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Abstract

Solid oxide fuel cells (SOFCs) are highly promising devices for efficient

and low‐emission energy conversion. The effective triple‐phase boundary

(TPB) density refers to the fraction of percolated TPB density that

effectively contributes to the current production during cell operation.

This is one of the most fundamental and least understood aspects of

the cell design and performance assessment. This study methodically

investigates the effective TPB density, using a computational fluid

dynamics model based on the TPB‐based kinetics and its correlation with

the active anode thickness. Experimental data from previously published

studies with varying thicknesses of anode functional layer and operating

regimes are utilized to validate the model. The results of this study

reaffirm that a significant fraction of the percolated TPB density in SOFCs

remains unused during cell operation. This finding emphasizes the need

to consider the effective TPB density for theoretical and experimental

investigations focusing on optimizing cell performance. Furthermore, an

inverse relationship is observed between the effective TPB density and the

active anode thickness; a lower active anode thickness corresponds to a

higher effective TPB density and vice versa. These findings contribute to

advancing sustainable energy systems by guiding the development of

more efficient SOFC designs and operational strategies that effectively

utilize TPB sites.
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1 | INTRODUCTION

The world is currently experiencing an energy crisis as a
result of the depletion of conventional fossil fuel
resources and the negative environmental consequences
of their use. Consequently, there has been a rise in the
need for environmentally friendly and renewable energy
resources and technologies, leading to the emergence of
solid oxide fuel cells (SOFCs) as a viable and promising
alternative. These fuel cells can utilize fuel sources such
as hydrogen, natural gas, and biofuels, transforming
them into electricity through electrochemical reactions.1

Additionally, SOFCs are appealing due to their high
efficiency, fuel adaptability, and relatively high operating
temperature, which render them suitable for a variety of
applications, including transportation and combined
power and heat generation.2 A standard SOFC consists
of a compact ceramic electrolyte positioned between an
anode and a cathode. The anode promotes oxidation
reactions, while the cathode facilitates reduction
reactions. In contrast, the electrolyte conducts oxide
ions. Multiple ceramic–metal composite anodes, also
known as cermet anodes, have been designed for
different types of fuels and operating conditions.3 The
most commonly found cermet anode is composed of
nickel and yttria‐stabilized zirconia (Ni–YSZ) because of
its exceptional electrochemical activity and operational
stability.4 The Ni–YSZ cermet comprises three distinct
phases: Ni, YSZ, and pore phases. The gaseous fuel
diffuses through the pores, whereas electrons and oxygen
ions move through the Ni and YSZ phases, respectively.
The electrochemical oxidation process takes place at the
triple‐phase boundary (TPB), which is the interface
between the three phases. This reaction produces both
current and reaction products.5 The efficiency of the fuel
cell is strongly dependent on the competence of the
multiphysics phenomenon that occurs in the porous
electrodes.

The patterned electrodes have a well‐defined 2D
structure, and the TPB length can be accurately defined
from the geometrical interface between the three
phases.6 The cermet electrodes, on the other hand, have
a complex 3D microporous structure, and their TPB
length is designated per unit volume of the electrode
(m/m3), hence the term TPB density. Three distinguished
terms associated with the TPB density of a cermet
electrode have been used in this text or in relevant
literature including 1) percolated TPB density, 2) total
TPB density, and 3) effective TPB density. The “perco-
lated TPB density” refers to the TPBs formed by
percolated phases (ionic phase, electronic phase, and
gas phase/pores) that extend throughout the entire
thickness of the composite electrode. It defines the upper

limit of the electrochemically active reaction sites and
therefore the “active TPB density” term has also been
used in literature to identify the same.7–9 The “total TPB
density” includes both percolated and nonpercolated
TPB densities. Several experimental and theoretical
approaches have been developed to determine the
microstructural details of the cermet electrodes including
TPB densities such as X‐ray computed tomography,10

focused ion beam scanning electron microscopy (FIB‐
SEM),11,12 and 3D microstructure model.13 The perco-
lated TPB density of Ni–YSZ anodes, determined with the
help of these techniques, is typically 1012–1013 (m/m3).
However, a recent simulation study using TPB‐based
kinetics derived from the patterned electrode cells has
concluded that only a fraction of the percolated TPB
density is required or available during fuel cell operation
to carry out the electrochemical reactions and generate
the desired cell current density.14 This fraction of
the percolated TPB density that effectively contributes
to the current production during cell operation is termed
as “effective TPB density.” Since the study employed the
experimental data of a thick anode‐supported button cell
for model validation and findings regarding the effective
TPB density, further investigations using thin anode
layers were suggested.

Besides TPB density, anode thickness is another
crucial parameter in the design and performance of a
SOFC. The state‐of‐the‐art anode‐supported SOFCs have
a dedicated anode functional layer (AFL) adjacent to the
electrolyte, with a thickness of few micrometers, and a
relatively thick anode support layer, typically higher than
300 μm. The microporous anode structure is responsible
for mass transport to and from the anode/electrolyte
interface, besides electrocatalytic activity, so the thick-
ness beyond electrocatalytically active layer directly
contributes to the reduction in the cell performance.
Unlike cells supported by electrolytes, anode‐supported
cells feature a thin layer of electrolyte. This significantly
reduces the ohmic loss caused by the thickness of the
electrolyte. As a result, these cells may operate at lower
temperatures and exhibit superior performance, provided
that activation and concentration losses are managed.
The metal‐supported cells have recently gained consider-
able attention in SOFC development because they have
relatively thin electrode and electrolyte layers and offer
several advantages over anode‐supported or electrolyte‐
supported SOFCs.15 These advantages include increased
mechanical strength, excellent thermal and redox cycling
tolerance, inexpensive materials, and rapid start‐up
capability.

Studies have found that the electrochemical reactions
in the cermet anode are contained in a thin anode layer
adjacent to the anode/electrolyte interface. The thickness
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of the layer is commonly regarded as the electrochemi-
cally active or active anode thickness.16 As summarised
previously,17 the active anode thickness is typically in
the range of 2–40 μm, depending upon the cell design
and operational conditions. Although active thickness
plays a significant role in electrode design, it does not
offer a definitive basis for comparing the performance
of diverse electrode designs that operate in varying
conditions. Moreover, relying solely on active thickness
is inadequate when simulating TPB‐related processes,
including cell degradation caused by anode poisoning
and thermal/redox cycling. For instance, during
sulfur poisoning, sulfur diffuses into the nickel bulk,
detacing nickel particles from their original positions
and causing an irreversible reduction in the TPB
length.18–20 A comparable phenomenon occurs when
nickel particles agglomerate due to thermal or redox
cycling, resulting in a notable decrease in the TPB
length and an elevation in the electrode polarization
resistance.21 Therefore, an optimum anode thickness
and information on the effective TPB density are
imperative for better cell design and operation. To the
author's knowledge, very limited information is availa-
ble on the effective TPB density and no study is
available to discuss the relationship between effective
TPB density and active anode thickness. However,
previous studies indicated the order of effective TPB
density.14,17 Therefore, there is a need to investigate
this relationship, motivating the current study to
facilitate the design and fabrication of anode or at least
in fuel cell modeling.

The performance of SOFC electrodes is experimen-
tally determined by either polarization measurement or
electrochemical impedance spectroscopy (EIS). Both
numerical22 and empirical/analytical9 models have been
developed for performance evaluation in simulation
studies. Commonly employed analytical models include
the nonlinear Butler–Volmer (BV) equation,9 linearly
approximated BV equation,23 and BV formalism.24 There
has been much discussion on using the BV equation to
describe electrode kinetics in various fields of electro-
chemistry.25 This study uses BV formalism proposed by
Zhu et al.24 and the TPB‐based kinetics determined from
previously reported patterned anode cells.14 Since the
formalism is analytically derived from the detailed
reaction scheme of electrochemical hydrogen oxidation,
it considers the effect of concentrations on the exchange
current density, closely matches the reaction orders with
the experimentally determined values, and guarantees
the thermodynamic consistency in the resulting expres-
sion. The experimental current–voltage (I–V) curves for
the varying anode are obtained from the literature and
used here for model validation and determination of the

relationship between active anode thickness and the
effective TPB density.

2 | MODEL DEVELOPMENT

2.1 | Model geometry

Four different experimental data sets, reported previ-
ously,26–29 were used in this study for model validation.
The experimental results of these studies include I–V
curves of Ni–YSZ anode‐supported SOFCs fed with
humidified hydrogen fuel at their respective reported
temperatures ranging from 700°C to 800°C. Further,
these studies used varying dimensions of the membrane‐
electrode assembly (MEA), particularly the thickness of
the anode substrate and the AFL. The actual geometrical
and elementary parameters of the cells are given in
Table 1. A representative sketch of the 2D axisymmetric
model used for the simulations is shown in Figure 1A,
and an extended view of the complete button cell along
with flow channels is shown in Figure 1B. The cell and
channel dimensions in the model view are arbitrary and
may vary depending on the actual dimensions used in
the experimental study. The fuel is transported to the
anode via the inner cylindrical pipe, while the space
between the inner and outer cylinders is used for
dispensing the products. The cathode is exposed to either
the surrounding ambient air or oxygen, as mentioned in
the experimental study.

2.2 | Mathematical model

Using the available physics modules in the COMSOL
Multiphysics software, a 2D axisymmetric model is
created and implemented. The model development is
based on the following assumptions:

• All gases follow ideal behavior.
• The system operates under steady‐state conditions,
with a uniform temperature distribution in the cell
cross‐section.

• The fuel oxidation occurs via the hydrogen spillover
mechanism.

• The microstructure is uniform within each layer of the
electrodes.

The secondary current distribution interface is used
to specify the transport of charged ions in the electrolyte
and the flow of electric current in the porous electrodes.
This interface combines Ohm's law and charge balance
principles. The electrode kinetics for the charge transfer
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reactions are defined by the Butler–Volmer formalisms
derived by Zhu et al.,30 in combination with the TPB‐
based kinetics derived previously14 using patterned
electrode cells. The transport of concentrated species
interface is used to define the transport of the gas‐phase
reactants and products through gas channels and porous
electrodes. The Maxwell–Stefan model is widely used to
define multicomponent diffusion. To account for the
species collisions with walls in the porous electrodes, the
binary diffusivities are empirically corrected by incorpo-
rating the Knudsen diffusion and porosity‐tortuosity ratio
as proposed previously.31 The free and porous media flow

interface is employed to calculate the velocity and
pressure fields. This interface enables smooth transi-
tions between flow in the porous media, which is
determined by the Brinkman equations, and gas flow
in the channels, which is characterized by the
Navier–Stokes equations. Due to the assumption of
the isothermal conditions, heat transfer physics is not
used for this model. The conservation equations used
for each physics interface are summarised in Table 2,
and other constitutive equations used in the computa-
tion or postprocessing of the results are summarized in
Table 3. The boundary conditions are summarized in

FIGURE 1 Sketch of button cell and test
assembly used for the simulation. AFL, anode
functional layer; YSZ, yttria‐stabilized zirconia.
(A) 2D axisymmetric model; (B) expanded view
of the complete button cell model.

TABLE 2 Conservation equations used in the model.

Category Domain Equation

Mass conservation Inside gas channels uρ( ) = 0 

Inside electrodes uρ W( ) = ˙ 

Inside anode ( )W M M˙ = −
S i

FH O H 22 2
an an

Inside cathode W M˙ = O
S i

F42
ca ca

Species conservation Inside electrodes uρω RJ( ) = − + ˙
i i i   

Inside anode Ṙ = −
M S i

FH 2
an an

2
H2 , Ṙ =

M S i

FH O 2

an an

2

H2O

Inside cathode Ṙ = −
M S i

FO 4
ca ca

2
O2

Charge conservation Inside electrodes ( )i σ ϕ Q. = . − = ˙
elec elec

eff
elec elec  

Inside electrodes ( )i σ ϕ Q. = . − = − ˙
ion ion

eff
ion ion  

Inside electrolyte ( )i σ ϕ. = . − = 0ion ion
eff

ion  

Momentum conservation Inside gas channels






u u I u u Iρ P μ μ u( ) = − ( ) + ( + ( ) ) − ( )T 2

3
         

Inside electrodes






( )u I u u IQ P u+ = − ( ) + ( + ( ) ) − ( )

μ

κ mass
μ

ε
T μ

ε

2

3
       
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Table 4. The labels of boundary conditions have been
elaborated on previously.17

2.3 | Solution methodology

The commercial finite element software COMSOL
Multiphysics V5.1 was used to implement the mathe-
matical model. The equations for charge, mass, and
momentum transport are simultaneously solved using

the default MUMPS solver with a relative tolerance
of 10−4. Gas channels and anode substrate were
discretized with unstructured triangular mesh ele-
ments, whereas the AFL, electrolyte, and cathode were
discretized with structured quadrilateral elements. To
ensure the accuracy and reliability of the results, the
grid in the computational domain was refined, and grid
independence was ensured. The refined grid enabled
the model to produce consistent results to draw
meaningful conclusions.

TABLE 3 Constitutive equations
used in the model.

Property Constitutive equation

Butler–Volmer formalism of
hydrogen oxidation reaction







( ) ( )i i= exp − exp −an an

o β Fη

RT

β Fη

RT

(1 + )a act an c act an, ,

Butler–Volmer formalism of
oxygen reduction reaction







( ) ( )i i= exp − exp −ca ca

o β Fη

RT

β Fη

RT

a act ca c act ca, ,

Anode exchange current
density












i l Fk K K K= 2 ( ) ( )

( )
an
o

TPB r
K p p K

K p
3 2 3 5

1−
( ) /

1 + ( )

β c β c H

β c β c
3
2

3
2

1 2

3
2 H2O 4

1− 3
2

1 H2

1
2

Cathode exchange current
density












( )

( )
i i= *

*

*
ca
o

O

p p

p p

/

1 + /

O

O

2

O2 2

1
4

O2 2

1
2

Effective electronic
conductivity

σ σ θ ε= (1 − )elec
eff

elec E C. . (For porous electrodes)

Effective ionic conductivity σ σ θ ε= (1 − ) (1 − )ion
eff

ion E C. . (For porous electrodes)

σ σ=ion
eff

ion (For electrolytes)

Equilibrium cell voltage ( )E = − + lnrev

G

F

RT

F

a a

a

Δ

2 2

o
H2−H2O H2 O2

0.5

H2O

Cell voltage V E η η η η η= − − − − | | −cell rev conc an conc ca act an act ca ohm, , , ,
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3 | RESULTS AND DISCUSSIONS

3.1 | Model validation and polarization
behavior

First, the mathematical models and inputs are evaluated
for accuracy by comparing simulation and experimental
results. The geometrical and elementary parameters used
in the simulation are shown in Table 1. The open circuit
voltage, reported in the corresponding experimental
studies, was used instead of calculating from the Nernst
equation to avoid experimental and simulation inconsis-
tencies. The TPB density, used in the exchange‐current
density relationship, was the only free‐fit parameter in
the simulation. The TPB density was adjusted to match
the simulated and experimental I–V relationship. The
cell voltage was linearly varied from the OCV to 0.25 V to
draw the current–voltage curve, study the electrochemi-
cal behavior of the cell, and obtain vital information
about the distribution of gas concentration, local current
density, and cell potential, velocity, and pressure. The
experimental and simulated I–V curves of all 15 cells
from four different data sets, mentioned in Section 2.1,
are shown in Figure 2.

The actual and simulated curves show a qualitative
agreement at the set TPB density values, which
validates both the model and the input parameters
utilized in the simulation. At least a variation of three
orders of magnitude in the best‐fit value of the TPB
densities has been observed for different cells studied
in this work. That is, the highest value is observed for
Chen et al.26 Cell AFL‐10.1 (6.9 × 108m/m³), while the
lowest value is observed for Kong et al.29 Cell AFL‐60
(2.5 × 105m/m³). Previously, Tabish et al.14 reported
the effective TPB density of 1.78 × 107m/m³ for a thick
anode‐supported button cell, 1.2 mm thick anode,
which is well within the range found in this work.
As far as the authors are aware, there are no other
studies available for comparison of the density values
of the TPB. Nonetheless, the considerable variation
can be attributed to the synergic effect of various
factors, such as the microstructure and porosity of the

electrode, the operating conditions, the material
composition used, and the fabrication techniques
employed.

3.2 | Assessment of the active anode
thickness

Active anode thickness refers to the region of the
anode layer near the anode/electrolyte interface where
approximately 90% of electrochemical reactions
occur.11 This region is crucial for efficient fuel cell
operation, provided that the anode is adequately thick
to facilitate these reactions. To determine the active
anode thickness, the current density distribution is
analyzed across the anode thickness. A representative
distribution of the current density for Chen et al.26 Cell
AFL‐10.1 at different cell voltages is shown in
Figure 3A. The current density is highest at the
interface between the anode and electrolyte, gradually
decreasing exponentially as one moves away from the
interface. Likewise, the total interfacial current density
increases as the cell voltage decreases. There is no
external current flow when the cell operates at OCV
point, and the electrode reactions occur at a relatively
low rate. The current density is therefore equivalent to
the exchange current density. As the cell is discharged
and the voltage drops, the electrode potential be-
comes more negative, increasing the electrochemical
reaction's driving force. As a result, the electro-
chemical activity near the anode/electrolyte interface
increases, and the interfacial current density increases,
leading to a higher electron transfer rate at the
electrode/electrolyte interface.

The effect of overpotential on the active anode
thickness is shown in Figure 3B. As can be observed,
the larger values of over‐potential lead to a thinner
active anode layer. This also aligns with the reported
trend.11,32–34 This observation implies that with an
increased active anode thickness, the anode benefits
from more reaction sites, resulting in a reduced
overpotential. Besides overpotential, the active anode

TABLE 4 Boundary conditions.

Category
Anode/channel
interface

Anode/electrolyte
interface

Cathode/electrolyte
interface

Cathode/channel
interface

Ionic charge conservation Insulation Continuity Continuity Insulation

Electronic charge conservation Grounded Insulation Insulation Cell potential

Mass conservation Continuity Insulation Insulation Continuity

Momentum conservation Continuity Wall Wall Continuity
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thickness is considerably affected by reaction kinetics
and the effective conductivity of the anode, which
depend on microstructural properties, the temperature
and moisture content of the fuel. Therefore, the active
anode thickness of all 15 cells is evaluated and
compared at a common overpotential of 0.4 V.

3.3 | Relationship between effective
TPB density and active anode thickness

Figure 4 presents the active anode thickness and effective
TPB density values found in this study. The active anode
thickness of the data sets of Chen et al.,26 Lin et al.,27 and

FIGURE 2 Experimental and simulated current–voltage (I–V) curves. The experimental data refer to the studies of (A) Chen et al.26;
(B) Lin et al.27; (C) Chen et al.,28 and (D) Kong et al.29 The solid lines indicate corresponding simulated curves. Details of the input
parameters are provided in Table 1. AFL, anode functional layer.

FIGURE 3 Assessment of the active anode thickness based on Chen et al.26 Cell AFL‐10.1, (A) distribution of current density in the
anode layer and (B) the effect of total overpotential on the active anode thickness. The “0” value at the x‐axis represents the
anode/electrolyte interface.
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Chen et al.28 is in the range of 4.41–12.14 μm. These cells
are referred to as high‐performing cells. However, the
datasets of Kong et al.29 yield an active thickness above
100 μm and labeled as low performing cells. It is
pertinent to mention that the exchange‐current density
of datasets of Kong et al.29 is also almost three orders of
magnitude lower than the high‐performing cells. The
categorization of cells as either high‐ or low‐performing
is merely based on their power density values and the
thickness of their active anode.

The performance of SOFCs is directly influenced by
the thickness of the active anode layer, which is closely
associated with the AFL in the literature. For instance,
Chen et al.26 reported that an optimal thickness of 7.6 μm
for the AFL significantly improves the cell's performance,
resulting in a peak power density of 0.906W/cm². Chen
et al.28 found that the gas impermeability generally
improves as the AFL thickness increases, albeit the
ohmic resistance increases. The cell with a 5‐μm‐thick
AFL showed excellent performance with an output
power of 2.63W/cm² at 800°C. Moon et al.35 reported
that as the AFL thickness increases, the cell perform-
ances generally improve because of the number of active
sites. Similarly, Bi et al.36 reported that the incorporation
of the AFL leads to a reduction in both contact resistance
and polarization resistance for the cell. As summarized
previously,17 the active anode thickness is typically in the
range of 2–40 μm depending upon the cell design and
operating conditions through higher active thickness has
also been reported.

The literature commonly reports the TPB density that
percolates throughout the electrode, previously referred
to as active TPB density.8 Our previous studies employing
TPB‐based kinetics concluded that only a minor fraction

of the percolated TPB density is sufficient or effectively
available to fulfill the electrochemical requirements of
the cell. In contrast, the major fraction stays idle during
the cell operation.14,17 To the author's knowledge, no
study has considered a similar approach to determine the
effective TPB density values. The relevant simulation
studies consider percolated TPB density for estimating
specific catalyst area and use empirically determined
exchange current density to simulate the experimental
data.37 The specific catalyst area is an essential parameter
in electrode electrochemistry and incorporates surface
reactions such as adsorption/desorption of reactants/
products and surface diffusion. It is also required to
translate the current produced per unit TPB length to the
exchange‐current density.14 The specific catalyst area
ranges from 1 × 105 to 2.2 × 106 m2/m3.38 For optimal cell
design, it is superior to consider both the effective TPB
density, determined through the TPB‐based kinetics,
instead of percolated TPB density and the active anode
thickness, as they respectively impact the microstructural
activity and anode thickness. This approach is especially
favorable for accurately simulating the cell performance
during prolonged operation and for fuel components that
can potentially pollute the TPB sites.

An inverse relationship between the effective TPB
density (λTPB

effective) and active anode thickness (ta
active) is

evident from Figure 4 and can be visualized as a linear
line on a log–log scale. It can be observed that the linear
line on the log–log scale reasonably fits the simulated
data where the slope of this line is −2.56 ± 0.06, which
signifies the strength of the relationship between the two
parameters. The empirical relationship, therefore, can be
written as

( ) ( )tlog λ [m/m ] = −2.56 log [μm]

+ 10.67.

aTPB
effective 3 active

The relationship reveals that the lower the active
anode thickness is, that is generally the case of high‐
performing cells or higher overpotential for a given cell
operation, the higher the effective TPB density will be.
That is quite intuitive and suggests that the effective TPB
density approaches the percolated TPB density at a very
high current density. This also implies that, likewise,
active anode thickness, the effective TPB density is also a
function of the operational conditions. Despite the fact
that active anode thickness varies with cell operation
level, TPB density is commonly used in SOFC simulation
studies as a fixed parameter corresponding to phase
perculation. The above empirical relationship also
suggests that the highest value of the effective TPB
density is 1010.67 that is at least one order of the

FIGURE 4 Relationship between effective triple‐phase
boundary density and active anode thickness.
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magnitude lower than the commonly reported value of
the percolated TPB density. It can also be anticipated that
a major fraction of the percolated TPB density remains
idle during the cell operation.

4 | CONCLUSION

This study thoroughly investigates the effective TPB density
in SOFCs and its relationship with a better‐known
parameter active anode thickness. The experimental
current‐voltage behavior of four different data sets employ-
ing different cell geometry and operating conditions were
obtained from the published literature. A steady state and
isothermal model was developed to simulate the experi-
mental data using previously developed TPB‐based kinetics.
The qualitative agreement between the experimental and
simulated current–voltage curves confirmed the validity of
the model and input parameters used. The TPB density was
adjusted to match the simulated and experimental results,
highlighting its significance as a key parameter in SOFC
performance.

The electrochemical reactions that take place near
the anode/electrolyte interface were found to be closely
associated with the active anode thickness, as revealed
by the analysis. The thickness of the active anode layer
was found to affect the distribution of charge‐transfer
current density across the anode, with a higher density
observed near the interface. Furthermore, the study
explored the relationship between active anode thick-
ness and effective TPB density. An inverse relationship
has been observed between the two parameters. As the
active anode thickness decreases, the effective TPB
density tends to increase so much that the effective TPB
density approaches the percolated TPB density at high
current densities. It indicated that a significant fraction
of the TPB sites remained idle during cell operation,
emphasizing the importance of optimizing TPB utiliza-
tion for improved cell performance.

The findings of this study have significant implications
for the design and operation of SOFCs. By considering
both active anode thickness and effective TPB density, it is
possible to help better understand the microstructural
activity, design better cells, and estimate the electroche-
mical performance of the cells for long‐term operations.
Furthermore, the findings of this study can guide the
development of more efficient and reliable SOFCs by
optimizing the utilization of TPB sites.

NOMENCLATURE
ck concentration of specie k (mol/m3)
Ect
act activation energy of the charge‐transfer reaction

(J/mol)

Ecell cell voltage (V)
i/i0 current density/exchange current density (A/m2)
I identity matrix
Ji Mass transfer flux (kg/m2 s)
k3
o Arrhenius pre‐exponent of charge transfer

reaction (mol/cm s)
k3r backward rate constant of the charge transfer

reaction14,24

K1–K5 equilibrium constants of elementary reactions14,24

ltpb/ ltpb
v area‐specific TPB length (m/m2)/TPB density

(m/m3)
p/P partial pressure/pressure (atm)
Q̇ charge‐transfer rate (a/m3)
W R˙ / ˙ total/component mass source term (kg/m3 s)
s volume‐specific surface area of the electrode

(m2/m3)
u velocity vector (m/s)

GREEK LETTERS
α charge transfer coefficient
ε porosity
β symmetry parameter
η overpotential
κ permeability (m2)
ρ density of the fluid (kg/m3)
μ dynamic viscosity of the fluid (Pa s)
σ ionic/electronic conductivity (1/Ω m)
ω mass fraction (kg/kg)
τ tortuosity
ϕ charge potential (V)

SUBSCRIPTS/SUPERSCRIPTS
act activation
an/ca anode/cathode
conc concentration
eq equilibrium
ion/elec ionic/electronic
ohm ohmic
TPB/tpb triple‐phase boundary
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