
methods of observational 
time-motion studies were 
most accurate? 

Method 1: Traditional time-
motion: tone every 3 
minutes, record activity on 
template 
Method 2: patient-focused 
activity patients carried 
forms, encountered staff 
recorded start/stop times on 
form with synchronised 
watches 
Method 3: Interviews: staff 
were interviewed 
undertaken same day 

One day 
/clinic,  
3 clinics 
(i.e. 3 days) 

‘statistical 
analysis’ 

 L: short study, resource 
intensive, self-reporting 
S: comparison of 
different techniques 

Bryant, M; Essomba, 
R/1995/Country Measuring time 
utilisation in rural health centres / 
Health Policy and Planning 

How can we better 
understand how health 
workers in rural health 
centres use their time? 

Active sampling used. 
SAMPLE SIZE: 19,080 
observations (64, nurses 20 
health centres)  

5 days staff 
role 
(50 days) 

not mentioned 

L: resource intensive, 
human observation, 
analysis technique 
unclear 
S: long /broad study 

Cote, Murray J./1999/ Patient Flow 
and Resource Utilisation in an 
Outpatient Clinic / Socioeconomic 
Planning Sciences 

Can Discrete Event 
Simulation be used in an 
outpatient clinic to 
increase resource 
utilisation? 

Patient-Flow study was 
undertaken using ‘tracking 
forms’ carried by patients 
and filled-in by healthcare 
workers through the course 
of their normal duties 

 140 days 
Discrete Event 
Simulation 

 L: resource intensive, 
high consumer resource 
requirement 
S: simulation 
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Author(s) / year / article title / journal 
Aim/Purpose 
(paraphrased) 

Data collection method Study duration 
Analysis/ 
simulation 
technique used 

Limitations / Strengths 
(L: / S:) 

Guarisco, Steven; Oddone, Eugene; 
Simel, David /1994/ Time analysis 
of a general medicine service; 
Journal of General Internal Medicine 

Optimising physician 
teaching time by better 
understanding ‘house-
staff’ activity patterns 

Gave staff/interns beepers 
that went off randomly, 
staff documented either 22 
work activities or 13 
contact events  

6 days 
binomial 
proportion 
model 

L: human error potential, 
short duration, location 
unclear, self-reporting, 
resource intensive 
S: innovative approach 

Overmoyer, B; Kadish, S; Haskett, 
C; Sanderson, K; Benneyan, J; 
Reilly, C; Vitale Pedulla, L; Brown, 
L; Camuso, K; Bunnell, C / 
2014/Using real-time locating 
systems (RTLS) to redesign room 
allocation in an ambulatory cancer 
care setting / American Society of 
Clinical Oncology 
 

Can IR tags in an existing 
RTLS installation 
demonstrate the 
effectiveness of room 
utilisation improvement 
initiatives in a cancer 
outpatient clinic? 

 IR Tags were worn by 
patients (staff handed out 
tags, collected them upon 
leaving clinic) and staff for 
tracking throughout the 
clinic during operating 
hours 

49-day 
postinterventio
n period 

Standard 
descriptive 
analysis 

L: resource intensive, 
ID’s must be worn/used 
correctly, single-
discipline clinic 
S: innovative approach 

Stahl, James E.; Drew, Mark A.; 
Kimball, Alexandra B./2014/Real-
time location systems, normative 
messaging and modifying clinician 
behaviour: a pilot study / Health 
Systems 

Can Radio Frequency 
Identification (RFID) tags 
be used to monitor 
clinician behaviour 
through open publication 
of records? 

RFID tags worn by 
clinicians, results of the 
activities of clinical 
workers presented openly 
for all participants to see, 
improvements were noticed 
in most clinical ‘face time’ 

 140 days 

Standard 
descriptive 
analysis and 
single / 
multivariable 
methods 

L: only clinicians, high 
capital costs (will reduce 
with time) 
S: innovative approach, 
long study 
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Author(s) / year / article title / journal 
Aim/Purpose 
(paraphrased) 

Data collection method Study duration 
Analysis/ 
simulation 
technique used 

Limitations / Strengths 
(L: / S:) 

The following studies are updated search results provided for contemporary context in October 2024 (non-exhaustive list); papers published by 
the author of this thesis are excluded: 

Kambombo Mtonga / 2022 / 
Optimised patient flow process – a 
case of outpatient and surgical 
departments in sub-Saharan Africa 
healthcare systems [15] / Thesis,/ 
University of Rwanda Digital 
Repository 

Can technology such as 
IoT, linear programming, 
queuing theory reduce 
overcrowding via ‘smart 
bus’ systems in the sub-
Saharan African 
healthcare system? 

Light-dependant resistors 
and a laser system counted 
bus passengers, combined 
with GPS/ route supported 
local patient re-distribution 
to minimise local 
overcrowding issues; this 
‘smart bus’ system was 
used in combination with 
machine learning to 
integrate operation room 
and outpatient scheduling 
prediction  

The research 
established a 
proof-of-
concept IoT 
system; 
duration was 
not noted 

Queuing 
theory in 
combination 
with general 
linear 
modelling to 
establish 
surgical 
model, smart 
bus system to 
distribute 
patients 

L: laser and light-based 
presence detection may 
not work in all contexts 
such (e.g. at night), or 
with groups of 
individuals 
 
S: translatable research 
concept for other 
healthcare systems 

Moore, Philip T; Sharma, Mak / 
2013 / Enhanced patient 
management in a hospital setting  
[16]/ IT Convergence Practice 

Can RFID-based systems, 
be combined with existing 
healthcare systems to 
tracking all patients, staff 
and high-value equipment 
in a live hospital 
environment be combined 
with situational awareness 
analysis to improve 
patient experience and 
resource utilisation?  

Passive RFID tags were 
used to collect location 
information, and data was 
visualised for human 
analysis  

n/a  
 
Illustrative 
Scenarios used 
to describe 
how future 
systems 
(designed 
/implemented 
by others) 
might function 

Comparative 
analysis 

L:  Paper identifies 
“ethical issues” but does 
not address their 
resolution 
S: combining situational 
awareness with location 
data has great potential 
and is directly 
translatable to IoT 
clinical space utilisation 
research 



 

48 
 

Author(s) / year / article title / journal 
Aim/Purpose 
(paraphrased) 

Data collection method Study duration 
Analysis/ 
simulation 
technique used 

Limitations / Strengths 
(L: / S:) 

Osman, Mohd Shafarudin; Azizan, 
Azizul; Hassan, Khairul Nizam; 
Ghani, Hadhrami Ab; Hassan, Noor 
Hafizah; Yakub, Fitri; Daud, 
Salwani Mohd; Latiff, Liza Abdul/ 
2021 / BLE-based real-time location 
system integration with hospital 
information system to reduce patient 
waiting time [17] / 2021 / iEEE / 
International Conference on 
Electrical, Communication, and 
Computer Engineering 

Can the combination of 
real-time locating systems 
and existing hospital 
information systems be 
used to reduce wait times 
in an Emergency and 
Trauma department in 
Malaysia?  

Bluetooth low energy 
devices (iTags) were used 
to provide real-time 
location status of patients 
 
 
 

3 months 
Descriptive 
analysis 

L: patient safety and 
privacy risks from 
integrating tags with 
patient data, and ongoing 
management to issue 
/associate/ return tags 
 
S: BLE devices are long-
lasting reducing 
maintenance over 

Safdar, Saria; Khan, Shoab Ahmed; 
Shaukat, Arslan; Akram, M. Usman  
/ 2020 / Genetic algorithm based 
automatic out-patient experience 
management system (GAPEM) 
using RFIDs and sensors [18] / iEEE 
Access 

Can a combination of 
technologies such 
automated surveys, RFID, 
and existing clinical 
management systems, 
supported using genetic 
algorithms be used to 
collect and analyse data to 
understand aspects of the 
patient experience in 
outpatient clinics? 

RFID tags carried by 
patients were used to 
register presence (patient 
flow) and environmental 
data at consecutive clinical 
activity stations in an 
outpatient clinic, which was 
combined with user survey 
data 

Data of 120 
patients used 

Genetic 
algorithm 

L: ongoing system 
management required to 
issue and associate RFID 
tags for each patient 
 
S: patient flow 
optimisation is improved 
by using electronic 
patient satisfaction 
survey and genetic 
algorithm analysis 
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2.3.5 Guideline-based literature search result 

Results have been presented in the simplified literature review matrix [19] (Table 4). This 

matrix was used, to ensure ‘a systematic and orderly plan to pursue and critique germane 

literature’ [20]. These results typically rely on limited data collection methods to collect 

human activity data within clinical spaces, no identified papers used IoT devices 

specifically, though some used their precursor technologies. The most common method 

of data collection is human observation in various formats, typically associated with the 

broad category of time-motion studies [21]. These consisted of having data collected on 

clinic activity by nurses [22], doctors [23], or all staff [2]. Similarly, Cote [24] relied on 

data collected by all staff plus patients, then applied discrete event simulation to the data. 

Each of the preceding studies were variations on time-motion studies, reliant on 

consistent human observation and other activities to gather data. Aspects of these types of 

data gathering techniques/technologies, and the types of studies they inform are discussed 

later in subsection 2.4.1. 

 

The three remaining research papers from this method of literature search experimented 

with forms of semi-autonomous real-time locating systems (RTLS). These systems relied 

on humans to wear locating devices based on various technology such as infrared (IR) 

participant tags [25] and RFID participant tags [26, 27]. Like the time-motion results 

above, aspects of semi-autonomous data gathering methodologies are presented in 

subsection 2.4.2 below. 

2.3.6 Guideline-based search summary 

This section has reviewed literature emergent from applying the PRISMA search 

methodology. While limited research resulted from this process, the summarised research 

focused on studying human activity patterns inside clinical spaces, even indirectly. 

Though research using IoT devices specifically was not found, numerous examples of 

electronic data gathering exist with varying degrees of success. The electronic 

interventions trialled all had a common challenge: they relied on humans in some 

capacity to undertake one or more activities regularly and consistently. Reliance on 

human resources requires ongoing funding that could otherwise be directed to the core 

function of entities that provide healthcare: delivering healthcare services. To further 
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explore research outcomes that have addressed similar multidisciplinary problems, 

sources outside the nominated healthcare databases were required.  

2.4 Healthcare-based literature review  

Due to the low number of papers in clinical space utilisation using IoT devices identified 

through the guideline-based literature search, the search methods were expanded. The 

online search aggregator Google Scholar [28] was utilised, based on the same search 

terms used in Table 3. This search aggregator has been utilised on multiple occasions 

throughout this research project up until final submission. Despite this search expansion, 

literature focused on the research topic directly was not identified. Numerous other 

research projects were identified that employed similar methodologies to those identified 

through the guideline searches above, but almost all were variations of the same broad 

categories: 

1) Time-motion studies. 

2) Semi-autonomous RTLS-based studies. 

3) Spatial simulation studies. 

4) Results from the extended literature search have been blended with results 

from the guideline-based literature search and presented in a single review 

section below. After the following expansion on these three categories of 

research responses in the literature above, the literature search will be further 

expanded to include nonhealthcare research on human presence detection. 

2.4.1 Time-motion based studies 

Time-motion studies that involved human observation and/or participation of patients and 

staff were the most common method of data collection in the healthcare literature. These 

predominantly manual studies typically involved participants (patients/staff) carrying 

paper forms with time marked by various devices. Staff typically note the timing of 

activities using either synchronised watches [23], randomised beepers [2] or regular 

broadcast tones [29]. None of the studies identified in the literature used IoT devices. 

Though these types of time-motion studies were found to be the most effective of the 
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nonsensor-based methods (Bratt, et al. [23]), data collection was interruptive to clinical 

flow and not sustainable beyond short study periods.  

Alternately named clinical flow studies also involved manual timer/paper-based manual 

recording studies of either clinician’s time ( [2, 22, 23] ) or patient’s time ( [30-33]) with 

Isken, et al. [5] suggesting a trade-off between the two was unavoidable. In their study of 

64 health workers in 20 health centres which resulted in 19,080 direct observations, 

Bryant and Essomba [22] found 27 per cent of a health practitioner’s time was utilised in 

frontline health-related activities. While activities in time necessarily happen in space(s), 

the study of space utilisation was rarely identified as more than an incidental 

consequence of time utilisation. A few manual studies were directly aimed at ‘resource 

utilisation’ as a core purpose of the study. For example, Santibáñez, et al. [32] states:  

This study was undertaken to address significant and increasing challenges 

regarding the use of space and resources and Physicians’ office space, clerical 

support and examination rooms were often in short supply at times of peak 

volume leading to overcrowding, delays and concerns regarding patient safety. 

Such direct references to space availability being a fundamental part of the patient 

journey was not typical in the literature. While these time-motion studies inherently 

involved clinical space, spatial resource utilisation was rarely acknowledged. The focus 

of the above researchers, and many more found in the expanded literature search, was not 

on optimisation of clinical space utilisation, but on the optimisation of time. Also, the use 

of technology in these studies was limited to timekeeping and manual recording 

equipment. Consequently, a broader exploration of time-motion studies was not 

undertaken. Using more autonomous technology with less manual labour may have 

increased the duration of their studies and allowed them to broaden their focus.  

2.4.2 Semi-autonomous RTLS-based studies 

Previous research utilising time-motion studies relied heavily on manual data collection 

and simple timekeeping technologies. Research presented in this section comes closest to 

using IoT devices to collect data in ambulatory clinical areas, though most do not 
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exclusively study outpatient clinics with one notable exception [25] which will be 

covered later in this subsection. Though they cannot be classified as IoT devices, sensor 

networks like these are the technological precursors to IoT devices. The systems 

reviewed in this subsection are broadly termed Real Time Locating Systems (RTLS). The 

RTLS-based research in this category contains three primary subcategories. First, a few 

researchers used infrared transmitters contained in participant-worn tags to collect data 

on clinical flow [5, 7, 25]. Second, participant activity was monitored using worn Radio 

Frequency Identification (RFID) tags [7, 26, 33-38]. The use of the latter technology was 

relatively common in research within hospital environments (e.g., tracking of inventory 

and equipment), however those noted were specifically focused on clinical flow studies. 

Finally, several emerging technologies have been trialled in clinical environments with 

varying success. These alternatives have been explored below in the category: other 

RTLS research. Common challenges using RTLS technology are presented at the end of 

this subsection after a brief review of each of the above subcategories, and their 

contribution to clinical space utilisation research. 

2.4.2.1 Infrared transmitters in participant tags 

Two researchers sought to use infrared (IR) transmitters, like a domestic television 

remote, to broadcast participant identification data within ambulatory healthcare 

environments. The first of these was essentially a trial of the technology to demonstrate 

the feasibility of collecting and preprocessing the IR sensor data. Its aim was an attempt 

to ‘bridge the gap that exists in the acquisition and processing of large volumes of very 

detailed patient flow data that is necessary for effective simulation of outpatient clinics’ 

[5]. In this research, small tags were attached to participants, and transmitted ID codes 

every 4 seconds via LED light with the intent of using the data to simulate the movement 

of people through target clinics. These tags were ‘active’ in that they broadcasted to 

waiting receivers. This set-up was contrasted by another researcher who used ‘passive’ 

participant-worn IR tags which were scanned at activity stations. This technique was used 

to track participant activity times through the study period, similar to the goal of time-

motion studies [7]. Both these researchers used IR ‘tags’ for participants in a sensor 
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network to capture location data supporting clinical flow analysis, though the latter 

referred to using RFID tags, but described IR technology. 

Unfortunately, the IR transmitters and sensors used in both studies were line-of-sight 

systems. Their transmissions can be interrupted or blocked depending how tags were 

worn, as noted by Isken, et al. [5] that if tags were not properly worn, the system 

temporarily was unable to locate the user. This sentiment was echoed by Miller, et al. [7] 

suggesting enforcement of proper tag-wearing methods were required. Miller suggested 

appropriate tag placement must be enforced to ensure both patient and staff wore their 

tags above the waist and uncovered to prevent data loss (Figure 4). In a clinical 

environment with a high ratio of public to staff, such enforcement regarding continuous 

proper tag use may not be feasible long-term. Finally, compounding issues of tag 

placement, Miller, et al. [7] notes expensive IR tag losses through patients leaving the 

department without returning the tags, adding to the operational resources required by the 

system.  

 
Figure 4 - Human-worn active IR tags broadcast to wall/ceiling-mounted 

receptors; tags had to be ‘worn correctly’ by all participants to record data 
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2.4.2.2 RFID participant tags 

The use of RFID tags improved on results from the IR-based participant tags described in 

the previous subsection. This form of RTLS was not dependent on how tags were worn, 

whether belt or pocket. With RFID devices there was less ongoing operational costs 

beyond having to charge/replace tag transmitter batteries occasionally, if powered. The 

maturity of RFID technology, and widespread adoption and growing body of research, 

suggested RFID tracking was well positioned as a candidate to support space 

optimisation use in healthcare settings. They predominated in the tracking of physical 

objects such as equipment and supplies [39-41], which is beyond the scope of this review. 

Despite this, numerous researchers have applied RFID to look at elements of flow in 

ambulatory healthcare settings [27, 33, 37, 42-45] and many more. Despite sharing the 

same core technology there was some variety between studies though all involved 

participants wearing or carrying RFID tags. 

Reduced participant tag loss experience by Stahl, et al. [27], with losses under 5 per cent 

may be a result of a focus on staff while excluding patients. This researcher noted the 

vigilance of staff in the timely return of participant tags inadvertently removed from the 

study area. Excluding patients and focusing on staff location to study clinical occupation 

activity avoids patient tag losses, however staff still require ongoing management until 

tags were ubiquitously issued.  

In the discharge lounge of a hospital, Shim, et al. [46] placed lower-energy, directional 

RFID readers at each door to capture spatial location of patients wearing RFID tags. A 

similar strategy was employed by Chen and Collins [44] in a small healthcare clinic using 

simulated patient data. Other researchers simulated data using role-played scenarios in a 

simulated patient journey, and Shim, et al. [46] creating a digital simulation using 

‘Arena’ software. This ‘point-in-space’ method of physically locating occupants was 

effective for understanding length-of-stay and maintaining an awareness of individual 

patient locations. RFID-based systems were improvements to IR-based systems. Despite 

challenges such as the high frequency of receivers and suboptimal accuracy below 1 
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metre, research in this field continues to improve [47]. Also, the literature did not 

demonstrate capability in multistorey environments of larger hospitals (Figure 5).  

Locating individuals classified by role using RFID tags was explored by Min and Yih 

[42] in a small eye-exam clinic. These researchers developed fuzzy-logic-based 

algorithms to determine the probability of tags’ presence in target space, rather than 

detecting every presence directly. As this study was confined to a single room, crosstalk 

of sensors between rooms was not explored. Like other RFID badge-based approaches in 

the literature, this study also relies on all occupants wearing tags, wearing the correct 

tags, wearing only one tag, etc. Also, this research assumes a one-receiver-per-room ratio 

which can be expensive. As Huang, et al. [48] suggests, the costs of such technology 

must be balanced against cost savings achieved through facility resource utilisation 

improvements. Despite the modest volume of research presented in this subsection, the 

use of RFID tags to track the utilisation of clinical space remains uncommon. Common 

challenges experienced by both ‘tag’ based systems are described in 2.4.2.4.1. 

 

Figure 5 - RFID tags used as a Real Time Locating System (RTLS) send 
signals from emitter /receivers (A/B) to tags (C) 
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2.4.2.3 Other RTLS technologies 

The field of RTLS is wide ranging, with applications from robotics to logistics, to any 

research seeking to identify the location of something in time and space. As complex 

entities with many moving parts, organisations providing healthcare are ideally suited to 

incorporating RTLS technology to support business operations. Tariq, et al. [49], 

summarised these technologies as: ‘WLAN, Inertial Measurements Unit (IMU), Visible 

Light Communication (VLC), RFID Tags, Bluetooth, Global System for Mobile 

Communications (GSM), and so forth.’  This subsection presents a brief look at 

promising RTLS technologies for future clinical-space utilisation research. 

Spatio-temporal human activity data has been collected in healthcare settings by 

pervasive sensors. This technology was demonstrated by Prentow, et al. [50], who studied 

an entire healthcare campus, however the same technology could be focused for use at 

the clinic level once accuracy can be sufficiently improved. Other research into the use of  

sensors in healthcare environments was similar to RFID, the tracking of various assets 

[51] and remains outside the scope of this review. Similarly, Ultra-Wideband (UWB) 

[52] and Bluetooth [53] technology has been used to track healthcare assets throughout 

healthcare environments. Researchers using Zigbee tracked both assets and patients 

across the hospital [54] which seems feasible to adapt to the purpose of studying the 

efficient use of space rather than time as suggested by the authors. Despite some success, 

none of the alternatives identified above have studied clinical space utilisation, or similar 

research projects.  

2.4.2.3.1 Time-focused research 

With a primary focus on patient wait times, Overmoyer, et al. [25] made use of their 

existing RTLS patient/staff tracking system. Unfortunately, the underlying technology is 

not identified. Regardless, their research was the closest of any RTLS research projects to 

the research questions underpinning this literature search. They were able to demonstrate 

a 3.3-hour improvement to total patient wait time. This research compared a static 

service-to-room assignment system versus a pooled strategy assigning rooms on an ad 
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hoc basis. Their ubiquitous data gathering system allowed them to demonstrate the 

effectiveness of an operational change process from a preintervention baseline. Further, 

their data gathering technique research could be extended to explore the effectiveness of 

other operational ‘tweaks’ in live healthcare environments. These ubiquitous systems 

were an appropriate method using ambient technology in an iterative way to adapt 

clinical functionality to dynamic healthcare environments, assuming privacy 

requirements were observed. 

RTLS systems have been demonstrated above as being effective at tracking both assets 

and humans. There are numerous other kinds of RTLS technology in various stages of 

development, but these remain outside the scope of this review. Despite their obvious 

benefits, there are also several common challenges of using these systems to study 

clinical space utilisation. 

2.4.2.4 Common properties of RTLS  

The RTLS systems identified are the subject of ongoing development research. Each 

system identified to date has common properties that will briefly be touched on in this 

subsection. First the benefits, then the challenges of RTLS systems will be explored. 

Using RFID, IR or other RTLS systems allow researchers to study aspects of both 

patients [54] and clinicians [5] while capturing spatial location information. Both 

Vilamovska [40] and Li, et al. [37] list uses for these technologies. RFID technology is 

mature and improving with a large, active research base, with both transmitter size and 

the price continuing to shrink. These technologies have been demonstrated as capable of 

tracking both objects and people with relative accuracy and can be used in both passive 

and active modes depending on need. 

2.4.2.4.1 Challenges with human participation 

To date however, the explored opportunities are broadly limited to tracking assets and/or 

people in a broad sense throughout clinical environments. No identified studies used 

RTLS to study the use of clinical spaces, with one notable exception [25] as noted in 

2.4.2.3 above. For example, Vilamovska [40] listed only staff, patient, clinical trial and 
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portable asset-focused applications for the technology. Despite limited directly relevant 

research, this seems a logical extension for this branch of research.    

Each of these technologies required all participants to consistently and properly 

wear/carry some kind of technology to support identification and tracking by the system. 

Tags still need to be issued and cross-referenced to individuals through a manual process. 

Despite improvements on pure manual data gathering, tag-based approaches based were 

time-consuming and human-resource intensive to manage. Due to the underlying 

requirement for ongoing human labour in all identified studies, the duration of each study 

is relatively short, from three days to 140 days.   

The bulk of these studies were exclusively looking at either consumer or clinician 

activities in time [2, 21-24], despite each of these studies being undertaken within 

healthcare spaces. Their inclusion of space as a criterion has been a consequence of their 

existence in time as part of a series of clinical activities, rather than activities occurring in 

both time and space. 

2.4.2.4.2 Challenges of manual labour 

This manual process of issuing and receiving tags may have been taxing on staff as noted 

by Fisher and Monahan [4] in their study of other ‘tag’ based tracking systems. Also, 

staff at least would need to have accepted being personally, physically tracked throughout 

their workplace. As noted by Guo, et al. [35], healthcare staff ‘had shared concerns about 

the invasion of privacy and discomfort with one’s location being tracked’. In addition to 

personal privacy, potential privacy issues with the technology itself may have limited 

widespread adoption of this technology in healthcare environments [36].  

Also, tag-based systems have numerous operational challenges. For example, identity 

verification: with removable tags they could be swapped around or combined, such as a 

parent with multiple children. If tags were removed, tracked entities would no longer be 

tracked through RTLS systems, which relied on consistent human behaviour to operate 

seamlessly. In addition to tag removal, consumers could wear multiple tags, such as a 
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parent removing sensitive technology from multiple children. Beyond the operational and 

social and resource challenges of using RTLS in healthcare systems, there are several 

technological challenges faces by RTLS researchers. 

2.4.2.4.3 Raw sensor data challenges 

One key aspect which limited the collective technology described in this subsection is the 

capacity of these devices to process and store data on the devices themselves. Without 

preprocessing, as is common with IoT devices, raw sensor data can flood both networks 

and databases and make the extraction of meaningful information more challenging. For 

Isken, et al. [5], tags were worn by voluntary participants as a means of data gathering to 

support patient-flow-focused analytics. These authors placed considerable effort on the 

gathering and preprocessing of large volumes of sensor network data prior to translating 

into usable information (Figure 6). Similar data-volume issues were experienced by 

Miller, et al. [7] with large databases of ‘tag event’ data. The authors of this paper were 

forced to manually save data locally and emailed it to external programmers. Beyond the 

potential for data corruption, this was a labour-intensive method of data transmission 

prone to human error. Translating the high volumes of data into information, and 

eventually into knowledge as per the ‘data-information-knowledge’ pyramid (Figure 6) is 

one of the challenges of electronic data gathering. With IoT devices, processing was 

 

Figure 6 – Data-Information-Knowledge Pyramid 
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typically done on the device itself [55]. Though this ‘edge processing’ greatly reduces the 

need for manual preprocessing of raw data, it comes with its own set of challenges which 

are beyond the scope of this literature review.    

2.4.2.5 RTLS technology summary 

Due to their semi-autonomous nature, RTLS systems collectively remain the closest to 

IoT devices in their demonstrated capacity to explore aspects of human activity in space. 

Of all the healthcare-related research found using RTLS systems only [25] used them to 

improve the utilisation of clinical spaces, though the focus was predominantly on patient 

flow. These systems as documented all have ongoing human-resource costs to consider. 

Since they track human activity, there is also the human response to being tracked that 

requires careful consideration prior to implementing these systems. Finally, there are 

technological and operational challenges remaining with these systems such as inherent 

privacy concerns and managing the vagaries of human behaviour. Some of the drawbacks 

of using RTLS technology could be mitigated if, instead of recording human behaviour, it 

could be simulated. 

2.4.3 Spatial simulation studies 

The final major theme emergent from the healthcare literature search was the use of 

simulation as a technique to either generate data, or iteratively explore collected data with 

the aim of improving patient flow. Though again none of these used IoT devices to 

collect their data, the study of spatial clinical relationships was now a core research focus. 

Discrete Event Simulation was commonly used in healthcare literature studying the flow 

of activity [56, 57] inside ambulatory clinics. Researchers used simulation to explore the 

flow of staff [58] and patients [59, 60] through clinics, their room allocation policies [61], 

and their physical layout [62].  

The link between physical resources and operational efficiency for example was critical 

to the a ‘simulation-optimisation’ model used by Vahdatzad and Griffin [63]. This paper 

explored multiple proposed layouts of a healthcare clinic based on the integration of 

design and functionality rather than the optimisation of travel distances. The latter was 
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more common in literature associated with health facility planning  ([64], [65]). These 

results are informative for new clinic designs, though the method employed may be 

challenging to implement retroactively. One key unexplored aspect of this work is how 

these simulations could be used to support the optimisation of clinical space utilisation 

beyond the commencement of operations postconstruction. Though optimising physical 

layouts through simulation was closely aligned with the PI’s research on clinical space 

utilisation, the utility of preconstruction simulation wanes in time after clinical operation 

commences.  

Similarly, Gosavi, et al. [62] used virtual three-dimensional modelling and simulated 

spatial-temporal paths of travel through clinical spaces. Their work touched on aspects of 

physical form including spatial arrangement and functional adjacencies in exploring 

spatial utilisation as a key driver of operational clinic efficiency. This study was squarely 

focused on the need to optimise physical resource utilisation. However, this paper’s 

authors again relied on resource-intensive data-collection processes in a mix of 

quantitative and qualitative observation. The aim of these authors was to improve 

operational efficiencies to reduce the cost of providing healthcare services. They 

referenced the high cost of remodelling healthcare spaces, noting: ‘unfortunately this 

work is often done without analysis of performance data’.  

2.4.3.1.1 Spatial considerations 

In addition to demonstrating trade-offs in clinical layout design between privacy, travel 

distance efficiencies and patient experience, Gosavi, et al. [62] demonstrated space 

utilisation improvements using multiple ‘models of care’, such as patient-group 

appointments and flexible exam-room booking scenarios. This research was one of the 

few studies that explored the interplay between the built environment and the ability of 

clinic managers to optimise resource utilisation through innovative practices. Fully 

simulated human activity however may not be able to capture the more stochastic 

elements of human behaviour. Researchers in this category predominantly obtained their 

data manually through human observation as part of time-motion studies (see 2.4.1 

above) and as such are subject to all their drawbacks. 
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The use of simulated data has been demonstrated to be an effective way to study the flow 

of physical objects and beings through both space and time in healthcare environments. 

This technology had many advantages in the creation of highly effective clinic layouts. 

Unfortunately, simulated activity approximated but did not directly mirror the many 

subtleties of human behaviour that direct recording of human activity can provide. In 

contrast, the data provided by IoT devices would be recorded data, not simulated data. 

Constructing preoptimised clinical layouts could maximise the operational efficiency 

when clinics first open. Regardless, simulated behaviour comes close to predicting future 

space utilisation. Though no IoT devices were used, these researchers had a core focus on 

optimising clinical space utilisation, despite sharing many common challenges 

underpinning the healthcare-based research identified. 

2.4.4 Common challenges in healthcare-based literature 

The healthcare-based literature reviewed that came closest to the study of clinical space 

utilisation reviewed thus far in this chapter have several common challenges. This 

subsection collates some of the challenges identified in the healthcare-based literature. 

First, there was an ongoing reliance on human resources (e.g., [7, 23, 32] etc.), manually 

gathering and processing data to some degree in all studies reviewed. Next, the research 

is typically restricted to studying single-discipline clinics (e.g., [32, 48, 60, 66] etc.), with 

notable exceptions [2, 30] thereby limiting the broader application of their research. 

Finally, for research relying on RTLS technology, a brief comparison of manual versus 

electronic data gathering suggests directions for future research in this field. 

2.4.4.1 Challenges of relying on human resources 

Each paper presented in this chapter thus far involves a beyond-nominal use of human 

resources to some degree. If these research methodologies were to be extended long-term, 

the cost of human resources would expand commensurately. Many researchers relied on 

human observation and data gathering such as in the time-motion studies (see 2.4.1 

above) while others used pre-or-postdata processing (e.g. [5]). Even researchers 

exploring the use of RTLS systems (see 2.4.2 above) required ongoing human resources 

to issue, log and retrieve their tags or other devices. Of the known techniques used to 
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study time and motion, these technologies all require patients, staff or both to do 

something consistently. Requiring consistent human behaviour was one of the most 

challenging aspects of applying these technologies affordably at scale. This challenge 

was especially prominent in healthcare organisations providing services to a 

predominantly older demographic. Though people aged 65+ account for 15 per cent of 

the population of Australia, this demographic represented 41 per cent of inpatients in the 

public healthcare system [43]. Studies involving ongoing manual labour attract high 

human-resource costs. The use of technology to augment this data-gathering stage would 

have been a significant improvement.  

2.4.4.2 Humans observing humans 

In any of the research described above that involved humans observed by other humans, 

these studies may have introduced so-called ‘Hawthorne effect’ [67]. This influence was 

noted by Bratt et. Al:  ‘The constant presence of the … observer may also have distorted 

clinician behaviour ...’ [23]. Behavioural changes caused by direct human observation 

may alter the outcomes of research focused on space management, as presented later in 

the interviewee results in Chapter 4. These changes were not the only effect of using 

human resources to collect data on clinic utilisation. Lastly, studies involving human 

observation are naturally prone to human error. Across larger multidisciplinary clinics 

accurate and constant observation of all activities by a fixed number of humans may have 

been challenging.  

2.4.4.3 Limited research on multiclinic environments 

In a survey of literature on use of simulation on health care clinics, Jun, et al. [68] noted 

that limited research was available using simulation to study integrated multiclinic 

environments. This reinforced the challenging nature of data collection when exploring 

clinical flow optimisation, especially as complexity increased beyond single-discipline 

environments. This view was similarly echoed by Cayirli, et al. [69] in their literature 

review, adding that few studies involve multiphysician, multidisciplinary hospital 

outpatient clinic settings for similar reasons. Finally, the challenges of data collection 
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were reinforced by Isken, et al. [5] who noted the challenges of data collection for 

simulation modelling purposes in outpatient clinics.  

2.4.4.4 Manual data gathering versus semi-autonomous data gathering 

Without the use of advanced technology, most manual methods of data collection were 

typically less than one-month duration, given the resource-intensive data acquisition 

process. Typically this process involves human observation, stopwatch [70], 

synchronised watches [23] and other techniques. Manual study periods typically either 

consist of multiple days Chand, et al. [70], or other relatively short timeframes like three 

days for Santibáñez, et al. [32] and Bratt, et al. [23]. Some manual methods put the onus 

on patients and trained staff filling in forms for extended periods, such as five months in 

the case of Cote [24].  

2.4.4.5 Challenges with long study periods 

Long manual study periods increase effects on clinical operations and risk of human error 

due to repetition, fatigue and attention loss. While Miller, et al. [7] collected IR tag data 

over two weeks, Isken, et al. [5] produced a sample size of 9,634 patients across two 

clinics over 56 days. This was a comparatively long study period in the literature. 

However, this duration was a relatively short period compared with the potential of a 

permanent, facility-wide installation. Repurposing potential was that used by Overmoyer, 

et al. [25] despite an actual study period of 49 days as they repurposed an existing system 

with committed funding. Exploring social aspects of tracking technology, Fisher and 

Monahan [9] found that in clinical spaces where staff locations were actively tracked 

through tags systems, nurses feel ‘overly scrutinised’. Also, staff felt that the 

management models used to interpret the findings of such tracking systems do not 

necessarily reflect the constantly shifting frontline realities of hospital working 

environments. Finally, they found the responsibility for ongoing management of these 

tech solutions were typically given to clinical staff to manage in addition to their regular 

duties, resulting in negative staff feedback. As a counterpoint however, Guo, et al. [35] 

found ‘the [healthcare practitioners] acceptance of the use of the RTLS tag in the hospital 
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had the strongest association with the [healthcare practitioners’] willingness to use it’ 

suggesting a potential link to personality type and acceptance of tracking technology. 

This counterpoint suggested more work could be done to clarify this apparent conflict.   

2.4.4.6 Other challenges 

All research reviewed in this section relies on volunteer data only, presumably including 

the cumbersome process of obtaining volunteer consent. This process is unlikely to 

capture all clinic activity, leaving nonvolunteers, of both staff [56] and patients [58] out 

of the dataset. For research focused on optimising appointment scheduling, these are 

based on manually forecast data [71, 72] or historical data gathered for other purposes 

[73]. How spaces were used was unknown as it is rarely recorded. 

2.4.5 Healthcare-based literature review summary 

This research project is multidisciplinary in nature. Therefore, this literature review is 

similarly multidisciplinary. The core focus of each of the research questions underpinning 

this literature review is based in healthcare literature. As already noted, many researchers 

have focused on improving operational aspects of outpatient clinic operations. Despite 

the abundance of research, the translation into practice remains a challenge. The impact 

of human observation and the cost of sufficiently skilled human resources to maintain 

implemented systems may have hindered development of this body of literature. 

Technical solutions have been trialled, but as yet none appears to have seen widespread 

adoption into clinical practice in part due to their cumbersome interventional nature, in 

part requiring humans to carry, hold, turn on or otherwise maintain technological 

artefacts for the duration of their clinical attendance. Improved technical solutions may 

re-invigorate this body of research, but to identify these solutions, literature beyond the 

confines of healthcare must be sought. 
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2.5 Literature search beyond healthcare 

Literature covered previously in this chapter resulted from using the PRISMA guidelines 

[12] and Google Scholar [28] focused on healthcare-based literature. These searches were 

guided by the literature search research questions: 

 What research existed that targeted clinical space optimisation using electronic 

data gathering technology, such as sensors or IoT devices? 

 Where was the focus of previous researchers if not directly related to optimising 

clinical space utilisation? 

 Which technology has been used by previous researchers to gather data, and what 

were the experiences of the researchers in the use of these technologies? 

While the first two questions have been sufficiently addressed in the previous subsection, 

the third was limited to a small number of studies using RTLS technology and 

simulation. The latter required ongoing maintenance and management, while the second 

relied on manual data gathering. Aside from the technologies embodied by the research 

methodologies and tools themselves, the level of technological adoption had been 

relatively low. Outside the boundaries of healthcare literature though, literature on 

human-sensing technology is abundant, addressing the many inherent challenges of this 

field of research. 

Data collection challenges were common enough in the research in clinical space 

utilisation research, that even incremental improvements could make significant impacts. 

What was needed to address these issues, were technologies that: 

 Do not rely on ongoing maintenance by clinical staff  

 Respect individual privacy and mitigate potential civil liberty risks  

 Do not interfere with clinical ‘flow’, including both patients and staff. 

As suitable technological solutions had not yet been demonstrated in the canonical 

healthcare literature, an examination of research outside the field of healthcare was 

required. The following section reviews literature from the disciplines of building 
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sciences, engineering and computer sciences on how they collect and use similar data for 

different purposes. 

2.5.1 Huaman presence detection in built environment research 

Though limited healthcare-based research was identified that applied presence detection 

sensors within healthcare environments, very few used these sensors to study clinical 

space utilisation. Despite this underrepresentation in healthcare-based literature, human 

presence detection research was abundant in the ‘built environment’ field of research. 

This section explores some of the many technologies that have arisen to detect aspects of 

human presence.  

Numerous sensor types had been explored in this section with a focus on their potential 

for application in clinical healthcare settings. Specifically, their suitability for use in the 

optimisation of healthcare clinical consult spaces was explored. Most sensors could have 

had some application in various healthcare settings. However, sensors that use optically 

based sensors, or were capable of recording audio, were deemed inappropriate for use in 

high-privacy settings. Optical information may be processed on-chip only, for example 

only postprocessing data leaves the device. However, determined attackers could 

compromise the optical or audio feed, so were immediately discounted. Infrared sensors 

seem most suitable for broad application in high privacy settings without significant 

investment and ongoing maintenance and management by clinical staff.  

2.5.2 Identifying human presence/activity 

A large body of research has gone into detecting and/or predicting the presence of 

humans in indoor environments. The potential applications of human presence detection 

were wide ranging, from healthcare, marketing and education to security, fire safety and 

military applications. Most literature focused on human sensing to optimise energy 

consumption either directly or indirectly ([74-78] etc.). The built environment has 

accounted for 20-40 per cent of total energy consumption worldwide and growing, which 

may explain this focus. Energy savings have been repeatedly demonstrated using 

occupancy sensing to optimise energy consumption across building services using a 
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variety of techniques [79]. Building services affected include HVAC, lighting and hot 

water among others. For example, Yang, et al. [11] summarises that energy savings of 30 

per cent in lighting energy consumption, and 30 per cent of cooling reduction were 

possible in commercial environments. Research in this area has expanded, as noted in 

recent surveys in IoT and smart building by [80] and occupancy detection systems [81]. 

The latter research noted the wide potential application of occupancy detection systems. 

The breadth of this technology reflected the recent increase in related research volume, 

and though still relatively sparse, notable examples were briefly explored below. As with 

the healthcare literature, the physical layout of the building was either ignored or 

incidentally mentioned. If mentioned, the research tended to focus on temporal events 

rather than events happening in unique physical spaces. 

2.6 Building management systems 

One subsection of research which may prove promising was the repurposing and fusion 

of existing building systems sensors’ data, captured by centralised Building Management 

Systems (BMS’). These systems monitor and control various remotely operable parts of 

the buildings’ services system, for example managing airflow according to set 

parameters. BMS data repurposed by Dey, et al. [82] included carbon dioxide (CO2) 

levels, temperature and supply air volumes. Using a Random Forest classifier, Dey was 

able to predict occupancy levels so BMS systems could be tailored to building activity. 

Their system could accurately predict current room occupancy with an accuracy of 95 per 

cent against the ground truth through a sampling period of three months in a single room. 

The bulk of this accuracy came from CO2 sensors (92 per cent) which had lag issues on 

either end of their ramp up/down cycles. However, CO2 could be very accurate where 

occupants arrive, stay and leave in groups, such as in a movie or lecture theatre. 

Similarly, Dey, et al. [82] focused on lecture/lab spaces on a university campus, which 

were typically either full or empty, with most occupants arriving/leaving at 

approximately the same time. HVAC systems in assembly spaces adapt to high and low 

volume occupancy rates over short periods, and they are designed to have the capacity to 

ramp up/down accordingly.  
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2.6.1 Challenges using building-systems sensors 

These methods may prove challenging when applied to rooms with different occupancy 

patterns across a suite of rooms as a single zone. In outpatient clinic suites for example, 

HVAC systems typically serve ‘zones’ comprised of numerous small rooms, designed for 

2-3 people. Each space in the zone has a unique occupancy/utilisation pattern, and can 

often vary in shape/form, features such as natural light, and challenges such as the 

distance from the waiting room. There can be high variability in occupancy levels 

depending on the health service being provided, the day of the week and the time of the 

day. Consequently, depending on their technological maturity, sensors could advise about 

the occupation of a zone of activity but may struggle to report on individual rooms. To 

study bespoke spaces within a zone, additional sensors would be required that target these 

spaces individually. 

2.7 Types of sensors used to study human presence/activity detection 

As explored in 2.2 above, through the work of Teixeira et al. the features of human 

presence detection have been established. To detect and record these features, many 

approaches were possible. The most promising potential sensor types are presented in the 

following section, based on their capability to identify human activity patterns, and their 

suitability for deployment in live healthcare environments.  

2.7.1 Ultrasound 

Sensors using ultrasound indoors may be appropriate when used for human presence 

detection, though challenges remain prior to widespread adoption. While exploring 

‘object localisation’, Qi and Liu [83] demonstrated a 10.2-millimetre maximum location 

error was possible. However, they found this level of accuracy relies on numerous 

receiver units distributed across each space studied.  Scaling up such technology seems 

impractical if considered for use in a moderate sized healthcare clinic with more than 100 

spaces. Also, their technology relied on tracked targets transmitting a beacon signal 

which was then located by receiver units. This multipart system inevitably suffered from 

the same human error and cost issues as other tag-based applications such as RFID or IR 
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tag applications. Finally, ultrasonic localisation in a hospital environment may interfere 

with ultrasound-based medical imaging devices. 

2.7.2 Optical cameras 

By far the largest contribution to the literature in human presence detection was optical 

image processing using computer vision, but they were hampered by ongoing privacy 

concerns. Privacy issues were typically addressed in the literature by ‘processing’ 

imagery rather than storing/recording imagery. Nevertheless, there remains a small 

‘moment of vulnerability’ after capture and before discarding of imagery which was 

addressed by Baccelli, et al. [84] preprocessing optical information using optical 

scattering techniques. Their research goes some way to technically preserving privacy. 

However, for consumers of healthcare services, it was both the technical preservation of 

privacy and the perception of privacy that was important. Unfortunately, high-sensitivity 

private clinical environments were inappropriate for optical image-capture technology as 

thus far demonstrated in the literature. 

2.7.3 CO2 Sensors 

Humans constantly emit CO2 gas. Detecting the number of humans in a room using CO2 

sensors can be highly accurate. For both presence detection and count data, Calì, et al. 

[85] achieved accuracies of 95.8 per cent and 80.6 per cent respectively. Unfortunately, 

these accuracies were only achievable in spaces without either mechanical or natural 

ventilation, since air exchanged from adjacent spaces produced ‘variable’ results in their 

research. These sensors were only commonly used for assembly spaces such as lecture 

halls and theatres which typically had self-contained HVAC systems and controlled 

external air inputs. Typical HVAC systems in larger corporate/commercial spaces had a 

dedicated air-handling plant to service many rooms contained in a single zone. This could 

consist of a single zone for small floor plates, or several adjacent zones for larger floor 

plates. These zones typically consist of both supply and return air systems, where the 

return air was mixed in some proportion with the supply air after cleaning. These sensors 

in return air ducts would have been variable unless the system was operating in 100 per 

cent fresh-air mode, or the system incorporated CO2 filters. Controlling for return air CO2 

variables, Wang, et al. [3], Wang and Jin [86] achieved success in using CO2 sensors to 
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predict occupancy numbers in commercial facilities. They used these occupancy numbers 

to tailor air-supply to match occupant numbers, thereby reducing energy consumption. 

The methods of Wang, et al. [3] were inappropriate for understanding occupancy patterns 

of individual rooms in a zoned HVAC system. This challenge was underscored in clinical 

spaces with high turnover of occupants of 15 minutes or less, which greatly affected the 

performance of CO2 systems [87].  

Air within consult rooms was regularly mixed with corridor air when entry doors open 

and close, and not all spaces had return air ducts. These challenges were not 

insurmountable, however. Using a combination of BMS-controllable airflow dampers, 

full-fresh-air modes and scrubbers, their methods may be feasible. Unfortunately, the 

capital cost of this type of system was high and did not reflect common industry practice, 

and the return on investment was unclear. 

2.7.4 RTLS systems literature beyond healthcare 

The broad category of research identified as RTLS have been explored in 2.4.2 above to 

the extent they were identified in the healthcare literature. These systems were useful to 

understand general patterns of occupancy [88] but few had been applied to research 

aimed at optimising clinical space utilisation. Beyond how they have been applied to 

support healthcare research, RTLS is an umbrella term covering many branches of 

distinct research fields. In this section a summary of applicable RTLS technologies is 

provided with the intent to understand their future incorporation into healthcare literature 

2.7.4.1 Wi-Fi outside healthcare applications 

Looking outside the field of healthcare research, one reason limiting the adoption of Wi-

Fi as an RTLS in the field of clinical space utilisation, despite Wi-Fi saturation in many 

hospitals, is a current accuracy of 3.3 metres accuracy in practice [89]. In practice though 

this technique may have required levels of Wi-Fi saturation beyond current practical 

norms. Looking at occupancy prediction using Wi-Fi combined with machine learning, 

Wang et. al [90] demonstrated accuracies of ‘80.9 per cent … and 93.9 per cent with a 
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tolerance of two…and four occupants respectively’. These techniques assumed each 

occupant was carrying Wi-Fi enabled devices, the Wi-Fi signal was active and the device 

was on. Unfortunately, in healthcare settings this was not an accurate assumption, though 

demographics had shifted in their favour. In comparison, Zheng, et al. [91] have 

identified Wi-Fi localisation methods that do not require users to hold/wear technology to 

function with accuracies of 0.82m. 

 

The field of Wi-Fi localisation has developed at a high pace.  This development trajectory 

suggests that in time, Wi-Fi localisation may be highly capable of accurately locating 

each human within a multidisciplinary clinic, while avoiding personal identification. 

Should this be achieved, this technology would be ideal to study clinical space utilisation. 

Another emerging RTLS technology facing similar issues is the use of the Bluetooth 

standard. 

2.7.4.2 Bluetooth 

RTLS techniques using Bluetooth short-range wireless standard were reasonably 

common in the literature outside healthcare. For example, Wang et. al [92] identified 

human occupancy indoors using a multifeature classification algorithm with K-Nearest 

Neighbours (K-NN). Their algorithm achieved occupation prediction accuracy of nearly 

93 per cent against ground truth. Similarly, recent work from Lorenc, et al. [93] reduced 

accuracy to 1.5m using Bluetooth Low Energy triangulation via Received Signal Strength 

Indicators and the application of a Kalman filter.  Unfortunately, to date the Bluetooth-

based systems suffer from the same drawbacks as systems. They both require specific 

techno-environmental conditions, which were suboptimal in live healthcare spaces.  

2.7.4.3 Global positioning systems 

One final RTLS technique determined worth mentioning was Global Positioning Systems 

(GPS). The use of GPS for the localisation of humans outdoors has developed into a 

highly accurate, mature technology in common use in residential applications. Indoors 
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however, GPS-based systems suffer from signal path interruptions ‘due to signal 

congestion and path complexity caused by the building structure’[94]. Though 

advancements have been made in combining GPS systems with other systems for 

internal-external continuity, for the study of clinical space utilisation this technology is 

not-yet sufficiently developed. 

2.7.5 Infrared arrays 

Infrared energy emitted from humans is used by many sensors, from single-sensor motion 

detectors to arrays of infrared sensors capable of sensing even minute motions, and 

capable of tracking humans across a space. These sensors differ from those discussed in 

2.4.2.1, as they are building mounted, not human-mounted. This differentiation may 

eliminate many of the human-resource and tag-loss issues experienced by those 

researchers. There were numerous ways the infrared energy constantly emitted from 

humans was used for presence detection in the literature. Passive infrared (PIR) sensors 

technology for example has matured to the point of common domestic installation.  When 

PIR sensitivity was increased, raw sensors were accurate for detecting human presence 

through even small thermal movements (example typing or reading). Unfortunately, high-

sensitivity PIR sensors also increased the risk of false positives from very slight changes 

such a warm air current.  Through use of a distributed array of PIR devices, Zappi, et al. 

[95] demonstrated improved results. They found a ‘100 per cent correct detection of 

direction of movement and 83.49-95.35 per cent correct detection of distance intervals’. 

This suggested further improvements were possible, though numerous sensors were 

required, increasing capital costs and recurrent maintenance expenditure.  

Using PIR  as a data collection method, and inhomogeneous Markov chains to predict 

future human occupancy patterns, Erickson, et al. [96] were able to simulate building 

occupation. Using an EnergyPlus model, HVAC systems were dynamically adjusted 

demonstrating a potential 42 per cent savings against the current best-practice strategies. 

Erickson (et al.) may have been able to realise further savings if their research were to 

move beyond PIR sensors. These sensors provide a binary presence-detected state of 

occupied/vacant. Incorporating ‘count’ data to match HVAC systems to predicted 
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occupant load, or other spatio-temporal properties [8], may have increased their 

efficiencies. Recent lab-based results have demonstrated that arrays of these simple 

sensors [97] can locate individual humans, and calculate their trajectory through time 

using a generative adversarial network (GAN) to augment PIR data. As arrays of these 

sensors have been shown capable of detecting human presence in individual spaces, they 

are considered ideal to study clinical space utilisation, in the occupancy category at least 

if not count.  

2.7.6 Thermopile arrays 

Sensor types explored thus far have been used to detect Teixeira et al.’s five categories of 

spatio-temporal properties [8] up to the ‘presence’, and ‘count’ categories. Thermopiles 

had the capacity to fill a gap in presence detection/tracking field where privacy was a 

concern. Thermopiles were collections or ‘piles’ of thermocouples, which translate 

infrared radiation into temperatures. Temperatures of the thermocouples were averaged, 

and this becomes the data sent by the thermopile sensor. Arranged in a grid formation, 

thermopiles at low resolution maintain occupant privacy, such as eight by eight square 

matrices, or four by 14 rectangular thermopile matrices. These thermopile arrays (TA) 

also had the capacity to increase the human feature detection category [8] anywhere from 

count up to tracking category in a cost-effective manner. For example, TA sensors were 

demonstrated effective to identify individual humans by numerous researchers [98-102].  

Also, using TA sensors Karlsson and Rabiee demonstrated ‘tracking’ human behaviour 

over time was possible using a multi-Bernoulli system [103]. TA sensors were effective 

in small spaces and can also be combined. For example, a distributed array of TA sensors 

across a space were shown by [104] to be effective in localising human activity. The 

potential of these sensors suggest they may dominate the human presence/activity 

detection sector in high privacy spaces in future. The TA sensors return an array of 

temperatures that change over time. This format created local fields of high temperatures 

across the relatively ‘flat’ background heat in the grid. Detecting conglomerations, 

known as blobs, were common in computer vision and data science fields. Many 

researchers have taken these techniques and applied them to the TA data stream.  
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2.7.6.1 Blob detection 

The bulk of the research on TA devices take the form of ongoing improvements in 

determining human presence. The majority of TA research was focused on progressively 

improving ‘blob detection’ [105] to classify human presence. Consequently, a brief 

overview of the current state of research was provided. 

Breaking down the blobs, Basu and Rowe [99] used feature extraction from raw TA data 

to identify individual humans using sequential processing of sensor data. Connected 

component analysis, commonly known as blob detection, followed by Support Vector 

Machine classification, proved the most accurate. They were able to identify four 

individuals in a 2.5-metre by 2.5-metre target zone with 80 per cent accuracy. Using a 

four by 16 array thermopile, in 2016 Tyndall, et al. [98] built on previous research [106] 

combining thermopile arrays with machine learning classifiers. They found that the K-

Nearest-Neighbours algorithm machine learning was the best ‘blob’ classifier for TA 

sensors, providing approximately 83 per cent accuracy with an RMSE of 0.304. Recently 

in 2021, [107] Chidurala et. al applied various preprocessing techniques including ‘blob 

detection’ to further improve the capacity for existing machine learning techniques. They 

were able to estimate human occupancy with 99 per cent accuracy. With continued 

improvements and commercialisation there was a wide application for these sensors. 

2.7.6.2 Benefits of thermopile sensors 

Thermopiles can also operate without regular maintenance for years depending on their 

power arrangements. Low-resolution thermopiles were incapable of identifying 

individual human characteristics. Thermopiles were relatively simple and based on 

mature technology and sound research. Privacy preservation was ensured using low-

resolution thermopiles even if the sensor device was compromised by external actors. 

Therefore, thermopiles were appropriate for use in healthcare environments to understand 

patterns of occupancy. These devices sense infrared energy external and intrinsic to all 

humans. They remain the most viable of the commercially available sensor types to use 

in high privacy situations such as healthcare.  Unfortunately, while the sensor itself is 

widely available, commercial distribution as part of an IoT device remains comparatively 

low. 
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2.8 Machine Learning and sensor fusion 

Limited research has explored the use of machine learning applied to data from existing 

BMS sensors similar to Dey, et al. [82] in healthcare scenarios, such as the recent work of 

Saralegui, et al. [108] which explored the ability of such systems focused on monitoring 

occupancy patterns to detect potential symptoms of illness such as dementia.  Typical 

BMS systems captured data on temperature, humidity and CO2 concentrations designed 

to control HVAC systems. Saralegui combined data with various classifiers which 

included: C5.0, ctree2, SVMRadial, qda, rFerns, rpart and AdaBag among others. The 

latter four classifiers provided similar accuracy on binary occupancy values of 

approximately 80 per cent. Unfortunately, they encountered similar problems to Calì, et 

al. [85] in that accurate occupancy predictions were challenging if airflow between rooms 

was allowed. Such problems may have been minimised in the work of Dey, et al. [82] 

due to the self-contained nature of their HVAC systems. For occupancy values, the 

results could have been improved by adding PIR sensors in sensor fusion similar to 

Erickson, et al. [96]. Another approach to sensor fusion identified high occupant accuracy 

of more than 99 per cent. Other research combined data from CO2, temperature, 

humidity, light level sensors plus occupancy using a photovoltaic infrared (PIR) sensor 

[109]. Similar results were found by [110]. However, it was unclear in both papers how 

they controlled for the CO2 leakage from adjacent rooms/zones.  

The techniques employed by these researchers may be effective in laboratory conditions. 

In many multidisciplinary clinics, these techniques have been less effective without 

consideration of air-transfer from adjacent rooms, or zoned air-conditioning systems. 

Researchers may have encountered challenges if these techniques were implemented in 

live built environments.  

2.9 Conclusion 

The above survey of literature sought to understand how IoT devices could support 

clinical space optimisation in outpatient clinics.  The review found that few researchers 

had used sensor technology to explore their capacity to optimise clinical spatial assets. 

Those who did (RTLS and RFID) were challenged with the state of technology, or their 
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high cost of implementation/maintenance. Most researchers focused on spatial aspects 

indirectly as a function of time, with their optimisation noted casually if at all. 

This review has ranged across multiple distinct disciplines of research but had many 

common themes. Data acquisition on clinical space utilisation remains the primary 

challenge when attempting to optimise clinical space utilisation. Triangulating the results 

of such a broad spectrum of research suggested that in a multidisciplinary clinical 

environment: 

 Sensors could be used to determine occupancy  

 Data patterns could be determined through a variety of statistical analytical tools 

 Gathering data on room occupation manually was resource intensive 

 Thermal-emission-based IoT devices could remotely provide occupancy data in 

high privacy spaces on a room-by-room basis 

 Machine Learning could be used to predict future occupancy patterns. 

In the exploration of presence detection in clinical environments to optimise operational 

effectiveness, the literature suggested that significant performance improvements could 

be realised. Simultaneously, it may also be possible to reduce the cost of providing 

healthcare services by both improving patient-flow and reduced demand on building 

services. The most effective method of improving utilisation of clinical spaces found in 

the literature was not a single change. Concurrent changes in numerous factors 

holistically in the literature were found to have had the greatest impact. Without the 

ability to continuously measure the progress of improvement initiatives, the relative 

change (success or otherwise) cannot be demonstrated. Therefore, improved methods of 

data collection and monitoring were necessary. Introducing IoT devices in clinical spaces 

to determine occupancy provided an evidence-base upon which to propose improvement 

activities and demonstrate their effectiveness.  

Spatial utilisation research using IoT sensor technology aligns with the emergent area of 

inquiry defined by Wiberg [111] as ‘Architectural Informatics’. Exploring these ideas 

through further works, Wiberg [112] aligns with the outcomes of Vahdatzad and Griffin 
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[63] in exploring spaces as designed versus spaces as used in healthcare environments. 

Currently limited research, data or even tools exist to provide the kind of data required 

for such an iterative process between designer and user.   

The intersection of technologies combining the power of IoT and machine learning to 

study clinical space utilisation was presented as ‘future research’ by Stahl, et al. [27]. 

Refined information systems were required to make clinical resource utilisation data 

more readily accessible to healthcare workers, executive staff, architects and those 

performing quality improvement activities. These systems would use the power of 

technology such as IoT to transform sensor data into actionable information. Information 

would need to be presented in such a way that it can support evidence-based decision-

making. Elevating the frontline data to a higher level of corporate knowledge would 

provide a new capacity for operational improvement to those who need it. Optimising 

spatial resources in multidisciplinary clinics would drive down the cost of providing 

healthcare services. Also, this improvement would allow the healthcare system to provide 

more healthcare services within existing resources. Further, the pressure to increase the 

physical and carbon footprints of the healthcare system would be reduced. Finally, access 

to healthcare services would be increased, resulting in reduced reliance on more intensive 

and costly downstream care activities.  

The research projects identified in this chapter all contain some critical challenge.  

Common data gathering techniques are typically unsustainable (too expensive at scale or 

long term). Each technological intervention explored in the literature involved some form 

of ongoing management by healthcare staff, involving patient interaction. Technological 

gaps were identified with the systems themselves, such as the challenges of the various 

‘tag’ systems. In many cases, the correct use of technology had to be explained to 

patients, and consent to collect data obtained, which introduced friction into the patient 

experience. To avoid these challenges, future researchers are recommended to employ 

technological systems that are low-power, low-cost, low-maintenance, privacy-preserving 

and do not rely on human interaction.   
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Sensor technology implemented in a live healthcare environments must be carefully 

selected for appropriateness. Many healthcare services involve highly sensitive medical 

equipment.  Therefore, it is critical for new technology introduced into these spaces to 

avoid interfering with potentially life-saving processes by minimising electromagnetic 

noise. Sensors exclusively capturing passive environmental data are considered ideal.  

Signal transmission in all forms should be limited to technologies pervasive in the 

modern clinical environment (e.g. WiFi and cellular networks).  Finally, if using exiting 

communication networks, adjusting transmission to non-peak clinical service delivery 

periods would avoid contributing to signal congestion.  The experience of previous 

researchers was therefore invaluable in the selection of technology used in this research. 

A demonstration of decision-making informed by this review is presented in Section 

3.2.2.  The relative success and limitations of each body of research reviewed in the 

literature therefore shaped the direction of this research project.   

This literature review has identified numerous gaps in the literature that the remainder of 

this research project has attempted to resolve. Untapped data sources within the built 

environment of our hospitals and other healthcare environments could support evidence-

based decision-making on the optimisation of space utilisation. Well-structured feedback 

mechanisms using the tools of computer science could provide a much-needed feedback 

mechanism to planners and designers of future healthcare spaces. This field of inquiry 

has been tentatively referred to as ‘Architectural Informatics’. 
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CHAPTER 3    

METHODS 

3.1 Introduction 

This chapter explores three distinct features of using IoT devices to study clinical space 

utilisation in operational multidisciplinary ambulatory clinics, within a regional public 

tertiary teaching hospital. These features include the following, used to study clinical 

space utilisation: 

 The effectiveness of IoT technology to gather/disseminate information 

 The appropriateness of collecting human activity data using IoT devices 

 The acceptability of IoT devices by staff working under continuous observation. 

First, the primary hypothesis was that IoT technology was effective when used to 

improve the utilisation of clinical spaces within the THHS. This hypothesis was tested by 

the installation of IoT sensors within live clinical spaces. This type of data collection is 

referred to as ‘new data’ by Peacock [115] who defined several advantages and 

disadvantages of this data collection method. First the advantages were that the PI can 

ensure that the data collected is fit for purpose, and current. Next, the disadvantages listed 

by Peacock were the cost of undertaking research, the ‘time to collect and process’ the 

data and the ‘possibility of unknown quantity of missing data …’. The first two 

disadvantages were considered offset by using IoT devices being allowed to run for a 

long period. The last was mitigated by having a third-party proprietary service monitor 

sensor health and battery life, notifying the PI if any action was required. Once the 

method of data collection was established, sensor choice, testing, and installation 

methods were explored, in addition to an account of device maintenance throughout the 

study period. 

The second hypothesis was that the use of specific IoT devices to study human activity 

within high-privacy clinical outpatient spaces was appropriate. The restricted features of 

IoT devices installed for this purpose respond to the confidentiality of the activities 

undertaken within the target clinical spaces. Devices had to be incapable of disclosing 

personally identifiable information, even if compromised. Also, installed IoT devices 

must not instil the feeling that personally identifiable information was being recorded, 
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regardless of their actual capabilities. Staff perceptions of IoT device ‘appropriateness’ 

were gathered through one-on-one interviews and a staff-wide survey. 

The third hypothesis suggests that healthcare staff would be comfortable working under 

the constant monitoring of clinical spaces in their workplace by IoT devices. Comfort 

levels were explored across a range of increasingly dense data gathering on human 

activity. A theorised ‘threshold of acceptability’ common across staff would be 

established or disproved. Data was collected using the same sources of one-on-one 

interviews and staff-wide survey used to explore ‘appropriateness’ above. 

Studying only the effectiveness of technological interventions within live-care 

environments without considering the effects of these interventions upon the occupants 

would have been irresponsible. Continuously monitoring clinical spaces with IoT 

devices/sensors may be considered wholly inappropriate in healthcare settings. If the 

latter was true, demonstrating the effectiveness of these devices was pointless. Similarly, 

if IoT devices were considered appropriate in clinical settings, but staff felt that working 

under their constant observation was unbearable, successful implementation would be 

unlikely. These three hypotheses structure the remainder of this chapter. 

3.2 Exploring capacity of IoT devices 

Collective references to ‘IoT technology’ throughout this research project refer to a suite 

of interconnected technologies. This term includes the local sensors and their container 

IoT devices, cloud-based middleware and client-side postprocessing software. The results 

presented in Chapter 4 would not be possible if one or more of the links in this chain of 

technology were broken. Underpinning this research was Hufner (et. al)’s behavioural 

science methods developed as a subset of design science in the field information systems 

research. The methods in this subsection aimed to:  

…develop and verify theories that explain or predict human or organisational 

behaviour… [including]… interactions among people, technology and 

organisations that must be managed if an information system is to achieve its 

stated purpose, namely improving the effectiveness and efficiency of an 

organisation. [116].  
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Current space management within the study setting used static spreadsheets with a 

fortnightly clinic usage scheduling. Daily load-shifting activities were undertaken by 

frontline staff with limited ability to demonstrate spatial capacity limitations. Executive 

decision-makers had little-to-no data to support evidence-based decision-making on 

space allocation/re-allocation. The intent of this research project subsection was to 

identify and test sensors and their associated IoT devices capable of identifying human 

activity within high-privacy spaces. The boundaries for ethically appropriate electronic 

data gathering were agreed in advance through the authorisation of the local Human 

Research Ethics Committee (HREC). Authorisation to proceed was received by the 

THHS HREC (HREC/17/QTHS/54). Summarising the 101-page HREC application, it 

was considered ethically appropriate to remotely gather nonoptical, nonaural, 

nonpersonally identifiable, ambient environmental data. Specifically, sensor devices 

‘such as infrared radiation, ultrasound or other similar technology’ were referenced to 

reinforce the type of data being gathered.  

3.2.1 Repurposing existing systems 

The first attempt at obtaining space occupancy data involved the repurposing of an 

existing access control system employed by the Townsville Hospital and Health Service 

(THHS). This technology takes advantage of a combination of passive RFID tags, and 

access control via electronic door locking. Staff at the THHS were obliged to carry staff 

identification badges to identify themselves to and provide access to nonpublic spaces 

within the facility. Electronic access to restricted spaces across the THHS was provided 

by an electronic locking system using RFID chips embedded within staff ID badges.  

The following section has summarised the functionality of these systems by combining 

hardwired, wall-mounted receivers with transmitters (badges).  These badges differ from 

the battery-powered tags trialled by researchers in Chapter 2 as they are passive, near-

field systems. Small antennae inside the badges are powered by proximity to readers and 

broadcast weak signals containing encoded unique identifiers (UIDs) to receivers. Once 

the UID was obtained, this information was transmitted via the intranet where a 

comparison was made against a list of authorised ID numbers assigned to the door in 



 

83 
 

question. If the UID was authorised for the requested door, an ‘access authorised’ signal 

was sent to the receiver. This signal triggers the electronic lock for a predetermined 

interval, allowing the door to open. The UID number accessing the door was logged, 

along with the time, the result of the ID check (pass or fail), and the result of the 

electronic lock activity (open or fail).    

Logs from these systems were proposed as one potential source of spatial occupation data 

to help understand patterns of occupancy within a clinical healthcare environment. 

CARDAX data was compared to a ‘ground truth’ recording of room occupancy (see 

‘calibration activity’ below). The capacity of this system to understand room occupation 

was analysed. The technology underpinning these systems was mature. However, the 

literature contains lessons from the use of RFID and similar other ‘tag’ bases systems. 

Using these systems to explore room utilisation has known flaws, including: 

 Resource intensive – may be appropriate for staff, with tags issued upon 

employment, but not appropriate for healthcare consumers who required tags 

issued/collected every visit [4, 7] 

 Cost prohibitive – badges were expensive and often went missing, though the cost 

of these systems has reduced in time [7, 27] 
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 Data integrity – badges had to be ‘worn correctly’ by occupants, only one badge 

per occupant, and badges had to match occupants [5, 7]. 

In addition to some of the challenges above, doors could be propped or held open to 

allow passage by multiple occupants. Despite these known flaws, log data was gathered 

and compared with data obtained through the proprietary sensor units. Data was kept in 

spreadsheet format for direct comparison to the other ‘calibration activity’ sensors 

discussed below.  

3.2.2 Commercial IoT sensors selection 

A subset of commercially available sensors used in this research was chosen in 

accordance with an analysis of options seeking a balance between numerous factors, 

including: 

 

 

1. locked door upon lock-side 
approach; locked status 
shown by red indicator on 
‘reader’ 

2. proximate placement 
(10mm max) of 
‘authenticated’ card 
electronically opens lock 
(green indicator) after hard-
wired/powered sensor 
communicates with 
centralised security system 

3. RFID coil contained 
within THHS staff ‘ID’ 
cards (similar), outer loops 
used for antennae, inner 
‘chip’ contains data 
broadcast when excited by 
‘readers’ 

Figure 7 - Radio Frequency Identification (RFID) Tags used at the THHS 
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 Occupancy Sensing   Wireless networking 

 Potential for collection of 

personally-identifiable information 

 Capacity for integration with other 

software (i.e. FMI) 

 Ceiling Mounted  Node to network connection (no router) 

 Bi-Directional people counting  Cost for deployment across 20+ spaces 

 Battery Operated  Availability in Australia. 

These criteria were applied to commercially available sensors identified through online 

searches to establish the decision matrix in Table 5, organised by vendor. Some criteria 

above were nonnegotiable. For example, if the sensor was affixed to movable objects, it 

was removed from further consideration (i.e., item #1 in Table 5). For optical-sensor-

based devices, regardless of how the images were protected or how long they were kept 

in memory, these were not considered to progress to the next stage. Finally, if the ‘count’ 

sensor maintained a record only of single-directional travel, it was no longer considered 

viable for this research.
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Table 5: Sensor selection decision matrix including taxonomy 
   TAXONOMY                   

# Vendor Sensor Type 
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1 Cowrkr  Vibration Sensor I D V N N N N Y Y Y N N N N            
2 Cowrkr  Optical Camera(s) I D E Y Y Y Y N Y Y N N N N            
3 Hella  Optical Camera(s) I D E Y Y Y Y N N Y N N N N            
4 Nortech Optical Camera(s) I D E Y Y Y Y N N N N N N N            
5 Axis Tech Optical Camera(s) I D E Y Y Y Y N N Y N N N N            
6 Cohera-Tech Optical Camera(s) I D E Y Y Y Y N Y N N N N N            
7 Total Count Single Thermal Beam I D E N N N N N N N N N N N            
8 Beonic Dual Thermal Beam I D E Y Y Y N N N Y N N N Y - - -  - $61,315 N  

9 Occupeye 
Optical Camera(s) 
(Occupeye 'flow') 

I D E Y Y Y Y N N Y N N N Y $2,400 25 $1,000 2 $62,000 N  

10 
Maxim 
Integrated  

Thermopile Array (Panasonic 
Grideye) 

I D E Y Y Y N N N Y N Y N Y $200 25 $150 2 $5,300 N  

11 Schnider  Thermal PIR I D E Y N N N Y Y Y N N N Y $490 25 $481 5 $14,655 N  

12 Schnieder 

Thermal PIR, Temp & 
Humidity Detection  

I D E Y N Y N Y Y Y N N Y Y $490 25 $481 5 $14,655 N  

13 Cohera-Tech PIR array (Irysis Gazelle 2) I D E Y Y Y N N N N N N N Y $1,100 25 $0 2 $27,500 Y  

14 A-Beautiful-City  PIR array (Irysis Gazelle 3)  I D E Y Y Y N N N N N N N Y $1,600 25 $1,180 2 $42,360 Y  

15 Cohera-Tech Dual IR Beam I D E Y Y Y N Y N N N N N Y $420 25 $840 2 $12,180 Y  

16 
Evolve Plus 
(door mount) 

Dual Thermal Beam I D E Y Y N N Y Y Y N N N Y $450 50 $1,840 2 $26,180 Y Y 

17 Evolve Plus PIR array (Irysis Gazelle 3) I D E Y Y Y N N Y Y N N N Y $1,650 25 $1,840 3 $46,770 Y Y 

18 Elsys  
ERS-CO2: PIR, CO2, Light 
Levels, Temp., Humidity 

I D+S E Y N Y N Y Y Y N N Y Y $342 25 $2,500 2 $13,541 Y Y 

19 Occupeye Thermal PIR I D E Y N Y N Y Y Y N N N Y $240 25 $1,000 2 $7,280 Y Y 
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Once a subset of potential sensors was identified, their respective vendors were 

contacted by phone and/or email to better understand: 

 the technology employed by the system  

 the various technical requirements of the system, such as networking 

capacity/technique, requirement for/distribution of local ‘hubs’, etc. 

 the cost per sensor device and if required, the cost per hub. 

The resultant data was applied to the floor plan using computer-aided drafting (CAD) 

software to map out sensor and hub placement (Figure 8). The quantity of hubs 

required was calculated based on the published limiting distances of the system. Grant 

funding to purchase sensor equipment was provided by the THHS through the Study, 

Education and Research Trust Account (SERTA) funding scheme for this research 

project. 

Once the quantity of hubs was established, the total cost of the proposed installation 

was calculated. As all sensor types except one were over the budget assigned for the 

purchase of technology, a budget change request was lodged to increase funds 

assigned for technology purchase, and an internal security review of the LoRaWan 

 

Figure 8 - Floor plan of target multidisciplinary clinic overlaid with initial 
layout of trial sensors to identify quantity of hubs required, from Figure 2, 

McNabb et al.[1].  
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technology commenced. These requests were under way while sample sensors of the 

‘top 4’ sensor types were purchased through the THHS corporate financial system. 

The intent of this initial procurement was to test proposed units for effectiveness prior 

to committing the remainder of the budget on a single type of sensor device.  

The sensors ‘short list’ (Table 6) showed the most appropriate sensors available on 

the market at the time of the research. While other sensors existed, such as the 

Grideye thermopile from Panasonic, existing fully resolved commercial IoT devices 

containing these sensors were not available. The shortlisted sensors were primarily 

limited in the first instance to variations on the theme of human thermal emissivity. 

With a ‘privacy first’ focus for use in live healthcare environments, most available 

commercial options at the time of the research had to be eliminated. This exclusion 

was due to the reliance on optical image processing to understand human activity 

patterns. These sensor manufacturers felt confident privacy concerns were addressed 

by not storing any video on the device. However, the presence of a camera in high-

privacy clinical exam rooms, where patients frequently disrobe for a physical 

examination by a healthcare professional, was not considered appropriate. A brief 

overview of the shortlisted sensors types, the reason for their selection, and their 

Table 6: Most suitable sensor short-list identified via Table 5 decision matrix  

# Vendor Sensor Type Comment 

16 
(S1) 

Evolve 
Plus 

Dual Thermal 
Beam 

System exceeded budget, but 
represented the most common non-
optical counting sensor, purchased for 
comparison 

17 
(S2) 

Evolve 
Plus 

PIR Array (Irysis 
Gazelle 3) 

System exceeded budget, but is 
innovative technology unique in the 
market, purchased for comparison 

18 
(S4) 

Elsys  

ERS-CO2: PIR, 
CO2, Light 
Levels, Temp., 
Humidity 

System exceeded budget, however, 
contained five sensors in one; additional 
funding re’d to purchase trial units; uses 
LoRaWan networking system, requiring 
approval 

19 
(S3) 

Occupeye 

Thermal Motion 
Sensor; Passive 
Infra-Red, or 
Photovoltaic 
Infra-Red (PIR) 

Met budget at scale; used mature 
technology with long transmission 
distinct from units to hubs, which 
reduced the number of hubs required 
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functionality can be found in Figure 9 [1]. However, this summary has not provided 

detail on how the sensors function. 

3.2.3 Thermal Motion Sensors – Photovoltaic/Passive Infra-Red (PIR)  

Simplified, this type of sensor received infrared radiation on its detector surface and 

converted this radiation into an electric charge. Typically, these sensors were used in 

combination with a segmented dome (Fresnel lens) which broke the infrared energy 

received into distinct cells. The sensor device tracks activity in each of the cells, and 

triggers when the infrared energy levels, typically emanating from humans, passes 

through one or more of these cells. For sensors used in this research, the ‘motion’ 

event triggered a time-stamped ‘occupied’ data point. Once triggered, the device then 

went into low-power mode until the start of the next temporal increment with 10-

minute intervals minimum. The middleware dataset consisted of collated ‘occupied’ 

or ‘vacant’ data points for variable temporal increments. Alternatively stated, data 

viewed filtered through one-hour periods would report any occupancy triggers in that 

time that the space was ‘occupied’ during that period. Refer to Figure 10 for an 

illustration of the basic functionality and networking structure. 

 
Figure 9 - Extract from McNabb et al. Figure 1 [1] illustrating 

shortlisted sensors trialled for accuracy and suitability for clinical 
environments  
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3.2.4 Thermal (passive or Photovoltaic infrared) array sensors 

In contrast to the standard PIR identified in 3.2.3 above, this sensor used an array of 

PIR devices behind a proprietary lens. This lens focused each PIR on a distinct 

section of the target space. Data from the field of sensors was processed within the 

device using proprietary technology. The device display, when connected to a laptop 

computer, visualised the location of one or more sensed humans as they moved 

through the target space. The number of humans within the target space was logged 

by the sensor in an online data repository.  

Infrared radiation was received at an angle of approximately 60 degrees from the 

sensor in all directions away from the device. The process of calibration was more 

labour- and infrastructure-intensive compared with the other shortlisted sensors. This 

was due to the cumbersome calibration process that must be repeated on each device, 

and the 240V power supply required for the ceiling-mounted sensor.  

A laptop running proprietary software was connected via long, high-speed serial 

cable. While inside the sensed field, the sensors’ boundaries were mapped by moving 

around and following the ‘blob’ on the screen. A threshold line was established for 

each direction in and out, and the device logged the number of count activities per set 

 
Figure 10 - Thermal (PIR) Sensors Functionality 
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period. With two thresholds, the entrance and exit activities of humans were able to be 

recorded. The latter statement assumed all paths leading to/from the entrance/exit 

were within the field of view, and thresholds were drawn accordingly. The result was 

an online spreadsheet of actions, but a total count was not provided. To maintain a 

running count total, the spreadsheet had to be downloaded and calculated by each 

client outside the vendor’s system. 

3.2.5 Thermal beam sensor 

These sensors were based on relatively mature technology. The sensors used in this 

research used two thermal beam transmitter/receiver combinations: ‘A’ and ‘B’. 

These two sensors were housed in separate units which mounted directly opposite 

each other across the desired threshold. When beam A was broken followed by beam 

B, an ‘in’ data point was recorded.  

Similarly, when the reverse happened, an ‘out’ data point was recorded. Data was 

collated for fixed periods, and broadcast via RF transmission to the hub, then via 

mobile network to cloud-based middleware. A fixed minimum period between 

activities within the device attempted to minimise the number of false recordings. 

 
Figure 11 - PIR Array sensor illustrating basic networking functionality. 

 

 
Figure 12  - Thermal Beam Sensor, basic networking diagram 
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Limiting their suitability and increasing the potential cost, the devices were not 

tamper-resistant without secondary encasement. Installed in the outpatient clinic, 

these sensors would have to be mounted on the corridor side of every space under 

observation. This requirement included the numerous clinical rooms with multiple 

doors, further increasing complexity and cost. The thermal beam sensors were 

manufactured by the same company that produced the PIR array sensor in Figure 11. 

Data collection was similarly challenging as it used the same exported spreadsheet 

process which recorded trigger events but did not provide running totals, meaning a 

manual count had to be completed by the end user. Once the detailed features of the 

sensors were identified, and their installation requirements known, detailed pre-

planning was required. 

3.2.6 Planning IoT sensors installation into operational clinical environments 

Commencing ‘human research’ in an operational clinical environment required 

mandatory completion of several preliminary activities. First, a research proposal was 

prepared and submitted for assessment and authorisation to the HREC of the HHS. 

For this research project, this controlling body was the THHS HREC. Once duly 

authorised (HREC/17/QTHS/54) was submitted to the Research Governance Office 

(RGO) controlling research activities within the HHS. All activities associated with 

this research project were confined to the main Douglas campus of the THHS. 

Research commencing on different campuses would have required separate 

applications to the RGO. No research activities were allowed to commence until all 

internal authorisations were duly granted, and the ethics unit of James Cook 

University were equally satisfied. Beyond assuring the research project was ethically 

appropriate, the capacity of the PI to manage the research project effectively had to be 

demonstrated. From risk and data management to demonstrating realistic viability, the 

research project had to be meticulously planned and exhaustively stipulated.  

3.2.6.1 Risk management 

This research involves interventions in a highly dynamic, fully operational public 

healthcare facility. Consequently, the safety and wellbeing of staff, inpatients, 

visitors, contractors and any other occupants were the highest priority of this research 

project. This section outlines some known and known unknown risks, and the 
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mitigation measures used to manage these risks if they cannot be designed out of 

existence.  

As this research did not require consent from participants, no consent information was 

gathered for any participants attending the target spaces during the two-year 

observation period. Since consent was not required, the risks to THHS staff and 

service users from consent-related issues were considered negligible for the purposes 

of this research. No further work was undertaken with respect to the issue of consent 

through this stage of works. 

Sensor devices were installed on the underside of ceilings, centred in target outpatient 

clinical spaces. When adhering devices to the ceilings of target spaces, only rated 

adhesion systems were used. A safety factor beyond twice the adhesive 

manufacturer’s recommended power-to-weight ratio of individual sensors minimised 

risk to staff or patients from falling sensors.  

No personally identifiable information was to be collected by sensor units. Data 

transmitted by the sensor units consisted of two primary pieces of data: 

 whether a target space was occupied or vacant, and 

 the time at which key observations occurred. 

Sensors used for this research were like those widely used in both residential and 

commercial environments. Consequently, the sensors were not expected to alarm most 

individuals from a personal perspective. This position was a theory during the ‘IoT 

installation’ stage of research. Given the passive observational nature of this research, 

adverse events, serious adverse events and suspected unexpected serious adverse 

reactions were not expected. Any transmitted signals maintained to or from the 

selected sensors were within established tolerances already used within the host 

organisation, and common in the broader society. These signals included Bluetooth, 

3-5G networks and other common radio frequency-based technologies. Consequently, 

the risk of interference with medical or other devices was not expected. 

Several potential risks existed during this stage of research. These included: 

 potential reduction or withdrawal of support within the THHS for the research 
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 high levels of discomfort from staff and/or patients  

 the potential failure of the select IoT devices.   

Funding from the THHS, plus approvals from both HREC and Research Governance, 

strongly suggested withdrawal of support was unlikely. However, had support been 

withdrawn, relocating the research project to clinical outpatient spaces on the adjacent 

JCU campus would have allowed the project to proceed. 

3.2.6.2 Data management 

Once sensors had been selected, the next step was procurement. Sensors were 

procured using grant funding from the THHS from an Australian distributor of 

products manufactured in England. Data was collected predominantly through 

internet-connected sensors mounted to the building fabric such as walls and ceilings 

over a period of two months. Also, the intent was to undertake ‘spot checks’ 

consisting of a single, full day of physical observational studies used for data-

validation purposes. For this purpose, a bespoke application was written for the 

Android mobile operating system entitled ‘Clinic Count 3000’. This app received user 

‘count’ input for up to six separate user-defined fields and exports data to an Excel 

file. Each time the ‘count’ was increased or decreased, a new datapoint was created 

with a time stamp for when the associated ‘count’ changed. In the end, the full-day 

observation was not undertaken, and the app was not utilised. 

The data was imported into third-party software vendors, such as Facilities 

Management Software (FMI), R, Occupeye and various open-source products. These 

software packages were chosen due to their suitability to the task of data analysis 

including integration with machine learning algorithms as required. In addition, they 

were both readily accessible to JCU students, with sufficient educational material 

available. Corrupted data, missing, unused and spurious data was removed from the 

dataset entirely. This consisted of erroneous preliminary installation data, or data after 

the formal close of the research period.  
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3.2.6.2.1 Data storage / data safety  

Data was temporarily stored with the middleware vendor in England prior to being 

downloaded to servers behind the THHS corporate firewalls. Data was stored using 

standard data storage systems such as a database or spreadsheets. For purposes of 

visualisation and reporting, data captured by IoT devices was shared with and 

processed by external (non-THHS) service providers. Prior to distributing data, 

‘nondisclosure agreements’ (NDAs) were distributed and agreed between JCU, the 

THHS and the PI. Service providers included:  

 Advanced Spatial Technologies (AST): vendors of FM Interact, facility 

management software used by the THHS  

 Mapspeople: developers of spatial visualisation and mapping software  

 Livesense: middleware vendor providing general technical support 

 Sensor manufacturers: vendors of deployed proprietary sensor systems. 

For the study period, the data was analysed using numerous software programs, on 

numerous platforms. At no time was the data posted publicly or transmitted for 

analysis by third parties outside NDAs. Analyses by the PI were undertaken using 

software running on computers managed by three distinct parties:  JCU, THHS and 

the PI. The PI’s personal computer was in the sole possession of the PI, and 

continuously password protected. 

Stored data was to be retained by the THHS for five years after the study period was 

finalised. This availability was retained for future recurrent analysis, stored on the 

internal eHealth file storage system. The THHS has advised the data was considered 

‘health data’, and consequently was covered by strict data protocols limiting 

downstream availability.  

3.2.6.2.2 Sample size  

The size of the final dataset was expected to be substantial. The volume of data 

collected was dependent on the number of target rooms being studied and the duration 

of the study period. The following preliminary calculation was expected: 

25 (target spaces) * 6 (10-minute intervals per hour) * 24 (hours per day)    

* 7 (days per week) * 52 (weeks per year) * 2 (years) = 2,620,800 data points  
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The 10-minute minimum interval was selected as the shortest realistic unit of time for 

a clinical consultation. Prior to initiating the data collection, consultation was 

undertaken with a JCU statistician. This consultant was available throughout the 

research project to ensure data was collected and managed to optimise potential for 

statistical analysis. The number of clinical rooms participating in the study was 

expected to be maintained for the duration of the study period with no changes.  

3.2.6.2.3 Data integrity 

The data was imported into and processed by third-party software vendors as noted in 

3.2.6.2.1 above. Potential corrupted, missing, unused and spurious data was 

monitored through the data collection period. All data collected prior to or after the 

start/stop dates of the collection period were removed from the final dataset. No other 

data were added or removed from the primary dataset. The original intent was for 

multiple overlapping sensors to be deployed (Figure 8) however the reliability of 

sensors had not yet been determined. Once PIR-based IoT devices were demonstrated 

to be the only commercially available, viable option the proposed multisensor 

saturation was no longer feasible.   

3.2.6.2.4 Data visualisation 

Extracting knowledge from the data was a key aspect of this research project. 

Therefore, creating a dynamic human-centric interface to the data was considered 

critical. Following the Hervener et. al methodology of artefact creation as a design 

science within information systems, a blend of quantitative and qualitative data 

analysis was utilised. This combination of technologies bridged the gap between 

information technology and its application within complex organisations such as the 

THHS. As Hervener et al. note:  

The rich phenomena that emerge from the interaction of people, 

organisations, and technology may need to be qualitatively assessed to yield 

an understanding of the phenomena adequate for theory development or 

problem solving [116] 

 

In addition to standard data visualisation, it was posited that a data ‘heat map’ 

overlayed onto relevant floor plans would provide intuitive insight to clinical 

managers. Therefore, data were initially imported into the THHS’ facilities 

maintenance software by linking spatial data such as room numbers, floor plans, etc., 
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with a subset of sensor data. The intent of these activities was to utilise FMI’s robust 

database querying interface and generate simple reports on the data to better 

understand patterns of clinic room utilisation. Unfortunately, the limited visualisation 

capability of this vendor’s software within the budget of the research resulted in 

FMI’s limited usefulness to the research. Postresearch implementation would require 

additional funding to develop a robust user interface. Plans to further integrate the 

dataset with FMI were subsequently cancelled. 

3.2.6.2.5 Application of machine learning 

To establish a prediction tool more efficient and effective than the above dynamic 

dashboard, the tools of machine learning were applied to a limited dataset. These tools 

were applied by third-year pregraduate students from James Cook University’s 

Workplace Integrated Learning (WIL) program. These students worked under direct 

supervision of the PI and staff from the THHS Data Research Lab. A proposed 

subproject was presented to potential WIL students, in competition with numerous 

other potential projects. Six students chose to participate in the project supporting this 

research project. Students were divided into two teams based on their interests. One 

team worked on applying established machine learning techniques to the dataset, 

while the other created a visualisation dashboard. Both teams combined their work 

into a containerised package hosted behind the THHS corporate firewall. The 

intention of this site was to act as a nonproprietary, internal front-end to the dataset. 

Data was imported from the primary database hosted by the sensor vendor, which 

received data directly from the sensors. Once daily, data was downloaded and the 

database was updated.  

One month of the most recent data was removed from the training dataset to use as a 

test dataset to gauge the predictive accuracy of the machine learning algorithms. The 

remainder of the dataset was used to train a series of trial-and-error machine learning 

models to see the effects of the different approaches. This method was chosen due to 

the limited experience with machine learning of the WIL students, combined with the 

advanced state of many algorithms. This ‘scatter gun’ approach resulted in a relatively 

quick feedback loop, limited primarily by the capacity of the available computer 

systems to run the algorithms. Though rudimentary in nature, this approach yielded 

considerable results, despite lacking an in-depth knowledge of how the tools 

functioned. Algorithm predictions were applied to the test dataset, and the accuracies 

were compared to identify the most optimal approach based on the tools and 

experience available. 
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3.2.6.2.6 Data analysis 

The data was subjected to descriptive statistical analysis to identify occupancy 

patterns, repeating trends, outliers, etc. The proprietary software used to undertake 

this analysis was provided by the sensor manufacturer. Occupation data was also 

subject to machine learning algorithms to explore how well historic usage patterns can 

be used to predict future occupancy. Data was analysed via standard statistical 

techniques in conjunction with JCU statisticians. 

3.2.6.2.7 Project setting / location 

All sensor-based IoT activities took place within THHS facilities, on the Douglas 

campus in Townsville, Queensland, Australia. The THHS was a tertiary teaching 

hospital, part of the Queensland Health healthcare network. Data logging for clinical 

outpatient areas (see Phase 3 in 3.3.3 below) took place within the Primary Care 

Building on Level 1 of the Townsville University Hospital. Further, the location of 

the clinical IoT implementation was limited to the multidisciplinary medical 

outpatient clinic within the Primary Care Building on the Douglas campus. Select 

spaces within the outpatient suite were studied during the research period including 

offices, consult, education and treatment rooms (Error! Reference source not 

found.).  
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Table 7: Space types and quantities within the participating 
multidisciplinary outpatient clinic suite, modified from Table 1 by 

McNabb et al [1] 
Type Description Typical Images Qty  

Type 1: 

Consult  

Room 

Rooms used for 
observation/diagnosis 
where patients 
discuss health issues 
with healthcare 
providers & where 
physical contact may 
require clinician hand 
washing between 
patient visits, 
typically containing 
an examination table 

20 

Type 2:  

Education  

Room 

Rooms where 
diagnoses or 
procedures were 
explained to 
healthcare services 
consumers through 
either interaction with 
healthcare service 
providers or via 
multi-media 
presentation, and 
appear as a typical 
office space 

2 

Type 3:  

Treatment  

Room 

Functions as an 
aseptic room where 
clinicians directly 
apply healthcare 
services onto/into 
patients’ bodies. 
These rooms often 
smell like disinfectant 
and typically contain 
bed trolley, hand 
basin, basic stores, 
and a preparation 
area 

4 

Type 4:  

Offices 

Offices in the target 
clinical space were 
like standard 
commercial offices 

n/a 2 
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3.2.6.2.8 Project population  

The population targeted by this research were all occupants of the 25 targeted spaces 

during the target observation period. Data was continuously gathered by IoT sensors 

in the target spaces 24 hours per day, 7 days per week over two years. The quantity of 

occupants to these rooms varied by necessity; collectively this total population was 

considered sufficient to provide meaningful analysis. 

All attendees of the target spaces were treated uniformly. No differentiation was made 

between humans based on race, age, education, profession or gender. Due to this 

equality, the research data was indiscriminate to any features other than ambient 

features associated with human presence. All humans that did not attend the target 

clinical outpatient spaces during the study period were excluded from this research.  

3.2.6.2.9 Privacy preservation 

Maintaining the privacy of patients and staff was critical to success in answering the 

research questions of this project. Privacy protection was a legal obligation for 

healthcare service providers. As well as ethically and morally appropriate, 

demonstrating how participant privacy would be maintained was critical to receiving 

the approval of the HREC to proceed.  

No personally identifiable images or any other information was captured, processed or 

stored through any sensor units placed in clinical areas. No optical cameras were used 

as part of this research as noted earlier. Advances in the field of computer vision have 

made these devices scalable, low power and low cost to retrofit into existing systems. 

Despite the efforts of both sensor vendors and researchers to preserve privacy such as 

optical defocusing in the work of Baccelli, et al. [84], several researchers in the field 

of computer vision and occupancy sensing/counting including Akkaya, et al. [79], 

Erickson, et al. [117] and numerous others had acknowledged the privacy issues 

associated with the use of optical cameras in human activity detection. Conversely, 

privacy issues emergent from the use of cameras to study human activity were not 

mentioned by other researchers such as Kirchner, et al. [118]. Consequently, if optical 

sensors such as cameras were embedded into sensor devices, regardless of protection 

measures, privacy could not be guaranteed. 
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Designated healthcare spaces in Australia were obliged to protect patient 

confidentiality including acoustic and visual privacy. The Australian Health Facility 

Guidelines (AusHFG) [119] present best-practice specifications for the design of 

healthcare spaces. The use of the AusHFG was not mandated in Australia. Regardless, 

these guidelines had been designed to satisfy minimum obligations for healthcare 

spaces, and to meet industry best practice and had been based on iterative clinical and 

consumer input. The measures identified in the AusHFG had been designed to 

provide visual and acoustic privacy while making the patient journey as comfortable 

and stress-free as possible. Beyond the patient journey, a workplace free from 

excessive observation supports a positive working environment associated with higher 

levels of job satisfaction [120, 121]. In summary, the perception of cameras in high-

privacy healthcare spaces may cause undue stress in both the healthcare providers and 

consumers. The use of optical devices, including devices that appear to be optical 

devices but were not, had been expressly omitted from the scope of this research. 

An information sheet identifying the nature of the research project was posted in 

multiple locations within the target clinical area studied through the Phase 3 sensor 

installation (see 3.3.3) These information sheets were also included in multiple staff-

only and public-access spaces. The purpose of this information sheet was to inform 

occupants of the nature of the research. Information included the aims of the research, 

the research questions being explored, and specifics on the sensors including 

information recorded and excluded. Participants were provided with contact details of 

the PI which allowed the capacity for occupants to ask additional questions. The 

information sheet as distributed is shown in Appendix 1.  

3.2.6.3 Expanding the concept of ‘optimal utilisation’ 

‘Optimal Utilisation’ was necessarily different for the various classifications of 

rooms, defined as Consult Rooms, Treatment Rooms and Education Rooms – see 

Error! Reference source not found. and Table 8 for a more detailed breakdown on 

each room type. For example, a treatment room was required for medical treatments 

such as wound care and other clinically intensive physical interventions. Therefore, 

occupation of treatment rooms was not scheduled in the same way as consult rooms. 
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The former was treated and were used in a more ad hoc manner on an ‘as needed’ 

basis on a case-by-case basis. Similarly, education rooms were used ad hoc to explain 

recent diagnosis or treatment options to consumers of healthcare services by 

healthcare providers in a less formal setting.  

The use of both treatment rooms and education rooms stems from the day-to-day 

activities being undertaken within the consult rooms. Therefore, demands on these 

two spaces change depending on the kind of healthcare services being provided. 

However, while suitable for certain kinds of clinical consultation (e.g., social work) in 

the context of this research, they were not used for consultation. Perhaps the greatest 

distinction between a consult room and education room in the context of this research 

was the finish and service support within the room. Consult rooms were floored with 

vinyl, contain a sink and often a patient bed. Education rooms were typically 

carpeted, do not contain a sink, and typically involve discussions sitting around a 

common table.  

Table 8: Typical healthcare space for provider/consumer interactions in 
outpatient clinic settings 

    

Consult Room  Treatment Room  Education Room  

LEGEND: 
A:  Write-up desk (Healthcare 

Practitioner) 

B:  Chair (Healthcare Services Consumer) 

C:  Patient Bed (portable) 

D:  Hand Basin 

E:  Fixed bench with under-bench storage 

and cabinetry over 

F:  Table / chairs for face-to-face 

discussion 

G:  Wall or table mounted telemedicine 

facilities 
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Data was collected, stored and analysed in a similar way for the space types above, 

though judgement of optimal utilisation was unique for each. If the location, model of 

care or numerous other precursors change, how the space was operated would 

similarly change. Any operational change could also have changed the perception of 

what well utilised means.  

For example, rural clinics containing the same space type under the same model of 

care may be ‘well utilised’ with lower occupancy rates as the demand for space was 

lower. Finally, it would be unlikely that clinical rooms in the context of this study 

could be ‘optimally utilised’ at 100 per cent utilisation. High to very high levels of 

occupancy may not allow for the ad hoc flexibility that a dynamic modern outpatient 

facility requires.  More likely this space would have been considered ‘over-utilised’, 

which was as important to know for facility managers as ‘under-utilised’ spaces. In 

summary, each healthcare facility needs to establish parameters for ‘well utilised’ for 

each space depending on location, services delivered and model of care among other 

factors.  

3.3 IoT sensor installations 

Sensors appropriate to install in healthcare spaces had been identified, purchased and 

experimented with. The latter was required to understand their unique installation 

requirements and to establish the PI’s overall familiarity with the devices. The sensors 

were subsequently installed into healthcare spaces in three phases: 

 Phase 1:  Preresearch sensor calibration activity 

 Phase 2:  Sensor installation in a nonclinical, reservable healthcare space 

 Phase 3:  Operational multidisciplinary outpatient clinic sensor installation. 

3.3.1 Phase 1:  Preresearch sensor calibration activity 

Though clinical spaces were plentiful within a public healthcare facility and represent 

the highest value spaces relative to area, they were also high-risk spaces from a public 

and staff safety perspective. The suitability of these sensors in sensitive clinical 

environments had not been proven prior to their installation in a live clinical 

environment. To demonstrate the accuracy of these three units, a trial was established 

at the entrance to a nonclinical space using all three sensor types simultaneously 
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(Figure 13). The calibration activity was undertaken in a low-risk environment that 

was designated for ‘nonclinical’ functions. A partial floor plan of the singular 

entrance to the target space and the sensor layout can be seen in Figure 15. This floor 

plan illustrates the placement/configuration of sensors and video recording equipment 

used.  

 
Figure 13 – Three sensor calibration activity layout (1: PIR array, 2: 

PIR, 3: Thermal beam) trialled for accuracy against a video camera (4) 
along a defined threshold (5) at the entrance (6) to a 3-room, non-clinical 

suite.  
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First, three battery-operated ‘PIR sensors’ were placed in the space. One sensor was 

placed at approximately shoulder height in each of the two small offices, and one 

above the target threshold, adjacent to the PIR array sensor. The data from all three 

PIRs was manually combined into a single three-room, suite-wide dataset. Then, a 

line of visible tape was placed on the floor parallel to the entrance, to act as a 

designated threshold. Next, a ceiling mounted ‘thermal (PIR) array sensor’ was placed 

directly above the tape threshold. This large sensor had an ‘optional’ camera which 

required the most infrastructure, as mains power was required. A power supply and 

extension lead were run from a local wall-mounted plug to the sensors’ transformer.  

The ‘PIR array sensor’ was calibrated using a serial connection to a laptop computer 

running the manufacturer’s proprietary software. The ‘incoming’ and ‘outgoing’ 

thresholds were set to count these activities along the line of threshold. The final 

‘thermal beam sensor’ was placed in two parts across the entrance corridor, directly 

above the tape, mounted 700mm above the floor. Lastly, once all sensors were 

confirmed operational, the camera was directed to capture only foot traffic across the 

threshold, and the ‘ground truth’ was filmed. Occupants were recorded on video 

entering and leaving the space over a 24-hour period, from 6pm to 6pm the following 

day. The intent of the video was to compare ‘ground truth’ to the three sets of sensor 

data. Data from the PIR remained on the sensors, which were sent via the postal 

 
Figure 14 – Target Space for Calibration Activity 
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system back to the Australian distributor for data download. The PIR array and 

thermal beam devices were connected to a shared proprietary hub, which transmitted 

data to cloud-based middleware. 

The use of a video camera was confirmed acceptable with the HREC to use for the 

purposes of this experiment in the target nonclinical space. The ‘nominal’ threshold 

established by the tape was approximately 1.5m inside the target nonclinical space. 

The purpose of this offset was to allow for the swing of the door which would 

otherwise have at least obfuscated the thermal beam sensor. The video was then 

watched by the PI, and all occupant entrances/exit activities were time-stamped and 

logged. Once the data analysis was complete, the PIR sensor was selected as the sole 

sensor type accurate and appropriate enough to proceed to the next stage.  

 
Figure 15 – Calibration activity – trial installation of three sensor types 

within a small non-clinical space within the target healthcare system, 
accessed by a single entrance. 
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3.3.2 Phase 2:  Sensor installation in a nonclinical, reservable healthcare space 

The intent of the next installation was to demonstrate the capacity of these devices to 

support a comparison of nonclinical spaces ‘as used’ versus ‘as reserved’. The study 

period was one full work week from 8am on Monday to 5pm on Friday. This 

timeframe was chosen to gauge effectiveness of the PIR sensors over longer periods 

than the initial experiment. As per the previous installation, wall-mounted PIR sensors 

were installed at shoulder height in the target space (Error! Reference source not 

found.).  

Two PIR sensors were used to compare the stated sensor range of 7 metres. With the 

technical success of this trial, planning began for the wider installation of PIR sensors 

in a large multidisciplinary outpatient clinic in the THHS. Data was recorded on the 

PIR sensor units’ on-board memory and the devices were physically shipped back to 

the vendor for data download. Data from sensors were compared with the target 

space’s reservation system to compare data ‘as used’ versus ‘as reserved’, and their 

suitability for use in live clinical environments was determined. Once the latter had 

been confirmed, planning commenced to expand installation into an operational 

clinical environment. 

3.3.3 Phase 3:  IoT installation in operational multidisciplinary outpatient clinic 

Since PIR sensors had been demonstrated as effective, it was appropriate to install 

them in the primary clinical target area. Sensors were installed in the evening of 4 

November 2018 commencing after the close of operational business. Installation of  

IoT sensor installation took place in several ‘subphases’. The main installation of PIR 

sensor devices formed the bulk of the data collection period. This main phase has 

been identified in this section as the subphase ‘Phase 3, Part A’ (A). Further trial 

installations involving different types of sensors were also undertaken. These 

secondary trials have been described as ‘Phase 3, Part B’ (B), and ‘Phase 3, Part C’ 

(C) respectively, the latter of which contains two parts (C.1, C.2). The latter two parts 

(B-C) were the final IoT sensor installations undertaken during this research project.  
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Figure 16 - Installation diagram for PIR sensors in a non-clinical space, 
managed through an in-house room reservation system. 
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3.3.3.1 PIR sensor installation (A) 

For each PIR sensor installed, target surfaces were cleaned with isopropyl alcohol 

prior to applying half of the hook-and-loop style mounting system with adhesive tape. 

To ensure proper alignment and thorough adherence, the removable strips were 

adhered according to manufacturer’s instructions: pressure for 1 minute minimum, no 

weight-bearing for 1-hour minimum. Hubs were placed to ensure coverage of all 

sensors across the clinic with a 15-metre maximum range, and sensors were placed in 

each target room (Figure 17). Sensors were installed with two new AA-size batteries 

each and initialised to the hubs in coordination with the manufacturer’s Australian 

representative via mobile phone. This coordination ensured connectivity of all sensors 

through the hubs and routers, to the middleware database prior to recording any data. 

Each sensor had a unique identifier, which was matched to the room number and floor 

plan provided to the sensor manufacturer to incorporate into the data dashboard. Once 

the data dashboard was confirmed operational, the sensors were left to begin the long 

data gathering process. 

 

 

Figure 17 - Final layout of PIR sensors within the target multidisciplinary 
clinic including hub location and radius of hub influence. 
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3.3.3.2 PIR sensor re-positioning (A) 

After initial installation, the sensors collected data for a period of two weeks, after 

which the data was examined. The resultant test data showed very high occupation 

rates for all rooms during operational hours, which seemed inaccurate. It was 

suspected that the ceiling-mounted sensors, despite being mounted according to the 

manufacturer’s recommendations, were being triggered by corridor pedestrian traffic.  

To test this theory, the clinic was attended after hours, and a series of tests was 

undertaken while the target clinic was effectively vacant. All internal doors were 

opened, and the PI briskly walked through the clinic corridors continuously for 10 

minutes without entering any target spaces. Sensors in all target spaces recorded 

‘occupied’ status during this trial period, thus confirming the previous suspicion.  

All sensors were removed from the ceiling and re-mounted to the walls directly above 

the door leaf. The after-hours ‘corridor walk’ was repeated with no sensors triggering 

during the 10-minute period. For confirmation, for an additional 10-minute period, 

while all doors remained open, every other space was entered by the PI during the 

walkaround. Finally, during the following 10-minute period, the opposite rooms were 

entered during the walkaround. Each room entered showed ‘occupation’ during their 

respective ‘occupied’ test periods, and vacant when vacant. Sensors remained in this 

position above the door leaf for the remainder of the two-year study period. When the 

study period was completed, all adhesives were removed from the walls, with no 

recorded wall-surface damage. 

3.3.3.3 PIR sensor maintenance (A) 

Maintenance interventions were required for the PIR sensors 19 times across the 25-

month study period. Transmission strength was received by the hub as part of each 

transmission, so this allows remote oversite of the operational capacity of the 

installation. The sensor vendor monitored the system remotely via service contract, 

and contacted local staff, such as the PI, when interventions were required. These 

interventions typically required either replacing batteries, restarting sensors and/or 

hubs, and obtaining new SIM cards.  
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On each occasion, the requested intervention was undertaken, and the operational 

status of the system was confirmed. If sensors were powered through existing 

building power systems, new power points would have been required for each sensor 

location at least. This additional cost would have exceeded the project budget, despite 

the forecast reduction in intervention.  

3.3.3.4 Alternative sensors trialled (B & C) 

The PIR sensors had been proven capable of safely delivering data on room 

occupancy in clinical environments. As noted in section 3.2.2, the three selected IoT 

sensors were chosen in part due to their cost and commercial availability. At that time, 

a process of further exploration and authorisation was undertaken to consider 

expanding the selection. Once the potential budget for technology purchase using the 

previously awarded SERTA grant funding was increased, additional sensors could be 

explored. Consequently, multiple Elsys ‘ERS-CO2’ sensor devices were ordered, and 

experiments began with a raw thermopile sensor. 

3.3.3.4.1 Elsys ERS-CO2 sensor trial (B) 

These sensors contained five separate sensors: PIR, CO2, Light Levels, Temp., 

Humidity, and transmit to any generic ‘hub’ using long range, low power (LoRaWan) 

networking technology. This technology has been demonstrated as capable of 

transmission distances of up to 10km for line-of-site installations [122]. Internal 

transmission distances were identified as ‘variable’ depending on materials and 

quantity between transmitter and receiver. An outdoor rated LoRa gateway (IP67) was 

installed inside a mechanical plant room, two storeys above the target clinic in 3.3.3.1 

above. Transmission tests occurred within the target clinic and within a remote 

building on campus. IoT devices in the clinic were approximately 12 metres away 

from the receiver. These signals however travelled through two steel-reinforced 

concrete slabs, two ceilings, several HVAC systems and various steel/plasterboard 

internal walls. Sensors in the remote building were approximately 350 metres from 

the transmitter, and there were two exterior walls between them.  

The intent of installing these sensors was to learn more about human activities in 

these spaces, seeking count data (Figure 2). This intent hinged on the documented 

accuracy of CO2 sensors in closed spaces, and the potential of sensor fusion. The 

target clinical spaces had no operable windows, and all activities were undertaken 
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with doors closed to limit communication of air with the corridor. Hence it was 

theorised that these sensors may provide an accurate way of understanding more 

about human activity within closed-door, high-privacy clinical spaces.  

Sensor devices were adhered in the clinical environment using the same method as 

described in 3.3.3.1 above, in the relocated position described in 3.3.3.2. They were 

placed adjacent to the existing PIR sensors. Installation took place on 27 March, 2019 

approximately four months after the initial PIR installation.  

3.3.3.4.2 Thermopile sensor – IoT device development (C) 

Thermopile sensors were the most promising from the literature review, with 

abundant research demonstrating their capacity to count humans via their infrared 

radiation, or heat emissions. Despite this initial success, few market-ready solutions 

existed. Those that did, such as the ERS-Eye, used the thermopile only to confirm 

occupancy, reinforcing the PIR data. Two proof-of-concept experiments were 

undertaken using a thermopile sensor in a live clinical room.  

The first proof-of-concept set-up was to determine whether thermopile sensors 

recording heat signatures could identify human presence, and whether the data could 

be visualised sufficiently to understand anything about human activity beyond 

occupancy. A basic thermopile sensor connected to a proprietary circuit board was 

purchased online. This serial breakout board contained the resistors and other circuitry 

required to power the sensor and obtain data from it (Figure 19). The breakout board 

was mounted by the PI in a generic plastic enclosure into which a hole was drilled to 

capture each sensor’s full 60-degree viewing angle.  

Placing the sensor in a separate housing to the main computer was intentional to 

reduce the visual presence of the IoT device in the clinical space. Using the Universal 

Asynchronous Receiver Transmitter (UART) protocol, the breakout board 

continuously transmitted data at 115200 bits per second when powered. Sensor data 

was streamed via a modified 5-metre-long serial-to-USB cable/converter to a laptop 

housed in the ceiling space and connected to the existing building power supply 

(mains power). The laptop ran demonstration software provided by the UART 
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breakout board manufacturer which visualised the sensor data as a moving heat map 

of activity.  

Demo software was run on the PC, which was configured to remain on and active for 

the duration of the study period. A small section of the computer screen containing 

the visualised data was then recorded using proprietary software (Bandicam) 

purchased for this purpose. Once completed, the streaming video was overlayed on to 

a floor plan of the room. This combination was intended to help humans observing the 

video identify occupants and infer activity patterns within the clinical space based on 

location. Recordings six hours long were taken 24-hours per day over two different 

periods. First, a typical long weekend was observed when the clinic was typically 

empty to confirm baseline data, confirm logistics and detect the PI moving about the 

space. Second, the period between and including Christmas and New Year holidays 

incorporating one week of clinic operations. Video data was time-stamped and saved 

on THHS servers. 

 

 
Figure 18 –Setup of proprietary ‘breakout board’ in off-the-shelf 

enclosure connected from USB port on the board to USB port on the 
computer using ‘Serial to USB’ converter cable/hardware to serial port 

on laptop computer mounted in the ceiling space of the the target clinical 
room (highlighted red) 
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The second version of the thermopile sensor experiment, conducted after the ‘demo 

software’ screen recording above, was a data-driven method which used an internet-

connected, nonscreened computer. A more sophisticated breakout board was 

purchased using I2C protocol rather than UART for data streaming and control. Like 

the UART board, this I2C breakout board was mounted into a generic enclosure, then 

connected to a proprietary minicomputer (Raspberry Pi), powered by a 5V generic 

power supply. The minicomputer and power supply were placed above the ceiling, 

and the housing was secured to the underside of the ceiling tiles approximately the 

middle of the space. The PI then used virtual private network (VPN) software to 

transmit sensor data at 1-minute intervals to middleware vendor LiveSense for 

downstream processing. Data was transmitted from the Raspberry Pi through Wi-Fi to 

the same SIM-enabled router used for the PIR sensor-hub, and from the mobile 

networks to the internet. Including the minicomputer, three volunteers simulated 

activity within the target clinical space for approximately one hour, outside clinic 

operational hours. The target clinical space was in a different location from the initial 

proof-of-concept in this section (above) due to the requirement to co-utilise the PIR 

SIM-enabled router. To facilitate the manual count, a new tool was required. 

 

Figure 19 – Panasonic ‘grideye’ thermopile sensor on proprietary circuit 
board (right), connected through ‘Quiic Hat’ pin connector to Raspberry 

Pi, powered by 5-volt adaptor 
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3.3.3.4.3 Counting Timeseries events 

The capacity of electronic tools to collect data on human activities within clinical 

spaces has been central to this research project. As noted in Chapter 2, the 

predominant form of data gathering in the literature was based on human observation. 

Despite this majority, few tools existed to support researchers in recording 

customisable timeseries data into standard formats. A search of potential offerings in 

July 2019 for Android operating system applications (apps) identified many counting 

apps with various functions. Few apps had the capacity to log data in standard data 

storage formats, and none was identified that suitably recorded timeseries data. 

Consequently, a simple app named Count n Time 3000 (CT3K) was created by the PI 

using the development platform ‘MIT App Inventor’ to meet the demands of 

researchers creating timeseries counting data (Figure 20). This app allowed for the 

comparison of count data received by the thermopile sensor with observed ‘ground 

truth’ over a simple 1-hour demonstration of the accuracy and flaws of the thermopile 

Basic User-Interface  Sample file output (dummy data) 

 

 
Label Count Date Time 

am/ 
pm 

 staff (AM) 1 2019/25/05 10:51:57 am 

 staff (AM) 2 2019/25/05 10:52:03 am 

 consumer 
(AF) 1 2019/25/05 10:52:09 am 

 consumer 
(AF) 0 2019/25/05 10:52:15 am 

 staff (AF) 1 2019/25/05 10:52:20 am 

 consumer 
(AM) 1 2019/25/05 10:58:20 am 

 consumer 
(AM) 0 2019/25/05 11:13:15 am 

 consumer 
(AF) 1 2019/25/05 11:22:01 am 

 consumer 
(child) 1 2019/25/05 11:22:03 am 

 staff (AF) 2 2019/25/05 11:28:52 am 

 consumer 
(AF) 0 2019/25/05 12:10:13 pm 

 consumer 
(child) 0 2019/25/05 12:10:15 pm 

 staff (AF) 1 2019/25/05 20:52:26 pm 

Figure 20 - ‘Count n Time 3000’ mobile application interface (left) and 
sample output (right); custom labels identify time/date-stamped count 

events; table data is illustrative only.  



 

116 
 

sensor’s in-built ‘count’ data. During this period, three volunteers walked into and out 

of the space and the two data streams were compared with different numbers of 

participants entering/exiting the room. Thermopile sensor data experienced a time lag 

of up to two minutes due to residual human heat from vacant seats, which was 

mitigated in C.2 above by increasing the minimum period studied to one-hour.   

The interface was basic by design, but functional to match the app development skill-

level of the PI. The app consisted of a user interface with customisable labels between 

green and red buttons denoting addition and subtraction of observed elements. When 

either of the latter buttons were pressed, a new entry line was created locally in a 

comma separated value (csv) file, and associated ‘label’ cell was filled, along with the 

current ‘count’, and time stamp information from the devices’ current time. The 

potential applications for the CT3K app were many.  

This app allowed researchers to automate the task of manually counting individual 

items along with count-specific timestamps. For example, it could be used to survey 

the timing of various vehicles parking in a specific zone, fish swimming into/out of a 

video feed, primates in a specific tree, etc. There was no intention to publish CT3K 

due to the ongoing maintenance required. 

3.4 Predicting future utilisation  

The bulk of this chapter thus far has been about the collection of clinical space 

utilisation data generated by IoT devices. These datasets represent aspects of activities 

that had occurred in the past. To explore the actionable value extractable from these 

datasets, their capacity to support predictions of future optimisation opportunities for 

clinical space utilisation was considered. To support the PI in the application of 

machine learning tools to undertake these predictions, external resources were sought. 

Through a WILs program, four third-year computer science JCU undergraduate 

students were hosted by the supporting HHS for a two-week period in November 

2019. These students undertook the planning, data cleansing, user interface research, 

algorithm modelling and final instantiation of the work underpinned by the methods 

presented in this section and associated publication. Students were provided with 

oversight from two experienced data scientists employed by the host HHS.  
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Daily meetings and close communication through online collaboration tools (i.e. 

Trello), allowed staff to provide real-time support to the students. They demonstrated 

their process and learnings through daily logs and provided extensive documentation 

inside written computer code. The methods covered in this section took place over 

two weeks in November 2019. In April 2023, the THHS Research Data Lab (RDL), a 

work unit of the host HHS, was asked to review technical aspects of the methods 

previously documented by the students. Text in the following section was provided by 

the RDL based on the documentation written by the students in 2019. This text has 

been reformatted and edited to support readability, while the intent has remained the 

same.  

3.4.1 Research data laboratory methodology review 

3.4.1.1 Occupeye code review 

The RDL has been approached by the PI to aid in reviewing a machine learning 

project assessing the occupancy of clinical rooms within the Townsville University 

Hospital. 

This section presents the common data science project methodology used (CHRISP-

DM), outlines the methodology established through the Occupeye Python code, and 

assesses the model evaluation. This documentation was prepared by Rudolf Schnetler 

and reviewed by Benjamin Crowley of the THHS RDL. 

3.4.1.2 High-level process 

IoT sensor data streamed into the cloud service contained, (1) the sensor ID, (2) room 

number, (3) datetime (EPOCH), (4) meridian and (5) occupied status. Therefore, a 

timeseries database showed whether the location was occupied (5), at certain time (3) 

with additional metadata (1-2, 4).  

3.4.1.3 Methodology review 

The methodology used by the research team closely follows the CHRISP-DM [123] 

methodology for data science project management. The following steps were 

undertaken [124] in applying the above model: 
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1.  Business Understanding: The business situation should be assessed to get an 

overview of the available and required resources. The determination of the data 

mining goal was one of the most important aspects in this phase. First the data mining 

type was clarified, and the data mining criteria for success defined. A compulsory 

project plan was created. 

2. Data Understanding:  Collecting data from data sources, exploring, describing 

it and checking the data quality were essential tasks in this phase. To make it more 

concrete, the user guide describes the data description task with using statistical 

analysis and determining attributes and their collations. 

3. Data Preparation:  Data selection should be conducted by defining inclusion 

and exclusion criteria. Bad data quality can be handled by cleaning data. Dependent 

on the model used, derived attributes must be constructed. For all these steps, 

different methods were possible and were model dependent. 

4. Modelling:  The data modelling phase consists of selecting the modelling 

technique, building the test case and the model. All data mining techniques could be 

used. In general, the choice depended on the business problem and the data. More 

 

Figure 21 - High level process diagram linking sensors through the 
process of obtaining and cleaning sensor data, followed by creating, 

evaluating, and pre-populating the user interface with prediction data. 
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important was how to explain the choice. For building the model, specific parameters 

must be set. For assessing the model, it was appropriate to evaluate the model against 

evaluation criteria and select the best ones. 

5. Evaluation:  In the evaluation phase the results were checked against the 

defined business objectives. The results must be interpreted, and further actions had to 

be defined. Another point was that the process should be reviewed in general. 

6. Deployment:  The deployment phase was described generally in the user 

guide. It could be a final report or a software component. The user guide describes 

that the deployment phase consists of planning the deployment, monitoring and 

maintenance. 

3.4.1.4 Directly from code 

Step 1: Create Historical Data 
5) Load data from SQL database  

a. Consult rooms only 

b. All weekdays 

c. 8am to 12pm data 

d. 1pm to 5pm data 

6) Clean and Format Data  

a. Convert datetime data to readable format (from EPOCH) 

 Split datetime data into multiple features (weekday, month, day of 

month, hour) 

 Create final clean dataset containing multiple data points (sensor ID, 

room number, weekday, month, day of month, hour, meridian and 

occupied status) 

7) Save historical data 

 
Step 2: Create Training Model 

1) Instantiate algorithm (using K-Nearest-Neighbours Classifier) 

2) Load clean historical data (From step 1) 

3) Resample data evenly 

a. Select all positive (occupied) observations and randomly sample 

equal amount of negative (empty) observations 
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b. Append dummy dates in January and December 

 Create 12 months of data to predict a 12-month period 

 The dummy data was empty observations for both January and 

December 

4) Preprocess data 

a. Remove room number 

b. Convert day, month, and meridian to integers  

c. Min-max scale hour and minute (-1, 1); this was to ensure the 

variables contribute equally to the model fitting 

d. One-hot encode features (convert each categorical value into a new 

categorical column and assign a binary value to those columns) 

e. Data split into 80-20, training-test split (80 per cent of the data was 

used for training, 20 per cent of the data was used for testing) 

5) Fit model on train data 

6) Test model on test data 

a. Produce evaluation report and confusion matrix 

7) Save Model 

 
Step 3: Create Predicted Data 

1) Load model (from Step 2) 

2) Generate future dates  

a. Generate future dates in 10-minute increments for a 12-month period 

3) Clean generated future dates 

a. Remove any dates that were not weekdays 

b. Remove any increments not inside operational hours 

4) Preprocess prediction data 

5) Write prediction data 

a. Using trained model (Step 2) on historic data, predict whether a 

room, by increment, would be occupied or not 

b. Write prediction data on future dates to CSV file 

3.4.1.5 Methodology Notes from development team 

6) When a script updates the database, no more than seven days of data can 

be pulled at one time 
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7) GradientBoost and RandomForest machine learning (ML) models can be 

used, but kNN was hardcoded 

8) Prediction data was saved to a csv file currently, could be changed to save 

into a database if need be. 

3.4.1.6 Methodology Review summary 

In summary, the methodology document by the WILS students in November 2019 

was rigorous and scientifically robust. By following the methodology above, these 

students created the suite of tools presented in the relevant results section of this 

research project (see 4.2.7 below). The tools may have changed but the methodology 

employed would remain largely the same if redone with improved tools. Suggested 

improvements to the methodology for future researchers have been covered in 

Chapter 5. The application of ML was the final activity in the collection, presentation 

and processing of IoT data for the purposes of optimising clinical space utilisation. 

3.4.2 Sensor installation conclusion 

This subsection has described the selection, testing, and installation of various ‘smart’ 

building sensors to record aspects of human activity in healthcare spaces. The sensors 

were tested for their effectiveness in determining human occupancy patterns. Selected 

sensors were installed in a single space attached to a nonclinical reservation system to 

compare occupancy as planned versus as used. The sensor installation was increased 

to study occupancy patterns in an operational multidisciplinary outpatient clinic over 

a two-year period. Occupancy data alone however was insufficient to resolve whether 

spaces were well utilised or not. Seeking to move up the ‘data density ladder’, a 

proof-of-concept IoT device was developed. This device was based on a thermopile 

array sensor and the occupancy patterns in a single room were studied over a one-

week period. Results from the technological interventions above are documented in 

the next chapter, however after these ‘works’, burning questions remained. Were 

sensors monitoring human activities within sensitive, operational clinical 

environments appropriate for the purposes of improving their utilisation? Were staff 

comfortable under the constant observation of these electronic devices in their 

workplace? To answer these questions, the opinions of staff were elicited through a 

series of one-on-one interviews and an all-staff survey. 
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3.5 Interviews 

Understanding staff sentiment was critical to the long-term effectiveness of any 

technological solutions proposed in previous sections of this chapter. If staff 

considered sensor devices appropriate for use in a clinical environment but were 

strongly opposed to workplace monitoring of any kind, sensor installations were 

unlikely to succeed. Similarly, if staff were comfortable working under electronic 

observation but considered the use of space monitoring sensors in healthcare 

environments extremely inappropriate, sensor installation was similarly doomed. Due 

to a clear need to understand staff opinion on both appropriateness and acceptability, 

interviews were conducted with selected staff within the THHS. 

3.5.1 Participants 

Participants were selected using either one of two categories. Either they had directly 

participated in the research as workers in the multidisciplinary outpatient clinic, or 

they had direct experience in the operational aspects of managing the use of clinical 

spaces. Within the research, due to the limited number of participants, the precise role 

of each participant was not recorded as this could have led to participant 

identification. Potential participants were initially contacted via email, followed by 

scheduling an appropriate time in their calendar if amenable. In this introductory 

email, participants received both an interview information sheet and a participant 

acceptance form. A sample of this form has been included as Appendix 6. Participants 

were encouraged to review the information sheet, and if they remained agreeable to 

return the signed consent form in advance of the interview. Ten staff agreed to take 

part in these research interviews, however timing was inappropriate for one staff 

member. Consequently, nine interviews were conducted. 

3.5.2 Preparation 

Proposed interview questions were submitted to and authorised by the THHS HREC 

in accordance with the host organisations’ standard operating procedures. This 

submission included statements from the PI assuring that the submitted questions 

were the only allowable formal questions to be asked in the interviews. The questions 



 

123 
 

were written in full and submitted in electronic form through the Ethical Review 

Manager website.  

To maximise potential for high quality research outcomes, practice interviews were 

undertaken over videoconferencing software. Three volunteers gave mock interview 

responses to familiarise the interviewer (the PI) with the experience of interviewing. 

Interviews were recorded and played back for personal assessment. General feedback 

was sought on the interview process from the participants after the conclusion of each 

interview. Based on the experience of the interviews, the questions were extensively 

modified and resubmitted for final authorisation. The resultant THHS HREC 

authorisation (AM/2020/QTHS/35376_3) was tabled with the JCU HREC. 

Technology proposed for use in the interview, such as recording devices and the use 

of automatic transcription software, was trialled in advance and considered 

appropriate for use prior to undertaking any interviews. Three separate recording 

devices were proposed, one of which used Google Live Transcribe, two personal 

phones and one laptop computer. The purpose of using multiple devices was for 

redundancy, and the use of autotranscription software was intended to reduce 

postinterview processing times. The latter was considered appropriate prior to 

conducting the first two interviews but was abandoned after final transcriptions were 

compared to audio recordings and were found too inconsistent to prove useful. For the 

remainder of the interviews, transcription software was abandoned and the third 

device used to reinforce recording redundancy. 

3.5.3 Interview location 

All interviews took place on the main campus of the host regional hospital. 

Participants worked either on or within walking distance of the campus in multiple 

buildings. A central, quiet, dedicated interview room was reserved to host the 

interview process. The selected interview room had been recently constructed, so was 

known by the PI to contain certified acoustic dampening systems appropriate to suit 

the process of conducting interviews. Inherent acoustic treatment included carpet tiles 

on the floor and acoustic tile ceilings to minimise reverberation and other audio 

distortions in addition to in-wall and on-ceiling treatments. This location was selected 

to minimise external interruptions or distractions. Physically, the selected space was 
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relatively small (approximately 9 square metres) and contained a small round table 

and several comfortable conference room chairs. Suitable air-conditioning and 

lighting systems were considered appropriate to maintain the comfort of both the 

interviewer and interviewee. The space contained sensors in the ceilings to inform and 

control building systems, which were used as ambient electronic sensor reference 

points during the interview. 

A detailed digital map was prepared and distributed to each participant the day before 

their scheduled interview via email. This email also contained a reminder to bring 

signed participation sheets or submit via email before the interview. Despite the 

detailed map and verbal instructions, several participants were delayed due to their 

inability to find the meeting room. Sufficient time was allotted for each interview 

session as contingency, so this did not appear to reduce the quality or fullness of the 

interviews.  

3.5.4 Visual aids 

To help orient participants within the body of the interview, visual aids were created 

to reinforce the types of technology being discussed. Also, these aids anchored their 

placement on a spectrum of increasingly dense data gathering, stylised as ‘the data 

density ladder’ (Figure 22). These mnemonics were used to simplify concepts 

inherent to the categories of human-sensing spatio-temporal properties (Figure 2) for 

the purposes of the interview.  
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In addition to providing context, visual aids were created to focus participants’ minds 

to specific technologies at relevant sections of the interview. Each visual aid 

contained references to the ‘data density ladder’ as well as several other visual cues 

about the technology being considered (Table 9). Visual aids were displayed and 

changed to represent the changing types of data collection: human observation versus 

electronic observation, being discussed during the interview. For the entirety of the 

‘human observation’ interview (Part 1) the ‘human observation’ A4 sized card 

remained in place. For the duration of the ‘electronic observation’ interview section, 

no preformatted visual aid was used. Instead, direct reference was made to the 

ambient electronic observation currently in place to control the lights, monitor 

temperature and sense smoke. The purpose of this was to reinforce the nature of the 

ambient data gathering devices being discussed in the relevant interview section. 

 
Figure 22 – Mnemonic created to support interviewees during the 

interview: the ‘data density ladder’; this device simplified the ‘categories 
of human sensing’ as shown in Figure 2, with each rung containing the 

attributes of those below it 
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Table 9: Visual aids used during the interview, printed on A4 paper, backed by 
black, A4 card stock, and laminated together. 
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3.5.5 Interview structure 

Each interview was structured around two formal interview sections with a break in 

the middle. There was an informal preamble and postinterview discussion recorded 

for each session. Each of these has been explored in greater detail below. This 

structure provided the framework to:  

 transition into the interview from demands of the workplace, and introduce the 

subject matter (preinterview introduction) 

 explore staff perceptions about human observation gathering increasingly 

dense data, (Part 1) 

 present the capabilities of the data dashboard to explore research data (break) 

 explore staff perceptions about electronic observation gathering increasingly 

dense data (Part 2) 

 ensure all participant questions were answered (postinterview discussion). 

Questions asked in Part 1: Human Observation, were repeated verbatim in Part 2: 

Electronic Observation, to enable response comparison. The questions asked in Parts 

1 and 3 were as follows, noting question 8 has several subsections: 

1) How do you feel about clinical spaces within the Townsville Hospital and 

Health Service (THHS) being monitored for occupation using this method of 

data collection? 

9) Can you describe how you think access to this data would influence your 

daily activities? 

2) How useful do you think this data would be to the THHS? 

3) How would you feel if data was continuously collected like this in each space 

in your workplace, every day? 

4) What factors do you think influence or support these feelings? 

5) If you received any feedback from either colleagues or healthcare consumers 

about their experience of being observed by this data collection method, can 

you please share it? 

6) What recommendations would you make to future researchers looking to use 

this data collection method? 

7) How would you feel if the data collected by this method was instead focused 

on: 
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a. ‘count’ data: identifying the number of people in a room? 

b. ‘location’ data: identification of the location of occupants? 

c. ‘tracking’ data: identifying the location of people in a room over 

time? 

d. ‘identity’ data: collecting personally identifiable information on each 

occupant? 

3.5.6 Preamble 

The preamble did not constitute part of the formal interview but was used as a 

‘settling in’ opportunity for the interviewee. Receipt of a signed authorisation to 

participate was confirmed in each case. This was the first face-to-face opportunity 

interviewees had to ask questions of the interviewer in a one-on-one setting, and they 

were encouraged to do so in this section. Interviewees were informed that the 

preamble did not form part of the interview, but that the recording devices were 

currently recording. An ‘interrupted flow’ was noted during preliminary interview 

sessions by the PI. Consequently, the commencement of recording prior to the 

interviewee’s arrival was intentional to check sound levels, recorder placement, etc. 

was intentional. Then, the structure of the interview was explained, and the visual aids 

were introduced. All visual aids were laid flat on the table with a black card facing up 

to reinforce the pending commencement of the interview. Finally, another opportunity 

to ask questions was offered prior to commencement of the formal part of the 

interview. When there were no further questions, interviewees were advised that the 

interview would commence upon asking the first question. 

3.5.7 Part 1 – Interview Section 1:  Human observation 

Orienting the interviewer in this section was considered critical to the success of the 

chosen interview. The visual aid referring to the ‘human observation’ data collection 

technique from Table 9 was visually prominent, propped against the left side screen of 

a laptop computer. The data-collection-type aid remained in place for the duration of 

Part 1 of the interview (left in Figure 23). A second visual aid referencing the type of 

data being collected (right in Figure 23) remained in place during questions 1-7. This 

second aid reflected the type of data gathered, remained the same for questions 1-7 

and was changed for question 8a through 8d. Regular verbal and physical references 
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were made to the visual aids through the interview to help orient the minds of the 

interviewee as the context of the questions changed. Once the answer to question 8d 

was provided in Part 1, the interviewees were advised that the formal Part 1 of the 

interview was over. Further, participants were advised that Part 2 of the interview was 

about to commence. Visual aids were simultaneously removed and placed face down 

on the table. 

3.5.8 Part 2 – Data presentation 

During the informal ‘Part 2’ of the interview, attention of the interviewee was directed 

to the screen of the laptop computer, where a prerecorded video was played. The 

interviewer spoke in person overtop of the video which was paused at relevant points 

for further elaboration as required. The purpose of the video presentation was to 

provide the interviewee with the experience of exploring the dataset collected by the 

electronic devices identified in Figure 17. The video was a recording of the PI 

filtering the data for an identified period using the proprietary data visualisation 

software, which dynamically responded to the filtering selected. Starting from an 

average utilisation of c.19 per cent the data from all rooms for 24-hours per day, 

seven days a week, the percentage utilisation changed in response to each filter 

applied. An average utilisation of c.51 per cent was demonstrated by filtering data to 

Figure 23 - Visual aid presentation style during Part 1 of the interview, 
for questions one through seven 
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consult rooms, five days per week, clinic hours only. Further, the data exploration 

continued to identify a peak load of c.95 per cent utilisation on one of the days in the 

target period. Finally, the video exploration filtered data to look at afternoons only 

and identified several rooms with historically low occupancy on Friday afternoons. 

Upon conclusion of the video, the opportunity to ask any clarifying questions was 

offered, prior to the commencement of Part 3 of the interview relating to electronic 

observation. 

3.5.9 Part 3 – Interview Section 2:  Electronic observation 

Again, visual aids were critical to re-orienting the focus of the interviewee to the 

context of Part 3: electronic observation after the data presentation in Part 2. The 

same questions were asked as identified in 3.5.5 within the context of electronic 

observation. Again, the visual aid on the right of Figure 24 was changed for each 

subsection of question 8. As noted above, the left side visual aid was removed and 

instead reference was made to existing ceiling sensors like those used in the 

multidisciplinary clinic ‘occupancy’ study described in 3.3.3.1 above. Upon 

conclusion of the final response, participants were advised that the formal interview 

was now complete. In all cases, postinterview discussions took place of varying 

lengths. This exchange was recorded but was not considered part of the formal 

Figure 24 - Visual aid presentation during electronic observation section, 
intentionally with no visual aid to represent this observation method, instead 

referring to existing sensors in the room for context 
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interview. Interviewees were then thanked and escorted back to the main corridor by 

the interviewer. 

3.5.10 Postinterview data management 

Immediately after the conclusion of each interview once interviewees left, recording 

on each device were stopped. Files were saved from all three recording devices and 

saved in accordance with the data policy established in 3.2.6.2 above. A naming 

convention was established to maintain participant confidentiality. Original 

participant names were obfuscated to gender-neutral first names only for reference in 

the results chapter (Table 10). Once files were appropriately saved behind THHS 

firewalls from each device, files were deleted from the recording devices. 

The intention was to use Google Live Transcribe on one of the recording devices. 

However, the quality of the transcription was insufficient given the speed of 

discussion and the multiple accents involved and the use of live transcription software 

was abandoned after the second interview. Transcription software (FTW transcriber) 

was purchased to facilitate the PI creating interview transcriptions for later text 

processing in NVivo, however the process of transcribing was slow and cumbersome 

by the PI as a first-time transcriber. Free use of a professional transcription service 

was offered from a colleague at JCU as part of an existing transcription grant. An 

Table 10: Obscured, non-personally identifiable names and numbers 
assigned to each interviewee to maintain confidentiality. 

 
Interview 
Number 

Interviewee  
Name 

11 Jamie 

12 Sam 

13 Quinn 

14 Casey 

15 Kai 

16 Akira 

17 (not used) 

18 Jessie 

19 Pat 

20 Kerry 
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amendment to the standing ethics approval to utilise the transcription service was 

submitted to the THHS HREC and subsequently approved (AM06). Files were 

transmitted via proprietary secure upload link and returned within several weeks. 

Transcription files were in Microsoft Word (MSWord) format on the template of the 

transcription service, separated into ‘facilitator’ and ‘interviewee’ sections. 

Transcribed files were then reviewed twice word-for-word against the original 

recording and any corrections made. Another listening of each full interview was 

undertaken while the text was reformatted into a standard numbered format created by 

the PI. To facilitate data analysis within NVivo, embedded stylistic coding within 

MSWord was used to: 

 Colour code all transcribed text associated with the facilitator (interviewer) 

and interviewee. Facilitator text was changed to red, and interviewee text to 

green.  

 Number each interview according to the file name assigned as per this section 

above, obscured in such a way as to ensure interviews were de-identified (e.g., 

Interview #21). 

 Number each question as a separate section header (e.g., 21.1 Part 1 – Human 

Observation). 

 Number each question as a separate section header (e.g., 21.1.7). 

 Preamble and postinterview discussion sections were not numbered. 

The above template system was used to format each interview in separate files to 

import separately into the qualitative data analysis software NVivo.  

3.5.11 Interview analysis 

Extracting meaning from the complexity of qualitative data can be challenging. To 

strike the appropriate balance between ‘flexibility on the one hand, and consistency 

and coherence on the other’ [125], a thematic analysis approach as defined by Braun 

and Clarke [126] was used. Six phases of thematic analysis undertaken by the PI have 

been identified underlined and italicised through this subsection, in reference to the 

latter work on this type of qualitative analysis [127]. 
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All re-templated transcriptions were imported into the NVivo software. The text of 

each interview was reviewed word-by-word three times in different ways. In this way 

the PI became ‘immersed in the data’ [128] as per phase 1: familiarisation with the 

data [127] in preparation for thematic analysis of the transcribed interviews. Relevant 

sections of text were reviewed many more times and were associated with unique 

code as per phase 2: coding [127] Codes were defined by the PI based on the 

transcribed text. These codes became the variables under which like sentiments, 

thoughts, feelings or other expressions by each interviewee could be organised across 

the entire transcribed dataset. Over time, some codes were split into nuanced 

subsections, while others were combined in an evolving and iterative process. 

Ultimately through management and grouping of like codes, themes emerged forming 

the primary concepts emergent from the analysis as per phase 3: searching for themes 

[127].  

The above process was repeated through three consecutive iterations through all the 

interview text. Once one full pass through the dataset was completed creating, 

combining and splitting codes, a second pass through the dataset was completed. This 

second pass ensured all relevant data in earlier texts could be captured by codes 

emergent from the later textual examination. During the second pass, a further review 

of the codes allowed the separation of nuances in the text, and the re-combination of 

like ideas in alignment with the steps of thematic analysis [126, 129]  [130]. These 

iterative passes through the data constituted the fourth phase of analysis: reviewing 

themes.  

A mind-map of all codes and their interrelationships was created to support the 

visualisation and organisation of the analysed data which produced clear themes 

within the dataset [131]. Finally, an overarching ‘grand theme’ was established based 

on all underlying data. The mind-map created also identified contributing elements 

within each code to capture the nuance of each and determine that new codes were or 

were not required. For reference, this mind-map has been included as Figure 25, 

Figure 26, and Figure 27. The creation of the mind maps in turn formed phase 5: 

defining and naming themes [127]. Finally, an overarching grand theme was 

established based on all of the underlying data after this exploration of clustered 

patterning across the dataset [130]. 
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A third and final pass through every word of the dataset was undertaken, using 

reformatted transcription text. Instead of passing through the data linearly for each 

interview as for the first two passes, the qualitative data was re-organised using the 

rigorous templating described above. Using the software’s capabilities, all data was 

re-organised as datasets unique to each question. Each question-based dataset 

contained all answers to that question provided during each interview. The use of 

styles and colour coding allowed the extraction of only the interviewee responses 

identified per respondent, while also acting as a double-check to confirm no 

transcribed text from the interviewer was being considered. Reorganising the data in 

this way allowed a different perspective on the responses by being able to quickly 

compare ‘like’ responses. This cross-section of data allowed analysis to be conducted 

to a given question without having to scroll through the text of each individual 

 

Figure 25 – Mind map detail showing central grand theme, and all themes 
(one through seven); refer to Figure 26 and Figure 27 for associated 

codes 
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transcription file. As one of the files was more than 11,000 words long, this process 

helped supported comparison of each interviewee’s responses without having to wade 

through extraneous verbiage. This method was considered highly successful and 

provided confidence all relevant data had been extracted from the transcribed text. 

Once the PI was satisfied all relevant information had been extracted from the 

qualitative data, the results of the final phase: writing-up was commenced [127], and 

is presented in Subsection 4.3.1. The interviews provided abundant information on 

staff feelings comparing IoT versus manual data collection, however the number of 

interviews was limited. Though the validity of qualitative data obtained through 

interviews is reinforced most strongly by the presence of the PI, triangulation would 

‘corroborate and analyse the data being collected’ [20]. Consequently, an all-staff 

survey was designed to explore key staff sentiments emergent from the interviews and 

 

Figure 26 – Interview data analysis mind map detail, showing themes one 
through three, including both code and formative sub-codes. 



 

136 
 

try to understand the boundaries of both appropriateness and acceptability for 

collecting increasing levels of data density.  

3.6 Survey 

All aspects of the survey including the questions proposed, length, duration, 

distribution method, etc. were written down and submitted to the THHS HREC for 

review and approval. Key to this approval was ensuring that all potential participants 

were aware of the nature of the research project, its purpose, and that their 

participation was nonmandatory, unpaid and anonymous. This survey information 

sheet was distributed as an attachment to a broadcast email to all staff. Also, this sheet 

was copied onto the title page of the survey. The first and most important question 

was: ‘do you agree to take this survey?’ which asked potential participants to consider 

their options and register their consent. 

 

Figure 27 – Interview data analysis mind map detail, showing themes four 
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3.6.1 Survey preparation 

The questions for the survey were developed in an iterative process to ensure they 

accurately reflected the core research questions:  

 Were electronic sensors appropriate for use in a clinical environment?   

 How comfortable were people working under IoT sensor observation? 

Techniques employed in the development of suitable questions for the survey 

included the use of visual aids, repetition and predominant use of a 5-point Likert 

scale. These scales are defined by Peacock as ‘discrete scales where respondents have 

to tick one of a number of replies to describe their degree of agreement with a 

statement’ [115]. Strict use of Likert scales limited the potential of measurement error 

[132] and allowed an accurate comparison across responses. Potential responses in 5-

point Likert scales used was considered appropriate to allow a neutral position for 

both acceptability and appropriateness questions. This neutral position was considered 

important because the introduction of electronic sensors monitoring clinical spaces 

was considered a sufficiently new concept that respondents may not have had 

previous opportunities to form an opinion.  

 

Also, a neutral position was intended to facilitate a theorised shift from positive to 

negative responses as the level of data density increased. This expected shift of 

opinion from positive to negative was also facilitated by the repetition of survey 

questions. Finally, removing the neutral position ‘may annoy (respondents) and may 

not uncover the truth about their views’ [133]. These questions repeated across 

increasingly dense data gathering designed to capture the subtleties of shifting 

opinions as the density of data gathered by electronic means increased. A 3-point 

scale was considered inappropriate as the barrier between positive and negative 

sentimentality was considered insufficiently subtle to facilitate the expected shift in 

opinion. Similarly, a 7-point Likert scale was considered onerous for the reader and 

overly complicated. 

The survey was designed to be as accessible as possible. As an internet-based survey, 

the site could be accessed by a variety of hardware and software. Using ‘preview’ 

sites from several different devices such as handheld phones, and laptop computers, 
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the survey graphics were deigned to remain easy to read and relate to the questions 

being asked. Pilot testing [133] of the survey was undertaken by the PI and three other 

volunteers on multiple devices confirming technical aspects of the survey. Regardless 

of the technology the survey was viewed through, the survey was automatically re-

sized to maintain the design intent of the PI. 

3.6.2 Survey participants 

Initially, the staff survey distribution was limited to only staff on the campus where 

the target multidisciplinary clinic was located. The intended purpose of this 

delineation was twofold. First, the intent was to limit the survey to staff who may 

have had some exposure to the target clinic. Second, responses were to be restricted to 

the location where clinical space was most scarce within the HHS: the main campus. 

Upon review prior to distribution however, this delineation was considered 

insufficiently logical and ultimately unobtainable through the corporate email system. 

An amendment was made to the THHS HREC (AM06) to extend the survey to all 

staff employed by the THHS. The approval for this amendment was also tabled to the 

JCU HREC. This change also minimised coverage and sampling errors across all staff 

demographics to ensure results were as representative as possible of ‘all staff’ [132]. 

3.6.3 Survey questions 

The survey was hosted by a third-party corporation Qualtrics (XM) under licence 

from JCU. The survey was designed using the corporate proprietary system through 

an internet-based user interface behind a username and password on a site dedicated 

for this survey. Access to the survey was limited to the underlying corporation, and 

two research advisers of the PI.  

After arriving at the survey site, potential respondents were first presented with a 

presurvey ‘front page’ which again invites participants to take part in a survey. The 

purpose of the survey was identified on this page, as were the PI and his advisers, 

affiliations and contact details. Potential respondents were advised that the research 

was being conducted in accordance with the boundaries of a designated HREC 

approval. Also, the entry page advised potential respondents that no personally 

identifiable information was collected through the survey, and that the aggregate data 
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provided by responses may be used in publications and other means of distribution 

such as conferences. Finally, after providing contact details of the PI, potential 

respondents were presented with the first question in the survey: ‘do you agree to 

participating in this survey?’. A ‘no’ response sent users to a ‘thank-you’ page which 

ended their survey session, while a ‘yes’ response allowed respondents into the 

remainder of the survey.  

3.6.3.1 Survey preamble 

Once the survey commenced, the first page presented to respondents was a preamble 

further reinforcing the aims of the research. This page introduced the concept of data 

density like the ‘data density ladder’ presented to interview participants previously. 

The mnemonic of the data density ladder was not used on the survey, instead referring 

to five categories like 2.2.2 above. The questions were stated to reflect the kinds of 

data gathered: 

1) Was the room occupied or vacant? (presence / occupancy) 

2) How many people were in the room? (count) 

3) Where were the people in the room? (location) 

4) How did people move in the room? (tracking) 

5) Who were the people in the room? (identity) 

Respondents were then further advised that each category (from 1-5) contains data 

from all previous categories, like Figure 2. The last element of the preamble 

introduced the two primary streams of sentiment the survey was designed to collect 

data on: 

 How appropriate did staff feel the sensor technology in each category was for 

use in clinical environments? 

 How comfortable were staff working in clinic rooms being monitored by each 

category of sensing technology? 

The final elements of the preamble introduced two visual aids to the viewers. The first 

visual aid was a photograph of a standard consult room within the THHS. Next, a 

standard consult room floor plan overlayed with graphics was presented which served 

as visual aids to help reinforce the category under consideration. The floor plan and 

graphics were effectively identical to the visual aids used in the interview, which have 
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been represented in Figure 28 below. Further, the initial juxtaposition of a typical 

consult room photograph with a typical consult room floor plan was intended. The 

purpose of this juxtaposition was to support respondents unfamiliar with the abstract 

format of a floor plan representing space, so the floor plan alone could be used for the 

remainder of the survey.  

 
 

 

 

 
 

Figure 28 - Visual aids used in all-staff survey were adapted from those 
used in staff interviews, originally presented via Table 9 above 
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These aids provided context for the upcoming questions in a clinical outpatient 

environment. This singular floor plan was repeated, overlaid with a series of graphics 

representing the five numbered categories in the introduction section through the 

remainder of the survey. In summary, visual aids adapted from those presented during 

staff interviews (Figure 28) were presented on individual pages for each category. 

Two questions were asked on each page, relating to opinions on either the 

acceptability or the comfort level of staff respectively. For reference, the survey has 

been included as Appendix 8. 

As noted in 3.5.6 above, a 5-point Likert scale was used for each subquestion for each 

of the five categories of data density, as per the survey extract in Error! Reference 

source not found.. For each question, an attempt to visually distinguish similarly 

worded potential responses such as comfortable and uncomfortable, was made by 

bolding the prefixes un and in. This style of question was repeated for each category 

of data density, altering the text of each to reflect the category in focus.  
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Figure 29 – Typical survey question including sensor description, graphic 
and two questions 
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The survey contained one set of questions per category, such as: occupancy, count, 

location, etc. Questions in each were slightly altered to reflect their respective sensing 

category. For example, the following alterations were made for the ‘appropriateness’ 

Category 2 question regarding count: ‘How appropriate do you feel it is to use 

counting sensor technology to determine how clinic rooms are used?’. Each question 

proceeded this way until the end of the main survey. Demographic questions were 

asked at the end of the survey to explore potential association between the 

demographics of age, role, gender and education. 

3.6.4 Survey distribution, timing and reminders 

The survey was released via email from the THHS public affairs unit via all-staff 

broadcast email midmorning on Wednesday 05 October, 2022. Public affairs were the 

only staff unit with authorisation to distribute staff-wide broadcast emails after 

authorisation from the relevant executive authority. A midweek release was 

considered optimal to avoid high postweekend workloads and avoid preweekend 

distractions. A midmorning release was chosen to maximise engagement at the most 

common break times and allow lunchtime discovery for staff with moderate email 

access. 

To maximise participation for staff with limited access to email such as ward staff, 

operational officers and landscaping crews, information posters were distributed 

across the HHS. Regional managerial staff for campuses outside Townsville were 

provided with survey information posters via email to post in staff common areas. 

Posters were personally delivered by the PI to reception staff on buildings on all 

campuses within the Townsville area. Additionally, posters were hand delivered to all 

ward and clinic reception and common areas on the main campus including ancillary 

buildings. The posters contained a quick response (QR) code for staff to access the 

survey via smartphone cameras. Potential respondents clicking either on the link in 

the distributed email or following the QR code from the posters were sent to the same 

‘live’ survey. 

Survey reminders were distributed on two occasions by the THHS public affairs unit. 

An email reminder was sent one week after the initial survey release on Wednesday 

12 October, 2022. The text of the email was identical to the original distribution 
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except for minor wording changes to reflect its purpose. A second reminder was 

distributed on Wednesday 19 October, 2022, reinforcing the survey close date on 

Friday of the same week. These reminders were introduced to minimise potential 

nonresponse errors from the dataset and ensure a sufficiently representative sample of 

staff responses was obtained [132]. Finally, the survey was closed on the Qualtrics 

(XM) site at 4:30pm on Friday 21 October, 2022. Final data was downloaded and 

stored as per obligations stated in 3.2.6.2 above. 

3.6.5 Survey analysis 

Data from the online Qualtrics (XM) software the data was downloaded to a secure 

location as per the data management section in this chapter above. Data was imported 

into MS Excel (Microsoft 365 edition) spreadsheets. Graphs were created using MS 

Excel pivot tables, and basic descriptive analysis was undertaken with numbers and 

percentages from the pivot tables. This type of analysis is used ‘to describe and 

synthesise data’ [134]. Results from the survey emergent from this analysis are 

presented in Chapter 4, where graphs summarising the various data have been 

provided. Graphic presentation has been used as they ‘represent a visual image of the 

data all at once, which not only helps to describe the interrelationships among the data 

but also allows the viewer to retain this image.’ [135]. 

Demographic survey questions allowed a free text ‘other – please explain’ option. 

This inclusion allowed for flexibility should certain individuals feel their demographic 

category was not represented in the original list of question options. Introducing a 

free-text option also introduced potential for measurement error [121], however this 

potential was mitigated through the following postinterview data processing:  

ROLE: various changes to ‘role’ demographic data were made to reflect responses 

provided in free text: 

 Converted numerous ‘Allied Health’ related role responses to new primary 

occupation category ‘Allied Health’ 

 Converted all ‘Midwife’ role responses to new primary category ‘Midwifery’  

 Converted all ‘Student’ type responses to new primary category ‘Student’ 



 

145 
 

 Converted ‘Nurse’ role into ‘Nursing’ to capture responses aligned with 

nursing 

 Converted all ‘Management’ responses into ‘Administration’ 

 Converted the 11 remaining responses into ‘Other’ category 

 Removed ‘Role – Other’ column from dataset, since the column was empty 

 Combined ‘Engineering and Maintenance’ with ‘Information Communication 

Technologies’ and ‘Operational Services’ into nonclinical ‘Operational 

Services’. 

GENDER: combined noncisgender responses including ‘prefer not to answer’ and one 

‘other (please describe)’ response into a single noncisgender category: ‘other’ 

AGE: converted individual ‘Age’ responses into ‘Age Bracket’ categories to facilitate 

comparison across age groups – this could have been avoided by asking age-group 

questions initially, however it: 

 Introduced a novelty slider response mechanism for variety, and 

 Allowed for the postsurvey creation of age groups based on the responses. 

EDUCATION: converted various ‘Other’ education level responses related to 

workplace education into ‘Vocational Qualification’, and single free text based 

‘Education’ response converted to ‘Other’ 

The above changes were made to improve and facilitate the analysis of survey data. 

Also, the free-text option allowed a sense of representation outside of strict 

demographic categories defined by the PI. This inclusive approach was an attempt to 

maximise demographic responses. As per the description above, merging data into 

‘like’ categories also minimised data skew that may otherwise be emergent from too 

fine-grained demographic categories. 

3.7 Conclusion 

Preparing to undertake this research in a live operational healthcare environment 

required meticulous advanced planning, and authorisation by several governing 

bodies to proceed. This research project required numerous steps in attempting to 

resolve the following distilled research question: are IoT devices effective in 
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supporting optimised clinical space utilisation and are they appropriate and 

acceptable?  First, sensors were selected from the commercial marketplace and 

trialled for effectiveness. Then, occupancy sensors in a nonclinical space were used to 

compare intended use using reservation system data, with actual usage data from IoT 

sensors. Next, the same IoT sensors were then applied across 25 rooms in a 

multidisciplinary outpatient clinic and data was recorded for 25 months. Clinic 

occupancy data was presented in a dynamic online data dashboard, including novel 

grid-matrix user interface with machine learning space utilisation prediction 

capability. Beyond sensors, one-on-one interviews were conducted with THHS staff. 

These interviews were conducted to obtain a broad understanding of their feelings 

towards increasingly dense data gathered by both human and electronic observation. 

Finally, to compare interviewee responses with the sentiments of a cross-section of 

staff across the broader HHS staff population, an all-staff online survey was 

distributed. Each activity result formed the foundation of each subsequent activity in a 

logical chain of events. Detailed results of each activity outlined above can be found 

in the next chapter, which follows the same order as presented above. 
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CHAPTER 4   

RESULTS 

4.1 Introduction 

Research activity results presented in this chapter follow the same logical flow as the 

methods section from Chapter 3. For clarity, this flow is represented here, adapted to 

the purpose of this chapter: 

1) IoT sensor installation results 

a. Phase 1: Preresearch activities 

b. Phase 2: Sensor installation in a nonclinical reservable healthcare space 

c. Phase 3: IoT installation in operational multidisciplinary outpatient clinic 

2) Predicting future utilisation results 

3) Interview results 

4) Survey results. 

This flow formed out of necessity, as each result formed the basis of the next activity, 

which repeated until the last activity. The list of publications in the preamble to this 

document naturally reflected this same flow. All data described in this chapter has 

been stored in accordance with the data management plans established in the previous 

chapter. 

4.2 IoT sensor installation results 

Results from the introduction of IoT sensors are presented in this chapter in the same 

order as they were introduced in the previous chapter to facilitate cross-referencing. 

Where applicable, results had been published, presented at conferences or both. 

Multiple publications listed in this subsection can be found in the appendices for 

reference. Findings that may be useful for future researchers were included in this 

chapter despite suboptimal outcomes, such as the use of staff RFID cards. 

4.2.1 Phase 1 – Preresearch activities: staff RFID card results 

The process of selecting an appropriate IoT sensor for use in fully operational, live 

clinical environments has been described in detail in 3.2 above. Though these results 

were preliminary and therefore unpublished, they may be useful to future researchers 
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in this area. Utilising existing staff RFID card access-control data was the first 

thought of the PI and many others when approaching the issue of studying patterns of 

occupancy in healthcare spaces. Technically, this was the combination of multiple 

technologies: RFID cards, electronic door locking and remote access systems. All the 

HHS’s staff carry these cards, and each card allows access to a limited subset of doors 

and spaces, typically organised into categories. The same doorway used to study 

purchased IoT sensors in the next section was used to explore the capacity of this 

technology to understand patterns of clinical space utilisation. Data logs recorded by 

this door’s security system are presented in Figure 30, noting personally identifiable 

information has been removed. The logs present data on ‘door access granted/not 

granted’ activities only. For the 24-hour target duration, entry was not refused for any 

presented RFID tags. The logs provide a general understanding of entry activities for 

staff in this nonclinical area, but cannot provide insight into: 

 staff access to the system using their own ID cards or someone else’s 

 how many staff entered the space when door access was granted 

 when staff left the target space as it was unrecorded and therefore  

 the number of staff in the space at any point in time. 

The door access data has limited usefulness in supporting an understanding of space 

utilisation beyond a very general sense. The logs loosely reflect patterns of entry, and 

not patterns of occupancy. In addition to the above, security access doors must be 

closed, and accessed only by staff or other visitors granted temporary RFID cards. In 

clinical areas within the target HHS, electronic access-control doors form part of the 

secure after-hours access perimeter. Typical clinic primary entry doors were held 

open during operational hours. This form of access control uses magnetic locks 

connected to fire safety systems, supporting patient flow during operational hours, 

and no data was recorded. Placing electronic locking mechanisms at every target 

clinical outpatient space has a high capital cost plus ongoing maintenance costs for 

the life of the doors and was therefore not considered feasible at scale. This cost was 

approximately $5,000 per door. For these reasons and more, electronic access-control 

door logs were not considered useful in supporting an understanding of clinical space 

utilisation. Use of these logs has therefore been disregarded for the remainder of this 

project. 
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Figure 30 - RFID logs from electronic locking system for the sole access door to a non-clinical space over 24 hours 
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4.2.2 Phase 1 – Preresearch activity: sensor calibration activity results 

Select human activity sensors were installed simultaneously in a nonclinical space. 

Results from the sensors were compared with a video recording of foot traffic into/out 

of the single-entry door in a healthcare administrative space. This study period was 

24-hours long as described in 3.2.3 to 3.2.5 above. This section presents typical 

results from the three sensor devices tested. Excerpts from the video recording 

illustrating sample time-stamped entry and exit activities has been presented in Table 

11. Much of the video recording was dark as the target nonclinical space was 

operational for nominal business hours only. Between sunrise and sunset however, the 

video was effective in allowing the identification and precise timing of entry and exit 

events. The entry and exit events were logged for the entirety of the video, and results 

compared with data output from the three sensor systems. 

Extracts from the collated data from the three sensors and the video 
recording have been presented in  

Table 12, with 10-minute intervals used as a common denominator. These results 

demonstrate that both the thermal sensor and beam sensors were inaccurate, but in 

opposite ways. The PIR array sensor had an inward bias. This sensor reported there 

were seven staff present in the space at 6pm when the video count was zero. Similarly 

Table 11: Video stills from the ‘ground truth’ recording of entry (top row) 
and exit (bottom row) activities across a nominal entry threshold 
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inaccurate, the thermal beam sensor had an outward bias, reporting negative six staff 

in the space at 6pm, with the video confirming the human count was zero.  

The PIR sensor, in contrast to the other two sensors, was accurate for 98.6 per cent of 

the video recording data obtained. There was approximately 1.5 metres from the door 

threshold to the ‘nominal’ threshold established to facilitate the video recording. The 

two counting sensors were deemed insufficiently accurate for the purposes of the 

proposed research. Consequently, the PIR sensor based IoT devices were the only 

commercial sensors used for the remainder of the research. 

 
Table 12: Data extract from first/last occupied 1.5 hours of the target 24-
hour period in a non-clinical space; green/red cells indicate data equal 

to/not equal to video recording data 
 

TIME  
(over 24-hrs) 

Video 
Count 

PIR 
Sensor 
(0=vacant,  
1= 
occupied) 

PIR Array 
Sensor 
(count) 

Thermal 
Beam 
Sensor 
(count) 

6:00:00 AM 0 0 0 0 
6:10:00 AM 0 0 0 0 
6:20:00 AM 0 0 0 0 
6:30:00 AM 0 1 0 0 
6:40:00 AM 2 1 2 1 
6:50:00 AM 3 1 4 3 
7:00:00 AM 5 1 6 5 
7:10:00 AM 5 1 8 6 
7:20:00 AM 5 1 8 4 
7:30:00 AM 6 1 8 4 
(Data extract for the first 1.5 hours above, the last 1.5 hours 
below) 
4:30:00 PM 4 1 11 0 
4:40:00 PM 3 1 10 -2 
4:50:00 PM 1 1 8 -5 
5:00:00 PM 0 0 7 -6 
5:10:00 PM 0 0 7 -6 
5:20:00 PM 0 0 7 -6 
5:30:00 PM 0 0 7 -6 
5:40:00 PM 0 0 7 -6 
5:50:00 PM 0 0 7 -6 
6:00:00 PM 0 0 7 -6 
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4.2.3 Phase 2 – Sensors in nonclinical reservable healthcare space results 

Data from PIR-based IoT devices explored in the previous section were demonstrated 

to be highly accurate over the 24-hour period, as expressed in the previous subsection. 

This level of accuracy was considered sufficient for the purposes of this research; 

however, the trial period was brief. Consequently, the capacity of these sensors to 

accurately detect human presence over a longer period needed to be determined prior 

to the installation of these devices into clinical spaces. Sensor accuracy was verified 

by installing multiple PIR sensor devices, which correlated highly against one 

another. The target nonclinical space selected to undergo 24-hour observation over a 

longer period using the PIR sensors was managed through a room reservation system. 

Data from this system was readily available for comparison against the sensor data at 

the end of the trial.  

Results were presented in person at the Health Information Science and Systems 

International Conference in Cairns, Australia, in December 2018. As part of 

conference proceedings, this paper was published in 2018. Results from this research 

are published with the title: ‘Optimising spatial healthcare assets with Internet of 

Things”’ [1] (Appendix 2). This research paper has been reproduced with permission 

from SpringerNature. Authorisation to re-publish the paper noted above has been 

included in the appendix. 

 
Figure 31 - Green cells indicate the target space was occupied for the 

selected interval (one hour in this case) from left to right; data is 
presented in one row per sensor; sensors were grouped in rows,  

visualising occupancy data for one day across all sensors in the clinic 
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This paper presented data on how the target space was used according to the sensors. 

One outcome was that one well-placed sensor was sufficient for the size/shape of the 

target room, implying sensor placement was critical to quality data. Another outcome 

was a demonstration of a variety of actual uses which differed from the planned use 

according to the reservation system. A longer study period for these sensors was 

suggested, leading to the next research activity in an operational clinical environment.  

4.2.4 Phase 3a)  -  IoT installation in operational multidisciplinary outpatient 
clinic: preliminary results and the anomaly 

Preliminary sensor results presented some mildly interesting results but suggested an 

alternative interface to the data was needed. To explore the preliminary results, data 

was downloaded directly from the proprietary cloud-based repository on to THHS 

computers through encrypted transmission. A brief introduction of the data format 

was required prior to a presentation of findings (Figure 32).  

The downloaded repository was received in the form of a MS Excel database 

consisting of rows and columns of data. The rows each represented a single day of 

data, which presented a period of data selected prior to download, up to the full 24-

hour cycle. As the full capacity of the room was under observation, 24 hours of data 

 

Figure 32 – Typical data structure visualised for one week in the clinic, 
demonstrating typical clustering of occupation data across 24 hours (left 

to right) 
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was selected. The columns present occupation data for the period selected. In Figure 

32, one-hour time periods were selected to illustrate the structure of the visualised 

data. A typical week was shown in Figure 32 with a data resolution of 10-minute 

periods. The latter illustrates high-level occupation patterns for all sensors in the 

clinic, across a full week. In the raw data, this pattern was typical. 

In limited cases, when the target clinic was known to be closed, such as public 

holidays, an anomaly appeared. This data anomaly initially suggested that one target 

space was occupied continuously from after close of business on a Friday until hours 

prior to the next clinic operational period. Queries with THHS maintenance and the 

sensor vendor did not identify any known activities that may have tripped the sensor 

so completely for this period. To illustrate this data anomaly, two typical weeks of 

occupancy data were contrasted (Figure 33). Both weeks contain sensor recordings of 

sleep study patients occupying their respective spaces all night long. In both cases, 

periods of restless sleep trigger the occupancy sensors, and periods of motionlessness 

reflecting sleep activities which have been visualised as ‘white’ spaces. In no sleep 

 

 a) week showing high levels of 
overnight activity when select 
spaces were used after hours to 
accommodate overflow sleep 
studies; breaks in evening 
occupancy patterns represent times 
of consumer stillness (i.e. asleep) 

 

 b) week including a public 
holiday with unusual activity 
commencing after clinic close and 
continuing until just before next 
clinic opening; the clinical space 
associated with the anomaly was 
not used for sleep studies 

Figure 33 – Comparison of two high-level patterns of occupancy accross 
the target clinic showing high-levels of continuous activity during known 

clinic shutdown times 
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study rooms were occupants awake and moving all night, and all morning long. Week 

b) (Figure 33) contains a public holiday when the clinic was closed. Despite the entire 

clinic scheduled to remain empty, a continuous occupancy pattern occurs during the 

public holiday and through the weekend.  

 

Two findings emerged from this preliminary data analysis. First, that an improved 

method of data analysis was required as the raw data made detailed analysis 

challenging. The format of the database was challenging to navigate in any way 

except at a very high level. The period of data was selectable, however only a broad 

overview could be visually observed at one time. The timeseries nature of the data 

created challenges for running descriptive analytics. Most influential in coming to this 

conclusion however was the volume of data. At 10-minute intervals, six months of 

data produced 604,000 data points which became unwieldy in the current format. 

Extrapolating to the full study period of 25 months, this 2.25 million data points push 

the limits of Excel to handle the data. A better method of visualising and exploring the 

data was needed (see 4.2.5 below). 

The second finding was triggered by the anomaly. Insufficient data was being 

provided by the sensors to understand anything beyond when the room was occupied, 

and when it was vacant. The sleep studies demonstrate that the anomaly was not 

reflective of a sleeping activity for a single person. Also, the spaces recording 

continuous activity were not used for sleep studies and the anomaly occurred on 

multiple occasions when the clinic was known to be closed. To understand patterns of 

human activity beyond, more information was required. IoT sensors collecting 

category 1 occupancy data (see 2.2.2 ) provide a limited understanding of utilisation. 

The information the occupancy sensors do provide however, was a significant 

improvement over the limited space utilisation data studies in existence. As suitable 

‘count’ sensors were not commercially available (Table 5), or were insufficiently 

accurate (see 4.2.2), a proof-of-concept trial using a thermopile sensor was initiated 

(see 3.3.3.4.2). 

In summary, the preliminary data download guided the research activities towards 

their inevitable conclusions below. This exploration suggested that a more intuitive 

method of data exploration was needed, capable of handling large volumes of data. 

Also, this preliminary investigation identified an anomaly which could not be 
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resolved with the current level of clinical space utilisation data being limited to 

‘occupancy’ status.    

4.2.5 Phase 3b): IoT installation in operational multidisciplinary outpatient clinic: 
the data dashboard 

To improve usability of the raw data, a proprietary ‘data dashboard’ was utilised as a 

user interface to the data. The dashboard drew from the full cloud-based dashboard. 

Beyond the capacity to change the study period, such as changing from 10-minute 

intervals to 1-hour intervals, this front-end provided several other filters to increase 

the functionality of data exploration. Selecting these filters caused the data to change 

dynamically, which informed whether additional filtering was required. These filters 

included: 

 Start date and end date, e.g. limiting scope to examine a specific time period. 

 Start time and finish time within a day, e.g. limiting scope to operational 

hours. 

 Day of the week to exclude weekend data. 

 Space type, such as education room, consult room, treatment room, etc. 

 Room number, to focus the dashboard on a specific space.  

In addition to the filters above, numerous other filter types were available. For 

example: building ID, floor ID, sensor location, etc. These filters existed but were 

unused as part of this research as the research scope was limited to a single clinic, 

with one sensor per room. The data dashboard contains numerous visual feedback 

elements that dynamically reflect the settings of applied filters. Results from the 

implementation of the user interface was published as an ‘open access’ publication 

under the title ‘Optimising clinical spatial resources with IoT’ [136](Appendix 3). 

This paper was the first of two outcomes from looking at the raw data. The second 

was confirmation that more information was needed if the utilisation of clinical space 

was to be understood beyond occupation status. 

4.2.6 Phase 3c) – IoT installation in operational multidisciplinary outpatient 
clinic: from occupation to utilisation 

From the IoT device interventions identified in this section, an extensive 

understanding of the occupation patterns across multiple clinical spaces has been 
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demonstrated. Though this confirmation was a significant advancement over manual 

data gathering, the PI was still not satisfied. Results from the occupancy study still felt 

incapable of fully answering the generative research question sparking this research 

project. This generative question was: were we using our clinical spaces optimally? 

Knowing patterns of occupancy, or more importantly vacancy, was a significant 

improvement on state of the art. This knowledge clearly answers questions about 

when a target space was used, but says little about what it was used for, or for what 

purpose was it used. Data supporting the latter question was key to understanding the 

efficiency of clinical space utilisation, beyond simply being occupied.  

Inspired by the anomaly (4.2.4 above) to understand more about patterns of human 

activity within clinical spaces, one final IoT sensor intervention was trialled. A 

thermopile sensor producing an 8x8 grid of temperatures at a 60-degree angle was 

installed in the ceiling of a consult room. This installation was intended to confirm the 

capability of these sensors to provide additional information on the utilisation of 

clinical spaces beyond occupancy status. The initial proof-of-concept sensor trial 

installation was made capturing a video recording of the changing temperatures in a 

live consult space hosting a typical week of clinic activities. Results from this initial 

experiment were sufficient to support a more resolved installation of the sensor, 

digitally extracting ‘count’ data produced within the sensor from the temperature data 

it receives. This second iteration was also placed above a consult room to observe a 

week of live clinical activity.  

The result of this intervention has been presented in the paper ‘Occupation versus 

Utilisation of Clinical Spaces Using Internet of Things Devices: Are Consult Rooms 

Well Utilised?’ [137] (Appendix 4). This publication contains additional data 

visualisations.  The proof-of-concept utilisation of a thermopile to both count 

occupants and provide data on patterns of activity contained therein was still subject 

to error, however. The algorithms on the selected sensor providing ‘count’ data were 

still somewhat simplistic. The sensor data represented an approximation of utilisation 

at specific points in time. This approximate count may be appropriate for obtaining a 

general understanding of occupancy patterns, for example in a retail store. These 

sensors would not however be appropriate for use in life safety applications which 

would require a high-precision occupancy count. For example, precise occupancy 
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sensors could be used to determine whether all building occupants have evacuated in 

an emergency, avoiding dangerous human canvasing of unstable spaces. Regardless 

of the sensor’s algorithm, with stated accuracy within temperatures within 2 degrees 

Celsius being received from the thermopile at a rate of 115200 bits per second, others 

had produced accuracy rates of 84.5 per cent in densely crowded spaces using these 

sensors’ raw data [138]. As research continues to improve the accuracy of extracting 

human ‘count’ data, the recordings of visualised data as reported in this subsection 

suggests these devices have the capacity to capture data up to category 4 ‘tracking’ 

data, should this be required.  

What remained unclear however, was whether the deployment of IoT devices capable 

of continuously tracking humans was suitable for deployment in healthcare settings. 

At some point up the ‘data density ladder’, the collection of increasingly dense data 

on clinical space utilisation was likely to produce diminishing returns and become an 

increasingly oppressive environment in which to work. Prior to increasing the level of 

data density gathered however, maximum utility must be made of the data that has 

been collected. To that end, the tools of ML were applied to the extensive IoT dataset. 

This work was undertaken to explore the capacity of ML to predict future clinical 

occupancy patterns supporting the development and initiation of improvement 

activities. 

4.2.7 Predicting future occupancy 

Historical occupancy data gathered through IoT devices allow frontline and executive 

decision-makers to identify clinical spaces that remained vacant during previous 

operational hours. Though previously unidentifiable by conventional means, these 

vacancies represent lost opportunities. Results in this subsection demonstrate the 

capacity to predict future vacancy rates based on historical occupancy pattern. These 

results were accepted for publication titled ‘Predicting optimisation opportunities for 

clinical space utilisation’ (Appendix 5), which contains additional data visualisations. 

This section has demonstrated that future utilisation of clinical spaces can be 

predicted with an F-score of 0.82, or 82 per cent accuracy based on historical data. 

Using the power of ML tools, decision-makers can take advantage of these spatial 

opportunities before they become lost in time. Also, with iterative prediction based on 
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continuously collected IoT occupation data, an iterative loop was formed. In addition, 

continuous iteration can demonstrate the effectiveness of future improvement 

initiatives. Beyond predicting future optimisation opportunities, this predictive 

capability also supports assessment of the relative success or failure of intervention 

strategies in an iterative process.  

The demonstrated capacity of low-cost IoT devices to continuously collect ambient 

data on previously un-discoverable patterns of clinical utilisation has answered the 

original research question. This capacity to predict future improvement opportunities 

makes the data generated by these IoT devices actionable. The research question with 

respect to the capability of IoT devices to support improvement in clinical space 

utilisation has now been favourably demonstrated.  

4.2.8 IoT sensor installation: results summary 

This subsection of the results chapter presented findings from 25 months of 

occupancy data gathering by IoT devices in a live clinical environment. In addition to 

the extreme duration of the observation period, this research provided a continuous 

collection of utilisation data 24 hours per day, seven days per week. Results presented 

demonstrate that IoT devices were an effective means of collecting this data. This 

chapter also demonstrated that a dynamic data dashboard can be used by human 

operators to make sense of the abundant data these devices produce. A proof-of-

concept IoT device which extended the possibilities of understanding human activity 

within high-privacy clinical spaces was presented. IoT data was then used to train a 

ML algorithm to predict future opportunities for improved clinical space utilisation 

with an accuracy rate of 82 per cent.  

One critical element was missing on top of the mountain of data collected through the 

research thus far. Though the research was conducted in accordance with the strict 

ethical boundaries established by the local HREC, questions remained. These 

questions included: 

 How did staff feel about these devices continuously collecting data on all 

occupants of these spaces, including themselves?   

 Was there any preference for this type of data gathering over the most 

common alternative in the literature, human observation?  
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 If they were comfortable with the level of data collected, were they 

comfortable with additional data being collected?  

 Was there a point at which they no longer felt comfortable as the density of 

data collected increased, or did the benefits of data collection outweigh any 

negatives?   

 Did they consider the collection of this data in their workplace oppressive?  

 Did staff agree with the premise of having electronic space monitoring 

technology installed for the purposes of observing patterns of activity within a 

live healthcare environment?  

An answer to the original question about the capacity of these senor devices to 

support the optimisation of clinical space utilisation has been provided thus far. To 

explore where the balance exists between the need for space utilisation data collection 

and the personal sense of oppressive surveillance, more information is required. As 

this exploration of the potential for IoT’s to support the optimisation of clinical space 

would not be complete without exploring the human elements, the results from one-

on-one staff interviews and an all-staff survey are presented in the next section. This 

research had demonstrated that IoT devices were effective in supporting the 

optimisation of clinical space utilisation. Put simply, the quantitative sensor research 

to this point had answered the question: ‘Could it be done’? Remaining questions 

were now about ‘Should it be done?’ To explore the remaining questions, qualitative 

data from staff was needed.  

4.3 Interviews 

Interviews were conducted with a small number of staff to understand various 

perspectives on gathering data for the purposes of optimising clinical space utilisation. 

Previous results demonstrated the capacity for IoT devices to collect a wide spectrum 

of human activity data inside high-privacy clinical spaces to support optimal 

utilisation. IoT devices have been demonstrated to be effective in providing actionable 

information to both frontline and executive managers. It remained unclear whether 

these technologies were considered suitable for continuous operation in clinical 

environments from a human perspective.  
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Interviews were conducted in person, in accordance with the methodologies identified 

in Section 3.5 above. Recorded data was transcribed and saved in accordance with the 

data management procedures. Raw transcriptions were organised in a common 

template designed to facilitate analysis. 

4.3.1 Interview results 

Interviews were conducted with the intent of answering specific research questions 

emergent from the sensor exploration and implementation stages of the research. 

These questions were as follows: 

1) How do staff feel about clinical occupancy data being collected by two 

different types of data gathering: human observation and electronic 

observation? 

2) How do staff feel about increasing levels of data density being collected in 

clinical spaces to optimise clinical space utilisation? 

3) These two questions form the foundation of the interviews, and are re-

examined at the end of this chapter.  

Prior to addressing responses to these research questions, a summary of qualitative 

data emergent form the text of the interviews is provided. After this extended 

exposition, these questions are revisited. First, an overview of the importance of 

clinical space as represented by the interviewees is provided to establish context for 

the remainder of the interview results.  

4.3.1.1 Clinical space’s value and the need for utilisation data  

Clinical spaces play a critical role in the delivery of healthcare services. Without 

clinical spaces to perform clinical services in, an HHS’ capacity to deliver healthcare 

services becomes fundamentally compromised. Consequently, an understanding of the 

importance of clinical space and previously unobtainable data on its utilisation is 

presented prior to going into additional detail. 

The topic of clinical space utilisation elicited passionate responses from most 

interviewees. For example, on the topic of scarcity Akira said: ‘we’ve got very limited 

resources and we should be using them to our best advantage to see people’. This 
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sentiment was echoed by Pat: ‘We all know space is hard to come by and expensive to 

create. So, having it idle is not a valid usage.’ Casey provided similar commentary, 

that ‘real estate is number one in everybody’s mind now. We’ve got limited space, 

and so greater utility of space is important’. Essentially, all interviewees responded 

with something similar. The value of clinical space within the healthcare system was 

clear by these responses. Perhaps because of this acute awareness clinical space’s 

value, perceptions of inequality were apparent. This awareness may support suspicion 

and speculative behaviour about the efficiency of other groups’ use of space, and the 

allocation of additional capital resources. Alternatively, it may be human nature to 

judge the needs of others more harshly than our own. Regardless of the drivers, a 

transparent clinical space utilisation system common across all service groups would 

mitigate many of these concerns. 

The above are just some examples of the clear value that was placed on clinical 

spaces by healthcare staff. A broad perception of inequality appears to permeate 

respondents’ views of the healthcare system at their HHS. Against this backdrop of 

spatial scarcity in the healthcare system, qualitative interview data can now be 

framed. 

4.3.2 Interview outcomes 

The analysis section identified numerous codes using the steps of thematic analysis 

codified by Braun and Clarke [126]. These codes formed the most basic elements of 

emergent interview data. Similar elements were collated together into categories, each 

of which belonged to one or more themes. In order that ‘the reader can “hear” the 

intended meaning in the speech’ [139], verbatim transcript material in some cases 

within this chapter has been made more readable. Themes emergent from the 

interview analysis resolved into a unifying grand theme: ‘IoT devices are acceptable 

and appropriate for use in clinical workspaces, with notable caveats.’  
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4.3.2.1  Interview question review 

Reviewing the interview questions expanded in 3.6.3 above, interviewees’ perceptions 

were elicited about two kinds of data gathering techniques, each gathering one of five 

levels of increasing data density. This spectrum was referred in the interview as 

‘stepping up the data density ladder’ (Table 9, a to e). This ‘ladder’ concept is 

inverted (Figure 34) for the remainder of this dissertation to simplify sequential data 

presentation through this linear text-based format. 

4.3.2.2 Interview analysis introduction 

Main themes emerged from analysis of the interview data. These themes were 

supported by subthemes, categories and codes. Together these elements support a 

nuanced understanding of interviewee responses. For brevity, these seven themes 

have been introduced here noting they have been reordered from the mind-map in the 

analysis section to improve ‘flow’. These themes have been expanded in subsequent 

subsections: 

1) Systemic healthcare issues 

2) Clinical space as a resource 

3) Capacity of the data to reflect reality 

4) Concerns consumers may have 

5) Concerns staff may have 

6) Context would be critical to accurately interpreting sensor data 

7) Rigorous governance would be required. 

1) Human observation gathering: 
   
 a) occupancy data  

 b) count data  

 c) location data  

 d) tracking data  
 e) identity data  
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2) Electronic data gathering: 
   
 a) occupancy data  

 b) count data  
 c) location data  
 d) tracking data  
 e) identity data  
   

 

Figure 34 – Inversion of data density ladder mnemonic to facilitate 
discussion for the remainder of this thesis. 
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4.3.2.3 Theme 1: Systemic healthcare issues 

Modern healthcare systems are dynamic, complex entities. In many HHS, business as 

usual (BAU) requires reducing the complexity of this highly dynamic system into 

more manageable disciplines. This organisational structure helps manage the 

complexity of day-to-day healthcare services delivery through a multitude of 

modalities to eager consumers of healthcare services. While providing flexibility 

within disciplines, this ‘siloed’ structure limits flexibility across an HHS to manage 

clinical space holistically. Also, this structure limits transparency between disciplines, 

which makes managing change across service groups difficult. Without sufficient 

flexibility, the capacity of organisations to adapt to the needs of emergent challenges 

would be restricted. Restrictions in turn add friction to the flow of patients and staff 

through the system and reinforce inflexibility. Respondents felt that each of these 

systemic organisational issues may frustrate the implementation of any system to 

optimise clinical space utilisation by whichever method of data collection, if not 

addressed or allowed for in these complex systems. These issues form the framework 

for the remainder of this subsection. 

4.3.2.3.1 Managing complex healthcare systems 

The complexity and subtleties of providing healthcare were identified by respondents 

as challenges of clinical space utilisation data gathering. Clinical disciplines were 

aligned into ‘siloes’ to compartmentalise the complexity and control the dynamic 

nature of day-to-day service delivery. Positives of clustering healthcare service 

delivery include increased quality control and reduction of systemic complexity and 

allowing operational flexibility within the siloes. Negatives of clustering include 

reduced intersilo communication and the establishment of an ‘us and them’ mentality 

with respect to resource utilisation. Interviewees felt this organisational structure 

naturally establishes competition between clinical service delivery groups, and limits 

incentives to share spatial resources.  

Further reductions in flexibility reinforce challenges experienced by service groups 

that rely on the capacity for self-management. When reflecting on humans gathering 

location data on the occupants of clinical spaces, Sam said: ‘I think that would be 

quite an inflexible approach for a health service and the way that the health service 
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works’. Maintaining as much operational flexibility as possible was key to managing 

complexity within the healthcare system. 

4.3.2.3.2 Managing clinical spaces 

Operationally, the management of clinical space falls to the leadership teams in each 

service group with limited coordination across the HHS. Casey noted the criticality of 

‘space’ as an issue early in the interview: ‘it is one of my biggest problems’. Further, 

reflecting the consensus of the interviewees, Casey added that an improved system to 

manage clinical space utilisation through understanding space utilisation data would 

be appreciated. Casey said: ‘this is something that I deal with on a daily basis, 

arguments about rooms, so I think personally this data will harbour huge utility for 

me’. Obtaining space utilisation data, in any form, was considered a significant 

improvement by Jamie: ‘I think to have the information available for me in this role 

would be invaluable’.  

As a point of comparison, Kai noted that the way space was managed at the host HHS 

was not the same for healthcare delivery universally. From their experience delivering 

healthcare in another country, they advised that alternative methods existed. Kai 

identified the alternative in this case required a space-centric approach, which:   

... looked at which outpatient rooms were occupied and to what level and then 

it removed the disciplines … and it made the room the centre of the process 

and it made occupancy the centre of the process.  

Consequently, a space-centric approach may be worth investigating through future 

work. Reflecting on the current HHS’s approach, Kai added ‘spaces seemed to be 

owned by people for different periods of time, which puts the occupancy onto the 

person, not onto the room.’ 

Beyond immediate need for spaces by individual units, perceptions about how space 

was used across service groups were mentioned numerous times. Jamie provided the 

following example: ‘somebody explained to me an area of theirs was in use 98 per 

cent of the time throughout the day, every day of the week. At various points of 

walking through that department, it’s completely empty’. Also, feelings of inequity 



 

166 
 

were noted by Quinn on several occasions ‘I cannot understand why a department can 

say that they’re utilising space appropriately, when I am of an understanding that 

might be different to that …I’m trying to be a bit … nice here’. Finally, concerns were 

not just raised across service groups, but within them as well. Internal concerns were 

noted by Akira: ‘So, (location redacted) is a good example. My team would say it’s 

full. I go in there on a Friday, and I can’t find anyone there, and there’s a lot of clinic 

rooms free to me.’ Jamie also commented on spaces within their own service group: 

‘Anecdotally we hear that it’s not a particularly well-used space’.  

4.3.2.4 Theme 2: Clinical space as a resource  

A siloed structure establishes competition between service groups and makes the 

comparison of similar activities in different groups challenging. Competition for 

limited resources can create perceptions of unequal treatment without hard data to 

support decision-making. Without a transparent method for data collection and 

sharing between the siloes of a modern healthcare system, inflexibility and 

perceptions of inequality both across and within service groups were likely to 

continue. Maintaining BAU also maintains the inflexibility of sharing spaces across 

service groups, which was reinforced by a lack of data and tools to manage clinical 

space utilisation. In the next section, staff reflect on ‘BAU’ practice within the health 

system and how it could be improved. 

When demand increases within fixed constraints, improvement options were limited. 

Constraints in this case could be quantity of clinical spaces, for example. Despite 

known limitations across the HHS, Jessie advises that this doesn’t stop staff from 

striving to make continuous improvements. Jessie said: ‘We all try and tackle things 

for improvement and how to increase process flow and making things better for the 

patient.’ Pat felt that utilisation data was critical to overcoming some of these 

limitations in future: ‘Data like this becomes extremely valid. Where was the usage? 

Where did people go? How do we redesign it, so we make sure that all rooms (are) 

equally usable? So, it’s got some clear markers for the future.’. Kerry reflected that 

improved clinical space utilisation would be positive for both the HHS and 

consumers: ‘... that’s now getting our waitlist down and getting people through the 

health system.’  

When reflecting on BAU, several interviewees acknowledged the inherent capacity 

for flexibility (see previous subsection). Jessie reflected: ‘our rooms are basically all 
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generic, so anyone can use them; yeah, we can shuffle people around’. This capacity 

was reinforced by Kerry: ‘why can’t we run some of our other clinics out of this 

space?’ Later Kerry went further, offering: ‘I look at occupancy of any room as being 

potential for doing other things.’ Beyond increasing flexibility of operations, and 

therefore efficiency by sharing spaces, Akira suggested expanding the use of clinical 

spaces beyond traditional operating hours, and perhaps beyond traditional function. If 

by collecting utilisation data, spaces were demonstrated as operating efficiently: ‘… 

we can then talk about in a much more informed way about staff using it after hours’.  

4.3.2.4.1 Efficient use of space inside consult rooms 

Another consideration in the use of clinical space was how efficiently clinical spaces 

address the needs of clinicians. Quinn spoke about how the space within consult 

rooms may not be optimally utilised, saying: ‘if you can collect activity data inside 

rooms, then you know the specialist never used the bed and never used a sink’. They 

were suggesting it was more cost-effective to build spaces without reticulated water 

and drainage if that met the need of the clinical service delivery. Also considering the 

efficient use of space inside consult rooms, Kerry suggested that tracking data could 

enable more efficient use of space depending on the function within a speciality. They 

advised: ‘… it’ll confirm that you’re doing more procedures or consulting. I imagine 

people are more stationary during consultation. People that are moving around, from 

chair to bed are likely being examined. That difference in time tells me about 

turnover.’ Unfortunately, studying the efficient use of space inside consult rooms was 

beyond the scope of this research. However, this line of thinking may be worth 

pursuing in future research. 

As a critical resource in an environment of growing demand, limited access to clinical 

space creates friction within the flow of patients and clinicians. This friction becomes 

a bottleneck for the efficient delivery of clinical services within a healthcare system. 

Interviewees each considered how existing spaces were currently utilised. To varying 

degrees, each sought improvement opportunities taking advantage of the latent 

capacity within the existing system to improve healthcare service delivery. The first 

step in improving space utilisation was to realise that the resources were finite, and 
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that oversight on utilisation was required. Casey encapsulated this concept well with 

the comment:  

… if you don’t know what you don’t know about the utility of your space, how 

can you manage it?  

 

Next the capacity of the space needs to be fully understood, and systems need to be 

developed to optimise the use of this capacity. To utilise these spaces to the best of 

their ability however requires the sharing not only of space. To break down barriers 

established through siloes, data on how spaces were utilised needs to be collected and 

shared both within and between service groups. Beyond the capacity of existing 

spaces to improve utilisation, to realise these improvements, data on utilisation needs 

to be collected. However, there was limited point in collecting data on clinical space 

utilisation if the data does not accurately reflect how services were being delivered 

through them both individually and collectively.  

4.3.2.5 Theme 3: Capacity of data to reflect reality 

Some staff were concerned about the ability of IoT device data to accurately reflect 

operational reality. How was the data being collected and why? How accurate were 

the data? How was the context of the data understood? These questions reflect some 

of the concerns of the interviewees with respect to the data these devices collect. 

4.3.2.5.1 Reflections on human observation 

Concerns or feedback regarding the purpose and method of data collection ranged 

across the spectrum of data density. Sentiment on human versus electronic data 

gathering permeated all responses. With few exceptions, electronic data collection 

was considered superior to human data collection for the purposes of optimising 

clinical space utilisation. An overview on sentiments on human versus electronic 

observation was followed by comments on the inaccuracy of human observation and 

their counterpoints in electronic observation. As mentioned elsewhere in this chapter, 

these electronic devices could be compromised in the data they collect, and the 

accuracy of the data they record in reflecting reality. Most of these however were 

summarised as concerns with the capacity to provide context, or the capability of the 

sensors themselves to sense human motion as they were designed to do. 
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4.3.2.5.2 Accuracy of human data gathering 

Sam was concerned about the accuracy of human observation and data gathering. This 

concern was demonstrated by his comment on humans gathering occupancy data: ‘I 

think there’s probably a lot of room for misinterpretation and error … it’s just human 

nature’ referring to the challenges humans experience with long periods of 

concentration and repetitive work. Another perspective on the accuracy of human 

observation and data gathering on clinical space utilisation relates to behavioural shift. 

Quinn felt that direct human observation changes occupant behaviours to skew the 

data: ‘so straight away staff want to change behaviour knowing that someone’s 

coming to observe them’. Concerns of human behavioural change due to human 

observation was repeated multiple times by Quinn and echoed by Sam: ‘If somebody 

wants to look as though they’re using the office because they know somebody is 

watching, so you probably – the degree of accuracy would wane, I think.’  

Accuracy due to human intervention was also mentioned by Kerry with points both 

for and against. On the negative side, Kerry said, ‘like any data collection, it can 

always be skewed’, suggesting humans could alter data to suit an agenda, which may 

happen unconsciously. Similarly, Pat expressed similar feelings for the capacity of 

humans to accurately record the volume of data required to properly track multiple 

humans in a space continuously. Pat offered: ‘I think you wouldn’t necessarily 

capture all that information accurately because one person can’t potentially observe 

all the movements of that space.’   

4.3.2.5.3 Consistent human data gathering considering aspects of time 

Aspects of time or timing were other considerations underpinning accuracy concerns. 

For example, Jamie suggested that careful management of human observation would 

be necessary to ‘ensure that it’s done to meet varying times of the days and days of 

the week to ensure your sample is robust and reflects not just a point in time but a 

broad trend’. This sentiment about human data gathering over time was echoed by 

Sam: ‘I think it would become wearisome. I think it would become ad hoc and 

haphazard, and I don’t think you would get an accurate overview over time.’  Finally, 

Akira suggested that human observation would not be accurate due to the lack of 

continuous observation through time. Akira considered the continuity issues human 
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observation would encounter that could be avoided with electronic observation: 

‘Sensors are triggered, it’s measured, and you get the data and you’re not relying on 

someone not to have gone to the loo and to come back and you’ve missed counting 

people.’ The above considerations of timing were compared with the understanding 

that electronic data gathering was continuous for as long a study period as was 

required. Therefore, in the consideration of timing, electronic data gathering was 

superior. 

4.3.2.5.4 Positive aspects of human data gathering 

Despite the broadly negative perceptions of human data gathering expressed by the 

group as demonstrated by Sam, Quinn, Kerry and Pat’s comments above, there was a 

minority of opinions providing potential positive outcomes of human observation. 

Jessie provided the most supportive opinion on human data gathering when 

suggesting the two forms of data collection were equal: ‘I don’t think it’s any 

different to electronic data gathering’. Both Pat and Kerry providing a modicum of 

support for human capacity for understanding context. Kerry offered his positive 

opinions on human observation and data collection: ‘Humans can judge the difference 

between a curtain moving in the breeze or a person being in the room. I suppose back 

to the age-old story of human versus machine.’ This was followed by a second 

reflection from Kerry on the human capacity to provide context: ‘I think human 

observation is probably going to be a little bit more accurate in what information you 

get than a digital device.’ Also, Pat felt human observation could provide context to 

the data that the sensors by themselves could not: ‘human observation is good, 

because they can gather context and context is critical from what I see.’ The human 

capacity to apply judgement through understanding context was considered the sole 

support for the superiority of human observation in comparison to its electronic 

counterpart.  

4.3.2.5.5 Sustainability of both kinds of data gathering 

Finally, some commentary was collected on the sustainability of the two kinds of data 

gathering. Jamie felt that the application of human labour to the collection of clinical 

utilisation data was unworkable: ‘… It’s just not a sustainable option’. Sam suggested 

human data gathering might have provided some functionality, but only for snapshot 
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studies: ‘while it might have its uses within for a small area, and for a very limited 

time, I don’t think it’s one that you would want to use for a large area over a long 

period of time. It’s useful as a snapshot’.  

Focused on the cost of human resources, Quinn reflected: ‘you’re going to employ 

someone to sit there doing this exercise for a long period of time that’s a costly 

exercise to do that versus electronic data gathering’. Kai added that human-based 

observation and data gathering was ‘very person heavy, whereas there’s probably 

other mechanism you can use that would be easier’. Summarising most interviewee 

opinions on human data gathering Kerry offered: ‘The obvious point from a human 

resource point of view is cost. It’ll be by far easier to have a digital device than it is to 

pay multiple people roaming around.’ It became clear from the interviews that relying 

on human labour to gather clinical space occupancy data was not feasible. This 

collective response explains the lack of mid-to-long-term studies on clinical space 

utilisation in the literature. Since as human labour was previously the only known 

method of collecting this data. including all associated flaws, it stands to reason that 

only ‘snapshot’ studies previously existed. 

4.3.2.5.6 Reflections on electronic data collection 

Concerns about data persist when considering electronic observation and data 

gathering, mostly as supporting points or counterpoints to responses provided above. 

For example, Kerry felt there were diminishing returns starting at gathering ‘location’ 

data by electronic means. However, Kerry’s sentiment ‘So, what I think we’ve got to 

a point now where I don’t see the electronic data actually helping too much now.’ 

This was the same point at which signs of discomfort were noted by Kerry with 

human observation gathering increasingly dense data. This observation was common 

across interviewees.  

Sentiments towards increasingly dense data being collected tended to be the same 

regardless of electronic or human observation. If they were uncomfortable with 

humans gathering tracking data for example, they were either equally uncomfortable 

or slightly more comfortable with the same density of data being gathered by 

electronic means. It is possible in both cases that sentiment was predominantly 
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influenced by the data density in question 8 as the data density increased, and the 

utility of gathering this data rather than the method of collection.  

A poster on the preliminary sentiments on increasing levels of data density was 

accepted and displayed at the 2022 TropiQ Townsville Research Symposium on the 

15th of November 2022. In designing this poster, principals of effective poster design 

were used [140]. The poster was on display for two months (Appendix 7). The title of 

this poster was:  

Preliminary Interview Results About Working in Smart Health Buildings - 

How do health staff feel about electronic and manual data gathering in 

healthcare spaces? 

Summarising the poster, staff sentiment generally progresses linearly from positive to 

negative as the level of data density increases with one exception. At the highest level 

of data density, the collection of ‘identity’ data within category 5, there was a weak 

increase in sentiment from the previous ‘tracking’ data from category 4. During the 

preamble of each interview, it was made clear that each rung of the ‘data density 

ladder’ contained all categories below it. For example, if location data was obtained 

on all room occupants, the ‘count’ of occupants was known, and the room was 

occupied (see 3.5.4). The design of the survey was intended to confirm this 

unexpected result across a wider selection of staff. Survey results are presented later 

in this chapter. 

Interviewees’ responses associated with the quality of data produced varied widely. 

These responses broadly related to the accuracy, integrity and continuity of the data 

over time. Concerns were raised about data quality regardless of whether the data was 

collected by either human or electronic means. However, most sentiments indicate a 

moderate to strong preference for electronic data gathering over human data gathering 

for a variety of reasons. Sentiment generally progressed from positive to negative as 

the data density increased regardless of data gathering method. Broadly speaking, 

sentiments associated with data quality and data density were also intertwined with a 

myriad of other concerns that staff or patients may have. These two categories of 

concerns are expanded in the following two sections.  
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4.3.2.6 Theme 4: Concerns consumers may have 

Providing healthcare to consumers is the primary purpose of a healthcare system. It 

stands to reason then that one of the themes emergent from the interviews was about 

how the observation of activities in clinical spaces could affect patients. Responses in 

this theme all relate to aspects of the consumer experience, ranging from privacy and 

trust concerns to the operational matters of obtaining consent from each consumer.  

Underscoring the primacy of patient care, the second response in Casey’s interview 

was about how any human observation would require negotiation prior to 

commencement ‘... it’s up to the individual clinician and patient whether they would 

be willing to have someone in that room, so I can’t answer that question for you’. 

After some follow-up discussion Casey said: ‘it takes time for a clinician to build a 

respectful and trusting relationship with an individual, and if there’s suddenly 

someone else in there, that will make all the difference’. These two sentiments were 

reflected in the responses of others. For example, Pat provided a more direct response: 

‘... having someone in the room is not feasible due to privacy’. Finally, Jessie 

cautioned that there may be legal issues to explore before commencing any kind of 

blanket monitoring: ‘you’ve got the whole human rights issue around the fact that 

we’re monitoring the public as well’.     

The above two responses from Casey aptly illustrate the issues of patient privacy and 

trust under ‘third-party’ human observation. When considering the corollary of 

electronic observation, Casey noted that some services like mental health already use 

motion sensors to understand patient movements in wards. Casey said: ‘Generally 

patients do not have an awareness that there are motion sensors in rooms, it’s not 

something that we would necessarily point out’. In addition to direct concerns about 

the consumer experience, there were operational considerations as well.  

4.3.2.6.1 Human observation impacting healthcare service delivery 

Reflecting on the impacts of human observation on the delivery of healthcare 

services, Pat said: ‘... to gather this data by observation alone without gaining 

approval beforehand from each patient and physician is challenging’. Further, Pat also 

commented about the subtle interaction between provider and consumer within 
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healthcare spaces which would be disrupted by the presence of a third party. Pat said: 

‘… you’re now partaking within the cone of silence within that space, which is hard 

enough for some clinicians to get into, let alone someone nonclinical sitting in’. The 

suggestion was that if the patient does not feel comfortable, they were less likely to 

volunteer highly personal information about their condition to their healthcare 

provider. This sentiment was later re-iterated by Pat, who continued:  

Where somebody is in the room in relation to the doctor has a lot to do with 

interpersonal communication. Do they feel free to communicate with the 

doctor? Are they defensive? Is there something blocking them in the way? 

Which usually is a barrier to communication. 

Not all interviewees raised consumer-centric concerns, but those that did were 

significantly more comfortable about electronic data gathering, to the point of 

negligible concern. In addition to issues of trust, consent, and comfort, interviewees 

were less concerned about gathering increasing levels of data density with respect to 

patients. In all but extreme cases, the healthcare system already knows which patient 

was in which room at any one time and much of, if not all, their intimate medical 

history. If this was not true, something has gone wrong. The challenge was in 

recording the data without impacting the staff. 

4.3.2.7 Theme 5:  Concerns staff may have 

Beyond their concerns for the consumers of healthcare services, the healthcare 

providers and the multitude of support staff may feel differently when the 

observations were of them. Broadly speaking, interviewee responses on how they feel 

about being observed varied as expected. Generally, electronic observation was 

considered more favourable compared with human observation. Staff-focused 

concerns aligned with patient-centric responses in the previous subsection, such as 

patient-clinician trust, privacy and consent. Given these issues have been discussed 

previously and were highly similar, discussions on the latter would not be repeated. 

One element that repeats with patient-centric concerns but bears a more nuanced 

understanding was staff comfort levels as individuals being observed in the 

workplace. Also, noting the host HHS was a public health service, interviewees 

provided their perspectives on their obligations as public servants. Several felt 
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comfortable ‘being monitored by the government’ as an appropriate trade-off 

allowing public entities the capacity to demonstrate appropriate management of 

publicly funded resources. 

4.3.2.7.1 Feelings about being observed 

As it was a direct question, each interviewee provided their personal comfort levels 

being observed by both types of data gathering techniques. There was a range of 

responses from Akira being happy with both kinds of observations gathering whatever 

information was necessary to improve utilisation. In response to human observation 

collecting ‘count’ data, Akira responded: ‘what, someone standing there counting? I 

have no issue with that’. This sentiment was repeated for each level of data density, 

and both kinds of data gathering, both human and electronic. There were caveats 

about communication and governance however, that are addressed later in this 

chapter. In contrast, Kerry and Pat both offered a more nuanced perspective.  

Context has been discussed further in this document, however Pat suggested staff 

comfort may be tied with understanding the purpose for data collection. Reflecting on 

high-density electronic data collection, Pat offered: ‘without systems in place as to 

why we’re doing it, it starts to feel like ‘overseer’ watching, big brothers keeping an 

eye.’ Under electronic observation, high data density collection would not be 

appreciated outside the strict confines of a research project. Extrapolating to others, 

Pat reflected: ‘if you frame something to be nonresearch then people start jumping’. 

Needing to understand the purpose of data collection was critical to Kerry’s comfort 

level:  

As a public employee, I don’t really see an issue with Big Brother watching 

me. I’d like to think that there’s outcomes to that. I don’t want to think that’s 

nothing more than Big Brother making sure that we do the right thing, and if 

not, being reprimanded and called into offices or what not else. 

The interview questions were focused primarily on what data was being collected and 

how. Kerry’s comment suggests that staff understanding why data was being collected 

was also highly significant. 
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4.3.2.7.2 Public sector employee obligations 

Kerry also introduced a sense of obligation as an employee of a government. Akira 

acknowledged the unique role and responsibilities of public-sector employees: ‘I 

always think I’m here on the good grace of the public. I’m a public servant to serve’. 

Kai also reinforced public servants’ responsibilities in the use of publicly funded 

facilities: ‘we have to remember we’re public servants, so these buildings cost 

money.’ As entities operating within the machinations of government, the spectre of 

‘big brother’ may be closer for public sector workers, as this Orwellian concept was 

introduced several times by the interviewees [141].  

Issues of trust between staff and unknown entities receiving observation data was 

different from the patient-clinician trust discussed in the previous subsection, though 

both may border on paranoia at the extreme. For example, when asked to consider 

how it would feel to work under direct human observation ‘continuously collected in 

each space in your workplace, every day’, Sam was unimpressed. Sam felt that 

working under constant human observation would be uncomfortable: ‘I think you 

would feel that ‘big brother’ is watching, and I think it wouldn’t give an accurate 

reflection in terms of what was happening in that room.’ Under continuous human 

observation, interviewees’ wariness of excessive scrutiny manifested at lower data-

density levels than it did at data gathered by electronic means.  

4.3.2.7.3 Proximity to the government and sensitivity to observation 

The responsibilities of public servants directly reflect their role as government 

workers. Their proximity to government oversight may influence feelings of 

oppressive scrutiny, or it could just be human nature. More research would be 

required to explore these subtleties. Regardless, many of the public servants 

interviewed felt their role obliged them to use public-funded facilities to their 

maximum efficiency. Beyond individual responsibility, Kerry extended an obligation 

for efficient use of facilities to the entire sector: ‘As a taxpayer, I want greater 

utilisation of my dollars if I’m going to be taxed $0.33 in the dollar.’. This sentiment 

underpinned Kerry’s responses throughout the interview beyond the method or 

density of data collection. The passion in Kerry’s voice was clear when expanding on 

this subject:  
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Being done in any format, doesn’t really matter, but this is exactly what we 

should be using it – certainly what I want to hear for my tax dollars. I want to 

hear politicians standing up there going, we’re getting the best value for our 

dollar. …Any information you can gather on a particular activity can only 

lead to greater utilisation. It wouldn’t matter if it was a beach, or police, 

health or education. 

Beyond their roles as public servants, how staff felt personally about being observed 

may depend on their role and their sense of ownership of a space. Quinn suggested 

that: ‘... for clinicians being observed, they are specialists and they’re too busy to 

notice’. Conversely, Quinn’s perception of the experience of nursing staff was the 

opposite: ‘… nursing staff external to the rooms will be more cognisant of 

observation happening’. Quinn’s suggestion was that the nursing staff were present in 

the clinic constantly and therefore had a sense of ownership in the space, while 

clinicians come into the unit at their scheduled time, do their work and leave.  

Understanding staff concerns was critical to the outcome of these interviews. Their 

concerns about potential implications of clinical space utilisation monitoring were 

important to informing answers to the core research questions presented at the outset 

of this section. There was a general preference for electronic monitoring over direct 

human observation in their workplace. More than expected, staff were open to the 

broad concept of monitoring clinical spaces for utilisation. Interviewees’ responses 

indicated a nonlinear progression of positive to negative sentiment as data density 

increased for both methods of data collection. Staff felt the public service had an 

obligation to use taxpayer funds as efficiently as possible at both the corporate and 

individual levels. In several cases interviewees indicated they took their role as public 

servants very seriously. Finally, a sense of ownership established through functional 

roles in clinical spaces would influence how they would feel about monitoring clinical 

spaces to optimise utilisation. 

4.3.2.8 Theme 6: Criticality of context 

Interviewees generally felt that understanding the context of data being collected was 

critical to the success of any data collection activities. This sentiment was woven 

through responses across both methods of data collection and all levels of data 
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density. Previously in this section, the issue of context was brought up several times, 

which speaks to the relationship of this concept with many others. For example, Jamie 

noted that the application of this technology could be applied to bed occupation in 

wards. For the data to reflect the dynamic reality of providing healthcare services 

however, a significant amount of context would be required. The following extended 

quote from Jamie reflects this concern: 

to an analyst or a finance officer, they might say: ‘this bed is utilised 73 per 

cent during the day’, or ‘It looks like there’s a delay between someone leaving 

and someone arriving’, or if it’s over six months, ‘it looks like this bed is 

vacant a quarter of the time’ … but actually it’s due to mobilising the patient 

in the day. So, I think if we’re going down that route, that would be the risk. 

How the data would be contextualised by an accurate reflection of ‘appropriate’ 

utilisation was critical. Quinn felt the assigned function of the room was key to 

understanding whether a clinical space was well utilised or not. Paraphrasing, Quinn 

suggested that to interpret utilisation data accurately, the interpreter needed to first 

understand the type of clinic being operated, the design intent of a given space, and 

the nominated function of each clinical space. Also, critical to establishing the 

parameters of optimal utilisation was the model of care for each space, which might 

change within any given day.  

4.3.2.8.1 Context supporting decisions on optimal utilisation 

Similarly, Kerry extended Quinn’s position on context to the activities being 

undertaken in each room. Kerry felt that to judge efficiency of a given clinical space, 

knowing the clinical service type being undertaken in each room was important, 

asking: ‘… how many people can you book into a procedural clinic, as compared to 

how many you can book into a consultation clinic?’ Other respondents also suggested 

comparing efficiencies across different functionalities may be problematic in judging 

utilisation. For example, though data may report spaces were repeatedly unoccupied, 

one model of care may specifically keep a proportion of rooms at low vacancy rates to 

allow for spontaneous attendance by certain vulnerable patient cohorts. This 

contextual consideration was supported by Akira’s response: ‘if clinic rooms sit 

empty for 60 per cent of the time but it’s available when we need it for that family in 
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need and that crisis meeting, then that’s what the resource needs to be able to 

accommodate’. In other words, low-utilisation rates may be considered optimal 

utilisation based on the clinical drivers. Other clinical services may utilise rooms that 

were solidly reserved, but the specialty has irregular, high levels of nonattendance.  

Pat made similar observations about context when judging optimal utilisation, ‘… 

sometimes, the data might not show true evidence of utilisation because a room or a 

piece of equipment might need to be set aside for a clinic, that doesn’t mean it 

necessarily would be used. But it’s important that it’s sitting there available for 

different reasons.’ Another example may be a resuscitation trolley that sees very little 

use but was critical to be present and available when needed, like other critical 

infrastructure (i.e., fire extinguishers). The quality of any interpretations based on 

clinical space utilisation data may ultimately be contingent on the depth of context 

understood. For example, Sam talked through feelings on the pros and cons of 

continuous electronic observation: 

I guess, if you’ve got somebody who occupies a space and they’re in and out 

of that space throughout the day, whether it’s a clinic room, or an office room 

or whatever, then it would look as though you’re not at 100 per cent 

occupancy, or whatever in daily use, regular use. But I think on the whole… I 

think it gives you an overall baseline. Yeah. 

As Sam notes, judgements on ‘optimal utilisation’ may come down to understanding 

the function of the individual roles and patterns of the inhabitants of each space. 

Comparing this extended exploration of using context to interpret data with current 

practice in understanding patterns of clinical space utilisation however, some data 

would still be better than no data. Casey reminds us, ‘if you don’t know what you 

don’t know about the utility of your space, how can you best manage it?’  Therefore, 

the first step in judging optimal utilisation was starting to learn more about how 

spaces were used.  

4.3.2.8.2 Ongoing maintenance of context 

Once context was understood at one point in time however, Quinn wondered how any 

system would be maintained over time. Quinn queried: ‘… so how do you update the 
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system to flag a given room is now a consult room, and the education room is being 

transformed back to an office … like who updates (the system) to allow that (to) 

happen?’ Judgements made on utilisation data require context. Systems that support 

the reviewing, recording and reporting of utilisation data therefore need to be flexible. 

These systems need to be easily adaptable to the high pace of change inherent to the 

provision of healthcare. If the process of managing the data in these systems is 

cumbersome or burdensome, the context may not be maintained. Without accurate 

context, the information extracted from the data, and therefore the judgements made 

on that information, could ultimately prove fruitless. 

4.3.2.8.3 Context improving decision-making capacity 

Understanding context supports improved decision-making on optimising clinical 

space utilisation. Without context, interpreting the data becomes ineffective and at 

worst, useless. Despite the challenges of inputting and maintaining contextual data in 

a healthcare environment, respondents generally felt the process was worth pursuing. 

Therefore, the collection of utilisation data alone would be insufficient to make sound 

judgements on optimising clinical space utilisation. The data needs to be placed in the 

context of its model of care, design and functional intent of the space, the type of 

activity being undertaken, and in some cases the needs of individuals. Quinn was 

envisioning long-term implications of putting a clinical space management system in 

place: 

… over time, if you’re not updating that system, key elements will go missing; you’re 

going to lose the context of the service … and  if you set up a system that runs and 

then it’s never edited, the data over time will become contaminated with errors. 

The ongoing governance and management of contextual data, therefore, was 

considered critical to the success of any future implementation strategies. Good 

governance emerged as a significant overarching element supporting sound 

judgement on realising the opportunities inherent in optimising clinical space 

utilisation.  
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4.3.2.9 Theme 7: Rigorous governance required 

The previous subsection lays the foundation for this final and perhaps most far-

reaching theme emergent from the interview data. Maintaining rigorous governance 

practices was considered key to the successful implementation of any suite of 

technologies designed to optimise the utilisation of clinical spaces. Aspects that must 

be controlled if success is to be achieved include:  

 Clear and consistent communication about the purposes of data collection  

 Collecting only the data advised and using it only for the stated purposes 

 Responsibly managing the collected data with the same rigour as patient data, 

including access control, breach protection, quality management, etc. 

 Capacity to demonstrate efficiency gains from any improvement initiatives. 

Interviewees felt that governments were obliged to demonstrate the efficient use of 

public funds. This demonstration includes the efficient use of high-value healthcare 

spaces. Also, this obligation extends to the efficient use of resources to collect the 

clinical space utilisation data. 

4.3.2.9.1 Ongoing transparent, two-way communication required 

Ensuring transparent communication was considered critical by several interviewees. 

Jessie maintained a single primary sentiment throughout the interview. This sentiment 

was that essentially anything was acceptable if staff were liaised with and kept 

informed of what data was being collected and why. Jessie said: ‘... as long as staff 

are informed and told the reason for it, I don’t think it’s an issue.’, and ‘Informing 

staff and letting them know for transparency and what purpose these are being put in 

place, yes.’ This sentiment was evident from all respondents to varying degrees.  

Jessie also wanted assurances that effective safeguards were in place to follow up on 

any governance promises. Jamie echoed Jessie’s sentiments that rigorous control of 

the data stream was important, suggesting most methods and density of data were 

acceptable: ‘as long as there’s no confidentiality, breaches or whatever’. This position 

was reinforced by Kai, who suggested many things to improve clinical space 

utilisation would be considered acceptable ‘as long as things like privacy are 

protected.’. With these caveats in mind, Jessie felt confident that success was 
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achievable, and necessary to do: ‘in terms of what we build, we should be making 

sure that we’re utilising what we’ve got first. To decide what we build’. This 

sentiment was echoed by Kai: ‘If there’s good governance around privacy and good 

explanations as to the purpose … I think staff will be fine with it’.  

Collectively, interviewees suggested that the optimisation of clinical space utilisation 

was an important goal to pursue and were generally supportive, with caveats 

including those above to mitigate the concerns raised through the remainder of this 

section. The stated reason for this support was due to the importance of clinical space 

to the provision of healthcare, and to them personally. Jessie felt that it was important 

to demonstrate ‘effective and efficient use of resources and space in our hospital.’ 

This was followed closely with ‘I think we owe that to the public, and to ourselves to 

ensure we utilise our spaces effectively’. One key reason for the efficient use of 

resources was the high cost of providing public healthcare, which was fully funded by 

tax dollars. 

The high cost of providing healthcare in Australia was widely understood by the 

workforce operating the healthcare sector. Beyond operational costs, Quinn provided 

the following commentary on the implications of reducing capital costs with and 

improved understanding of existing clinical space utilisation: 

… it also can save the health service hundreds of thousands, if not millions of 

dollars in redevelopment money because if you’ve got the correct space 

assigned for your service model … you need to know that you’re spending in 

the right areas.  

4.3.2.9.2 Capital costs and ongoing maintenance costs 

In addition to the high capital cost of building new healthcare facilities, operating 

costs were also a key consideration. The following sentiment was offered by Akira as 

the only response associated with the performance of the built environment in the 

interview:  ‘on a square metre, the cost of maintenance, air-conditioning, electricity, 

cleaning, it would be very interesting to explore how you optimise all resources 

supporting your work’. Reflecting on the value of utilisation data to the HHS, and the 

implications of implementing clinical space optimisation strategies, Kai said: 
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I think this data would be immensely useful, but it would mean a change of 

culture. It would be taking that away from the doctors or their teams and 

putting it down onto use of rooms, which I think this HHS sees the doctors as a 

more expensive resource, whereas in fact the room is probably the more 

expensive resource. 

The broadly positive sentiment above was common throughout most interviewees’ 

responses. Interviewees seemed to all agree that the optimisation of clinical space was 

an important endeavour to undertake and get right. On a sliding scale of what 

appeared to be subtle distinctions between acceptability and appropriateness of data 

collection, interviewees appeared to agree. Collectively, interviewees were supportive 

of collecting utilisation data, preferably by electronic means. Their responses 

indicated they accepted the mild discomfort of being observed to gather low-to-

medium density data for the purposes of clinical space utilisation.  

This approval came with caveats, however. Staff wanted assurances that rigorous 

governance processes including ongoing, transparent communication and robust data 

management were put in place to manage the many sensitivities associated with 

human-activity monitoring inside clinical spaces. These assurances included the 

collection of specific data for the exclusive use of optimising clinical space utilisation. 

Interviewees felt strongly that any system monitoring human utilisation of clinical 

spaces required rigorous governance. Rigorous governance not only applies to the 

system that collects, organises, re-presents and predicts data to support optimisation 

decision-making, but to the responsible governance of high-value public resources: 

clinical spaces.  

4.3.2.9.3 Healthcare systems and sensitive information 

Fortunately, modern health systems have established extensive protection 

mechanisms and existing rigorous governance structures to manage sensitive data. If 

this level of rigour was applied to establishing and maintaining clinical space 

utilisation systems and their supporting data, the vision of optimising clinical space 

utilisation may be achievable. In addition to existing policies and procedures, the 

creation of bespoke tools governing the collection, use and management of clinical 
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space utilisation data should satisfy these demands. The latter sentiment held true if 

they were enforced through appropriate governance practices. 

4.3.3 Interview analysis summary 

Probing interviewees’ feelings about data gathered to understand patterns of activity 

in clinical spaces has elicited a wide variety of deeply personal emotions. These 

emotions range from concerns about the quality of data obtained, to patient and staff 

concerns about privacy, consent and a range of trust issues. Also, staff questioned the 

capability of judgements to be made based on the raw data without sufficiently 

accurate context to make the judgements meaningful. All these responses were set 

against the backdrop of a rigid healthcare system that limits cross-disciplinary 

communication. The lack of transparency and a common platform for managing 

clinical space across the HHS breeds a culture of mistrust and suspicion. With all this 

in context it becomes difficult for executives to make data-driven decisions on the 

allocation of limited capital improvement funding.  

Paraphrasing, the most common sentiment for low-to-midlevel data gathering through 

electronic means was: ‘I’m ok with it, as long as…’. In general, interviewees felt that 

despite the numerous challenges associated with the design and implementation of a 

robust, rigorously governed clinical space utilisation system, this was a goal worth 

pursuing. Supporting this claim, Jamie advised: ‘I think to have the information 

available for me in this role would be invaluable’. Summarising his concerns in 

comparison to the value of clinical space utilisation data gathering, Sam said: ‘I think 

most of this is around the context, but for me if in terms of the transparency and the 

rationale for what we’re doing then for me there isn’t an issue personally.’ While 

suggesting additional data may be needed to identify sentiments from a wider 

audience, Sam provided one of the two critical pillars that address staff concerns. 

Casey provided the following consideration that echoes the sentiment from Jessie 

provided above: ‘I think it’s just about transparency with the team, to make sure 

they’re fully aware of what’s happening, why it’s happening and I think you’d 

probably get pretty good buy-in on that basis’. The need for utilisation data was 

underscored by Kai: ‘I think it’s a must. I think it’s a gap at the moment, to be honest 

with you’. 
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Interviewees provided an abundance of data on their feelings towards the collection of 

clinical space utilisation data gathered through two distinct methods: human and 

electronic data gathering. These staff also provided their sentiments on increasingly 

dense data being gathered for space utilisation purposes. Based on the above analysis, 

the research questions that drove the need for interviews can now be answered. 

4.3.4 Answering interview research questions 

The core research questions underpinning the interviews were originally provided at 

the beginning of this section: 

1) How do staff feel about clinical occupancy data being collected by two 

different types of data gathering: human observation and electronic 

observation? 

1) How do staff feel about increasing levels of data density being collected in 

clinical spaces to optimise clinical space utilisation? 

Broadly speaking, staff were very positive about low-level collection of clinical space 

utilisation data by electronic means. This positivity largely extended to the collection 

of the same data by human means, but most felt the multiple costs of proceeding with 

this method were not feasible.  

 

The latter broadly negative opinion had numerous underlying perspectives. These 

perspectives included: expected low-quality data, negative impacts of humans 

continuously observed by other humans in the workplace, and ultimately the very 

high associated costs supported these generally negative feelings. Therefore, most 

interviewees felt that the while collection of utilisation data was worthwhile, 

increasingly dense data collection was reflected by a decrease in positivity. Also, the 

collection of this data by human observation was not feasible from a practical, cost 

and data-quality perspective. 

Similarly, staff also felt positively about the potential of electronic devices collecting 

low-density clinical space utilisation data. Like sentiments about increasing data 

density collected through human observation, staff reported increasingly negative 

sentiments as data density increased. This suggests that regardless of the data 

collection method used, the higher the density of data, the less appropriate staff felt 

these technologies were if deployed in clinical spaces. Also, the relative comfort of 
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staff declined under what seems to be interpreted as oppressive data collection. The 

only caveat to the previous statement was an increase in sentiment for the collection 

of identity data over the collection of tracking data. This mild ‘uptick’ in sentiment 

was despite a clear and repeated explanation, including visual aids, identifying that all 

categories contain all previous kinds of data. Additional research would be required to 

explore the subtleties associated with these feelings, as staff were only repeatedly 

asked ‘how would you feel if …’. The survey discussed in the following section was 

intended to extract these subtleties as part of confirming to what degree the sentiments 

of the interviewees reflected most of the broader HHS staff opinions on the subject. 

4.3.5 Interview summary 

The interviews illuminated the sentiments of a small number of staff perceptions 

(nine) on various data gathered from both electronic and human methods. Human 

observation was generally considered inferior to electronic data gathering. Also, 

support was considered high for low-density data gathering and trends lower as data 

density increased with an unexpected positive sentiment at the identity category. 

Finally, the overarching theme of the interview data was clear. Ongoing low-density 

data gathering of data for the purposes of optimising clinical space utilisation was 

both acceptable and appropriate, with several caveats. It remained unclear whether the 

opinions of this subset of staff who were either involved in the phase 3 IoT study or 

managing clinics, reflected the opinions of the broader HHS staff. Since interviewing 

every staff member was not feasible, a staff-wide survey was deployed to compare the 

opinions of the many to those of the few. 

4.4 Survey results 

Though quantitative data was not gathered in the interviews, some clear trends had 

emerged. Staff felt more positive about electronic data gathering than human data 

gathering. Broadly speaking, sentiment tended from positive to negative as data 

density increased. During the interviews, staff were asked about their feelings about 

these subjects without clarifying the nature of these feelings. Also, the number of staff 

participating in one-on-one interviews was restricted by necessity.  

The all-staff survey was primarily designed to answer questions emergent from the 

interviews. First, was the spectrum of opinions on electronic data gathering from the 

interviews the same across all staff? Second, was there a common ‘tipping point’ 
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where diminishing returns on increasingly dense data collection outweighed perceived 

benefits from the optimisation of clinical space utilisation? Lastly, what was the 

association, if any, between staff demographics and opinions on increasing density of 

space utilisation data collected by electronic devices? The results of the all-staff 

survey are presented in the following section. 

4.4.1.1 Survey responses versus final dataset  

The Qualtrics (XM) software provided data from 519 staff out of a total staff of 

approximately 6400 staff which represented an 8.1% response rate. Of these 

responses the following summary is provided (Error! Reference source not found.): 

1) 15x respondents did not agree to take the survey 

2) 129x respondents agreed to take the survey, but one or more core survey 

questions were blank 

3) 3x responses were incomplete due to technical errors in the survey system 

4) 14x respondents provided responses to all core survey questions but one or 

more demographic responses were blank.  

With anomalies excluded from the database, the original 519 potential responses were 

reduced to 360 complete responses. These anomalies resolve into a response rate of 

5.6 per cent. Further discussion on the representation of this response rate follows in 

the demographics section below.  

4.4.1.2 Demographics overview 

After the survey data analysis outlined in Chapter 3, an examination of the impact of 

demographics on survey responses was undertaken. The purpose of collecting 

demographic data was to understand any associations between demographics and 

survey responses. This section presents demographic results for all responses 

provided.  

An overview of the demographic responses provided, suggests the modest survey 

response rate (see 4.4.1.1) was considered reasonable due to the demographic data 

broadly reflecting nominal ratios within the target HHS (Error! Reference source 

not found.). For example, the ratio of staff roles reflects a reasonable ratio in a 
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modern hospital (Error! Reference source not found.a) with nursing representing 

nearly 40 per cent of the workforce, and an approximate ratio of 3:1 clinical versus 

nonclinical staff (73.8 per cent clinical). The age distribution of respondents broadly 

reflects workforce expectations (Error! Reference source not found.b) with 55 per 

cent of respondents aged between 36 and 55, with 26 per cent and 19 per cent being 

younger and older than the majority respectively. A response rate of 78 per cent 

tertiary-educated workers (Error! Reference source not found.c) was also 

considered reasonably reflective of an organisation providing tertiary healthcare 

services. Also, a nominal 19:1 ratio of females to males in the nursing profession 

[142], combined with the nursing profession being close to 40 per cent of the 

workforce at the target HHS, the 69 per cent female gender identity response rate also 

seems to reasonably reflective whole-of-staff expectations (Error! Reference source 

not found.d). Therefore, based on the demographic responses provided, the responses 

received from this all-staff survey reasonably reflect whole-of-staff demographics. 

 

 
Figure 35 – Diagram of results leading to final survey data set 
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4.4.1.3 Demographic associations 

By combining data from core research questions associated with acceptability and 

appropriateness with the various demographic data from Error! Reference source 

not found., the relationship between the two was illuminated. Examples cross-

referencing each demographic with a sample core research question have been 

presented in Error! Reference source not found. for demonstration purposes. For all 

demographic data cross-referenced with each core survey question, refer to Appendix 

9. Demographics received reasonably matched expectations for a healthcare system. 

The predominant role was nursing, the predominant age groups were 36-55, and the 

predominant gender was female. Responses did not differ substantially according to 

demographic subgroups such as role, age or gender. With this finding confirmed, a 

further exploration of the core survey data is presented below. 
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a) role of respondents  

 
b) age of survey respondents 

c) education level of survey respondents 

 
d) gender identity selected by survey respondents 

Figure 36 – Representative % of each demographic sub-category from the 
all-staff survey with respect to respondent’s role at the HHS (a), age (b), 

education level (c) and gender identity (d) 
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a) acceptability (comfort) of respondents with electronic devices collecting identity data 
with age bracket demographics inset  

 
b) acceptability of respondent with electronic devices collecting occupancy data with 
education level demographics inset  

 
c) appropriateness of respondent with electronic devices collecting tracking data with role 
demographics inset  

 
c) appropriateness of respondent with electronic devices collecting location data with 
gender identity demographics inset  

 
Figure 37 – Demographic data inset into core survey question responses 

demonstrating limited association between demographics and specific 
response categories.  
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4.4.1.4 Core survey question responses 

With demographic effects clarified, core research question results can be explored. 

This subsection presents staff responses to the two primary themes of the survey: 

appropriateness and acceptability. These themes were emergent, along with 

effectiveness, from the staff one-on-one interview. The purpose of the survey was to 

capture staff feelings on the former from a broader sample set and compare survey 

results with the interview results.  

Staff interviews provided qualitative data on staff feelings with respect to both human 

and electronic data gathering. As noted in subsection 4.3.2.5.6 the expected linear 

progression from positive to negative sentiment as the density of data gathered 

increased generally emerged as expected (Appendix 7). Instead of a linear progression 

from positive low-density sentiment to negative high-density sentiment, this 

progression emerged only from occupancy through tracking categories. The linear 

progression from positive to negative sentiment was interrupted by an unexpected 

trend reversed at identity back towards positive sentiment. Exploring this trend 

reversal through the survey results, a possible explanation has emerged.    

A visualised presentation of the whole survey response dataset has been provided in 

Figure 38 and  

Figure 39, and more detailed graphs on the whole dataset is provided through 

Appendix 8. In the figure below, data density progresses from low density on the left 

to high density on the right. Staff sentiment has been presented for both 

appropriateness (a) and acceptability (b) from negative (bottom) to positive (top). For 

both graphs, the median has been represented as a solid horizontal line, while 

quartiles have been presented as dashed lines. These graphs illustrate changing 

sentiment through the response data.  
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4.4.1.4.1 Survey theme: appropriateness 

The first theme explored through the all-staff survey was about how appropriate it 

was for electronic devices to collect increasingly dense data on clinical space 

utilisation within operational healthcare environments. One primary distinction 

between the nature of the interview questions and the survey questions was that the 

latter did not ask for opinions on human observation, only electronic observation. 

Summarised in Figure 38, appropriateness responses generally progress linearly from 

positive to negative as data density increases (Table 13). This full-theme summary 

was a representation of the full dataset expanded in Appendix 9. This linear 

progression aligns with the original forecast prior to undertaking staff interviews. 

 
Figure 38 –Staff sentiment from extremely approproate to extrememly 

inappropriate on the Appropriateness of increasingly dense electronic data 
gathering from low to high density (y-axis), from bottom to top respectively   
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Table 13: Survey response data for the theme of appropriateness 
Appropriateness 
Response Category 

Occupancy Count Location Tracking Identity 

Extremely appropriate 48% 34% 26% 25% 26% 
Somewhat appropriate 33% 37% 35% 27% 35% 
Neither appropriate nor 
inappropriate 

13% 16% 13% 20% 13% 

Somewhat inappropriate 4% 10% 19% 15% 19% 
Extremely inappropriate 3% 4% 7% 13% 7% 
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The data in this theme suggests that occupancy sensors, such as the PIR sensors 

(Figure 10) were widely considered appropriate in operational healthcare 

environments. Also, that sensor devices were still considered appropriate overall for 

use in live hospital environments, even when collecting identity data. Based on the 

interview results presented in Section 4.3, this broad support for sensor devices was 

accompanied by similar caveats. As data density increased, the mean sentiment 

remained ‘somewhat appropriate’ across four out of five categories: occupancy, 

count, location and tracking. 

4.4.1.4.2  Survey theme: acceptability 

The second survey theme was associated with acceptability, or how comfortable 

healthcare staff were with electronic devices collecting increasingly dense data in 

their workplace (Error! Reference source not found.). Combined acceptability 

survey data has been graphically presented through  

Figure 39 below, and individually visualised in Appendix 9. The data suggests staff 

are highly comfortable working under sensors gathering low-density data, and 

progressively less comfortable as data density increases.   
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4.4.2 Staff survey – summary 

Through this survey, staff recorded their feelings about the appropriateness of using 

sensor devices to collect increasingly dense clinical space utilisation data. Also, staff 

recorded how acceptable it would be if these technologies were used in their 

workplace. Staff felt it was appropriate to use these technologies to gather low-density 

occupancy data with 81 per cent somewhat or extremely appropriate while only 7 per 

cent felt it was somewhat or extremely inappropriate (Appendix 9). Staff also felt 

positive about working under sensor devices collecting this same type of data with 77 

per cent somewhat or extremely comfortable versus 10 per cent somewhat or 

extremely uncomfortable (Table 13 and Error! Reference source not found.). The 

combined results for low-density data, and high-density data gathering have been 

visualised in Figure 40 and Figure 41  respectively. 

 
 

Figure 39 – Staff sentiment from extremely comfortable to extremely 
uncomfortable (x-axis) on the Acceptability of increasingly dense 

electronic data gathering from low to high density (y-axis), from bottom 
to top respectively 
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As the density of data increased, these two themes diverged slightly. This diversion 

continued until the highest level of density was considered, which contained all other 

categories of data: identity. Staff still considered this type of data gathered through 

sensor devices appropriate for use in clinical environments (61 per cent positive, 25 

per cent negative). However, respondents were personally much less comfortable 

working under the observation of this level of data gathering intensity (34 per cent 

positive, 48 per cent negative).  

The themes of appropriateness and acceptability (comfort) emerged from the one-on-

one staff interviews. Though no quantitative data was gathered during the interviews, 

sentiment on the use of electronic devices in healthcare spaces to study clinical space 

utilisation was mixed. While the general trend of sentiment was from positive to 

negative as density increased, the path seemed nonlinear and appeared to track 

upwards at the last category (identity). This diversion was hypothesised to be unique 

to the necessarily small sample size of one-on-one staff interviews, and this is 

generally reflected in the data. The appropriateness of data gathering was essentially 

the same, following a linear path from positive to negative. The acceptability of 

APPROPRIATENESS OF IOT DEVICES GATHERING OCCUPANCY DATA 

 

  

 

 

 

 

ACCEPTABILITY OF IOT DEVICES GATHERING OCCUPANCY DATA 

 

 

 

 

 

 

Figure 40 - Survey results for low-density data gathering for both 
Acceptability and Appropriateness (comfort) 
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working under electronic sensor observation did follow the linear path from positive 

to negative originally hypothesised prior to undertaking the initial interviews. 

  

APPROPRIATENESS OF IOT DEVICES GATHERING IDENTITY DATA 

 

 

 

 

 

 

ACCEPTABILITY OF IOT DEVICES GATHERING IDENTITY DATA 

 

 

 

 

 

 

 
Figure 41- Survey results for high-density data gathering for both 

Acceptability and Appropriateness (comfort) 
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CHAPTER 5  

DISCUSSION AND CONCLUSION 

5.1 Introduction 

Previous chapters outlined the research problems addressed by this research project. 

These chapters provided context for the research, and detailed activities undertaken to 

address the problem, guided by six research questions. Results from each activity 

were then summarised with identification of the relative successes or failures of the 

research project to answer the core research questions. This chapter presents an 

overall summary of the research project, places the research in the context of other 

current literature, and discusses potential implications from the findings. 

5.2 Summary of the thesis 

Activities described in detail in Chapter 3 were undertaken to answer the core 

research questions of this project, with results presented in Chapter 4. These questions 

have been represented below for reference, and naturally form two consecutive stages 

of activity:   

Phases 1 to 3 – IoT installation: exploration, installation, data collection and 

processing 

 Can IoT devices identify patterns of utilisation in operational clinical spaces? 

 Can humans gain insight into historical patterns of clinical space utilisation by 

interacting with IoT data? 

 Is it possible to predict future utilisation patterns from historical data? 

Interviews and Survey – staff feedback: staff one-on-one interviews and all-staff 

survey 

 Were IoT devices appropriate to study space utilisation in clinical 

environments? 

 How comfortable were staff with being observed by IoT devices gathering 

human activity data in their workplace?   

 As the density of human activity data gathered by electronic devices increased, 

was there a common limit to staff comfort levels? 
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For ease of discussion, the above format has been used for the remainder of this 

publication. Also, the above two phases of work form the structure of this subsection. 

After this subsection, the body of work presented is placed into context with other 

contemporary research. 

5.2.1 Phases 1-3 – IoT installation 

Exploring the capacity of IoT devices to capture data on human activity patterns 

within high-privacy clinical spaces was the generative question that sparked this 

research project. After assessing the potential of numerous commercially available 

options, few emerged. Those that did emerge, were demonstrated to be insufficiently 

accurate to collect data beyond the first rung of the data density ladder: ‘occupancy’ 

(Figure 22). Most options in the commercial area involve optical data gathering to 

some capacity. Optical cameras were wholly ruled out due to many factors including 

the perception of privacy on the part of consumers, regardless of the assurances of 

sensor vendors. What remained was Photovoltaic Infrared (PIR) sensors. These 

sensors were in common domestic use, the technology was mature, the data they 

provided was incapable of personal identification, and they were demonstrated to be 

sufficiently accurate. 

Once an appropriate IoT sensor was identified based on PIR sensors, these sensors 

were trialled in an active nonclinical healthcare space managed through a room 

reservation system. Data on the actual use of the target space was compared with the 

room reservation system. This comparison demonstrated several differences between 

‘intended use’ and ‘actual use’. Results from this initial trial were published in the 

Special Issue on Artificial Intelligence in Health Informatics [1].  This article is 

published in journal: Health Information Science and Systems and contains additional 

data visualisations (Appendix 2).  

Sensors used in the nonclinical healthcare space noted above were then applied across 

an operational multidisciplinary clinic space in a regional tertiary teaching hospital. 

The PIR sensors collected data on patterns of clinical occupancy for 25 months before 

they were de-commissioned. Through the previous installation and more than 2.7 

million data points gathered in the operational clinic, the first research question had 

been answered. The capacity of IoT devices appropriate to collect human activity 

data, from a research ethics perspective, within high-privacy spaces was confirmed. 

The dataset by itself however was insufficient to accomplish the goal of optimising 
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clinical space utilisation. The data needed to be transformed into information (Figure 

6).  

To extract meaningful information from the large dataset created by the IoT devices, 

more work was required. IoT data was presented in a dynamic, human-centric 

dashboard format including a floor plan of the space. The dashboard allowed human 

exploration of clinic occupancy data and facilitated human-based identification of 

low-occupancy periods within the clinic. This data, when combined with human 

intuition using the data dashboard, answered the second question in this phase: 

humans can gain insight into historical patterns of clinical space utilisation by 

interacting with IoT data. Without human interaction however, the data collected by 

these devices was challenging to put into action. 

To increase the actionability of the information extracted from the IoT-based clinical 

occupancy data, the tools of machine learning (ML) were applied to the data. These 

tools were applied to explore their capacity to predict future opportunities to optimise 

clinical space utilisation. Through third-party data science support, future vacancies 

and other patterns of occupancy were predicted through the training of a standard 

KNN algorithm. An accuracy of 82 per cent was demonstrated as possible. This result 

was achieved by third-year computer science graduates with a basic understanding of 

ML in two weeks with minimal guidance. Their accomplishment suggests that the 

accuracy rate could be improved by applying the labour of experienced data scientists. 

Though higher accuracies would be preferable, this result was sufficient to answer the 

research question, that it was possible to predict future utilisation patterns from 

historical data. Accuracy could be improved through future work. 

In this subsection, the three research questions driving phase I were answered. IoT 

devices can collect human activity data within high-privacy clinical areas. Humans 

can extract meaningful information from this data. Finally, it was possible to predict 

future patterns of human activity using this data. Once the capability of these 

technologies was demonstrated, the question remains: should they be used? To 

address this concern, staff were asked to provide feedback on their opinions and 

perceptions of using this technology in operational healthcare settings. 
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5.2.2 Interviews and Survey – staff feedback 

Staff opinions were sought through a series of one-on-on interviews. Following the 

interviews, an all-staff survey was undertaken. In this subsection, a discussion is 

provided combining results from both interviews and survey research in answering 

the associated research questions.  

The first area of inquiry in this phase was whether staff felt it was appropriate to study 

space utilisation in clinical environments using IoT devices. Staff were asked about 

their opinions associated with two different kinds of data collection in the interviews: 

human data collection and electronic data collection. Though there were some 

positives associated with human data collection, such as the ability to provide context 

to the data, opinions were more favourable to electronic data gathering. Therefore, the 

interview responses answered the first research question in this phase: healthcare staff 

considered IoT devices appropriate to study space utilisation in clinical environments. 

As healthcare environments were the personal workplaces of healthcare staff, it was 

also considered critical to understand how staff felt about being monitored by these 

devices. 

Subtleties contained in interviewee responses suggested further nuances contained 

within ‘how do you feel’ responses were required. These responses were a mixture of 

emotions ranging between feelings on the appropriateness of IoT device installation to 

personal responses to working under their observation. Broadly speaking, working 

under the observation of IoT devices was generally positive with several caveats. 

These caveats were tied not only to personal concerns, but to a range of staff and 

patient concerns. Prevalent among these concerns were issues of trust, privacy, 

context and perhaps most importantly, the need for highly transparent and rigorous 

governance processes underpinning these generally positive feelings. The research 

question could therefore be answered:  staff were generally comfortable being 

observed by IoT devices gathering human activity data in their workplace, however 

this support requires assurance that concerns about trust, privacy and context were 

rigorously managed through a robust governance process. Most responses were asked 

when interviewees were considering low-density data gathering, such as ‘occupancy’ 
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data (Figure 22). As the level of data density increased, the level of support for 

working under the observation of IoT devices changed. 

5.2.2.1 Alignment between interview and survey 

The results from the all-staff survey generally matched the interview responses. The 

all-staff survey sought to separate ‘how do you feel’ questions into two distinct but 

important categories. The first was a question of how appropriate staff felt it was for 

different levels of data be collected by IoT devices for the purposes of optimising 

clinical space utilisation in a clinical setting. Second was how comfortable staff were 

working under the observation of IoT devices collecting increasingly dense data on 

clinical space utilisation. Both categories of responses reflected general sentiments 

picked up from the interviews, that as data density increased, sentiment decreased 

along a generally linear path. The data from the two themes, appropriateness and 

comfort, diverged at the identity level of data density, which was the highest density 

category discussed in this research project.  

Interview data suggested an overall ‘uptick’ in sentiment, which appeared when 

considering the collection of ‘identity’ data. This deviation within interviewee 

responses did not match the hypothesised linear progression from positive to negative 

sentiment as data density increased. The deviation was matched by survey responses 

on the appropriateness of collecting high-density data. Considering their own comfort 

level working under high-density data gathering, staff opinions more closely matched 

the linear progression from positive to negative sentiment. This suggests that though 

staff sentiment increased for the collection of identity data, they didn’t necessarily 

feel as positive about working under constant observation of such high-density data 

collection. Therefore, the final research question can now be addressed: as the level of 

human activity data gathered by electronic devices increased, there was no universally 

held opinion on the limit to staff comfort levels.  

The previous phase of work demonstrated the capacity of IoT devices to collect data 

on human activity levels within high-privacy clinical areas. Also, phase I activities 

confirmed it was possible to identify optimisation opportunities within this data using 

both human and electronic data processing. Once this capacity was confirmed 
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however (was it possible?), questions about the feasibility of these systems remained. 

These questions were associated with the sentiment of those who inhabit these spaces 

daily (should it be done?). Through interviews and an all-staff survey, this research 

project identified that staff felt comfortable with low-density electronic data collection 

for the purposes of optimising clinical space utilisation. This comfort was however 

tied to the consideration of key caveats described earlier. As data density increased, 

sentiment for both appropriateness and acceptability (comfort) trended negative. The 

exception to this trend was a slight deviation towards the positive when considering 

the appropriateness of collecting identity dat. However, this deviation was not found 

when staff considered their personal comfort levels working under such high-density 

data gathering conditions. 

5.2.3 Conclusion 

This chapter subsection has summarised the activities and findings driven by the 

generative research questions underpinning this research project. IoT devices were 

demonstrated capable of identifying opportunities to optimise clinical space 

utilisation. Also, at low levels of data-density, staff considered the use of this 

technology both appropriate and acceptable for the stated purpose of optimising 

clinical space utilisation, with caveats. As the questions driving this research project 

have now been answered through the rigorous exploration, experimentation and 

analysis summarised in this section, this research project was considered fully 

resolved. Next the outcomes from this inquiry have been placed in the context of 

existing research literature. 

5.3 Key findings set within the context of the other related research 

This section sets the findings of this research project within the context of existing 

literature. As a multidisciplinary inquiry, no single canon of literature can be expected 

to provide a suitable context for this research. Consequently, research from multiple 

individual and combined disciplines was necessary. After a summary of data 

gathering methodologies, the collective focus of these research elements has been 

explored in comparison to the focus of this research project. Finally, research from 

other disciplines has been presented to provide further context to aspects of the 
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findings from this project that have not been explored by previous researchers focused 

on optimising healthcare service delivery.  

5.3.1 Data collection methodologies 

There have been many attempts at collecting data on the efficient operation of people 

undertaking activities within outpatient clinics. The following summary of issues 

encountered by previous researchers provides a backdrop to the alternative method of 

data collection demonstrated possible through the findings of this research. The 

methods of data collection provided in this thesis provide a viable alternative that 

addresses most, if not all, these issues.  

5.3.1.1 Manual data gathering 

Many previous researchers have addressed the issue of improving the efficiency of 

healthcare service delivery in outpatient facilities. These previous research efforts 

predominantly relied on manual data gathering in some form, which appeared to have 

also been their common challenge. Manual data gathering was human-resource 

intensive, repetitive, expensive, relies on human judgement and was therefore prone 

to human error. Direct human observation of other humans also gives rise to 

perceived behavioural changes. This was described by interviewees as an expected 

response, if not a direct example, of the so-called ‘Hawthorne effect’.  

Due to the high cost of human labour conducting these surveys, they were typically 

short-lived with nearly all previous studies lasting under one month. These ‘snapshot’ 

surveys cannot accurately reflect the dynamic nature of an adaptive modern 

healthcare system. As consumer demands were unlikely to remain constant, the 

method of conducting these surveys needed to change. Despite the need to modernise, 

recent advice from the National Health Service in the United Kingdom still presents 

patient flow guidelines based on historical data [143]. Also, recent work 

acknowledges the ongoing challenges of collecting clinical ‘performance data’: 

‘Performance measurement is ultimately useful as an approach for obtaining an 

accurate and meaningful picture of patient flow and helping determine where 

improvements can be made. Unfortunately, many hospitals have considerable 

difficulty making such measurements due to inadequate computer information 



 

205 
 

systems or due to not having the financial resources to create and operate the 

necessary information system.’[144]. The results presented in this thesis suggest one 

potential option to obtain data on aspects of clinical flow with limited up-front and 

ongoing costs. 

5.3.1.2 Outpatient process improvement through emerging technology 

Research continues in the use of RTLS and other technologies, exploring optimisation 

opportunities in clinical spaces. Identifying the location of occupants within 

healthcare spaces through Bluetooth is becoming more common [145], though 

precision remains a challenge. Research incorporating user-worn ‘tags’ remains a 

common way to explore  patient flow, as in one recent paper using UWB tags and 

building-mounted readers entitled ‘Understanding Patient Flow using IoT in a Pop Up 

Eye Clinic’ [146]. As the latter paper’s title demonstrates, the distinction between 

RTLS and IoT may not be widely appreciated. Despite advances in the RTLS field, 

challenges associated with the more human aspects of implementing this type of 

research into practice remain as noted in Chapter 2. Utilising remote sensors within 

the built environment as demonstrated by the PI in this thesis removes many 

stochastic variables introduced when involving humans into the data collection 

process. 

5.3.2 A shift in focus: from time to space 

In the literature associated with optimising outpatient healthcare service delivery, 

there had been many research projects exploring aspects of time [45, 147-150]. These 

include exploring ways of optimising patient flow, clinician ‘uptime’ and other 

aspects of how activities take, and in what order. Patient flow activities in this 

definition include research associated with the movement and timing of patients 

before arriving at the clinic, or during their stay at the target outpatient clinic. 

Focusing on the time clinicians spend on various activities was another common 

research method. Clinicians had been asked to self-report timing, record activities in a 

logbook, carry or swipe cards or carry/use carefully calibrated technology correctly. 

In both kinds of study, the focus was on optimising aspects of time with spatial 

resources playing a consequential bit part.  
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There have been other studies on efficiency of spatial layout, such as their 

architectural design, but these studies focused on the organisation of space to improve 

travel time and clinic functionality [62, 147]. Despite limited representation in the 

literature, a small body of researchers are exploring optimisation of physical layouts 

within outpatient clinics, such as the use of network simulation [151] and genetic 

algorithms [148]. Introducing remote IoT sensors into studies seeking to optimise the 

physical design of clinics may help bridge the gap between simulation and practice. 

By necessity these studies were focused on how spaces were used through time, but 

research focused on the utilisation of space itself remains relatively rare. Again, 

challenges with data collection may have informed this work. The results of this 

research project have demonstrated the capacity of IoT devices to collect privacy-

preserving data on human activity within clinical spaces. Hopefully, now that this 

capability has been demonstrated feasible, appropriate and acceptable, research 

focused squarely on the utilisation of space can expand.  

5.3.3 IoT devices and presence detection 

There is a growing body of literature on the use of existing and bespoke sensors and 

IoT devices to detect aspects of human activity within the built environment. Some 

researchers use thermal emissivity like the PIR and/or thermopile sensors used in this 

research [152]. Others are focused on visually representing the location and utilisation 

of equipment and spaces [113]. Most focus on standard building sensors to detect 

occupancy at the scale of whole buildings [82, 85, 86], floors [3], and individual 

rooms [87] depending on the level of infrastructure in place. The latter was an 

advanced, LEED-accredited building with established sensors, so would be 

challenging to retrofit to the target healthcare facility without sufficiently 

compartmentalised mechanical systems.  

Determining presence using ultrasound, radar and infrared energy were the most 

promising privacy-preserving technologies in the space. This research project used 

sensors based on human infrared (IR) emissivity, but with more development any of 

these three sensor types, or a combination of them, could be utilised. For example, 

recent research using ultrasound exceeds the potential of IR systems to remotely 

identify hidden room occupants, such as under a table, while monitoring their vital 
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signs [153]. The latter’s privacy-preserving approach to human activity detection is 

particularly promising for future clinical applications.  

As tangential research on digital privacy has shown, humans demonstrated a 

willingness to give away their privacy in return for relatively small returns [154, 155]. 

Without sufficient research in the area of privacy-preserving data gathering on the 

utilisation of space, cameras and computer vision [156] may continue dominating this 

nascent field of research. If these cheap and powerful, yet invasive means of 

collecting space utilisation data continue unchecked, the consequences could be great. 

Once society accepts this path, it may become overly tempting to start combining this 

data with other data sources, applying ML to it and shifting individual behaviour to 

align with corporate or personal agendas. Electronic monitoring of human activity in 

the workplace of any kind must walk a fine line between the need for data and the 

potentially negative human impacts of gathering this data. Corporate entities must 

work hard to gain and maintain the trust of their employees if space monitoring for 

the purposes of optimising utilisation is to realise its potentially high positive 

contribution to society. The data collected, and the subsequent data artefacts created, 

must be tightly controlled through rigorous and transparent governance processes. 

Fortunately, the healthcare sector is well placed to understand the sanctity of personal 

information, and as such is an ideal place for trusted space utilisation research to 

blossom.  

5.3.4 Data artefacts and ML  

Large datasets, such as those generated by IoT devices, can be difficult to 

comprehend for researchers unfamiliar with the tools of data science, and 

impenetrable for nontechnical frontline users. The several data artefacts used in this 

research have allowed this large dataset to be ‘explorable’ by both nontechnical 

human frontline workers, as well as the algorithms of ML. Human intuition applied to 

millions of data points through data artefacts can lead to a previously impossible level 

of engagement directly with the data. Direct engagement with visualised data can set 

up an ‘iterative process of generation and evaluation of ideas in digital media, as well 

as planning, execution, and refinement of the associated actions’ [157]. These 

artefacts combine the depth and breadth of data to be combined with the intuition, 
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context and judgement of human operators leading to personal insights not possible 

through descriptive analytics. As interesting as this exploratory process has been, 

human analysis of large datasets was further complemented when combined with the 

predictive capacity of ML. Applying ML to large datasets, combined with data 

artefacts such as data dashboards, provides nontechnical users with powerful tools for 

creative insight and problem solving [158]. Through iteration with these artefacts, 

humans can extend their capacity. These artefacts can provide support in forming 

opinions, providing utilisation feedback, formulating optimisation plans and gauging 

the effectiveness of any improvement strategies after implementation.  

Unfortunately, all the above potential demonstrated by this research would be moot if 

the humans generating the activity observed by the IoT devices rejected them. This 

rejection could take the form of IoT devices being considered inappropriate for use in 

clinical environments. These devices may also generate a sense of oppression and 

feelings of distress working under the unwavering electronic observation constantly 

collecting data on human activity for the government. Therefore, understanding the 

human perspective on these devices in both the workplace of clinical workers, and in 

the clinical environments they operate within, was critical to demonstrating the 

effectiveness of these systems. 

5.3.5 Human responses to space monitoring  

Research exploring human perspectives on workplace monitoring is reasonably 

common. In summary, as the degree of electronic monitoring in the workplace 

increases, so does the negative impact on human wellbeing. In one early study from 

1992, workers being personally monitored for the purposes of performance evaluation 

reported ‘working conditions as more stressful, and reported higher levels of job 

boredom, psychological tension, anxiety, depression, anger, health complaints and 

fatigue.’ [159]. This finding was reinforced by recent research into digital workplace 

surveillance which underscores the need for rigorous policy and governance 

enshrining transparent data collection and limiting the use of this data beyond the 

stated means of optimising clinical space utilisation. Should panoptic workplace 

surveillance be introduced to collect personally identifiable information, used to 

monitor personal performance, dystopian outcomes may emerge.  The papers 
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summarised in this subsection provide context to the findings of this research project 

within contemporary literature. Next an exploration of future work emerging from this 

research project is provided followed by the implication of these findings on current 

practice.  

5.4 Future research work 

This section explores potential avenues of exploration to extend this research project. 

Potential extension options are abundant, given the nascent nature of the architectural 

informatics research field, to which the PI humbly suggests this research belongs. 

Though it may be trivial to expand implementation beyond healthcare, maintaining 

focus on optimising elements of the healthcare system in the short-medium term 

offers the greatest societal benefit. Opportunities defined below are not limited to 

research but include policy and commercialisation to potentially expand any emergent 

suite of technologies across the host state, and beyond. 

5.4.1 Translate research 

The favourable outcomes of this research are ripe for implementation research to 

transition the observed and predicted opportunities to optimise clinical space 

utilisation into an operational reality. The first suggested research activity, including 

commensurate HREC approvals, would be to expand the IoT-based observational 

network to consult rooms across two adjoining outpatient clinics. The intention of this 

expansion is to see whether access to this data would improve the utilisation of 

clinical spaces. An initial baseline of six months would establish business as usual 

prior to allowing any data access. During the initial observation period, policy on the 

use of electronic monitoring in healthcare spaces would be developed, and procedures 

with associated tools for reserving and managing clinical spaces would be established. 

These tools support the application of temporary contracts for space management 

between groups.  

The research question to be explored would be as follows:   

1) Does open access to clinical occupancy data alone lead to improved 

clinical space utilisation?   

2) Can a proof-of-concept shared system for clinical space reservation/release 

support interdivisional space sharing? 
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The above works are planned to be resolved within 12 months of implementation. 

During the second half of this experiment, the proof-of-concept IoT device 

established during this current research project can be advanced into alpha and beta 

testing in preparation for market-ready solution release. Finally, if the translational 

and developmental aims above can be achieved, additional funding could be sought to 

expand these works across an operational hospital. After expansion across at least one 

campus, staff can be re-surveyed to confirm ongoing support for space monitoring. 

5.4.2 Efficient clinical spaces 

Future work using the thermopile sensor could capture vector-based datasets 

exploring paths of travel within a study area taken by staff performing different roles 

such as doctor, nurse, admin officer etc., to discern activities undertaken in the space. 

By identifying ‘activity zones’ within the space and recording human presence within 

these zones, it may be possible to explore efficiency and training opportunities. This 

proposed research may extend the capacity of time-motion studies commonly found 

in the literature and provide the capacity to demonstrate efficiencies through direct 

measurement from IoT devices.  

5.4.3 Policy development for use of IoT devices in healthcare 

Policy development may be critical to supporting future implementation of this kind 

of translational IoT-based research within the public healthcare system. Due to the 

emerging and evolving nature of this technology, healthcare leaders still have the 

opportunity to create policies supportive of the introduction of these technologies 

while ensuring consumer privacy and safety. Thoroughly considered policies would 

support multidisciplinary translational work of researchers, industry leaders and 

healthcare providers while safeguarding positive outcomes for healthcare consumers.  

The potential benefits of IoT devices and ML to provide personalised medicine and 

improved healthcare journeys for consumers were high, but so were the potential 

negative effects. These potential dangers included data breaches, misleading data, 

erroneous predictions and potential physical and psychological harm. Creating 

supportive policy defining expectations and obligations for potential researchers and 
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developers can support translational research that safeguards consumer protections, 

while enabling improved healthcare consumer outcomes.  

5.5 Implications of findings 

The implications of this research project are wide ranging. These implications emerge 

from the research outcomes. The final section of this document explores the 

implications of the research outcomes for practice, policy and education.  

5.5.1 Implications for practice 

This research has demonstrated the capability of IoT devices to support the 

optimisation of clinical space utilisation. Frontline managers now have the capacity to 

optimise the use of clinical spaces in their care and demonstrate this efficiency to not 

only their executives, but also their peers. Clinical planners can predict future vacancy 

rates across multidisciplinary clinics, enabling the development of optimisation 

strategies for discussion and approval. Once strategies have been conceived and 

implemented, the suite of technologies demonstrated in this research can provide 

feedback on the effectiveness of implemented strategies. This demonstrated capacity 

to sustainably identify historic patterns of clinical occupancy and predict future 

clinical vacancies was a world first, as far as can be determined. A solution to the 

challenges of collecting privacy-preserving human activity data within clinical spaces 

for the purpose of optimising their utilisation has now been demonstrated. Optimising 

clinical space utilisation increases the healthcare services deliverable through existing 

healthcare spaces. Increasing healthcare service delivery leads to improved access to 

healthcare services for consumers, in turn leading to earlier diagnosis or treatment 

opportunities which can delay or reduce reliance on intensive and costly downstream 

services. The cost of providing healthcare services was also reduced by expanding the 

physical footprint of the healthcare system only when it can be demonstrated that 

existing facilities are being used efficiently.  

5.5.1.1 Opportunities for policy development 

The potential positive implications for not only the supporting healthcare system are 

substantial. Beyond the host healthcare system however, these results can be directly 

translated to other healthcare services internationally. These positive implications can 



 

212 
 

also be extended to any large estate holder, such as the higher education sector, at 

relatively low cost.  

Despite the large potentially positive implication for practice, a brief note on the 

potentially negative implications is required. The digital age has brought about 

incredible opportunities for positive change into society but has also been eroding our 

collective sense of privacy. In implementing any of the technologies demonstrated 

through this work, researchers must remain focused on preserving the privacy of the 

occupants of target spaces. In the absence of a high priority on personal privacy, any 

positive outcomes would be ultimately undermined. Without rigorously maintaining 

human privacy while monitoring human activities, progressing the results of this 

research project could lead to oppressive behaviour, and a dystopian future for 

society. Transparent implementation of well-conceived, privacy-preserving policies, 

managed through rigorous governance, can realise the positive potential of this work 

while avoiding dystopian consequences.   

5.5.1.2 Challenges for policy development  

Careful consideration of policies maintaining personal privacy while electronically 

monitoring high-value spaces was considered critical to the successful 

implementation of the results of this research project at scale. Overly dense data 

collection, or the collection of personally identifiable data, could quickly shift the 

nascent field of ‘space utilisation’ into a dystopian nightmare. The creation of 

carefully considered, consultative policies, supported by rigorous governance, is 

considered key to realising the positive potential of this work while avoiding any 

negatives. Unfortunately for society, research has shown that humans are prone to 

giving up their privacy in exchange for minor conveniences [155, 160]. Therefore, 

policy must concentrate on the point of data collection in developing policies that 

allow electronic monitoring but maintain personal privacy. Staff feedback gathered 

through this research strongly suggests that a balance is possible. Policy makers can 

enshrine privacy protection within the data collection process. By maintaining a focus 

on privacy from the outset, subsequent policies and procedures maximise the positive 

utility of data collection, while minimising negative downstream impacts.  
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5.5.2 Implications for education  

With the growing adoption of digital technologies in the delivery of healthcare 

services, clinical educators should focus on health informatics. Education in the 

fundamentals of data collection, management and analysis can support a general 

understanding of the tools that healthcare providers can apply through their careers. A 

general awareness of the tools of data science can provide an understanding of the 

underlying technical and potential ethical implications of how this data could be 

gathered or subsequently used. This grounding would prepare students with a broad 

understanding of the technology and tools that may be encountered through their 

careers in the health profession. Ultimately, health informatics can broaden potential 

employment opportunities and identify further education pathways that may otherwise 

go unnoticed. An understanding of the basic tenants of ML applied to health 

informatics may support the contextualisation of AI decision-support tool 

recommendations that may become commonplace in future healthcare settings. 

Computer science educators should integrate the experiences and enthusiasm of 

tertiary computer sciences education through internships within the public healthcare 

system. The combination of established experience and practice with youthful 

perspectives and the latest technologies combine to create a dynamic and rewarding 

experience for both parties, who together can solve problems neither group could 

accomplish independently. Exposure to the power of informatics to improve service 

provision was also an appropriate component in the curriculum of health care 

providers, at both undergraduate and postgraduate levels.  

In the nascent field of IoT engineering, this research has many implications. 

Technically, students should consider the long-term maintenance of their IoT devices. 

Even devices with long battery lives become unwieldy when spread across large 

institutions with thousands of instantiations of bespoke IoT devices. Each battery that 

requires replacement requires natural resources and energy to create, and through its 

lifetime, these devices may require substantial effort to maintain. IoT engineering 

educators are also encouraged to ensure students receive sufficient grounding in the 

ethics of IoT development. This could include the implications of personal medical 

data breaches, the potential for hacking medical devices for nefarious purposes, and 
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the ethics of collecting and potentially cross-referencing personally identifiable data. 

In the case of this research, the IoT devices selected were incapable of collecting 

personally identifiable information, even if fully compromised. This ethical grounding 

would be an increasing benefit to society as IoT devices become ubiquitous as 

technology advances. For the development of future IoT devices, a high priority on 

human-centric concerns was recommended, to be considered equally alongside 

technical aspects of device design. Quoting from one of the PI’s publications pertinent 

to this subsection: 

For example, architectural education could prepare future architects to use 

sensor technology and edge computing to engage with their creations as they 

evolve through time. Architects could expand their practice from strictly 

‘birthing’ the built environment to an advisory role providing support through 

the full building lifecycle. This change is analogous to obstetrics clinicians’ 

focus on ‘birthing’, compared to general practitioners’ broader participation 

across the full lifespan of their patients.  [137] 

5.5.3 Mapping the expanding and fracturing field of architecture 

The challenges facing architectural education are many. As the scope and 

responsibility of the architectural profession continues to expand and diversify, 

educators also need to prepare future architects for the emerging impacts of ‘smart’ 

buildings. Rather than creating additional pressure on the profession, the use of IoT 

devices in the built environment has the potential to be a unifying force in an 

otherwise fracturing field [161]. Architects are ideally positioned to shape the 

emergence of smart building technology with a focus on the ethical introduction of 

this technology to society. Moreover, architects have a professional obligation to 

ensure their creations avoid enabling the dystopian future discussed previously in this 

chapter, to the best of their ability. Architects grounded in the fundamentals of IoT-

enabled smart buildings are ideally positioned to maintain an ongoing connection to 

their creations, guiding the evolving use of the building through time. Without 

engagement by the architectural profession with the inevitable rise of IoT devices in 

the built environment, smart buildings may ultimately lead to further fracturing. This 

research has demonstrated IoT devices capable of providing insight into how the built 

environment was used through its lifecycle. As smart buildings become ubiquitous, 
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and artificial intelligence becomes increasingly powerful, architectural educators 

currently have a limited opportunity to engage with this emerging technology before it 

becomes yet another pressure point for the industry. It is not too late for architectural 

education to engage with this technology and prepare future architects to master the 

nascent field of Architectural Informatics.  

5.5.4 Idealised Scenario 

Prior to the finalisation of this thesis, it may provide value to project idealised 

scenarios potentially emergent from this research.  If cost were no option, non-contact 

ubiquitous sensors collecting ambient, non-personally-identifiable human presence 

detection would be deployed across all spaces every healthcare system.  Every clinical 

space within every system could be compared for their respective utilisation in an 

open and transparent manner. Clinical service managers would be provided robust 

tools to optimise the use of their spaces, allowing them the capacity to demonstrate 

their effective management of this critical resource. Utilisation data would be 

combined with building information models [78], and extend facility management 

systems [113], to manifest the ‘smart hospital’ as a digital twin [114] of operational 

healthcare facilities.  Semi-autonomous digital agents trained on the rich, well 

organised data would interact conversationally with key stakeholders on the optimal 

use of these scarce spatial resources.  Distribution of new physical and financial 

resources to managers of clinical spaces would first require a demonstration of 

existing resources being used efficiently. 

The combined effect of realising the idealised scenarios above would be powerful.  

The technological barriers towards implementation of such a system are challenging 

but viable.  Without rigorously embedding transparent ethical practices to the core of 

the system, this ideal scenario may become dystopic.  Therefore, careful consideration 

must be given to the robust development of strict policies and procedures governing 

the ethical collection and management of this data. If nothing else, this thesis is a call 

to action for the establishment of an ethical basis for spatial management systems as 

the technology is advancing regardless.    
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5.5.5 Closing remarks  

Healthcare staff surveyed through this research identified broad support for low-

density, non-personally-identifiable electronic monitoring of clinical spaces. 

However, this support was underpinned by an expectation of rigorous governance 

managing transparency, integrity and privacy preservation guided by informed and 

well considered government policies. As the government custodians of the medical 

information on its citizenry, the healthcare system was an ideal starting point for this 

research. If these concerns can be addressed by building and maintaining appropriate 

levels of trust, the potential gains from optimising clinical space utilisation for society 

can be realised. Through optimised clinical space utilisation, more healthcare services 

could be delivered through the same clinical spaces, delivering healthcare services 

sooner to those that need it. Increasing early access to healthcare services also reduces 

demand on more intensive and expensive downstream treatments which can cause 

bottlenecks at healthcare service delivery points and impact the timely delivery of 

healthcare services. 

Finally, with optimised clinical space utilisation, the need to continuously expand the 

physical environment of the healthcare system was reduced. This reduction could 

potentially save the Australian taxpayer billions of dollars by avoiding construction of 

new healthcare spaces. Trillions more could be saved by eliminating the cleaning, 

servicing, repairing and otherwise operational demands required by these additional 

spaces. In summary, this research project has demonstrated that IoT devices are 

effective, appropriate and acceptable (with caveats) in supporting the optimisation of 

clinical space utilisation in live healthcare environments.   
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Abstract 

Six percent of the total cost of healthcare delivery in Australia is from buying, building and maintaining physical assets. 
Current practice does not measure the efficient use of existing clinical spaces prior to making funding decisions for 
service expansion, remodeling or relocation. Healthcare service delivery can be increased through existing assets by 
optimizing the use of clinical space. The wait times for healthcare service consumers and capital expenditure pres-
sures could be reduced, which would result in increased funds available for frontline services. Sensor technology has 
been used to study aspects of time in ambulatory outpatient clinics using Infra-red Tags or Radio Frequency Identi-
fication tags. This paper proposes the use of Internet of Things (IoT) technology to assist in the optimization of high-
value clinical spaces and presents phase one of the project where a trial was held in a non-clinical location to evaluate 
sensor performance. In Phase two, sensors will be installed to count people across an ambulatory outpatient clinic 
in a live public healthcare environment to understand clinical space utilization and inform decision-makers. The data 
produced by the sensors on room use is processed for visualization in “dashboard” format so frontline and executive 
staff have evidence-based decision-making support for space optimization strategies. This paper presents the phase 
one trial and preliminary results that show the disparity space utilization patterns between the IoT sensed occupancy 
data with the current room reservation system in a non-clinical space.

Keywords: Internet of Things, Healthcare, Resource utilization, Optimization people counting, Ambulatory 
outpatient clinic

© Springer Nature Switzerland AG 2018. 

Introduction
Australia spends 10.3% of the Gross Domestic Product 
(GDP) on the provision of healthcare services, which is 
over $161 billion annually [1]. Capital expenditure on 
healthcare facility expansion, renovation and mainte-
nance exceeds $9.5 billion annually, accounting for 6% 
of healthcare spending in Australia [1]. Frontline man-
agers of outpatient clinics cannot easily demonstrate 
whether their service is operating below or above capac-
ity when applying for funds. Executive-level decision-
makers cannot identify underutilized spaces to inform 
evidenced-based strategic investment decisions or dem-
onstrate the effectiveness of improvement strategies once 
implemented.

The throughput of healthcare service consumers in 
existing facilities can be increased if the occupancy of 

clinical spaces is optimized. If the provision of services 
through existing assets can be increased, the pressure to 
build or renovate assets and the cost of healthcare ser-
vices is reduced the growth of capital expenditure can be 
slowed. Further, funds that were previously targeted for 
facility expansion and associated maintenance regimes 
can be made available for frontline healthcare services.

The main focus in the current literature are aspects 
of time in outpatient clinical areas, such as outpatient 
scheduling [2] or patient flow [3]. Recent studies typi-
cally combine data with clinic simulation to produce 
improvements, most commonly using discrete event 
simulation [4]. However, data-gathering remains much as 
it did 20 years ago [5]. Research that focused on aspects 
of patient-flow gathered data using sensor technologies, 
such as the use of Infra-red (IR) badges [6] or Radio Fre-
quency Identification Tags (RFID) [7], where tag loss, high 
operational costs and short study periods were prob-
lematic. Research in this field predominately relies on 
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manual data gathering techniques, for example, watches 
and paper templates [5], with direct observation [8] and 
self-reporting noted as “particularly weak” [9].

This paper presents the preliminary trial of the novel 
use of Internet of Things (IoT) technology to assist in the 
optimization of clinical space. In this first phase, two 
motion-detection sensors were installed in a non-clinical 
trial location to demonstrate the sensors’ effectiveness in 
demonstrating “room as used” versus “room as reserved”. 
Data from this non-clinical trial location will inform 
phase two of the project, which is a wider installation of 
multiple sensor types across operational clinical outpa-
tient environments within a healthcare facility.

The project aims to extend the installation from phase 
one into live clinical outpatient environments in phase 
two to provide time-stamped human occupancy data. 
The commercially available thermal sensors will be 
deployed at room entry points of high-value ambula-
tory outpatient clinical spaces in a 24-h operational pub-
lic healthcare facility. Three types of clinical rooms with 
distinct functions will be monitored for occupation and 
utilization, representing the highest-value clinical spaces. 
Patterns of occupation and use in these clinical spaces 
will be explored using the IoT devices.

Background and methods
The clinical spaces
The clinical spaces targeted in this project’s phase two are 
broken into three primary categories: (1) consult rooms; 
(2) education rooms; and (3) treatment rooms, which are 
the three highest-value spaces to patients, clinicians and 
management (Table  1). Notably, there are other space 
types that support the operation of an outpatient clinic, 
including waiting rooms, reception, corridors, among 
others. However, the three clinical spaces are the primary 
care areas in a typical outpatient clinic, and cost approxi-
mately five times what typical commercial spaces cost to 
build and maintain.

Internet of Things: planned sensor installation
IoT is the applied use of devices in the physical world that 
can extract information from raw sensor data to affect 
changes either directly through switches, valves etc., or 
indirectly through information “dashboards” to human 
decision-makers. IoT devices can be designed to be auto-
mated, cost-effective, unobtrusive and accurate long-
term with negligible ongoing maintenance.

The three sensor types to be deployed during the final 
phase include: (1) infra-red break-beam; (2) photovol-
taic infra-red (PIR); and (3) photovoltaic array (Fig.  1). 
Infra-Red Break-Beam sensors, referred to “sensor type 
1” or “S1”, are a low-cost motion detector that is usually 

Table 1 Types of outpatient clinical rooms targeted for study

Type Description Typical images

Type 1: consult room Rooms used for observation/diagnosis where patients discuss health 
issues with healthcare providers & where physical contact may require 
clinician hand washing between patient visits, typically containing an 
examination table

Type 2: education room Rooms where diagnoses or procedures are explained to healthcare 
services consumers through either interaction with healthcare service 
providers or via multi-media presentation, and appear as a typical 
office space

Type 3: treatment room Functions as an aseptic room where clinicians directly apply healthcare 
services onto/into patients’ bodies. These rooms often smell like 
disinfectant and typically contain bed trolley, hand basin, basic stores 
and a preparation area
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installed in the doorway to count movement in and out of 
a room. These sensors (S1) produce high data quality and 
are battery-operated but are not solely suitable for clini-
cal spaces because they are located at the corridor side 
of doorways, so both staff and public occupants are con-
scious of being monitored. Also, S1 sensors are mounted 
at an accessible height on the ‘corridor’ side of most 
rooms (due to inward door swing) and consequently are 
prone to damage, theft or tampering.

The PIR sensors are referred to “sensor type 2” or “S2” 
and are also a low-cost motion detector with a low-cost 
installation strategy of adhesive tape to ceiling surfaces. 
The PIR S2 data resolution is low because it tracks only 
occupancy without data on activities and utilisation. 
However, the clinical suitability of the PIR sensors is high 
due to the low purchase cost, low cost of installation (sur-
face adhered), low-power (battery operated) and discrete 
mounting location (ceiling-based) that supports broader 
coverage with fixed budgets. Notably, while the data is 
low-resolution, the level of information is a significant 
improvement on current room monitoring techniques.

The third sensor type, “S3”, is the photovoltaic array, 
which is a high-cost people counter. The deployment will 
have a moderate to high impact as the installation of this 
relatively expensive sensor requires mechanical fasten-
ing to and through existing ceilings and constant 240 V 

power supply. The data resolution and the suitability for 
clinical deployment is high due to the value that the abil-
ity to count occupants passing under the sensor adds to 
information on room utilisation.

Phase one deployment: proof of concept
As a proof of concept, phase one involved the deployment 
of two PIR S2 sensors in an administrative, non-clinical 
space to compare “room as reserved” versus “room as 
occupied” data. In the phase one trial, a high traffic room 
was required that minimized risk to patients so the sensors 
were deployed in a non-clinical room to test the effective-
ness of the sensors and compare to the actual room res-
ervation data. The two sensors are labelled “sensor A” and 
“sensor B” for the purpose of this paper and were mounted 
at shoulder height in the phase one trial space (Fig. 2).

The occupancy data from the sensors was collected 
over a 1-week period and compared to data from the tar-
get room’s reservation system. The data was combined 
into a single dataset for the consideration of “occupancy” 
for a 1-week period between 6 a.m. and 6 p.m., Monday 
to Friday. Sensor A was mounted adjacent to and per-
pendicular with the room entry door and sensor B was 
mounted approximately ¾ through the room. The out-
come of phase one is intended to inform the placement of 
sensors in the full phase two deployment (Fig. 2).

Sensor Type 1 (S1): 
Infra-Red Break-Beam
Unit Cost: $450 AUD
Installation: Low Impact 
Data Resolution: High
Clinical Suitability:  Low

Sensor Type 2 (S2):  
Photovoltaic Infra-Red
(PIR) Motion
Unit Cost: $250 AUD
Installation: Low Impact
Data Resolution: Low
Clinical Suitability: High

Sensor Type 3 (S3): 
Photovoltaic Array
Unit Cost: $2,085 AUD
Installation: High Impact
Data Resolution: High
Clinical Suitability: High

Symbol:  Symbol:  Symbol:

Fig. 1 Sensor types chosen to study outpatient space utilization across a multi-disciplinary clinic within a live public healthcare environment
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Results
The target space was Reserved (R) during the 1-week 
timeframe on average 288 min per day and Occupied (O) 
390  min per day within a daily period of 720  min (i.e., 
12  h). This room use can be expressed as a percentage 
of the daily period by R = 40.0% and O = 54.2%. Room 
occupancy data graphed versus room reservation data 
for the phase one trial room during the 1-week period is 
presented in Fig. 3. The figures changed to R = 48% and 
O = 60.7% between 7 a.m. to 5 p.m., which are the stand-
ard business hours of the healthcare system.

The greatest alignment between R and O was on Tues-
day while the greatest discrepancy was on Friday when 
the room was booked for 4  h and was wholly unoccu-
pied. These discrepancies could be due to a combina-
tion of ad-hoc meetings, inaccurate room booking, or a 
casual approach to reserved time limits. Spontaneous or 
ostensibly unplanned events may or may not constitute 
appropriate use of space depending on how the space was 
designed to support the organization.

There was disparity between sensors A and B as they 
provided different measurements for occupancy due to 
their placement in the room. As sensor B was deployed ¾ 
of the length inside the room, it recorded a subset of sen-
sor A, which was fixed at the entryway. Sensor B detected 

presence in the room only 49% and zero occupancy out-
side the occupation periods of the period recorded by 
sensor A. This could be attributed to some occupants 
not needing to move to the rear of the room, which can 
inform on the decisions of optimal internal room usage.

Reservations averaged 2.8  h in length, and gaps 
between reservations averaged 2  h. Occupation blocks 
averaged 1.7  h, and gaps between occupations averaged 
2.3 h. The comparison of these averages suggest opportu-
nities for optimization to better align reserved times with 
occupation events.

Correlations of space usage as a percentage of the daily 
maximum of 720  min is shown in Fig.  4 which demon-
strates patterns of use for this space across a typical 
week. The total average utilization, combining all occu-
pied periods, is 54% for the target week (67% with Fri-
day discounted), which suggests the target room may be 
underutilized. However, a longer study period to record 
multi-week patterns would be required to accurately 
determine utilization.

IoT devices have been demonstrated capable of pro-
viding occupancy data as the first step towards optimal 
space utilization. Bespoke measurement for individual 
rooms through IoT technology combined with accessible 
presentation of occupation data together provide critical 

Fig. 2 Floor plan on proposed clinical area illustrating the placement of the three sensors types in the three types of clinical rooms (type 1 = beige, 
consult room; type 2 = blue, non-clinical room; type 3 = green, treatment room)
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steps towards the optimization of spatial assets for large 
estate-asset owners whether in healthcare systems or 
other corporate entities in either the public or private 
sectors worldwide.

Discussion
Service improvement strategies can be better informed 
with combined “reservation” and “occupation” data 
streams that identify both peak loads and “non-attend-
ance events” in the long term. A broader study that 
includes multiple “reservable” rooms may inform policy 

changes required to implement optimization strategies. 
One example is the cancelation of reservations for un-
occupied spaces, which could allow for increased ad-hoc 
meetings.

Motion sensors, such as the PIR S2, on their own are 
appropriate for comparing how spaces are reserved 
versus whether they are occupied. PIR sensors may be 
suitable to explore “occupation” for single-person micro-
spaces, such as workstations, where occupation more 
closely aligns with utilization. However, without “people 
count” data, PIR sensors have limitations on establishing 

Fig. 3 “Room as occupied” versus “room as reserved” for non-clinical, reservable space

Fig. 4 Correlation of usage from 6 a.m. to 6 p.m
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how the spaces are used and in identifying “occupation”, 
which suggests their capacity to capture information of 
multi-person spaces is restricted. Notably, PIR sensors 
are wireless and cost-effective with a simple “stick-on/
forget” installation so there is a trade-off between infor-
mation resolution versus cost and ease-of installation.

More information is required, such as the number 
of people who physically inhabit a room, to understand 
more about the utilization of a space rather than its occu-
pation. Phase two will add count data for high-value 
clinical rooms and record a combination of sensors to 
explore both “count” and “occupancy”. The low-cost and 
portability of the PIR S2 sensors that focus only on occu-
pancy will be compared with the greater data resolution 
of the Infra-Red Break-Beam (S1) sensors combined with 
Photovoltaic Array Sensors (S3) to gain a more complete 
picture of ‘utilization’.

Conclusion
This paper presented phase one of a project that aims to 
explore the use of IoT to support evidence-based deci-
sion-making for optimization strategies to improve the 
use of spatial assets in healthcare services. Phase one 
involved the deployment of two PIR sensors in a non-
clinical healthcare space to compare “room as reserved” 
versus “room as occupied” data as a proof of concept. 
The data from the sensors showed a distinct disparity 
between the actual room occupation and the room reser-
vation system. The results from this phase show that PIR 
motion sensors applied alone are a suitable method to 
understand patterns of occupation. However, additional 
information on people count is required to optimize 
space use, which will require a combination of motion 
detector technologies.

Phase two is future work that proposes to incorpo-
rate multiple sensor types to compare and contrast 
“count” data with “occupied” status seeking a balance 
between data resolution and purchase/installation costs. 

This greater resolution of automated IoT data can bet-
ter inform optimization decisions of existing high-value 
spaces and reduce the pressure to expand the footprint 
of healthcare services and supporting infrastructure. 
Ultimately, capital expenditure and the cost of providing 
healthcare services could be reduced through targeted 
use of IoT technology.
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ABSTRACT 
The cost of healthcare is significant within Australia where 
$185.4 billion was spent in the 2017-2018 financial year. This 
expenditure represents 10% of Australian GDP and grew by a 
ten-year annual average of 3.9% to 2015-16 financial year. There 
is limited ability to demonstrate the efficient use of existing 
healthcare spaces while Capital Works expenditure continues to 
grow.  Executive decision-makers and front-line managers 
currently lack tools to optimize space utilization, as current 
techniques are either burdensome, costly, or challenging to 
implement at scale.  There is related literature that demonstrates 
the feasibility of using Internet of Things (IoT) to understand the 
utilization of non-clinical healthcare spaces. However, these 
technologies have not previously been validated as effective in 
an operational clinical setting.  This paper presents findings from 
the introduction of an IoT-based space management system 
applied to a multi-disciplinary outpatient clinic in an operational 
public hospital fulltime across a six-month time period.  
Preliminary data validates IoT technology is appropriate for 
operational healthcare environments and is superior when 
compared to manual data collection methods.    

CCS CONCEPTS 
• Information systems~Sensor networks   • Information 
systems~Expert systems 

KEYWORDS 
Internet of Things, Space Utilization, Clinical Space Utilization, 
Healthcare Resource Optimization, Architectural Informatics 
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1 Introduction 
Australia spent $185.4 billion providing healthcare services in 
the 2017-2018 financial year, representing 10% of Australian 
Gross Domestic Product (GDP).  Australian GDP has increased 
every year for the last 27 consecutive years, increasing by 2.8% 
in the 2017-18 financial year, but the cost of providing healthcare 
services in Australia has grown at a ten-year average rate of 3.9% 
per annum [1] to the 2015-16 financial year.  Growth in 
healthcare expenditure is exceeding GDP growth which is not 
sustainable in the mid to long term as the cost of providing 
healthcare will take up an increasing percentage of Australian 
GDP, and accounts for 7% of Australia’s Carbon Dioxide (CO2) 
emissions [1].  Capital Expenditure is the fastest growing 
category of healthcare expenses for the 10 years to 2015 [2].  
Expenses in this category include the cost of purchasing real 
estate, building new assets (e.g. new hospitals), purchasing new 
equipment (e.g. medical imaging equipment) or renovating 
existing physical assets to keep up with changing technology, 
models of care, and to maintain service levels as spaces age.  
Utilization of existing clinical spaces must be optimized, to 
increase access to healthcare services for Australian citizens, 
reduce the pressure to expand the footprint of Australia’s 
healthcare system (both physical and ecological), and therefore 
reduce the growth in costs of providing healthcare services. 

In this paper, finding are presented from the introduction of 
an IoT-based space management system applied to a multi-
disciplinary outpatient clinic in a live public hospital fulltime 
across a six-month time period. In the bulk of existing literature 
exploring aspects of space utilization in healthcare environments 
explored below, study periods are relatively limited except for 
those reliant on historical data, with typical study periods from 
two days to two weeks. Preliminary results from the 
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introduction of IoT devices using Photovoltaic Infrared (PIR) 
sensors to record occupation of individual clinic rooms suggest 
these low-cost, robust and reliable thermal motion sensors, 
common in both commercial and residential applications (e.g. 
lighting and security), are appropriate to understanding 
occupation patterns of individual rooms. These sensors provide 
non-personally identifiable occupancy data recording Boolean 
data (‘occupied’ vs. ‘unoccupied’). Despite their low data-
resolution, the insight they can provide to healthcare 
decisionmakers over extended periods is significant, when 
presented in person-centered ‘dashboard’ format to support 
evidence-based decision making by front-line and executive level 
staff alike. 

Preliminary data validates that IoT technology is appropriate 
for live healthcare environments and is superior when compared 
to manual data collection methods. A comparison is made 
between results from previous manual observation techniques to 
understand average utilization vs. results from the innovation of 
IoT-based data gathering methods. Comparisons includes typical 
limitations of manual methods, and the benefits of long-term 
data gathering through non-invasive IoT devices gathering 
ambient, low-resolution data. Higher-resolution data-gathering 
has been demonstrated as effective in understanding clinical 
space utilization beyond simple ‘occupancy’, but the technology 
used to gather this data may raise potential privacy and civil 
liberty issues to the often disrobed patient occupants of these 
spaces, in addition to perceptions of increased non-clinical 
workloads for staff [3]. Exploration of the human-element of 
using IoT technology in healthcare environments to gather 
increasing levels of information resolution is proposed as future 
work. 

This paper is organized as follows: Section 2 introduces the 
background of related works and literature; Section 3 describes 
the implementation of the project; Section 4 details the analysis 
and results; and Section 5 concludes with commentary on the 
implications for future healthcare research, practice and policy. 

2 Background 
Research in the area of space utilization as a category of 
healthcare research is under-represented in the literature, with 
initial explorations on optimizing use of space found in related 
studies of universities [4].  Literature in healthcare environments 
primarily focuses on aspects of time, either patient-focused or 
healthcare-practitioner-focused or both [5-7], or on layout [8, 9].  
Despite the need to optimize the use of clinical spaces, few tools 
exist to help executive decision-makers or front-line service 
delivery managers optimize their space utilization.   These 
decision makers currently lack tools to optimize space 
utilization, as current techniques are either burdensome [2], 
costly [3], or challenging to implement at scale with limited 
return on investment in the short term [10].  Data gathering in 
related research is either undertaken through physical 
observation [11, 12], historical data [13], or a combination of 
these, principally incorporating simulation [12] [14] and 
increasingly, machine learning [15-17]. 

Looking beyond healthcare research there is a wealth of 
literature using a variety of sensors to detect human presence.  
Recent methods of human occupation prediction include 
monitoring of WiFi traffic [18], CO2 sensors [19, 20] often 
combined with Machine Learning, with promising recent 
research in privacy-protective environments using LIDAR [21] 
Doppler radar systems [22] and audio-processing [23].  Each of 
these has increased challenges in a healthcare setting however, 
with the latter having increased privacy concerns in clinical 
settings beyond domestic or commercial applications.  
Occupancy prediction using WiFi traffic is dependent on all 
participants carrying active, WiFi-capable devices which cannot 
be guaranteed in a public healthcare environment.  One recent 
study has concluded that using data from CO2 sensors, combined 
with light sensors and various machine learning techniques 
provided near 100% occupancy detection [24].  This strategy may 
be appropriate in isolated individual rooms in an education 
setting, but it may not be appropriate for studying clinical rooms 
in a healthcare environment, such as a multi-service outpatient 
clinic suite, as multiple rooms are serviced as a zone by a single 
air-conditioning system which recycles conditioned air, hence 
levelling out CO2 profiles.  Also, these zones can have banks of 
lighting connected to a single switch so room lights turn on 
without necessarily being occupied, and glazed corridor 
partitions can provide false-positive light readings.   

There is related work that demonstrates the feasibility of 
using IoT devices to understand occupation for non-clinical 
healthcare spaces [4]. However, these technologies have not 
previously been validated as effective in an operational clinical 
setting.  The problem addressed by this research is that both 
executive and front-line decision makers currently lack non-
manual data-gathering tools to understand how their clinical 
spaces are used.  Clinical spaces are expensive healthcare 
resources to be optimally utilized like any other, though research 
focused squarely on the optimization of space utilization is 
under-represented in the research 

3 Methodology 
The most common method of understanding the utilization of 
spaces in the literature relies in part on human observation and 
manual data gathering. Manual data gathering for the purposes 
of space utilization studies involves an observer, a timepiece and 
a recording device such as a clipboard and pen. The observer 
moves around the target zone recording occupation in clinical 
rooms applying judgement based on predetermined criteria set 
by the research team. In the case of one such observation, if the 
room was observed to be occupied by either clinical service 
provider or a consumer, the space was determined to be 
occupied [25].  As this type of data gathering involves repetitive 
actions, and high-attention, and the application of judgement, 
the data may be prone to human error [26].  These studies 
typically rely on a small sample size (typically two weeks or less) 
which does not account for the variability of healthcare service 
delivery affected by many uncontrolled variables including the 
weather [27]. Data collectors tend to be either volunteers, 
students or staff undertaking activities outside of or in addition 
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to their normal roles, making long-term manual data gathering 
highly resource intensive, and ultimately impracticable. 

Clinical spaces are diverse, supporting a variety of functions 
suggesting different levels of use should be considered ‘optimal’. 
For example, a treatment room in an outpatient clinic is an un-
reserved space used ad-hoc by healthcare providers to 
administer a higher level of healthcare services than can be 
supported by a consult room. An education room is also used ad-
hoc across the clinic, providing a lower level of clinical 
interaction than a consult room. The Consult Room is the most 
versatile of these three spaces and is the only space type that is 
an actively managed space by clinical staff using an appointment 
scheduling system.  Human observers require the application of 
judgement in the categorization of healthcare spaces; depending 
on the experience of the observer in the healthcare sector, this 
may lead to erroneous results if not carefully managed. In the 
healthcare sector privacy of clinician-patient encounters are 
protected by Australian law, which also drives their design. 
Design responses to the need for visual and acoustic privacy, 
such as solid corridor walls and doors without viewing panels, 
make the judgement as to whether a space is occupied or vacant 
with a closed door effectively guesswork. 

Other data sources include historical patient records which 
may say little about the spaces within which services were 
delivered, or the use of wearable technology such as Radio 
Frequency Identification Tags [28-30] which require continuous 
management, can be expensive, and burdensome [3].  Each IoT 
device provided 6 months of operation using 2x AA batteries, 
and each was hard-coded to a single ‘hub’, transmitting data 
directly over low-band radio frequency.  Since existing methods 
of data gathering to understand the use of spatial clinical 
resources are sub-optimal, new methods are required.  These 
devices were stated to enable placement in a 15m radius from 
‘hubs’ though some trial-and-error was required to confirm 
optimal distribution accounting for building-services-intensive 
healthcare environments.  Data was gathered by IoT sensors in 
10-minute intervals as this typically the shortest interval 
reserved for clinician-consumer encounters.  This research 
introduces IoT devices into a live outpatient clinic zone in a 
public hospital setting and presents data to clinical and corporate 
end-users supporting evidence-based decision making.   

4 Implementation 
The participating healthcare zone to test the capacity of IoT for 
space-utilization data gathering was a multi-disciplinary 
ambulatory outpatient clinic.  The space consisted of several 
different room types servicing different clinical needs which 
were part of the group of rooms studied including:  Consult 
Rooms (21x), Treatment Rooms (2x), and Education Rooms (3x).  
The target clinic zone contains several other rooms that were 
outside scope, such as:  corridors, public and staff toilets, waiting 
rooms, staff-only admin areas, etc.  The former group are 
clinician-patient encounter spaces, while the latter are non-
clinical spaces within the clinic zone.  As clinician-patient 
encounter spaces are where healthcare services are provided and 
consumed, these (26x total) rooms represent the highest-value 

spaces in the clinic zone which require the highest level of use-
optimization.  The remaining rooms in the clinic zone from the 
latter group above were excluded.     

Clinician-patient encounter spaces host confidential activities 
and interactions protected by Australian privacy laws, so all 
research activities were bound by strict regulations as identified 
in the approved Health Research Ethics Committee approval 
obtained prior to sensor installation.  To study operational 
clinical spaces using IoT devices, available off-the-shelf devices 
commercially available in Australia were surveyed using a 
weighted decision matrix which excluded devices containing 
sensors that either collect or could be reasonably perceived to 
collect personally identifiable information.  The deciding factors 
were total cost of implementation, the need for battery operation 
to avoid connecting to ‘mains’ power, and the cost to scale to the 
target zone.  The final selection was a battery-operated, PIR 
sensor made by Occupeye.  The IoT device transmitted wirelessly 
to a designated ‘hub’, connected via. network cable to a 4G SIM-
ready router. Using the cellular networks with saturated 
coverage across the healthcare campus, data was transmitted to 
online ‘middleware’ for storage and analysis. The sensors were 
installed in locations shown in the clinic zone as per Figure 1. 
Sensors were mounted with double-sided, damage-free, 
repositionable manual connectors rated to over 3x the weight of 
the devices, which were mounted above each space’s entry door 
wall, directly above the door leaf to minimize the risk to patents 
and staff of sensors falling.  This sensor location, discovered 
through trial-and-error, also maximized the sensor’s room 
coverage and avoided false positives from the adjacent corridor 
when the room door is open.   

 

Figure 1 - Diagram of sensor layout in ambulatory clinic 
zone including hub location and coverage radius, modified 
from McNabb et. al [31] 

5 Analysis and Results 
Data reported below was collected over a six-month period from 
March to October 2019, collected from 28 clinical spaces, 7 days 
per week, 24 hours per day consisting of 733,824 data points.  By 
comparison, a manual room utilization study in the same clinic 
was able to collect 1,292 data points in 15 minute intervals, 
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which was affected by the volunteer data collector being unable 
to attend for two of the five scheduled observation days due to 
illness [32].  Decisions made on the IoT system versus the 
manual system, would be relying on an increase in data 
resolution of approximately four orders of magnitude. 

Table 1 - Showing Average % Occupancy, excluding public 
holidays from March 1st to October 1st, 2019 filtered for 
various times of the day (TD), days of the week (DW), 
space type (ST) and period (PD) including graphical 
legend, one space/room per chart bar [33] 

 
The target clinical spaces were recorded as unoccupied 15.9% 

of their total available time by the IoT system. (refer ‘A’ in Table 
1).  Limiting the data to more traditional clinic operational hours 
from 8:00am to 5:00pm, the % occupancy improves 36.0% 
occupancy (refer ‘B’ in Table 1) further improving to 49.3% 
occupancy if weekends are removed (refer ‘C’ in Table 1).  The 
data show that Thursdays are on average the most occupied 
weekday at 56.2% average occupancy (refer ‘E’ in Table 1), with 
Fridays the least occupied at 45.0% over 6 months. On the ‘most 
occupied’ Thursday, Consult Rooms were on average most 
occupied was on the 07th of March 2019 with the sensors 
recording 69.7% occupancy. 

In all accessible literature, the concept of ‘utilization’ was 
applied during operational clinic hours only, with non-clinic 
hours either dismissed, or ignored.  While the concept of a 24-
hour outpatient clinic may be undesirable, extending clinic hours 
to some degree would be one way to improve access to 
healthcare services without increasing the physical footprint of 
the healthcare system.   

Figure 2 demonstrates the challenges of manual data 
collection, as volunteers were only available on a single Monday, 

Thursday and Friday in the week of March 14th 2019 [25].  Data 
from the IoT sensors indicates that Monday (53.5% occupancy) 
and Fridays (45.0% occupied) are the least used weekdays for 
Consult Rooms. The average utilization determined from the 
manual observation study was 41% Consult Room occupancy 
while the sensors recorded an average of 53% occupation.    

 

 

Figure 2 - Comparison of manual data gathering for 
Monday, Thursday and Friday in the week of March 14th 
2016 (top graph excerpt from [2]) vs. the IoT-gathered data 
averaged over 7 months from March 01st 2019 to October 
01st 2019 limited to Mondays, Thursdays, and Fridays 
(bottom graph excerpt from https://www.occupeye.com/ 
on 12-10-2019) 

Within this data, peak utilization from the manual data was a 
single reading on Thursday March 17th at 79% at 10:15am, while 
peak occupation from the IoT data shows 16 occasions where 
peak occupation was 90% or higher, with the highest peak at 
95.2% at 12:10pm on Thursday August 08th, 2019 at 95.2%.  While 
the IoT data is easily filterable to only clinic operation times, the 
daily average data shown through this report contains a ‘dip’ 
over the lunch period when the clinic is closed, which lowers 
average occupancy similar to the effect of including 24 hours of 
data, 7 days a week (refer ‘A’ in Table 1).    Excluding this hour 
in the calculation improves percentage occupied 1.3% to 70.65% 
occupancy. 

The ecosystem of technologies that constitute IoT devices, 
delivers benefits beyond accurate data over extended time 
periods. The sensors in this research not only save data locally 
on the individual devices, they have the capability to transmit 
time-stamped data to cloud-based repositories hosting 
middleware applications providing advanced analytics in a 
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dashboard format (see Figure 3). Dashboards provide the ability 
for non-technical end users to query the dataset, providing a lens 
to answer an array of their own research questions, and analyze 
the data in ways that are meaningful to them rather than 
struggle with the interface. This enhanced capability will enable 
end users, such as front-line service providers and executive 
decision-makers to query data, looking for improvement 
opportunities, and perhaps most importantly being able to 
evaluate if any implemented improvement initiatives were 
successful. This last step of post-intervention re-evaluation was 
missing in most of the literature, but without it the process of 
improvement cannot iterate, and return-on-investment for 
utilization improvements cannot be demonstrated. 

 

Figure 3 - Excerpt from proprietary dynamic cloud-based 
data dashboard showing occupation data all spaces in the 
target clinic for a nominal period from [33] 

6 Conclusion 
The data collected through this research represents occupation, 
rather than utilization. Additional work would be required to 
understand if the spaces are used well when they are occupied, 
rather than being able to identify only that they are occupied, or 
more importantly, sitting vacant. To understand if spaces are 
being well utilized, one would need increased data resolution 
moving from data on occupation (presence) to data on the 
number of people in a space (count) [34].  Future work will focus 
on the application of machine learning algorithms to predict 
future occupancy based on historical patterns. 

The technology used in this research may not be scalable for 
a healthcare services with thousands of rooms and dozens of 
campuses.  To cover one of 4 floorplates in the broader hospital 
studied in this research, well over 100 hubs would be required, 
and over $1000 per hub, scaling is unsustainable.  Future 
research will explore technology supporting privacy-friendly IoT 
devices at scale suitable for the optimization of space utilization 
in healthcare systems that have a significantly improved range 
and battery life. 

This research has demonstrated that IoT devices can provide 
information on the occupancy patterns of clinical spaces. What 
hasn’t been explored through this research is how these devices, 
and the increasing amounts of information they can collect, may 

affect the occupants of these spaces. If too little information is 
collected, opportunities for improvement may be missed. If too 
much information is collected, the privacy and civil liberties of 
the occupants may be affected.  Exploring the balance between 
the drive for increasing amounts of data and the effect on the 
occupants of healthcare spaces will be explored in future stages 
of this research.  One Canadian survey found just over 50% of 
respondents said their existing methods of spatial resource 
allocation were either ‘good’ or ‘very good’ leaving abundant 
room for improvement [35] over existing methods.  Accurate 
data drives improved decision-making. 

This study has demonstrated data collection by IoT devices to 
understand patterns of activity in clinical spaces is superior to 
manual data collection methods by ‘the clipboard brigade’.  
Human presence-sensing in hospitals needs to be designed to fit 
the specific use-case as a PIR system suitable for understanding 
occupation of clinic rooms is different, for example, than sensors 
required to study Operating Room utilization [36].  The time 
period over which data can be collected and analyzed provides a 
more accurate picture of average occupation, and perhaps more 
importantly provides the ability to understand the occurrence 
and timing of both ‘peak’ and ‘trough’ occupation levels. It is the 
‘troughs’ that represent opportunities for maximum 
improvement with minimal effort, while ‘peaks’ drive the need 
to build more clinical spaces, increasing both the physical and 
ecological footprint of the healthcare system, and continuing to 
drive up the cost of providing healthcare to not only Australian 
citizens, but all consumers of healthcare services worldwide. 
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ABSTRACT
The cost of building, renovating, and maintaining the physical
healthcare environment is up to 6% of the total cost of providing
healthcare. Despite being the fastest growing category of healthcare
expenditure, few tools exist to understand the use of spatial clin-
ical resources. Previous research in live healthcare environments
demonstrated that Internet of Things (IoT) devices are effective
in understanding patterns of occupancy in clinical spaces. Health-
care managers answering the question “are consult rooms well
utilized?” require data beyond ‘occupied’ or ‘vacant’. Using the
novel approach to clinical space management presented in this
paper, understanding ‘how’ consult rooms are used is now possible.
Proof-of-concept results are presented demonstrating the target
consult room was predominantly either ‘well utilized’ (55%), ‘va-
cant’ (29%), or ‘intermittently used’ (14%) for the target period.
Implications of undertaking technology research in live healthcare
settings are discussed for academia and professional practice across
multiple sectors.
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1 INTRODUCTION
The cost of building, renovating, and maintaining the physical
healthcare environment in Australia was on average 5.6% of the
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total cost of providing healthcare for the 2010-2011 to 2020-2021
period [2]. Despite being one of the fastest growing categories of
healthcare expenditure, few tools exist to understand the use of spa-
tial clinical resources. Internet of Things (IoT) devices can support
clinical space management and demonstrating how clinical space
utilisation is planned but does not necessarily reflect actual use
[3]. In live healthcare environments, IoT devices have been shown
to be effective in understanding patterns of occupancy in clinical
spaces, and superior to manual, human-based data gathering [4].
Occupancy patterns based on presence-detection can identify when
clinical spaces are used but cannot provide insight into how they are
used. Proof-of-concept results presented in this paper demonstrate
a multidisciplinary approach to optimising clinical space utilisation
using IoT devices to study patterns of activity inside high-privacy
outpatient clinic spaces. Activity within each clinical space can be
used to determine utilisation beyond ‘occupied or vacant’. Health-
care provider decision-makers now have tools to make informed,
data-driven decisions to optimise spatial clinical resources which
will reduce the cost of providing healthcare and improve healthcare
access and outcomes for consumers of healthcare services.

2 BACKGROUND
Research into improving access to healthcare services is not new
with many researchers using a combination of visual observation
[5] historical records [6] and simulation [7] to seek efficiency gains.
Typically, the literature considers clinical space indirectly as a func-
tion of either patients’ time [6] or healthcare providers’ time [8].
Clinical spaces are often not considered a consumable resource in
the body of literature [9], with notable exceptions [10]. Numer-
ous presence detection and/or tracking sensor technologies exist
[11] and several have been trialed in healthcare settings. Radio
Frequency Identification (RFID) has been extensively implemented
[12] to track objects and occupants of healthcare spaces. Despite
potential privacy concerns [13], healthcare staff may be increas-
ingly willing to participate in real-time tracking [14] to support
improved health outcomes.

Like RFID deployments, other less common technologies such
as IR Tags [15], and WiFi [16] equally rely on occupants (including
both staff and consumers), to reliably carry or wear precisely cal-
ibrated technology. Tracking consumers as well as staff requires
significant human resources to manage [10], typically relying on al-
ready over-burdened nursing staff to manage [17]. The combination
of the high ongoing costs with the high cost of implementation has
limited the widespread clinical adoption of this technology. Com-
pounding any cost concerns, many technologies rely on patients
and/or providers carrying a specific combination of technologies (i.e.
cell phone, turned on, with WiFi or Bluetooth enabled), or impose
‘correct’ use conditions on the users [15] which are challenging
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Figure 1: Adaptation of Teixeira et. al.’s ‘five human spatio-temporal properties’ ([1] Figure 2)

to enforce in clinical settings. Many potential privacy-preserving,
low-maintenance, presence-detection technologies are emerging
[18] including ultra-wide-band (UWB) radar [19], ultrasound [20],
and thermopile arrays [21-23]; however, most are not (yet) broadly
commercially available. Of these three emerging technologies, the
thermopile array has attracted the broadest combination of research
and commercial adoption, though the latter has been primarily uti-
lized in commercial appliances (microwaves, air-conditioners, etc).

Previous research demonstrated that IoT devices relying on pho-
tovoltaic infra-red (PIR) are appropriate to detect ‘presence’ [3]
in live clinical spaces; this data is limited to the first category
of Teixara et al’s [1] Taxonomy “inferences of spatio-temporal
properties” (Fig.1). The proof-of-concept combination of sensor
and edge-processor technologies discussed in this paper has been
demonstrated capable of both detecting human presence and count-
ing humans inside high-privacy clinical spaces and are considered
appropriate for this context. This count data provides an order-of-
magnitude better understanding of how clinical spaces are utilised
beyond merely being ‘occupied’. A lack of widely available, low-
cost, low-management, privacy-preserving tools to appropriately
study activities inside consult rooms has contributed to clinical
space utilisation being underrepresented in the literature.

3 METHODOLOGY
This research seeks to demonstrate the proof-of-concept capacity of
IoT sensors to support an assessment of how clinical spaces are be-
ing used beyond identifying if they are being used [4]. PIR sensors

have previously demonstrated capacity to differentiate ‘occupied’
from ‘vacant’ status by collecting time-stamped occupancy data.
The sensor type chosen to provide count data (Fig. 1) is a thermopile
array (TA) sensor, branded as the ‘grideye’ sensor by Panasonic.
A thermopile is a collection of thermocouples (temperature sen-
sors) whose electric charge varies in direct proportion to the level
of infra-red energy received by the sensor. Each thermopile’s cur-
rent is measured, averaged, and converted to a temperature by
the sensor as a serial output. In the sensor used, thermopiles are
arranged in an 8x8 grid with each receiving infra-red energy re-
stricted to a 60° square-based-pyramid sensing area. The limited
sensing angle required a horizontal mounting position resulting in
a ceiling-mounted position.

The sensor was purchased pre-mounted on an ‘off the shelf’
printed circuit board (PCB) including additional elements to control
power and data flow. This PCB was installed into a discrete, ad-
hoc enclosure and mounted to the underside of the ceiling of a
single consult room of approximately standard proportions [24].
A palm-sized computer was concealed in the ceiling space (Fig. 2),
powered using 240v power to a 5v transformer, and connected to the
PCB with discrete wires. The computer accessed thermopile array
data through a proprietary multi-level Application Programming
Interface (API). Data was processed and logged locally until it was
transmitted to a cloud-based middle-ware provider via a Wi-Fi
router linked to the cellular network, for storage, visualisation, and
downstream processing. Data was recorded in 10-minute intervals,
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Figure 2: Thermopile array sensor in the middle of a discrete enclosure (left) connected to Raspberry Pi3 computer (middle)
mounted to the underside of ceiling grid (right) while computer is concealed in the ceiling space

Table 1: Sample ’utilisation category’ framework to interpret sensor data with respect to ’optimal

Count (#) Hourly Activity Description Utilisation Category

# = 0 Space is vacant with no activity No Usage (Vacant)
0 < # < 1 Space is used, but intermittently Poor Usage
# = 1 Space is used continuously by one person Sub-Optimal Usage
# > 1 Space is used continuously by more than one person Optimal Usage

Figure 3: Utilisation categories of target clinical space for one week of clinical operating hours

24 hours per day, 7 days per week over a 1-week period, and post-
processed to reduce the data set to hourly averages for operational
clinic hours (8:30am to 4:30pm).

4 RESULTS
Interpretation of raw count data to understand how well a space
is utilized depends largely on the model of care delivered through
these spaces, the intended function of the space and its organisa-
tion. For the context of this paper, an example utilisation category
framework is provided in Table 1. This framework guided the data
categorization presented in Fig. 3 - Utilisation categories of target
clinical space for one week of clinical operating hours in Fig. 3

If only PIR data was recorded as per previous research [4], the
results would show a 71% occupation rate. The count data identifies
an additional 16% of the observed time that is either poorly or sup-
optimally utilised for the observed period beyond simply being
‘occupied’. Collectively, the three categories of Vacant, Poor and
Sub-Optimal represent 45% of the total potential usable clinic time,
which can be collectively termed ‘under utilised’ time for reporting

and optimisation purposes Fig. 4. It is worth noting that in the
example category framework in Table 1 the context does not allow
a category for ‘over utilisation’, which may be required in other
contexts.

For an 8-hour clinic day and a 5-day operational week, a 45%
‘under utilisation’ rate represents 18 hours that could be re-allocated,
including 11.6 operational clinic hours the room was unoccupied.
Any proposed optimisation strategies must consider the context
of the data. This room forms part of a wider multidisciplinary
clinic, operating through diverse models of care specific to each
service delivered across a two-week rotation. Also, this data reflects
utilisation of a brief timescale; optimisation strategies would benefit
from considering data across a much longer time period, similar to
the 2-year time scale of previous IoT-based clinical space uitlisation
research [4].

5 DISCUSSION
The thermopile array sensors demonstrated their capacity to pro-
vide count data, thereby providing additional information on the
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Figure 4: Utilisation Ratio

activities inside closed-door clinical spaces beyond their occupation
status. This increase in data resolution has provided a commensu-
rate increase in capacity to optimise how these high-value clinical
resources are utilized. When determining utilisation category cri-
teria, such as the ones outlined in the methodology section above,
the function and context of each space is critical. For this research,
any occupation of the clinical rooms by two or more individuals
was considered optimally utilised. Many potential combinations are
possible to fulfil this criterion, such as:

• One provider of healthcare services (minimum), and one
consumer of healthcare services (minimum), or

• Two or more consumers of healthcare services, or
• Two or more providers of healthcare services.

The low rate of sub-optimal utilisation demonstrates the target
clinical space was predominantly not used as a single-person ad-
ministrative space during the study period. According to the stated
categorisation framework (Table 1), any single-person activity in
clinical space is considered a poor use of clinical space, as this work
could be performed in non-clinical areas (including tele-health).
Other spaces may require an additional category: ‘over-utilised’,
depending on the function of the target space. Ensuring clinical
spaces are used exclusively for clinical service delivery supports
the optimal utilisation of limited spatial healthcare resources.

The TA sensors used in this research have the capacity to col-
lect increasing quantities of data up to and including the tracking
category (Fig. 1), however only count data was collected for this
research. The ambient, non-personally-identifiable nature of the
data collected by these sensors was in accordance with the Human
Research Ethics Committee approval supporting this research. In-
creasing the data resolution may also increase negative sentiment
about being watched by these sensors in the workplace. More re-
search is required to understand the feelings and perspectives of
healthcare staff about being continuously observed by technological
means in the name of efficient use of clinical spatial resources.

Sensor data can be visualized and overlaid on a graphical floor
plan including furniture, fixtures, and equipment (Fig. 5). Each
element in the floor plan (e.g., consultant desk, patient bed, visitor
chair, sink, etc) reflects pre-defined ‘activity stations’ within the
room. It may be possible to infer the likely role of each individual

in the room (i.e. healthcare provider, patient, or support person)
from their spatial inhabitation of the clinical space over time. While
this would not be a perfectly accurate reflection of the role of every
occupant, it may still be a significant correlation. Identifying the
role of individual participants in the activity space of clinical rooms
may add a sub-category ‘role’ to the established spatio-temporal
property categories (Fig. 1) between tracking and identify, which
may prove useful to future researchers.

Other aspects of this research have proven challenging. Au-
tonomous sensors used in this research required no maintenance
but did require a continuous in-ceiling 5v power supply which could
be costly to implement at scale. Limitations in power consumption
are expected to be overcome in future with increasing sensor ef-
ficiency and improved battery performance. Also, infra-red based
presence detection can be triggered by non-human heat signatures
(e.g., a computer); however, Shetty et. Al, and Qu et al. have both
demonstrated ‘grideye’ filters to remove non-human data such as
stationary heat sources [28], and background temperatures [29]. For
this paper, a priori knowledge of heat signatures from the space’s
desk-top computer were manually excluded from the dataset used
to determine count data.

Solely using thermopile to determine count data caused some
challenges. Residual human heat on chairs and patient beds tended
to dissipate over approximately one to three minutes; averaging
count data over hourly time periods minimised the impact of these
additional heat signatures. Additional work is required to identify
the typical pattern of reducing heat signatures over time and adjust
count data accordingly.

Also, post-processing is required to remove both background
radiation [33, 34] and to separate physically close human heat signa-
tures [31], while omitting non-human thermal signatures without
a priori intervention. Another drawback of thermopiles is that the
face of the sensor cannot be protected from chemical damage (clean-
ing), environmental damage (dust or liquids) or physical tampering
(removal/obstruction). Protecting the sensor with glass or plastic
will distort the infra-red waves that locate individuals, which may
limit their future application as a sole sensor providing data on
space utilisation.

Finally, reflecting the multi-disciplinary nature of this research,
the implications of this research stretch beyond clinical informatics
to architectural informatics. For example, Architectural education
could prepare future architects to use sensor technology and edge
computing to engage with their creations as they evolve through
time. Architects could expand their practice from strictly ‘birthing’
the built environment to an advisory role providing support through
the full building lifecycle. This change is analogous to Obstetrics
Clinicians’ focus on ‘birthing’, compared to General Practitioners’
broader participation across the full lifespan of their patients.

6 CONCLUSION
The combination of sensors and edge computing trialed through
this research has demonstrated the capacity for a significant (16%)
improvement over previous research. This improvement is the key
difference between knowing if clinical spaces are used, to having
insight into how clinical spaces are used. Occupancy data alone may
be more suitable for single-use spaces such as vehicular parking
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Figure 5: Data from 8x8 thermopile array interpolated to 16x16 pixels, color coded to relative temperature, and overlayed onto
a Consult Room floor plan for visualisation

bays or washroom cubicles. Spatial allocation decisions can now be
based on real-world data and provide iterative feedback to monitor
the success of implemented optimisation strategies.

If the use of spatial clinical resources can be optimized, more con-
sumers can access clinical services, and do so more rapidly. Earlier
provision of healthcare services through existing outpatient clinical
spaces can reduce pressure on more intensive downstream services,
which are typically higher risk, higher cost, and higher demand (i.e.,
ambulance, emergency services, in-patient stays, etc.). Furthermore,
the pressure to buy, build, renovate (and subsequently maintain)
new healthcare spaces would be reduced, which decreases the finan-
cial and ecological burden of healthcare costs. Funds saved can be
re-invested into core services providing healthcare for consumers,
and the overall cost of providing healthcare can be reduced.
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Abstract:  

Can machine learning be used to predict optimisation opportunities for clinical 
space utilisation?  This research seeks to demonstrate the capacity of machine learn-
ing on 2.78 million clinical occupancy data points to support future optimisation of 
clinical space utilisation. Increasing clinical space utilisation leads to reduced infra-
structure expansion and/or reconfiguration. Previous research demonstrated the ca-
pacity of Internet of Things (IoT) technology to identify low historic occupancy 
periods; future utilisation prediction remained a challenge.  Machine learning algo-
rithms are applied to 24 months of historical occupancy data previously gathered by 
privacy-preserving IoT devices in a live public-healthcare environment.  Predicted 
data was visualised via. graphical interface, and user-manipulated through time and 
location filters. Preliminary results demonstrate the capacity for machine learning 
to identify future optimisation opportunities for clinical space utilisation, achieving 
accuracies of 82% using a ‘K Nearest Neighbours’ algorithm. The resultant data-

 

1 Author 1 () 
Affiliation, Location 
e-mail: a@b.com  

2 Author 2() 
Affiliation, Location 
email: a@b.com 

3 Author 3() 
Affiliation, Location 
email: a@b.com 

4 Author 4 
Affiliation, Location 
email: a@b.com 

5 Author 5 
Affiliation, Location 
email: a@b.com 



2  Author 1 - Predicting Optimisation Opportunities for Clinical Space Utilisation 

dashboard combined human experience/intuition with model predictions supporting 
dynamic exploration of future clinical occupation patterns. Previous research 
demonstrated the capacity of IoT devices to support identification of historic occu-
pancy gaps.  This research demonstrates improved capacity for resource planning 
to improve consumer experience, reduce reliance on more intensive/expensive 
downstream services, and lower healthcare costs. 

1 Introduction 

Healthcare systems operate many interconnected services simultaneously. These 
services each consume resources through interconnected chains of supply and de-
mand. Delays in one service can cascade delay-effects through other services, re-
ducing timely access to healthcare services for consumers. Managing the consump-
tion and utilisation of clinical resources is critical to the sustainable operation of 
outpatient clinics.  The physical healthcare environment contains and enables the 
delivery of nearly all healthcare services.  Despite this criticality, research focused 
on optimising utilisation of spatial clinical resources is under-represented in the lit-
erature.   

Optimising clinical activity scheduling using the tools of machine learning has 
becoming increasingly common across the healthcare system.  Recently, these tools 
have been applied to scheduling outpatient appointments (Tu-San et al., 2022), and 
predicting non-attendance rates (Giunta et al., 2023).  Unfortunately, the intended 
use of clinical space has been demonstrated to inadequately reflect their actual uti-
lisation (McNabb et al., 2018). Collecting historical data on clinical occupancy pat-
terns are useful to explore opportunities lost, but identifying future clinical space 
vacancies would produce more actionable outcomes. Presented in this paper are re-
sults from the application of machine learning tools to historical clinic occupation 
data to predict future vacancies using a dynamic, human-centric data dashboard.  

Optimising the use of clinical spaces allows increased occasions of care through 
limited spatial resources.  Increasing healthcare services delivered through existing 
clinical spaces cam reduce wait times, diagnoses can be made earlier preventing 
further deterioration, and quality of life improvements can be realised for consum-
ers.  Improving access to healthcare services can reduce the duration and intensity 
of personal disability for consumers.  For healthcare service providers, improved 
access means earlier treatment, reducing pressure on ambulance callouts, emer-
gency services, inpatient services, etc.; all of which are more expensive episodes of 
care.  Finally, optimising clinical space utilisation would reduce the demand to in-
crease the number of available clinical spaces.  Efficient use of existing clinical 
space increases available funds to spend on core healthcare service delivery, reduces 
acceleration of the systems’ carbon footprint and avoids unnecessary ongoing 
maintenance costs. 
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2 Methods 

Previous research by McNabb et al. (2020) established a continuous occupancy 
dataset using ceiling-mounted IoT devices.  These internet-connected devices were 
installed across a multi-disciplinary outpatient clinic in a tertiary teaching hospital 
in Australia for a period of 25 months.  Data was stored in cloud-based repositories 
for downstream processing.  The data was accessible through an application pro-
gramming interface (API) provided by the sensor vendor.  

The following high-level overview provides context for the subsequent detailed 
methodology. First, cloud-based occupancy data was downloaded through a Docker 
service to a local database.  Through an iterative process, various ‘default’ machine 
learning models were trialled, followed by pre-processing using the tools of data 
science to identify appropriate algorithms for further training. Promising default 
models were trained and evaluated using additional scripts.  Finally, occupancy pre-
dictions were calculated, and a bespoke user interface was created to visualise que-
ries from human operators using a dynamic data dashboard.  In future final versions, 
this loop will repeat regularly to keep predictions current. A high-level process 
flowchart of this process can be seen in Figure 1. 

 The methodology used by the research team closely follows the CRISP-DM 
methodology (Shearer, 2000) for data science project management.  In an iterative 
process, numerous default machine learning models were applied using the Python 
programming language’s scikit-learn toolkit to the full dataset to guide further pre-
processing decisions.  This open source, industry-standard toolkit was chosen due 
to the broad array of basic algorithms and pre-processing capacity available, in ad-
dition to extensive documentation and community support.   

Using the proprietary API, data is ‘pulled’ through corporate firewalls for storage 
enabling commencement of data cleaning (pre-processing).  Sensor data streamed 
into the cloud service contained, (1) the sensor ID, (2) room number, (3) datetime 

 

Figure 1 – High-level process flowchart from locally deployed IoT sensors to user 
interface in both generative (blue) and deployment (green) configurations 
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(EPOCH), (4) meridian and (5) occupied status.  In the final stage of the first round 
of pre-processing, a timeseries database was created/updated containing location 
and occupancy status (5), at a specific time (3) with additional metadata (1-2 and 
4). The resultant ‘clean’ data was saved locally for the next stage of pre-processing.  
Initial results from default models suggested a random forest classifier provided the 
most promising results, though accuracy was relatively low.  To improve accuracy 
of the initial model, additional standard pre-processing activities were undertaken 
through scikit-learn, guided by the typology of data in the cleaned dataset.   

Additional pre-processing steps included min-max normalisation of time data, 
translation of date text into integers, and one-hot encoding to split categorical values 
into both categorical and binary features (Li, 2019).  After pre-processing, default 
scikit-learn machine learning algorithms were re-applied to the dataset.  Subsequent 
evaluation identified that a k-nearest-neighbours classifier (KNN) demonstrated the 
best balance between accuracy and speed.  The latter was a dominant requirement 
due to limitations on available processing power, with accuracy considered suitable 
for proof-of-concept predictions. Improved computing hardware would have im-
proved results supporting larger datasets, tests on imbalanced datasets, and experi-
mentation with more complex algorithms to build more realistic models. Finally, 
data was split into 80/20 training/testing datasets and the standard model was fit 
onto the training data and tested against the test data.   

The evaluation method used (both in preliminary and final assessment) were the 
F1-Score, precision, recall, and overall accuracy.  Detailed definitions of the for-
mulae comprising these industry-standard methods is beyond the scope of this pa-
per.  Once the predictive model had been trained and evaluated, a reference file of 
pre-populate predictions was created.  This extensive database consisted of pre-
dicted occupancy for each period. Predicted values are re-calculated at regular in-
tervals (when deployed) to incorporate new time-series data. Though this evaluation 
method was limited, with zero error analysis for failure analysis conducted, it was 
considered sufficiently rigorous for the proof-of-concept demonstration sought. 

 The database of predicted values was visualised by a bespoke user interface to 
support a human-centric understanding of opportunities presented by predicted va-
cancies within clinical spaces.  This ‘data dashboard’ was created using the propri-
etary data analysis platform Qlik Sense accessed through a custom webpage using 
Php Storm to host the dashboard and maintain interactivity. The final complete suite 
of software was incorporated into a Docker container for ease of deployment and 
future maintenance. 
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3 Results 

As described above, multiple basic machine learning models were trialled using 
the suite of Python scripts contained in in scikit-learn with improving success 
through an iterative process.  The final classification and regression model using a 
KNN provided the most successful predictions at 82% accurate against the training 
dataset (see Table 1).  The F1 score is the harmonic mean of the precision and recall 
of the model (Taha and Hanbury, 2015). The highest possible value for F1-score is 
1, the lowest possible is 0.     

The random forest algorithm by comparison performed a close second with 78% 
accuracy.  As noted by (Boateng et al., 2020) , KNN is relatively “easy to implement 
and understand but has a major drawback of becoming significantly slow as the 
size of the data in use grows”.  The limitation of KNN was reinforced by the hard-
ware limitations available within the corporate computing envelope of the support-
ing hospital.  The final bespoke program hard-coded the KNN classifier use, how-
ever allowances were made to substitute other classifiers as the dataset grows if 
computational resources remain constricted. 

A custom data dashboard was created to allow non-technical staff to visually 
identify opportunities to optimise clinical space utilisation supported by humans 
providing local context to interpret the predicted outcomes.  An example of Part 1 
of the dashboard (historical data) is shown in Figure 2, demonstrating an ad-hoc 
data-matrix comparison of historical utilisation data for select consult rooms.  His-
torical data was presented in the dashboard as a guide to support intuitive human 
querying of the large prediction dataset.  Visual cues highlight potential opportuni-
ties for clinical space utilisation improvement.  The relative percentage occupancy 
for the period shown is illustrated as gradations of colour within a matrix of all 
consult rooms in the clinic, with low-to-high utilisation visualised as lighter-to-
darker colours.  

Table 1 – Final confusion matrix exported from scikit-learn Python package 

 Precision Recall F1-Score 
Vacant 0.83 0.79 0.81 

Occupied 0.80 0.84 0.82 
Accuracy 0.82 
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Part 2 of the dashboard presents predicted future utilisation rates based on user-
defined parameters for room number, morning or afternoon clinic, day of the week, 
etc.  A filtered sub-set of predictions for three consult rooms on Friday afternoons 
is presented in Error! Reference source not found.. Based on these filters, the 
model predicts an 85% chance that the three target spaces space will be vacant on 
Friday afternoons for the next year (15% utilisation), based on the previous 12 
months of data.  

Context provided by human operators is critical to accurately interpreting output 
from the current system.  For example, operational reasons may exist for low occu-
pancy rates (i.e., operational flexibility allowances) that can be then explored to-
gether for potential optimisation opportunities.  This system allows front-line and 
executive decision-makers to manage demands for clinical space across or between 

 
Figure 2 – Visual comparison of predicted occupation patterns for 11 clinical consult 

rooms, 3x days per week, separated into morning and afternoon sessions. 

 
Figure 3 - Sample query results for ‘average utilisation per month’ and ‘average utili-

sation by room’ for 3x clinical consult rooms selected in the dashboard. 
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healthcare systems by using a data dashboard to identify predicted over or underuti-
lised clinical spaces and adjust future planning accordingly. 

4 Discussion 

The combined capabilities of and machine learning algorithms and human oper-
ators can now be applied to the challenges of optimising clinical space utilisation 
within operational healthcare systems. Machine learning algorithms can be used to 
predict optimisation opportunities in large datasets that would otherwise be impos-
sible for humans alone to identify.  Similarly, the output from these algorithms is 
challenging to interpret without local operating knowledge providing context to the 
results. Without extensive experience in the field of Data Science, some experimen-
tation and results analysis were required to determine the best ‘fit’ between these 
elements for each research project.  However, the complexity of this experimenta-
tion and the knowledge required to train models is becoming easier as the tools 
become more powerful.  The experimentation stages in the methodology above will 
increasingly become unnecessary as these tools develop. 

The potential for service optimisation can be quantified to highlight its beneficial 
impact. Based on an average ‘occasion of service’ length of 15 minutes across the 
three consult rooms identified in Figure 2, the potential improvement equates to 39 
additional occasions of service per week.  Over the course of a year, the data sug-
gests an additional 2,028 occasions of service are possible for a single outpatient 
clinic, in a single hospital.  The costs to maintain these spaces are realised regardless 
of their relative occupation, in addition to human resources, consumables, and 
equipment costs. Also, additional occasions of care will improve access to 
healthcare services, potentially preventing deterioration leading to more expensive 
presentations in emergency departments, inpatient admissions, or ambulance 
callouts (Sheehan et al., 2022). 

Researchers are encouraged to consider incorporating the power of machine 
learning into their data analysis toolkit as ML tools become increasingly powerful 
and easier for non-technical users to implement.  Interdisciplinary research is a pow-
erful approach to solve ‘wicked problems’ that single disciplines alone cannot re-
solve (Kumlien; and Coughlan, 2018).  Research funding bodies and tertiary gov-
ernance systems should foster these collaborations by providing networking and 
funding incentives to offset the additional complexity inherent in such endeavours 
(Stichler, 2009, Periyakoil, 2007). 

For future research, additional machine learning models and larger datasets can 
be explored when additional computational resources are made available.  If da-
tasets were expanded across multiple years, it may be possible to account for sea-
sonal or annual variability such as: 
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 reduced clinical bookings during school holidays,  
 full-team absences during annual specialist conferences, and  
 annual leave patterns of individual clinicians. 

The methodology presented above resulted in a machine learning model that pre-
dicts future occupancy of target spaces through a human-friendly dashboard inter-
face considered critical to the implementation of the algorithms.  The CRISP-DM 
methodology could be applied to many sufficiently sized, robust datasets using pre-
processing appropriate to the available data types (Schröer et al., 2021).  The accu-
racy of the prediction model demonstrated through this paper is considered suffi-
cient to fulfil the proof-of-concept intent.  Improved prediction accuracy is expected 
if increased computational capacity (hardware) is applied, thereby increasing scope 
to explore the application of more advanced modelling and larger datasets. 

5 Conclusion 

Both frontline and executive decision-makers now have the tools to be able to 
query the use of their historical clinical space utilisation and predict future capacity 
for service delivery improvements.  Baselines for minimum utilisation can be es-
tablished and adjusted for local conditions.  As demonstrated in this paper, clinical 
resource utilisation can be predicted.  It is now possible to optimise clinical space 
utilisation, and the relative success of quality improvement initiatives can be objec-
tively measured.  Optimising the use of spatial clinical resources increases access 
to healthcare services, reduces wait times, improves the patient experience, and re-
duces the pressure on more expensive safety net services such as ambulance, emer-
gency department, and inpatient care. 
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INFORMATION SHEET 
 
PROJECT TITLE:  Improving Outpatient Experience and Reducing Operational Costs Through the use of 
Internet of Things Technology 
 
 
You are invited to take part in a research project about your experiences as either a direct or indirect participant 
in research focused on how clinical spaces are used within the Townsville Hospital and Health Service (THHS), 
and the experience of occupants of clinical spaces about being observed by two different types of data gathering 
techniques:  human observation and manual data recording vs. electronic sensor device observation and 
automatic data recording. 
 
This study is being conducted by Principal Investigator Tim McNabb, and an inter-disciplinary professional 
team of educators at James Cook University and was funded by a grant from the THHS’ Study, Education, 
Research Trust Account Funding Scheme (SERTA).   
 
If you agree to participate in this research, you will be invited to be interviewed.  With your consent, interviews 
will be digitally recorded and transcribed, and should only take approximately 30 minutes.  The interview will 
be conducted in a designated meeting room within the THHS.  Taking part in this research is voluntary and you 
can stop taking part in the research at any time without explanation or prejudice.  
 
There are no foreseeable risks to the participants, other than the time and inconvenience of participating in an 
interview. 
 
Your responses and contact details will be strictly confidential.  The de-identified data from the interview will 
be used in research publications, presentations at professional conferences and reports to the funding body 
(THHS SERTA administrators).  You will not be personally identified in any way in these publications. 
 
If you have any questions about the study, please contact the Principal Investigator, Tim McNabb or call on 

 
 
 
Principal Investigator:  Mr. Tim McNabb 
PhD Candidate, James Cook University 
Phone:   
Email:  tim.mcnabb@my.jcu.edu.au  
 



IMPROVING OUTPATIENT EXPERIENCE AND REDUCING 
OPERATIONAL COSTS THROUGH THE USE OF INTERNET OF 

THINGS (IOT) TECHNOLOGY 

THHS Approved Ethics Application:  HREC18QTHS109_1 
 

Consent to take part in research 
 
 
• I __________________ voluntarily agree to participate in this research study. 

 

• I understand that even if I agree to participate now, I can withdraw at any time or refuse to answer 

any question without any consequences of any kind. 

 
• I understand that I can withdraw permission to use data from my interview within two weeks after 

the interview, in which case the material will be deleted. 

 
• I have had the purpose and nature of the study explained to me in writing and I have had the 

opportunity to ask questions about the study. 

 
• I understand that participation involves participating in a one-on-one interview with the 

researcher in a quiet space requiring approximately 15 minutes of my time 

 
• I understand that I will not benefit directly from participating in this research. 

 
• I agree to my interview being audio-recorded. 

 
• I understand that all information I provide for this study will be treated confidentially. 

 
• I understand that in any report on the results of this research my identity will remain anonymous. 

This will be done by changing my name and disguising any details of my interview which may 

reveal my identity or the identity of people I speak about. 

 
• I understand that disguised extracts from my interview may be quoted in upcoming publications 

such as conference presentations, published papers, a written thesis of the researcher and similar 

academic purposes. 



• I understand that if I inform the researcher that myself or someone else is at risk of harm they  

may have to report this to the relevant authorities - they will discuss this with me first but may be 

required to report with or without my permission. 

 

• I understand that signed consent forms and original audio recordings will be retained on THHS 

servers, located on the Douglas Campus of the Townsville Hospital protected by eHealth standard 

firewalls with access limited to the researcher and co-investigators for five years as per NHMRC 

requirements.  
 

• I understand that a transcript of my interview in which all identifying information has been 

removed will be retained for five years  
 

• I understand that under freedom of information legalisation I am entitled to access the 

information I have provided at any time while it is in storage as specified above. 

 

• I understand that I am free to contact any of the people involved in the research to seek further 

clarification and information. 

 
 

Tim McNabb, BArch, PhD Candidate, James Cook University (JCU) 

Dr. Kristin Wicking, Senior Lecturer, College of Healthcare Sciences, JCU 

A/Professor Trina Myers, Head – Information Technology, College of Science & Engineering, JCU 
 
 

Signature of research participant 
 
 

----------------------------------------- ---------------- 
 
Signature of participant Date 

 
 

Signature of researcher 
 
I believe the participant is giving informed consent to participate in this study 

 
 

------------------------------------------ ---------------------- 
 
Signature of researcher Date 
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APPENDIX 7: PRELIMINARY INTERVIEW RESULTS ABOUT WORKING IN SMART HEALTH BUILDINGS: HOW DO 
HEALTH STAFF FEEL ABOUT ELECTRONIC AND MANUAL DATA GATHERING IN HEALTHCARE SPACES?  

(PRESENTATION)  
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APPENDIX 8: FULL SURVEY (OPTIMISED FOR ELECTRONIC DEVICES) 
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APPENDIX 9: SURVEY RESULT DATA 

Survey Outcomes – Acceptability (comfort) 
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Survey Outcomes – Appropriateness 
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Survey Outcomes – Demographics Comparison 
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