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Abstract
Auto-encoders are capable of performing input reconstruction, denoising, and classification
through an encoder-decoder structure. Spiking Auto-Encoders (SAEs) can utilize asynchronous
sparse spikes to improve power efficiency and processing latency on neuromorphic hardware. In
our work, we propose an efficient SAE trained using only Spike-Timing-Dependant Plasticity
(STDP) learning. Our auto-encoder uses the Time-To-First-Spike (TTFS) encoding scheme and
needs to update all synaptic weights only once per input, promoting both training and inference
efficiency due to the extreme sparsity. We showcase robust reconstruction performance on the
Modified National Institute of Standards and Technology (MNIST) and Fashion-MNIST datasets
with significantly fewer spikes compared to state-of-the-art SAEs by 1–3 orders of magnitude.
Moreover, we achieve robust noise reduction results on the MNIST dataset. When the same noisy
inputs are used for classification, accuracy degradation is reduced by 30%–80% compared to prior
works. It also exhibits classification accuracies comparable to previous STDP-based classifiers,
while remaining competitive with other backpropagation-based spiking classifiers that require
global learning through gradients and significantly more spikes for encoding and classification of
MNIST/Fashion-MNIST inputs. The presented results demonstrate a promising pathway towards
building efficient sparse spiking auto-encoders with local learning, making them highly suited for
hardware integration.

1. Introduction

In the era of big data and artificial intelligence, the sheer magnitude of data necessitates efficient processing.
Effective training and inference schemes are thus vital research areas. Self-supervised learning has emerged as
a promising method, eliminating the laborious process of labeling datasets [1]. Auto-encoders stand out as
networks capable of self-supervised learning, encoding and decoding inputs to reconstruct the original input
[2]. Widely applied across various domains, auto-encoders facilitate tasks such as anomaly detection in brain
images [3] and analyzing traffic presence based on noise [4].

Spiking Auto-Encoders represent a unique form of auto-encoder that harnesses voltage/current spikes,
mimicking the behavior of biological neurons to convey information within the network [5]. Spiking
networks are of significant interest as they can leverage their inherent temporal dynamics to learn
spatiotemporal patterns and features. Furthermore, their asynchronous operation means calculations are
executed at the occurrence of events, substantially reducing power consumption. Whilst these networks are
incompatible with well-known gradient-based error backpropagation algorithms that are widely used in
artificial neural networks, spiking neural networks are an attractive prospect for edge-processing
applications [6, 7].
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Furthermore, we consider our network to be hardware friendly compared to other spiking approaches
such as graph-based [8, 9] and image-based [10, 11] processes. Graph-based spiking neural networks require
the calculation of dynamically generated graphs, whose features are then extracted for the training process.
This method requires high memory overhead to store the dynamically changing graphs. Meanwhile,
image-oriented approaches like those proposed in [10, 11] require high complexity calculations such as the
calculation of time-surfaces, whereas our approach mostly utilizes multiply and accumulate operations.

While surrogate gradients and spike-time differentiability have been used effectively in training SNNs
[12, 13], they are expensive algorithms due to the need for weight symmetry, and spatiotemporal credit
assignment problems [14]. These issues arise because each weight update requires a gradient with respect to a
loss signal, and every gradient must be routed in the reverse direction of the forward pass. Storing each of
these paths, along with the gradient computation for all synaptic weights during many training cycles is very
power- and resource-hungry [15]. Although some backpropagation-based works have attempted to resolve
some of these issues [16], there remain opportunities to explore unsupervised learning paradigms inspired
by biological principles, aiming to achieve efficiencies similar to those observed in biological systems.

One such opportunity is the STDP [17] learning rule. STDP is a biologically derived model for weight
updates which leverages the specific times at which spikes are presented to the network to calculate the
synaptic weight update [18, 19]. Furthermore, STDP is a local learning rule, requiring only the information
between adjacent nodes, allowing for a much simpler implementation. Remarkable results have also been
achieved using STDP in image classification and pattern recognition [20–22]. However, oftentimes STDP
underperforms compared to global gradient-based error backpropagation learning, in data-driven tasks [23].
Improvements can be made to the STDP rule by considering an error or reward signal, often referred to as
error-modulated or reward-modulated STDP [24, 25]. Previous implementations have used
error-modulated STDP in a variety of ways. In most cases, the reward/error signal term is multiplied by the
synaptic weight change (∆w) to contribute to the synaptic weight update [26, 27].

In our work, we introduce a novel method of calculating the error signal for error modulated STDP.
While most applications of STDP are focused on low-dimensional tasks, such as the classification of patterns
or simple datasets, we demonstrate how to enhance the learning capabilities of local STDP learning to
perform the more challenging task of image reconstruction, by using error-modulation in a spiking
auto-encoder.

In addition, we investigate and develop our SAE to utilize very few spikes in its local learning, while
needing only one spike for encoding each of its input image pixels, achieved through TTFS. This is to reduce
the amount of data communication and computation in the network, tasks that demand a significant
amount of the system’s operational energy and resources. Our approach is also further aligned with an
understanding that the brain relies mostly on spike-timing in light of energy constraints, rather than
maximizing the firing rate of particular neurons [28]. However, as already mentioned, despite the sparsity
advantage, time-based encoding schemes severely underperform in gradient-based approaches. Hence,
devising novel time-based learning rules, e.g. our proposed error-modulated STDP, for temporally encoded
data is significant. This pushes the potential of the STDP-driven literature towards tasks that go beyond
classification on toy problems.

Our specific contributions are listed as follows:

• We have developed a novel method of implementing error-modulated STDP.
• We have designed a spiking auto-encoder capable ofMNIST and Fashion-MNIST image reconstruction and
denoising using only STDP-based learning rules.

• Our auto-encoder needs only an average of 9.8 spikes in its hidden layer for reconstruction ofMNIST digits,
leading to a very sparse and hence potentially power-efficient implementation.

• We have validated that our reconstructions are suitable for downstream tasks like classification, and verified
our network’s robustness to noise [29].

2. Previous work

Reconstructing and filtering inputs on devices with limited resources and power constraints holds significant
practical implications. Previous research has explored the use of SAEs for this purpose. Convolutional
architectures trained with backpropagation learning rules, as investigated by [2, 30], are deemed power- and
resource-intensive paradigms. Kamata et al [2] implements a variational auto-encoder learning rule, by
randomly sampling SNN outputs to simulate a Bernoulli process. In their work, many convolutional layers
are trained using membrane potential backpropagation, resulting in a large network structure. Furthermore,
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this work requires random sampling of individual SNN network outputs to replicate the Bernoulli sampling
process. Thus, many output spikes generated through this procedure are often discarded, which is inefficient
for learning. Hübotter et al [30] demonstrates how activity regularization schemes can control the spike
density and avoid bursting and dying neurons. However, their convolutional architecture and
backpropagation-based learning rule detracts from the various advantages that are present with more
neuromorphic approaches.

An approach that is more representative of the brain’s learning mechanisms for use in spiking
auto-encoders are models that learn independently of symmetric backward-passes, such as those explored in
[31, 32]. Shimmyo et al [31] investigates the trade-off between number of timesteps and reconstruction
error, where they noted that longer timesteps typically led to lower reconstruction error. However, their work
adopts surrogate gradients to perform backpropagation as well as a Poissonian rate encoding scheme to
encode the input. This significantly increases the complexity and power consumption of the network [32].
explores how temporal coding can be utilized in auto-encoder models. Their model only requires an input,
hidden and output layer, however utilizes spike time backpropagation, an inefficient process. Furthermore,
additional training pulses are required to assist the learning.

In order to remove the weight transport issues associated with backpropagation, unsupervised local
learning paradigms have also been investigated in input reconstruction attempts. [33–35] delve into
investigating image reconstruction using STDP-based learning rules. Notably, [33] employs the STDP rule
for reconstructing 5× 5 patches of the original image. Image reconstruction is then possible by organizing
the learned patches in order and transposing the weight matrix for each patch to generate a decoder.
However, their approach employs a rate-based input encoding scheme, leading to a significant spike count
across the network. Similarly, [34] investigates an engineered STDP rule for reproducing handwritten digits.
Their rule is similar to other spike based learning procedures in [36, 37] except for the fact that their rule is
spatio-temporally local. However their convolutional structure combined with its excessive spike usage in its
encoding scheme detracts from its power and resource efficiency. On the other hand, [35] utilizes a mirrored
STDP learning rule for handwritten digit classification. This mirrored STDP involves both a feed-forward
and feedback connection between the input and hidden layers, allowing for the weight matrix to be
adequately transposed for the decoding section. However, their network requires image pre-processing and
introduces high power consumption through synaptic current input encoding.

Hence, our research endeavors to achieve image reconstruction efficiently by minimizing spike count not
only in our input encoding scheme, but also using our innovative local STDP learning rule, which operates
with significantly fewer spikes compared to the state-of-the-art. Our work paves the way for hardware-based,
low-power STDP implementation, in a similar fashion to prior art such as [38–41].

3. Network architecture

An auto-encoder network is a type of artificial neural network that consists of two main components: an
encoder and a decoder. The encoder part compresses the input data into a lower-dimensional representation,
often called a latent space or encoding. This process involves reducing the input data’s dimensionality while
preserving its essential features. The decoder, on the other hand, aims to reconstruct the original input data
from the encoded representation generated by the encoder. It takes the compressed representation and maps
it back to the original data space, attempting to generate an output that closely resembles the input. By
training the auto-encoder to minimize the reconstruction error between the input and output data, it learns
to capture meaningful patterns and features in the data while efficiently compressing and decompressing it.
In this section, we explain the details of the main components of our proposed spiking auto-encoder
architecture, shown in figure 1.

3.1. Input encoding
As shown in figure 1, the input is encoded using a TTFS scheme. In this scheme, pixels with high intensities
are encoded into the earliest spike times whilst the low intensity pixels fire at the latest times. The use of
TTFS encoding is advantageous due to its sparse nature of one spike per one input. This is in contrast to rate
encoding schemes carrying less information per spike [42], but needing generation and transmission of more
spikes leading to increased energy use and more learning steps. Additionally, TTFS can enhance dynamic
sparsity in a network. We, therefore, encode input pixels to have one spike per input neuron, as illustrated in
the figure. For the MNIST dataset, this results in 28× 28= 784 spikes being generated to encode each input
image, corresponding to the number of pixels in an MNIST image.
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Figure 1. The proposed STDP-based spiking auto-encoder architecture, with a final classification layer added for reconstructed
input classification as an example downstream task.

3.2. Encoder
In figure 1, the network receives a single spike per neuron as input, and each of the 784 input neurons is
connected to the hidden layer via STDP synapses. Equation (1) is used to implement the STDP learning,

∆w=

A+e
−∆t
τ+ ∆ t> 0

A−e
∆t
τ− otherwise

(1)

where∆w is the change in synaptic weight, A+ and A− are the amplitudes of potentiation and depression,
and τ+ and τ− are the time constants for potentiation and depression, respectively [43]. Furthermore, to
improve efficiency, each synaptic operation only occurs once during each image presentation. To achieve
this, the earliest spike times in the hidden layer are used to compute the change in synaptic weight.

The hidden layer consists of 5000 Leaky Integrate-and-Fire (LIF) [44] neurons, which accumulate input
voltage/current spikes by increasing their internal state variable known as the membrane potential. Once the
membrane potential of a neuron surpasses a predefined threshold, it generates a post-synaptic output spike,
propagating it to the next layer. Equation (2) describes the LIF membrane potential dynamics,

Ut+1 = βUt + Iin, t+1 (2)

where β denotes the membrane potential decay rate, U t represents the membrane potential at timestep t, and
Iin is the input synaptic current. Once the membrane potential exceeds the neuron’s threshold, the
membrane potential is reset to the resting potential of 0. These neurons are also connected with inhibitory
synapses from other hidden neurons, to achieve competitive learning in a Winner-Takes-All setting.

The fine-tuning of each neuron’s threshold occurs through a homeostatic regulation scheme, where the
rate of activity, particularly post-synaptic spiking events, is monitored. Homeostatic regulation here refers to
the regulation of neuronal behavior based on disproportionate activity levels. During training, some neurons
spike more frequently than others, which has a deleterious effect on the results. To combat this, we lowered
the neuron’s threshold at a fixed rate of τth when inactive and increased the neuron’s threshold by Ath when it
spiked. This homeostatic regulation is achieved by equation (3),

∆Vth [t] = AthS [t]− τth (3)

where∆Vth[t] is the change in the neuron’s threshold, Ath is a positive value that determines how much the
threshold is increased, τth is the decay rate of the threshold, and S[t] is equal to 1 when the neuron has spiked
at time t and 0 otherwise.

3.3. Decoder
The decoder consists of 784 LIF neurons in its reconstruction layer, connected to the hidden layer through
error-modulated STDP synapses. figure 1 shows that each neuron in the reconstruction layer represents a
pixel correlating to the original image, where the timing of the spikes in this layer represent the pixel
intensity. Given that the input was encoded using the TTFS scheme, the output of the reconstruction layer is
interpreted using the same encoding scheme. Therefore, neurons firing earliest are indicative of pixels with
higher intensity. In contrast to the hidden layer, no inhibition is imposed on the reconstruction layer,
allowing neurons in this layer to fire concurrently. Similar to the hidden layer, we experimented with
including and removing homeostatic regulation in the reconstruction layer and found that no regulation
worked best.
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The reconstruction ability of our auto-encoder is achieved through its novel error-modulated STDP. The
concept of error-modulated STDP has been explored in previous works [26, 27, 45]. The majority of these
works utilize the error as a binary or ternary signal to change the sign of the weight update. In this study, we
expanded upon this concept, by ensuring that the sign and magnitude of weight update is proportional to the
error signal itself. By doing this, weight updates in this layer would converge to a specific value that best
represents the spike timing of the output. The calculation of this value can be expressed using equation (4),
where ρj represents the error factor associated with the jth post-synaptic neuron, Trec denotes the
reconstruction layer spike time, l is a latency term to account for the accumulation of features, Tin is the
TTFS encoded time, IT is the total length of time for which the input is presented, and b is a biasing term
aiding in potentiation

ρj =
(Trec − l−Tin)

IT
+ b. (4)

Clearly, our values of rho ensure that the network aims to minimize the error difference between
reconstructed and input images.In our method, ρj is multiplied by the weight update induced by STDP.
Previous studies implementing auto-encoder learning rules have highlighted the need for hidden activity to
contribute to error-modulated weight updates [35]. Hence, an additional multiplicative term, ζ i for the ith
neuron in the hidden layer, is introduced. This term ensures that the hidden neuron most responsible for the
reconstruction layer firing receives are attributed with higher values of weight update than those that were
not. The range for ζ i is from 0 to 1, where higher values are associated with earlier spikes in the hidden layer.
Equation (5) illustrates this effect, where IT denotes the total time during which the image is presented to the
network, and Thid represents the firing time of the neuron in the hidden layer

ζi =
(IT−Thid)

IT
. (5)

Equation (6) defines the weight update rule applied to the error-modulated STDP synapses. In this
expression,∆wem, ij represents the change in synaptic weight for the error-modulated synapse connected
between the ith presynaptic hidden layer neuron and jth post-synaptic reconstruction neuron, and∆w is the
change in synaptic weight as a result of standard STDP from equation (1)

∆wem, ij = ρj ζi ∆w. (6)

3.4. Classification layer
To demonstrate the potential utility of the reconstructed input image in downstream tasks, we choose to
conduct experiments with a classification task. This involves integrating a classification layer following the
reconstruction layer, aimed at clustering inputs in an unsupervised manner. To ensure reliance solely on
local, non-gradient-based learning, we utilize standard STDP synapses described by equation (1), in
conjunction with LIF neurons. Furthermore, all-to-all inhibition is activated within this layer to establish a
Winner-Takes-All setup. The neuron that exhibits the earliest firing in this layer is designated as the one
classifying the input, and these responses are monitored during testing to ascertain classification accuracy.

To further assess the reconstruction capabilities of our auto-encoder, we employ the LeNet-5 [55] deep
learning architecture as an alternative to STDP-based classification. In this approach, the spiking output of
the reconstruction layer is translated back into a normalized image, which is subsequently fed into the deep
learning classifier. This additional classifier demonstrates classification accuracy exceeding 99% for standard
MNIST classification tasks—a performance level unattainable through conventional STDP methods. Hence,
it provides a more comprehensive reflection of the usefulness of our auto-encoder reconstructions for
downstream tasks.

4. MNIST results

To verify the reconstruction ability of our network, in the first instance, the MNIST dataset was used with the
following experimental setup.

4.1. Training
To train the auto-encoder, the 60000 training MNIST [55] images were used, with each image presented for
200 simulation timesteps. The learning hyperparameters, including A+, A−, τ+, and τ−, along with the
neuron parameter β, as well as threshold regulation parameters Ath and τth, collectively play a crucial role in
the network’s ability to reconstruct the input. The optimization of these parameters was achieved through a
grid search, and a summary of these hyperparameters for MNIST dataset can be found in table 1. The
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Table 1. Overview of auto-encoder hyperparameters for the MNIST dataset.

Layers

STDP hyperparameters Neuron hyperparameters

A+ A− τ+ τ− l b # of Neurons β Ath τth Maxth Minth Scaling

Hidden 0.05 0.03 20 200 5000 0.9 0.05 5.00× 10−08 300 50 0.999
Reconstruction 0.05 0.005 30 200 10 0.5 784 0.9 0 0
Classification 0.2 0.12 20 200 100 0.9 0.05 2.50× 10−06 300 50 0.9

Figure 2. Receptive Field Analysis of MNIST Network in Three Layers: (a) 100 Standard STDP Synapses. (b) 100 Error-Modulated
STDP Synapses. (c) 100 Standard STDP Synapses.

simulations were conducted using the snnTorch simulation platform [14]. It was also noted that clamping of
the threshold voltage was required, as shown in the table 1 This was due to the network reaching extreme
threshold values in the training phase, that resulted in significantly longer training time. Additionally,
periodic scaling of the voltage thresholds was implemented, where, for every 1000 inputs, the threshold of all
input and classification neurons was multiplied by a scaling factor less than one, as listed in the table 1.

It is noted that for the particular threshold adaptation scheme used, a relationship exists between Ath and
τth, as defined by equation (7), where N represents the number of neurons and IT is the number of
time-steps during which an input is presented

Ath = N× IT× τth. (7)

This is a notable observation, as the network aims to achieve a resource efficient scheme where all
neurons participate in the learning phase. Whilst a TTFS scheme is adopted, it is necessary to monitor and
regulate the activity in the hidden layer. This is to ensure that all neurons in the hidden layer spike
throughout the training and testing.

Throughout the hyperparameter optimizations, the number of neurons in the hidden layer also played a
significant role. For MNIST classification, it was found that 5000 neurons were adequate for the
reconstruction of all 70000 images in both the training and testing datasets. Reducing the number of hidden
neurons resulted in some non-reconstructions, where sometimes no spiking activity in the reconstruction
layer (decoder) was observed. Interestingly, this had a high correlation with no spiking in the hidden layer
(encoder), suggesting that the features learnt by each neuron are highly specific.

4.2. Reconstructions
Following the training, the 10000 images in the MNIST test set were then used to test the network’s ability for
image reconstruction. The weights and threshold regulation were held fixed during this testing procedure.

Figure 2 depicts the receptive fields associated with the input, reconstruction, and classification layer
synapses. Upon inspection, it is evident that each neuron in the hidden layer corresponds to a specific digit,
though some may pose challenges in recognition. Notably, the error-modulated STDP weights in the
reconstruction layer exhibit fewer depressed weights compared to the standard synapses. Due to the lack of
activity regularization in this layer, if the error-modulated synaptic weight is not high enough to cause
post-synaptic firing, then no weight update will take place. The receptive field in the decoder layer was
correlated with the receptive field in the encoder layer, as a result of the hidden neurons being representative
of a particular digit. Subtle qualitative differences could also be observed between encoder and decoder

6



Neuromorph. Comput. Eng. 4 (2024) 034005 B Walters et al

Figure 3.MNIST Image Reconstruction.

receptive fields, such as the existence of intermediate weights and the increased thickness of the decoder
digits compared to the encoder digits. Both of these can be attributed to the error-modulated STDP learning
rule, as the standard rule typically generates bimodal distribution of weights. Thus these pixels will continue
to remain at these weights rather than depress further. Another observation is the fact that the receptive fields
for the input and classification layers are notably different even though the synaptic learning rule is the same.
Interestingly, this can be attributed to the fact that the classification layer learns the reconstructed images,
which are clear synthetic versions of the input, as opposed to the original MNIST images presented to the
hidden layer.

Figure 3 shows sample MNIST digit reconstructions. These results demonstrate an adequate
reconstruction capability of the proposed auto-encoder. As already mentioned, a notable observation is the
ability of the auto-encoder to utilize STDP for building a synthetic binary version of the input image, that
does not try to replicate the exact shape of the input, rather it shows an overall shape for the input digit
learned through seeing various cases of that digit during the encoding-decoding learning phase.

An additional advantage of the proposed network is its requirement for an average of only 9.8 spikes in
the hidden layer for image reconstructions. This indicates an extremely efficient structure that encodes the
input into merely 9.8 spikes. Moreover, considering the layer comprises 5000 neurons, it further highlights
the remarkable sparsity achieved, where at most 10 neurons spike for each image. Detailed investigation of
the network reconstruction ability showed that approximately 200 images presented in the testing phase did
not produce any activity in the reconstruction layer. This is simply due to the very sparse nature of the
proposed auto-encoder, which can result in not having enough features encoded in the hidden layer to lead
to a synthetic class reconstruction. Despite this, the network still shows an impressive 98%MNIST test set
reconstruction ability, while it learns to reconstruct all 60000 training images in two training epochs.

4.3. Classification
The classification task of the proposed network yielded promising results, as listed in table 2. It should be
noted that a direct comparison of classification performance is not straightforward, as all previous works in
table 2, perform training on the actual 60000 MNIST training images, and then test on the 10000 test set.
However, our network is trained for reconstruction and classification at the same time and performs
classification of its reconstructed inputs, which as shown in figure 3 are synthetic class representative, rather
than single digit representative.

In comparison to previous studies employing solely STDP for classification within a similar network
architecture but utilizing a Poisson rate encoding scheme [49, 50], the attained accuracy of 72% falls slightly
below. Nonetheless, despite this margin, several advantages justify the trade-off. Firstly, the adoption of a
TTFS encoding scheme, rather than a rate-based approach, augments the information embedded within
each spike while concurrently diminishing the need for a high number of spikes for network functionality.
Additionally, synaptic weight updates occur solely once per image presentation, mitigating the memory
overhead associated with storing the timing details of individual neurons. Lastly, the main objective of our
study around minimizing the spike count for both image reconstruction and classification is achieved with
an average of only 9.8 spikes for reconstruction and 2.49 for classification, significantly lower than previous
works.

To further investigate the classification performance of our reconstructed MNIST images, the LeNet-5
architecture was used instead of the normal STDP classifier in the final layer. Initially, it was tested and
achieved 99% accuracy on standard MNIST classification. However, when applied to classify image
reconstructions, LeNet-5 achieved an accuracy of 83.2%. While this surpasses the previous accuracy of 72%
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Table 2. Comparative Analysis of Reconstruction Classification Ability.

Dataset Work
Input
Encoding

Learning Rule /
Supervision

Classification
Network Accuracy Spike Number

MNIST

[21] Poisson
Rate
Encoding

Weight-
dependant
STDP

784-6400 95% 8746 Input, 17 Hidden

[46] Poisson
Rate
Encoding

STDP 784-300 93.5% Not Specified

[47] Poisson
Rate
Encoding

Pre-conditioned
STDP

784-100 85.90% 8746 Input

[48] Poisson
Rate
Encoding

Weight-
dependant
STDP

400-100 89.15% 500 Input

[49] Poisson
Rate
Encoding

STDP 784-50 78.90% 200 Input

[50] Poisson
Rate
Encoding

STDP 784-100 80% 4312 Input

[51] Poisson
Rate
Encoding

Dopamine
Assisted STDP

784-400-10 96.73% 8746 Input

[52] TTFS Spike Timing
Dependant
Delay

784-4000 93.09% 100 Total

[53] TTFS Weight-
dependant
STDP

784-100 88.57% 152 Total

Proposed TTFS STDP 784-100 72% 784 Input, 2.49 Classification
Proposed TTFS LeNet-5 784-(LeNet-5) 83.2% 784 Input

Fashion MNIST

[51] Poisson
Rate
Encoding

Dopamine
Assisted STDP

784-6400-10 85.30% Not Specified

[54] Poisson
Rate
Encoding

STDP 784-1600 68.80% Not Specified

Proposed TTFS STDP 784-1000 51.25% 784 Input, 16.23 Classification
Proposed TTFS LeNet-5 784-(LeNet-5) 66.2% 784 Input

Figure 4. Image Reconstruction Across Different Levels of Gaussian Noise, and Salt & Pepper Noise.

using standard STDP, it falls short of its standard 99% accuracy. This is likely due to the feature extractor in
the encoder, as explained in section 6. Nevertheless, the objective of the proposed study is not solely focused
on attaining the highest classification performance. Instead, it aims to develop an auto-encoder with a
minimal number of spikes capable of achieving competitive performance, a goal that has been accomplished.

4.4. De-noising
Image de-noising represents a significant application of auto-encoders. We investigated our network’s ability
to reconstruct images under the Salt & Pepper noise as well as Gaussian noise, and assessed the potential
implications for downstream tasks. Figure 4 shows that the output images can be reconstructed accurately
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Figure 5. Classification Accuracy of Network with Noisy MNIST Inputs: (a) Gaussian Noise. (b) Salt & Pepper Noise.

Figure 6. The effect of increased hidden layer activity on network reconstruction. (a) Qualitative evaluation of reconstruction for
different activity levels. (b) Classification accuracy drop in % with various activity levels..

when the input is subjected to various levels of noise. To introduce Gaussian noise to input images, we
normalized the MNIST image within the range of 0 to 1 and then added a random variable sampled from a
normal distribution. The standard deviations of these distributions are denoted as σ values. As shown in the
response to Gaussian noise, the network exhibits an ability to identify prominent features within the noise
and undertake reconstruction efforts. Salt & Pepper noise was introduced by determining the probability of a
pixel being affected and toggled to either the maximum or minimum value, as shown by the ρ values. Again,
feature extraction is demonstrated even in considerably noisy inputs.

Figure 5 shows the classification accuracy drop for the STDP-based and the LeNet-5 classifiers used in
our work as well as the accuracy drop presented in [56], the only work clearly describing the same method of
Gaussian noise injection. Figure 5(a) shows that under various levels of Gaussian noise, the STDP-based
classifier remains within 10% of its original accuracy for σ ⩽ 0.3. The LeNet-5 operated slightly better,
exhibiting less accuracy drop than both the STDP-based classifier and [56]. Even though LeNet-5 achieves
higher accuracy, it demonstrates a lower accuracy drop, suggesting that the MNIST reconstructions are
relatively stable even when high levels of Gaussian noise are introduced.

Similarly, figure 5(b) shows similar stability for both the STDP-based and LeNet-5 classifiers under Salt &
Pepper noise conditions. Significant performance degradation for the STDP-based classifier was noted when
the probability of Salt & Pepper noise was increased to above 20%. LeNet-5 also had notable degradation at
20%, suggesting that the reconstructions have degraded at this level of noise. It also suggests that the
reconstruction network is more tolerable to Gaussian noise as opposed to Salt & Pepper noise. As previously
indicated in figure 4, the visual representation provides insight into why this may be the case, as more than
20% of Salt & Pepper noise clearly affects the pattern presentation.

4.5. Activity analysis
In this section, we describe the effect of increased activity on neuronal performance. To achieve this, the Ath

parameter in the hidden layer was decreased to promote increased firing rates (whilst keeping τth fixed.)
figure 6 shows an example of the qualitative effect of increased activity on the network reconstructions.
Whilst this form of degradation was not observed in all cases, some reconstructions were clearly more
affected. It is believed that the increased activity results in less specificity in the hidden layer, causing more
generic and overlapped reconstructions. Figure 6 highlights the drop in classification (in%) accuracy as a
result of increased activity, which can be attributed to the poorer quality of some reconstructions.

9
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Table 3. Overview of Hyperparameters Variation for Fashion-MNIST Dataset.

Layers

STDP Hyperparameters Neuron Hyperparameters

A+ A− τ+ τ− l b # of Neurons β Ath τth Maxth Minth Scaling

Hidden 0.05 0.02 20 200 10000 0.9 0.05 2.5× 10−08 300 50 0.999
Reconstruction 0.1 0.001 30 200 10 0.15 784 0.9 0 0
Classification 0.05 0.04 5 200 1000 0.9 1 0.00001 300 50 0.99

Figure 7. Receptive Fields Analysis of Fashion-MNIST Network in Three Layers: (a) 100 Standard STDP Synapses. (b) 100
Error-Modulated STDP Synapses. (c) 100 Standard STDP Synapses.

5. Fashion-MNIST results

5.1. Training
The next set of simulations involved using a more complex dataset known as Fashion-MNIST, featuring
28× 28 grayscale images representing diverse clothing items such as shirts, trousers, pants, and more. Similar
to MNIST dataset, this dataset consists of 10 different categories or labels, with the images divided into a
60000-sample training set and a 10000-sample test set. The hyperparameters used for training this network
are listed in table 3. Like the previous section, these hyperparameters were optimized through a grid search.
One of the most notable differences from previous was the increase in the number of hidden layer neurons.
The more complex nature of Fashion-MNIST required more hidden layer neurons to extract more specific
features. Consequently, the average activity of each neuron in the hidden layer is decreased, which is reflected
in the voltage regulation parameters.

Figure 7 illustrates the learned weights between each layer when the network was trained using the
Fashion-MNIST dataset. The most prominent features learned in these fields are the outlines of the inputs,
such as shoes or pants. However, the details within these outlines were not as distinct. One notable contrast
in these fields compared to figure 2 was the significant difference in weights between the
Reconstruction-Classification layer and the Input-Hidden layer, despite both being trained using the same
standard STDP rule. This implies that the image reconstructions have a considerable influence on the
learning process. The relationship between the receptive field of the encoder and decoder layers was
markedly different for Fashion-MNIST than for MNIST. The encoder layer typically learnt the outlines of
objects. This is attributed to the bi-modal distribution of weights favoring depression over potentiation, and
whilst subsequent attempts at improving potentiation via STDP window parameter adjustment could rectify
this result, the reconstruction and classification results were poorer. This result was not observed in the
decoder layer, as the decoder is able to learn intermediate weights. Finally, qualitative observation shows that
the receptive fields for the encoder and decoder layers are correlated, as expected.

5.2. Reconstruction
Figure 8 illustrates that the attempted reconstructions for the Fashion-MNIST dataset are rough
approximations of their original inputs, noting that even the original inputs are not of high quality. The
initial observation of these reconstructions is the reduction in quality from input to reconstruction. This
degradation can be attributed to the TTFS input utilized for the network. To achieve more precise
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Figure 8. Fashion-MNIST Image Reconstructions.

Figure 9. Classification Accuracy of Network with Noisy Fashion-MNIST Inputs: (a) Gaussian Noise Impact. (b) Salt & Pepper
Noise Impact.

reconstructions, it becomes essential for the reconstruction layer to finely adjust the individual timings of
each neuron to synchronize with each pixel. However, due to its sparse firing from the hidden layer,
controlling the timings of each neuronal firing becomes considerably challenging. Nonetheless, this can be
mitigated by implementing a learned delay mechanism. This mechanism would introduce a delay in
transmitting spikes from the hidden layer to the reconstruction layer, thus facilitating the adjustment of
neuronal event timings in the reconstruction layer. It is worth noting that, compared to MNIST needing an
average of 9.8 spikes in its encoding component, the average activity of the hidden layer for Fashion-MNIST
images was higher at 68.2 spikes per input, which is expected considering the more complex input shape.

5.3. Classification
The outcomes of the Fashion-MNIST classification task fell significantly short. The highest classification
accuracy attained using only STDP was 51.25%. However, when the classifier was replaced with LeNet-5, the
accuracy increased to 62.3%. One factor contributing to the lower accuracy was the utilization of STDP
learning in the classification layer. As listed in table 2, unsupervised STDP learning for Fashion-MNIST is
seldom used and shows inferior performance compared to other learning rules. However, further
investigation revealed that the attempted reconstructions also play a role in the downgrade in classification
accuracy.

5.4. De-noising
Figure 9 demonstrates the network’s accuracy drop for various levels of Gaussian noise, and Salt & Pepper
noise for Fashion-MNIST images. Compared to MNIST classification, the accuracy drop was much less
stable, particularly for higher levels of additional noise. This effect was expected, because the added
complexity of the dataset means that the reconstructions needed to contain more temporal information.
Figure 9 also illustrates that LeNet-5 exhibits a higher accuracy drop than the STDP-based classifier. This is
largely because the LeNet-5 classifier achieved a higher baseline accuracy, thus allowing more room for
accuracy drop.

6. Discussion

Analysis of the network performance highlights how the network performs its task. One notable observation,
particularly in the Fashion-MNIST dataset is the synthetic reconstruction produced, as opposed to
attempting to exactly replicate the input. The synthetic reconstruction is formed through clustering in the
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Table 4. Comparison of Spiking Auto-Encoders for MNIST/Fashion MNIST Image Reconstruction.

Dataset Work
Input
Encoding

Learning Rule /
Supervision

Network
Structure

Reconstruction
Ability Spike Number

MNIST [30] Poisson
Rate
Encoding

Membrane
Potential
Backpropagation

Convolutional6.75 (MSEa) ≈2000

[35] Synaptic
Current
Encoding

Mirrored STDP 784−
5000

0.5 (PC) ≈150

[34] Spike
Probability
Encoding

Engineered
STDP

Convolutional0.01 (PC) 10000

[2] Direct
Input
Rate
Encoding

Spatiotemporal
Backpropagation

Convolutional0.031 (MSE) Not Specified

Proposed TTFS STDP/Error
modulated
STDP

784-
5000-784

56.65 (MSE) 9.8

Fashion MNIST [2] Direct
Input
Rate
Encoding

Spatiotemporal
Backpropagation

Convolutional0.031 (MSE) Not Specified

[31] Poisson
Rate
Encoding

Backpropagation
Through Time

784-400-
200-400-
784

11.68 (MSE) Not Specified

[32] TTFS Spike Time
Backpropagation

784-32-
784

0.01 (MSE) 104

Proposed TTFS STDP/Error
modulated
STDP

784-
10000-
784

44.13 (MSE) 68.2

a Mean Squared Error (MSE)

hidden layer, where various inputs are grouped based on their characteristics. The network then attempts
reconstructions based on which group/neurons in the hidden layer are attributed to it.

Our auto-encoder network operates differently than the previously investigated auto-encoders, making a
direct comparison challenging. Nonetheless, table 4 lists previous relevant works, which mostly implement
some form of rate-based input encoding, which significantly increases the number of spikes required for
reconstruction. Furthermore, these works utilize more complex learning rules, compared to our design using
only STDP, while also relying on convolutional or more complex network architectures.

Interestingly, the only work found to use a TTFS encoding scheme [32] was also the work that required
the most amount of spikes, due to the additional synchronization pulses in their network. One work not
included in table 4 was [33]. Tavanaei et al [33] performed a recreation of patches of MNIST images, using
STDP learning, and reported utilizing approximately 115 spikes to achieve a reconstruction Root Mean
Square (RMS) error of 0.167. This work was not included based on its patch learning scheme, which makes it
difficult to compare to other auto-encoder works.

The only other auto-encoders to utilize STDP learning are [34, 35]. Kotariya et al [34] modified the
learning rules proposed in [36, 37] such that their learning algorithm is explicitly spike-based and temporally
local. However, their unique input encoding method is equivalent to a rate-based learning rule, and they
report representing each MNIST digit with 10000 spikes, which is significantly higher than the 9.8 spikes
needed for our proposed auto-encoder. Burbank et al [35] proposed a mirrored STDP learning rule, where
feed-forward and feedback connections are updated using the same STDP rule. They utilized a unique
network structure where feed-forward and feedback connections between a visible and hidden layer are used
to generate input reconstruction. It is estimated that for MNIST reconstruction, they utilize approximately
150 spikes (excluding inhibitory neuron spikes) to attain a Pearson Correlation (PC) of 0.5 between input
and reconstruction. However, image pre-processing was required to generate these results. As listed in
table 4, no works have reported using less than 9.8 spikes in the hidden layer, indicating that our approach
achieves minimal spike encoding. Naturally, this reduction in spikes inevitably leads to significantly higher
reconstruction losses in our work. However, we intend to demonstrate that an exact replication of the input
is not necessary in downstream tasks such as classification.
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Table 5. Power consumption comparison for various spiking auto-encoders working on MNIST reconstruction..

Input (J) Hidden (J)

Work Generation Routing Generation Routing Total (J)

Training [30] 3.00× 10−02 9.78× 10−03 5.88× 10−03 1.92× 10−03 4.75× 10−02

[34] 3.00× 10−02 9.78× 10−03 5.88× 10−02 1.92× 10−02 1.18× 10−01

[35]∗ 2.45× 10−04 8.00× 10−05 3.68× 10−05 1.20× 10−05 3.74× 10−04

Proposed 1.61× 10−03 5.27× 10−04 1.23× 10−05 4.02× 10−06 2.16× 10−03

Testing [30] 4.99× 10−04 1.63× 10−04 9.80× 10−05 3.20× 10−05 7.92× 10−04

[34] 2.50× 10−04 8.15× 10−05 4.90× 10−04 1.60× 10−04 9.81× 10−04

[35]∗ 2.45× 10−05 8.00× 10−06 7.35× 10−06 2.40× 10−06 4.22× 10−05

Proposed 3.84× 10−05 1.25× 10−05 4.58× 10−07 1.50× 10−07 5.16× 10−05

∗This work downsamples the MNIST images, and the energy consumption of this process was not considered.

Compared to other studies that have performed either MNIST or Fashion-MNIST classification, our
overall classification accuracies are slightly lower. For MNIST classification, our final accuracy for the
STDP-based classifier was only 72%, compared to other works which typically achieve>78% using STDP, as
shown in table 2. Interestingly, when using LeNet-5 for classification, it is comparable to these other
networks with a classification accuracy of 83.2%. Given that LeNet-5 typically operates at around 99%
accuracy for typical MNIST, it is evident that the reconstructions have marginally reduced the quality of the
images generated. However, the reconstructions still retain adequate information such that classification is
on par with typical STDP classification.

Fashion-MNIST classification was also lower than other works that have attempted the same task. As
previously mentioned, backpropagation-based learning rules tend to outperform STDP learning rules and
typically achieve classification accuracies between 80% and 90% [22, 56–59]. As shown in table 2, few works
have attempted Fashion-MNIST classification with only STDP-based learning rules, but none has used TTFS
along with STDP. In [51], dopamine assisted STDP achieved a classification accuracy of 85.3%. However,
their particular STDP learning is supervisory in nature, and requires labeled datasets to achieve this result,
whereas our work falls under the self-supervisory category and does not require labels to train. Lastly, [54]
utilized STDP learning to achieve a 68.8% classification accuracy. Remarkably, this is similar to our result of
66.2% using LeNet-5 in the classifier layer. Our reconstruction network only uses STDP learning rules, so it
suggests that the data contained in our image reconstructions contains similar features to those extracted in
[54]. As expected, our STDP-based classifier performed worse than the LeNet-5 classifier, highlighting the
current disparity between unsupervised neuromorphic and deep-learning approaches.

Table 2 also illustrates the number of spikes used in the prior art for encoding inputs for classification.
This data is limited by the lack of reporting on spiking activities. For some rate-based inputs, we have
approximated the input spiking behavior by using the rates and time lengths provided by each work. A direct
comparison is not possible, because the previous works have not done reconstruction before classification.
For our STDP-based classifiers, the spikes required for classification are 2.49 and 16.23 for MNIST and
Fashion-MNIST, respectively. This further reflects the sparsity and efficiency of our network, albeit at the
expense of a lower accuracy.

On top of monitoring the classification accuracy of the overall architecture that reconstructs the inputs
before classifying them, we also monitored the hidden layer’s responsiveness to particular inputs. When these
responses are clustered, classification accuracy just within the hidden layer can be reported. When this was
monitored in the test set of MNIST, the 5000 neurons in the hidden layer achieved an 87.04% classification
accuracy. Similarly, the 10,000 neurons for Fashion-MNIST classification achieved 72.4%. Clearly, these
classification results are higher than our other STDP results reported in table 2. However, compared to the
results obtained with the LeNet-5 classifier, these results are only slightly reduced, and much more
comparable. Thus, this indicates that the reduced performance in classification accuracy can be attributed to
the imperfect nature of the feature extraction in the hidden layer.

table 5 compares the calculated power consumption in both the training and testing phases of various
spiking auto-encoders on MNIST reconstruction. To calculate these values, we considered both the energy
required to generate spikes, as well as the energy required to transmit those spikes within the network. For
each spike, we estimated that it takes approximately 4.9 pJ to generate [60] and 1.6 pJ to transmit those spikes
[61]. Initially, we also considered the energy required for synaptic weight update, however this data was not
reported for previous auto-encoders. As shown, in both the input and hidden layers, our network consumes
less power, except when compared to [35]. However, [35] downsamples the image to nearly half of its
original size. The energy consumption of this process was not considered. We have also compared our total
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network latency to previous auto-encoders. We use 200 timesteps to encode each image, which is slightly
poorer than the values of 50 timesteps and 100 timesteps reported in [34] and [30], respectively. [35]
reported a value of 65 ms for training and 30 ms for testing for each image.

Whilst we have demonstrated a highly efficient and sparse auto-encoder, using simple local STDP
learning to perform input reconstruction, our auto-encoder has some drawbacks. Its most significant
limitation is the lack of temporal resolution in the reconstruction layer. The minimal spiking in the hidden
results in the reconstruction layer being stimulated very sparsely, which while making our network very
attractive from an energy point of view, restricts the information transmitted to the next layer. An approach
that could be investigated in future works is to produce many spikes at many different times, using an
adjustable delay or utilizing some other proxy for time.

Furthermore, the scalability of the network’s learning rule heavily favors TTFS encoding schemes. Whilst
this can encompass a wide variety of data, future studies could apply it to event-based datasets that utilize the
temporal dimension of input data more effectively. Furthermore, the standard STDP learning rule used in
our work could be improved, to more precisely learn the temporal structures presented as opposed to the
bi-modal distribution observed in our receptive fields.

Our error modulated learning rule in its current form is only applicable for decoders aiming to
reconstruct the original input. However, in some cases, it may be applicable to reconfigure the decoder so
that the output is more suitable for downstream tasks. For example, [5] investigated audio to image
conversion using spiking auto-encoders. Currently, our error-modulated learning rule does not support this,
however, a similar self-supervised approach could be explored for future investigation.

7. Conclusion

In our work, we performed self-supervised learning using a novel form of error-modulated STDP. We
determined that with enough hidden neurons, we were able to reconstruct some images within the MNIST
and Fashion-MNIST datasets. Furthermore, we demonstrated our network’s tolerance to various types and
levels of noise. Our proposed network only requires an average of 9.8 spikes in its hidden layer to reconstruct
MNIST images and 68.2 spikes to reconstruct Fashion-MNIST images. This is remarkable and shows
potential for very low-power image processing on spiking hardware in future works.

Data availability statement

NA The data that support the findings of this study are available upon reasonable request from the authors.
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Classification.
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