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Abstract
We investigated the influence of anaerobic speed reserve (ASR) on post-activation performance enhancement (PAPE). Twenty-

two endurance runners and triathletes were evaluated for maximum sprinting speed (MSS) and countermovement jump (CMJ)
before (non-fatigued) and after (fatigued) an incremental running test. They were allocated in LASR (low-ASR) and HASR (high-
ASR) groups for comparisons between conditions. HASR showed greater CMJ and MSS (both p ≤ 0.005) performances, with
enhanced CMJ in fatigued condition (p ≤ 0.008). Significant correlations were found between ASR, CMJ, and MSS in both
conditions (p ≤ 0.01) for the entire sample, and between �CMJ and �MSS (p ≤ 0.001) in LASR. Our results show that ASR
profile influences PAPE.
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Introduction
It is well known that improving athlete’s muscle power

through strength training increases endurance performance
(Beattie et al. 2014). Previously, it has been reported an
enhanced neuromuscular response (i.e., countermovement
jump, CMJ) in endurance athletes after a fatiguing running
test (Boullosa et al. 2011). This response has been associ-
ated with the co-existence of post-activation performance en-
hancement (PAPE) and peripheral fatigue within the muscle
(Márquez et al. 2023) and it has been proposed that the PAPE
response after running is specific for endurance-trained ath-
letes (Boullosa et al. 2011; Moré et al. 2023). Additionally,
PAPE may have a role for enhancing muscle performance dur-
ing endurance events by counteracting the effects of fatigue
(Del Rosso et al. 2016), thus contributing to runners resilience
(Jones 2023).

The term anaerobic speed reserve (ASR) is typically defined
as the difference between maximal sprinting speed (MSS) and
the maximum aerobic speed (MAS) (Blondel et al. 2001), al-
though any significant anaerobic energy contribution starts
above the critical speed (CS). Subsequently, latest evidence
has confirmed the practicality of ASR for high-intensity ex-
ercise prescription above MAS (Sandford and Stellingwerff
2019; Sandford et al. 2019; Bok et al. 2023; Thron et al. 2024).
It has been demonstrated that ASR-based exercise prescrip-

tion leads to reduced interindividual variation of different
physiological and perceptual responses (Julio et al. 2020; Bok
et al. 2023; Thron et al. 2024). In this regard, it has been also
suggested that a lower percent of ASR for a training session
could prevent an excessive peripheral physiological distur-
bance, thus sparing the anaerobic capacity and the neuro-
muscular function (Bundle et al. 2003; Buchheit et al. 2012).
In other words, the lower the use of ASR, the greater the ex-
ercise tolerance (Sandford and Stellingwerff 2019). Moreover,
it was previously reported that individuals with low ASR ex-
hibit a faster heart rate recovery after aerobic and anaerobic
tests (Del Rosso et al. 2017). Consequently, if ASR can actu-
ally have an impact on acute neuromuscular (i.e., peripheral)
and cardiovascular (i.e., central) responses, it could be also ex-
pected that it may have an influence on the balance between
potentiation and fatigue after fatiguing endurance exercises.
However, there are no studies comparing PAPE responses be-
tween endurance athletes with different ASR profiles. There-
fore, the aim of the current study was to assess the neuro-
muscular responses (i.e., jumping and sprinting) of a group
of endurance athletes in two conditions (i.e., non-fatigued
vs. fatigued) based on their ASR profile. It was expected
that athletes with lower ASR would exhibit greater PAPE
responses because of a more favorable potentiation/fatigue
balance.
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Table 1. Characteristics of the anaerobic speed reserve groups.

LASR HASR

Age (years) 24.18 ± 5.4 (20.52–27.85) 25.18 ± 6.00 (21.15–29.21)

MAS (km·h−1) 18.82 ± 1.33 (17.93–19.71) 19.00 ± 1.10 (18.26–19.74)

tUMTT (min) 24.36 ± 2.54 (22.65–26.07) 24.85 ± 2.40 (23.24–26.47)

HRmax (bpm) 187 ± 14 (178–197) 191 ± 7 (186–195)

[bLa] (mMol·L−1) 9.50 ± 2.10 (8.05–10.86) 9.7 ± 1.90 (8.42–10.98)

MSS (km·h−1) 27.8 ± 2.1 (26.6–29.1) 30.9 ± 1.8∗ (29.7–32.1)

ASR (km·h−1) 9.00 ± 0.93 (8.37–9.61) 11.88 ± 1.43∗ (10.91–12.85)

Note: Values are means ± SD (95% CI). LASR = low anaerobic speed reserve, HASR = high anaerobic speed reserve, MAS = max-
imum aerobic speed, tUMTT = time to complete the Université of Montreal Track Test (UMTT), HRmax = maximal heart rate, [bLa]
= blood lactate concentration post-UMTT, MSS = maximum sprinting speed, ASR = anaerobic speed reserve, SD = standard
deviation, CI = confidence interval.
∗Significantly different from LASR (p < 0.05).

Materials and methods

Participants
Twenty-two well-trained and elite endurance runners and

triathletes (36.4% women) of heterogeneous level (≥2 years
of training experience, 62.8–69.1 mL·kg−1·min−1 estimated
maximum oxygen consumption -VO2max-, ≥6 weekly training
sessions, ≥50 km per week) volunteered to participate in this
study. They were informed of the benefits and risks of the
investigation prior to signing an institutionally approved in-
formed written consent. The study was approved by the Uni-
versity of A Coruña Ethics Review Committee and met all the
criteria of the Declaration of Helsinki. Table 1 shows the char-
acteristics of the subjects with respect to the ASR profile.

Procedures
Firstly, athletes performed a standardized warm-up which

consisted of 10 min low-intensity running. Recording of jump
performance in the non-fatigued condition was conducted 2–
3 min after the warm-up and consisted of two maximal CMJ
attempts, separated by at least 15 s. Performance of CMJ was
assessed using a force plate (Quattro jump, Kistler, Switzer-
land). The highest jump was selected for further analyses. Af-
ter jump evaluations, the athletes performed two maximal 20
m sprints with 2 min of recovery between attempts for MSS
determination, as previously suggested (Boullosa et al. 2011).
The sprints were performed with a previous acceleration on
a distance freely chosen by each athlete (25–40 m) for achiev-
ing a true maximum sprinting speed over the 20 m section.
The sprint time was recorded with a photocell portable sys-
tem (Chronomaster, Spain). After 1–2 min of rest, the athletes
performed a progressive maximal running test (Université of
Montreal Track Test, UMTT) to assess MAS and to induce ex-
haustion for evaluation of CMJ and MSS in fatigued condition.
The UMTT was carried out on a 400 m synthetic track fol-
lowing previously described procedures (Léger and Boucher
1980; Boullosa and Tuimil 2009). Two minutes after exhaus-
tion, the athletes completed two CMJs, and two maximal 20
m sprints at 3rd and 5th min of recovery. Figure 1 shows the
study design. ASR was defined as the difference between the
MSS in non-fatigued condition and the MAS determined dur-
ing the UMTT.

Statistical analyses
Descriptive statistics were used to compute means and

standard deviations (SDs) and 95% confidence intervals (95%
CIs). The normal distribution of the variables was assessed
for all groups in each condition using the Shapiro–Wilk test.
Mauchly’s sphericity was tested and if sphericity could not be
assumed, then the Greenhouse–Geisser correction was used.
Based on the median value of ASR, the sample was divided
into two groups: high anaerobic speed reserve (HASR, n = 11)
and low anaerobic speed reserve (LASR, n = 11), as previously
suggested (Del Rosso et al. 2017; Ortiz et al. 2024; Thron et
al. 2024). To evaluate the influence of ASR group on jump
performance indexes and MSS between conditions, a mixed
two-way Analysis of variance (2 groups × 2 conditions) was
performed. Homogeneity of variance was checked using the
Levene’s test. In case of a significant interaction or main
simple effects, post-hoc analyses with Bonferroni’s pair-
wise comparisons were carried out to identify within- and
between-group differences. Changes between conditions (i.e.,
� = non-fatigued − fatigued) were calculated and differences
between groups of ASR were assessed using t tests for inde-
pendent samples. Partial correlation coefficients (adjustment
for ASR) were employed for analysis of the relationships
between selected parameters. Cohen’s d was also calculated
for assessing the effect size (ES). Thresholds for ES were small
(d = 0.2), medium (d = 0.5), and large (d = 0.8). All statistics
were performed using the IBM SPSS Statistics for Windows�

(Version 20.0; Armonk, NY). The statistical significance was
set at an alpha level of p ≤ 0.05.

Results
Regarding the ASR effects on PAPE, there were no sig-

nificant interactions between ASR and condition (i.e., non-
fatigued vs. fatigued) neither for CMJ performance nor for
MSS. There were significant main simple effects for ASR
groups (F[1,20] = 20.25, p ≤ 0.001) and condition (F[1,20] = 8.54,
p ≤ 0.008) regarding CMJ performance. MSS showed a sig-
nificant main simple effect for ASR group (F[1,20] = 10.88,
p ≤ 0.004) but not for condition (see Table 2). When the entire
sample was considered, significant correlations were found
between ASR and CMJ in non-fatigued condition (r = 0.52,
p ≤ 0.01), ASR and MSS in non-fatigued (r = 0.89, p < 0.0001)
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Fig. 1. Study design. Chromatic scale indicates potentiation/fatigue balance. CMJ: countermovement jump; MSS: maximal
sprinting speed; UMTT: Université of Montreal Track Test; tUMTT: final time in the Université of Montreal Track Test; HRmax:
maximum heart rate; [bLa]: blood lactate concentration.

Table 2. Vertical jump performance and maximal sprinting speed for the low anaerobic speed reserve (LASR) and high anaer-
obic speed reserve (HASR) groups during the non-fatigued and fatigued conditions.

LASR HASR

Non-fatigued Fatigued � ES Non-fatigued Fatigued � ES

CMJ height (cm) 25.6 ± 4.5
(23.2–28.0)

27.0 ± 4.8†

(24.5–29.6)
1.4 ± 1.9 0.3 33.4 ± 3.1∗

(31.0–35.8)
34.1 ± 3.3∗†

(31.5–36.7)
0.7 ± 1.5 0.2

MSS (km·h−1) 27.8 ± 2.1
(26.6–29.1)

28.0 ± 2.1
(26.7–29.4)

0.2 ± 0.7 0.1 30.9 ± 1.8∗
(29.7–32.1)

30.7 ± 2.2∗
(29.3–32.0)

−0.2 ± 0.8 0.1

Note: Values are means ± SD (95% CI). CMJ = Countermovement jump, MSS = maximal sprinting speed, SD = standard deviation, CI = confidence interval.
∗Significantly different than LASR for the same condition (p < 0.05).
†Significantly different from the non-fatigued condition (p < 0.05).

and fatigued (r = 0.80, p ≤ 0.0001) conditions; MSS in
non-fatigued condition and CMJ in non-fatigued (r = 0.60,
p ≤ 0.003) and fatigued conditions (r = 0.61, p ≤ 0.003), and
between MSS in fatigued condition and CMJ in fatigued con-
dition (r = 0.57, p ≤ 0.006). When each group was considered,
a significant correlation between �CMJ and �MSS (r = 0.84,
p ≤ 0.001) was revealed only in the LASR group (see Fig. 2).

Discussion
The present study tested the hypothesis that ASR could

influence PAPE responses after a maximal running test in
endurance athletes as measured by CMJ and flying sprint
performances. Although there was no significant interaction
between ASR and condition, we found significant main sim-
ple effects for ASR groups and conditions, and a significant
correlation between ASR and CMJ performance was revealed.
Thus, we confirmed the influence of ASR profile on PAPE
responses in endurance athletes.

Previous studies have reported an influence of ASR on
the number of high-intensity interval training (HIIT) sets
(Buchheit et al. 2012) and on the heart rate recovery after
aerobic and anaerobic tests (Del Rosso et al. 2017), thus sug-
gesting that a lower percent use of ASR leads to greater exer-
cise tolerance (Sandford and Stellingwerff 2019). The present
study shows that differences between ASR profiles (i.e., HASR
vs. LASR) were due to different MSS, irrespective of the condi-
tion, since MAS was similar in both groups. Therefore, those
runners with better anaerobic profile (i.e., HASR) expressed

better sprint times and lower limbs’ muscle power measured
as CMJ performance. When comparing the ES between LASR
and HASR groups (see Table 2), it seems that a low ASR could
be associated with a greater potentiation response and a
lower fatigue in both jumping and sprinting abilities. Even
though this result is difficult to explain from a mechanistic
perspective, it is likely that those endurance athletes with
a low ASR, or with a lower MSS for a given MAS, could be
more benefited for PAPE responses probably because of a bet-
ter potentiation/fatigue balance after an exhausting running
exercise. In other words, athletes of the HASR group who ex-
hibited higher neuromuscular performances could present
a higher fatigue after exhaustion, thus minimizing the ef-
fects of PAPE on CMJ and MSS. This rationale should be in-
terpreted with caution, since we did not find any interaction
between ASR groups and conditions, while the ESs between
HASR and LASR were quite similar, which may be a limita-
tion. Nevertheless, ASR profile categorization could play an
important role for high-intensity running-based exercise pre-
scription according to competition demands and, therefore,
optimize sport-specific performances. In this regard, recent
evidence supports the use of percentages of ASR for prescrib-
ing exercise intensities above MAS (i.e., short format HIIT),
since this variable reduces interindividual variability in acute
responses to exercise, and allows to consider the individual
tolerance to high-intensity exercise of an athlete (Bok et al.
2023; Thron et al. 2024). In this regard, proper training pa-
rameters manipulation (e.g., different HIIT protocols, work-
to-rest ratio, interval duration, and intensity) during short
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Fig. 2. Correlation with 95% confidence interval bands be-
tween differences in countermovement jump height (CMJ)
and maximal sprint speed (MSS) during the non-fatigued
and fatigued conditions for the high anaerobic speed reserve
(HASR, upper panel) and low anaerobic speed reserve (LASR,
lower panel) groups.

format HIIT sessions may optimize acute responses and adap-
tations in the short and the long term (Varela-Sanz et al.
2023).

Another interesting result is the correlations found be-
tween ASR, CMJ, and MSS in both non-fatigued and fatigued
conditions. Thus, it seems that, in our sample, those athletes
with greater ASR also present a greater CMJ and a higher
MSS. Interestingly, this relationship is more evident in the
LASR group given the correlation observed between �CMJ
and �MSS (r = 0.84, p ≤ 0.001). This may confirm the prac-
ticality of CMJ for monitoring acute and chronic responses
related to PAPE. More studies are needed to investigate the in-
fluence of ASR on PAPE responses during different endurance
exercises, particularly when ASR-based HIIT prescription is
considered (Buchheit and Laursen 2013; Coates et al. 2023),
and to verify the influence of MAS on these responses, given
that differences in ASR in the current study were mainly
debt to differences in MSS between groups. This would be
especially important in those sports requiring higher jump-

ing and sprinting abilities (i.e., team sports). Furthermore,
these performance parameters may change throughout the
season depending on the athlete’s physical fitness level, thus
it could be hypothesized that PAPE response would also be
modified. In this sense, future research is needed to verify
if a minimum level of aerobic power and, hence a lower
ASR, would counteract the negative effects of fatigue in those
athletes with greater neuromuscular performance. Mean-
while, we did not evaluate the potential influence of sex
on these responses because of the limited sample size of fe-
male runners, with females presenting both lower aerobic
and anaerobic power capacities which directly affect the ASR
calculations.

Based on our results, it seems that ASR can have a potential
influence on PAPE responses in endurance athletes, with a
low ASR more beneficial than a high ASR. Given that PAPE
could be a key mechanism by which muscles can counteract
the effects of fatigue during endurance events (Del Rosso et
al. 2016) thus improving performance, it would be pertinent
to monitor the impact of both ASR and PAPE responses on
running performances in endurance athletes of different
training background and aerobic statuses (e.g., long- vs.
middle-distance runners). It can be also suggested that en-
durance athletes with a lower ASR would be more benefited
for PAPE responses because of a better potentiation/fatigue
balance after high-intensity endurance exercises. Therefore,
a lower ASR may be appropriate to increase the neuromus-
cular performance via PAPE responses during high-intensity
training sessions (Varela-Sanz et al. 2023). Finally, consid-
ering the correlation between �CMJ and �MSS, it would
be also suggested the use of a simple lower limbs’ power
test as CMJ to assess the runners’ potential to sprint under
fatigued conditions. Of note, the non-significant differences
regarding MSS before and after the UMTT may also suggest
that MSS can be evaluated after the UMTT to save time for
ASR calculation purposes.
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