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Integrative temporal multi-omics reveals
uncoupling of transcriptome and
proteome during human T cell activation
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Engagement of the T cell receptor (TCR) triggers molecular reprogramming leading to the acquisition
of specialized effector functions by CD4 helper and CD8 cytotoxic T cells. While transcription factors,
chemokines, and cytokines are known drivers in this process, the temporal proteomic and
transcriptomic changes that regulate different stages of human primary T cell activation remain to be
elucidated. Here, we report an integrative temporal proteomic and transcriptomic analysis of primary
human CD4 and CD8 T cells following ex vivo stimulation with anti-CD3/CD28 beads, which revealed
major transcriptome-proteome uncoupling. The early activation phase in both CD4 and CD8 T cells
was associated with transient downregulation of the mRNA transcripts and protein of the central
glucose transport GLUT1. In the proliferation phase, CD4 and CD8 T cells became transcriptionally
more divergent while their proteome became more similar. In addition to the kinetics of proteome-
transcriptome correlation, this study unveils selective transcriptional and translational metabolic
reprogramming governing CD4 and CD8 T cell responses to TCR stimulation. This temporal
transcriptome/proteome map of human T cell activation provides a reference map exploitable for
future discovery of biomarkers and candidates targeting T cell responses.

T cells are key players in adaptive immunity and have a major role in the
surveillance against pathogens and tumor cells while maintaining unre-
sponsiveness to self-antigens. The metabolic and protein synthesis
machinery that shapes T cell responses is controlled by immune activation.
Stimulation of the T cell receptor (TCR) and its co-stimulatory molecule,
CD28, initiates a transcriptional program in naïve T cells that leads to
activation, expansion, and differentiation into specialized CD4 helper and
CD8 cytotoxic T cells1,2. The duration of TCR signaling is reported as a key
factor in determining the functional qualities of the T cells that develop and
their commitment to proliferation3–5. In this regard, the time of TCR sti-
mulation necessary to launch the proliferative program for naïve CD4
T cells has been shown to be more than required for CD8 T cells6,7.

The extensive reprogramming of activated T cells reflects substantial
remodeling ofmultiplemolecular pathways involved in cellularmetabolism

and protein synthesis increasingly being comprehended due to recent
advancements in the fields of proteomics, transcriptomics, metabolomics,
and epigenomics8–12. Initial genomic and transcriptomic studies laid the
baseline for understanding the T cell reprogramming following TCR sti-
mulation but only captured a partial snapshot of this complex process, also
involving several protein-protein interactions and protein
phosphorylation13,14.Ourknowledgeof changes in theproteomeof activated
T cells has widened with the application of high throughput proteomic
technologies in the field of immunology8,15–17. Based on proteomics analysis
of mouse primary cells, the competitive proliferative advantage of activated
CD8 over CD4 T cells was found to be associated with differences in their
intrinsic nutrient transport and biosynthetic capacity18.

The caveat of studies based on the traditional single-omics approach is
the limitation in providing integratedmRNA-protein data, which offers the
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opportunity to understand the flow of information that underlies T cell
activation and the acquisition of specialized effector functions. Further,
many investigations in thefields of T cell immunology and biology originate
from observations based on animal experimental models and T cell lines
limiting the current knowledge around the immune response of primary
humanTcells toTCRstimulation19,20. As such,mapping theTcell activation
cycle at multiple molecular levels is crucial to understanding the complex
mechanisms underpinning this process, as well as identifying conditions
where TCR activation is disrupted by negative signals that influence the
quality of T-cell responses.

In this study, we present an integrative temporal analysis of CD4 and
CD8 T cell activation and demonstrate the transcriptome-proteome cor-
relations during TCR-dependent metabolic reprogramming.

Results
Uncoupling of T cell proteome and transcriptome following TCR
stimulation
Immunology studies often use mRNA transcript level as a surrogate mea-
sure of protein abundance, however, several studies in other tissue types
have reported limited correlation between the two domains21–26. To explore
the temporal transcriptomic and proteomic changes following TCR sti-
mulation in both CD4 and CD8T cells, a time course of ex vivo stimulation
with anti-CD3/CD28 beads was conducted using primary T cells purified
from the blood of three healthy volunteers and treated as separate replicates.
Samples were taken at 0 hour (h), 6 h, 12 h, 24 h, 3 days (d), and 7d (Fig. 1a),
using a parallel workflow to generate both transcriptomic and proteomic
datasets. These time points were chosen to represent early (up to 24 h) and
late phases (3d and 7d) of T cell activation. Prior to RNA sequencing (RNA-
seq) and label-free data-dependent acquisition mass spectrometry-based
proteomics (DDA-proteomics), the purity of isolated CD4 and CD8 T cells
was assessed by fluorescence-labeled flow cytometry (FACS) and mono-
clonal antibodies to be >90% (Supplementary Fig. 1a, b).

A total of 18,678 protein-coding mRNA and 3531 proteins were
identified from a total of 36 samples analyzed (Fig. 1a). Quality control
measures computed using RNA-SeQC and MaxQuant output ensured the
suitability of the refined transcriptome and proteome datasets, respectively.
Based on the similar distribution of mRNA copy numbers (Supplementary
Fig. 2a), similar total protein intensities (Supplementary Fig. 2b), as well as
<20% missing values for proteins (Supplementary Fig. 2c), 11,440 mRNA
transcripts (Supplementary Table 1) and ~2550 proteins (Supplementary
Table 2) were selected for differential expression analysis. To characterize
the CD4 T cell subtypes at 0 h, cellular deconvolution was conducted on
bulk RNA-seq data using CIBERSORTx27. The analysis showed the most
abundant subtypes being resting memory CD4 T cells (56-78%) and naïve
T cells (20-45%), and confirmed lack of contamination from Treg, CD4
activated memory CD4 T cells or CD8 T cells (0%, Supplementary Fig. 1c).

To define the temporal dimensions of T cell responses, we assessed cell
proliferation (based on cell trace violet (CTV) dilution) alongside cell acti-
vation (based on the detection of surface markers for early (CD69) and late
(CD226) phases of activation) (Supplementary Fig. 1d)28. In line with pre-
vious studies29, T cells started toproliferate after 24 hof stimulation (Fig. 1b).
Despite the higher levels of CD69 expression, CD4was slower to proliferate
than CD8 T cells (Fig. 1c) (p-value ≤ 0.05, Mann-Whitney U-Test). In both
CD4 and CD8 T cells, a pronounced CD69 surface expression was elicited
between 6 h and 24 h, followed by gradual reduction. Conversely, CD226
expression was transiently downregulated in the first 24 h (Fig. 1b), indi-
cating 24 h as the inflection point between the early and late activation
phases in our dataset. This was further supported by principal component
(PC) analyses, which revealed that mRNA obtained from unstimulated
(0 h), early- or late-activated T cells, formed three well-defined and distinct
clusters (Fig. 1d, left). A similar protein clustering pattern was observed
between unstimulated and early activated T cells (Fig. 1d, right). There was
no obvious difference in T cells between the 3 donors, as evidenced by the
close clustering of the three replicates in the PCA plot and dendrogram
(Fig. 1d and Supplementary Fig. 3).

Differential expression analysis was conducted by comparing each
activation time point to 0 h, revealing the percentage of mRNA or proteins
that were differential in each T cell type over time (Fig. 1e, f). As expected,
the overall changes in the T cell transcriptome content preceded changes at
the protein level. As early as 6 h following TCR stimulation, the expression
of ~25% of the transcriptome was significantly changed, in contrast to only
~5% of the proteome, in both T-cell subsets. However, during the pro-
liferation phase (late phase of activation), the fraction of differentially
expressed(DE)mRNAtranscripts andproteinsbecamealmost equal, due to
a dramatic increase in proteins but little change inmRNAcontents (Fig. 1e).

Together, these data reveal a rapid and drastic T cell transcriptomic
response following TCR stimulation, which converts to a refined proteomic
response with prolonged stimulation that coincides with proliferation.

Proteome and transcriptome rewiring coincides with T cell
proliferation
We hypothesized that the signal propagation required for the conversion of
mRNA transcripts into proteins would be temporally regulated during
T-cell activation. Supporting this idea, a high discrepancy between the
mRNA and protein content was observed in activatedCD4 andCD8T cells
(Fig. 2a). Overall, only 20% of mRNA transcripts identified in activated
T cells, were quantified at the proteomic level (Fig. 2b), likely due to sen-
sitivity limitations of the DDA-proteomic technology. In view of this lim-
itation,we focusedon theDE transcripts, with the rationale that a significant
increase in transcript abundance should increase the detectability of the
cognate protein. From 570 DE transcripts identified at 6 h, 150 matching
proteins were found to be DE during the course of analysis, representing 25
proteins simultaneouslymodulated at 6 h and over 100 proteinsmodulated
at late phase of activation (Fig. 2c). This expression pattern was common to
both CD4 and CD8 T cells and indicates a time delay of at least 3 days for a
significant proportion of the mRNA transcripts to be translated into pro-
teins in response to TCR stimulation. Interestingly, a gradual and consistent
increase was observed towards the later time points analyzed. While the
correlation between proteins and mRNA simultaneously expressed at 6 h
was poor (r = 0.35 and r = 0.23 forCD4 andCD8, respectively), amoderate/
strong correlation between mRNA and protein groups was observed at 3d
(r = 0.67 and r = 0.73 forCD4andCD8Tcells, respectively) and7d (r = 0.69
and r = 0.72 for CD4 and CD8, respectively) (Fig. 2d, e).

Thus, a lag between the expression of mRNA transcripts and protein
synthesis explains a significant part of the transcriptome-proteome dis-
cordance observed in both populations of activated T cells at early phase,
allowing for aperiodof temporal regulationand “omic” rewiring after3days
of activation.

TCR stimulation results in proteomic convergence betweenCD4
and CD8 T cells not mirrored at the mRNA level
Comparison of mRNA transcript and protein libraries between activated
human CD4 and CD8 T cells, from a temporal perspective, has not been
previously reported. Therefore, we sought to reveal molecular differences
between bothT cell subsets by comparing their dynamic transcriptomic and
proteomic changes during activation. Among all proteins and transcripts
commonly quantified in both subsets, 19%of proteins (487/2544) and 8%of
mRNA transcripts (968/11,440) were found to be DE between CD4 and
CD8 T cells (Supplementary Table 3). Most of the DE proteins were iden-
tified at 0 h (n = 172). After 7 days of activation, 42% of DE proteins
decreased in relation to 0 h. Overexpressed proteins in CD4 T cells at 0 h
included theRNAdemethylase (ALKBH5, log2 fold change (log2fc) = 3.59),
methyl-CpG-binding protein (MBD2, log2fc = 3.62) and mitochondrial
protein (MRPL44, log2fc = 3.59) (Fig. 3b) while overexpressed proteins in
CD8 T cells included the regulator complex proteins (LAMTOR5,
log2fc = 4.57), hexosaminidase subunit beta (HEXB, log2fc = 3.99) and
lysosomal enzyme (AGA, log2fc = 3.38). The transcription regulator Runt-
related transcription factor 3 (RUNX3, log2fc = 3.75) and distinct profiles of
cytotoxic granules (granzymes, GZMM and GZMA), were also among the
highest upregulated proteins in CD8 T cells at 0 h (Fig. 3b). Interestingly,
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during activation, the expression of proteins highly DE at 0 h becamemore
similar between CD4 and CD8 T cells (Fig. 3c, i, top graphs), while the
expression of their corresponding transcripts did not significantly change
(Fig. 3c, bottom graphs). Despite the overall reduction in the number of DE
proteins, CD8T cells had proteins associated with cytolysis enriched during
the entire time course analyzed (Supplementary Fig. 4a).

Among the mRNA transcripts overexpressed in CD8 T cells were the
canonical markers CD8A and CD8B, natural killer (NK) cell receptors
(KLRK1, KLRC3 and NKG2-E)30, and receptors involved in cytolysis
(CRTAM and CD160) (Fig. 3b and Supplementary Fig. 4b). CD4 and
FOXP3, the transcriptional regulator required for the development of reg-
ulatory T cell, were among the overexpressed transcripts in CD4 T cells
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(Fig. 3b and Supplementary Fig. 4c). In contrast to proteins, the mRNA
content becamemore distinct between activated CD4 and CD8 T cells, and
most of the DE mRNA transcripts were identified at 7d (n = 530) (Fig. 3a).
Supporting lower mRNA discrepancy at 0 h, unsupervised hierarchical
analysis comparing expression profiles between CD4 and CD8 T cells
revealed that the identified transcripts hierarchically clustered across both
cell subsets only at 0 h, showing that following activation the two cell subsets
become transcriptionally more distinct (Fig. 3d). At the same time, lower
number of clusters were identified fromproteomics analysis and plots show
that proteins clustered together at 0 h and late activation but not at 6 h and
12 h. This is in accordance with data in Fig. 3a showing that T cells tran-
scriptome becomes more divergent at the same time their proteome
becomes more similar.

The significant reduction in the number of DE proteins at late acti-
vation indicates the acquisition of similar phenotypic features betweenCD4
and CD8 T cells coinciding with their proliferative states, which was not
captured at the mRNA level.

Temporal changes in the molecular pathways during distinct
phases of T cell responses
To elucidate the main cellular pathways supporting CD4 and CD8 T cell
activation and proliferation, we used a soft clustering tool to divide mRNA
transcripts and proteins that significantly changed following CD3/
CD28 stimulation in 12 clusters, defined according to their kinetics of
expression (Fig. 4a; Supplementary Fig. 5 and Supplementary Table 4).
Although clusters were formed with a similar number of transcripts and
proteins representing each T cell subset (Fig. 4a and Supplementary Fig. 5),
the overall expression overlap observed between activated CD4 and CD8
T cells identified as part of the same kinetics cluster was intermediate for
mRNA transcripts (~50% overlap) and poor for proteins (~25% overlap)
(Fig. 4b).

Tomap themain biological changes underpinningT cell activation, we
next conducted a functional pathway enrichment analysis using the Kyoto
Encyclopedia of Genes andGenomes (KEGG). Pathways categorized under
metabolism, genetic information processing, environmental information
processing, cellular processes, and organismal systems were selected for
comparative analysis between activated CD4 and CD8 T cells (Fig. 4c). As
expected, major changes in metabolic pathways were detected in activated
T cells at both protein and transcripts levels. Differences in both mRNA
transcripts and proteins governing glycolysis/gluconeogenesis, carbon
metabolism, and biosynthesis of amino acids were observed following TCR
stimulation. However, changes in the metabolism of essential (methionine
and threonine) and non-essential (alanine, aspartate, glutamate, glycine,
serine, and cysteine) amino acids were only captured by transcriptomics in
both cell subsets, while DE transcripts associated with metabolism of other
amino acids and glycan biosynthesis were exclusively detected in CD8
T cells (Fig. 4d). Following TCR stimulation, the protein expression of
enzymes relatedwith degradation of fatty acids (ACAT2,ACSL4,ACADVL
andHADH) exponentially upregulated inCD4Tcells only (cluster 10) (Fig.
4a, c and Supplementary Table 5). In parallel, proteins associated with
energy metabolism and metabolism of cofactors and vitamins were DE
solely in CD8 T cells (clusters 9 and 12, respectively) (Fig. 4a, c).

As the transport of nutrients from the surrounding environment is a
crucial factor in modulating the molecular mechanisms that lead to

activation, we mapped the kinetics of the glucose and amino acid trans-
porters to identify T cell reprogramming following TCR stimulation. Cor-
roborating findings from previous studies31, a number of amino acid
transporters involved in glutamine uptake (SLC1A5, SLC7A5, and
SLC3A2), showed upregulation of their correspondingmRNAand proteins
as early as 6 h (Fig. 5 and Supplementary Fig. 6a). Interestingly, upregulated
transcripts for these transporters reduced to unstimulated T cell levels after
12 h, while their corresponding proteins exponentially increased during the
activation time course in both CD4 and CD8 T cells. Similar expression
kinetics were observed for transcripts and proteins representing enzymes in
the glutaminolysis pathway (GLS, which convert glutamine into TCA
(tricarboxylic acid) cyclemetabolites, pyruvate producerME2, andpyruvate
metabolizer LDH) (Fig. 5).

As T cells are known to perform aerobic glycolysis to fulfill the bioe-
nergetic demands of activation32,33, we further explored our datasets to
identify DE mRNA transcripts and proteins in the glycolysis pathway.
Surprisingly, the observed increase in glutamine transport and metabolism
was paralleled by a transitory downregulation of protein measures for the
main glucose transporter expressed by T cells, GLUT1 (SLC2A1), at 6 h
(CD4 T cell) and 12 h (CD8 T cell) following initial stimulation (Fig. 5 and
Supplementary Fig. 6b). The results obtained from the high throughput
proteomics data were validated by FACS using a fluorescent-labeled
monoclonal antibody, which demonstrated downregulation of GLUT1
during the first 12 h in both CD4 and CD8 T cells (Supplementary Fig. 6b).
Among the different types of glucose transporters detected by tran-
scriptomics, GLUT1 was the only one detected at the protein level (Sup-
plementaryFig. 6b, c). Interestingly,GLUT1andGLUT3mRNAtranscripts
had similar expression kinetics and progressively increased during activa-
tion, showing a more pronounced increase in CD4 T cells. Differently,
GLUT6 and GLUT8 were increased in CD8 T cells at 0 h and decreased
during activation. Strikingly, in comparison to proteomics, the FACS data
revealed a much higher increase in GLUT1 expression after 24 h, maybe
reflecting the difference in surface expression captured by FACS versus total
GLUT1 captured by proteomics. The decrease in GLUT1 expression was
paralleled by transitory downregulation of PFKB3 (a key allosteric activator
of glycolysis) protein in CD8 T cells only, whilst PFKB3 mRNA transcript
remained downregulated during the entire time course analyzed in both T
cell types (Fig. 5 and Supplementary Fig. 6d, e). Protein expression of
SLC16A3, a high-affinity transporter capable of exporting lactate and pyr-
uvate in response to the glycolytic influx, transiently droppedat 12 h inCD4
T cells only (Fig. 5). In both CD4 and CD8 T cells, expression of the rate-
limiting enzymes of glycolysis, HK2, PKM, and PFK1 increased in the late
phase of activation, while their mRNA transcripts were found to be
increased as early as 6 h and remained elevated at later time points (Fig. 5).

Altogether, these data demonstrate a transient disconnection between
the aerobic glycolysis and glutaminolysis pathways during T cell activation,
differently captured across CD4 and CD8 T cells. Such a finding was only
possible due to multi-omic analysis and would be overlooked using the
single-omics analysis of the T cell transcriptome.

Discussion
Here we present a study where we compare temporal transcriptomic and
proteomic datasets between primary humanT cell subsets as a reference for
probing the molecular events underpinning different phases of T cell

Fig. 1 | Minor changes to T cell proteome during early stages of activation.
a Schematic of CD4 and CD8 T cells isolation, TCR stimulation, and parallel
transcriptomic and proteomic analysis at 6-time points using RNA sequencing
(RNA-seq) and data-dependent acquisition proteomic analysis (DDA-proteomics),
respectively. The number of transcripts/proteins pre- and post-quality control is
indicated, along with criteria for differential expression (DE) analysis.
b Characterization of stages of T cell activation using the T cell activation markers,
CD69 and CD226, and proliferative T cells (CTV-) by flow cytometry; early acti-
vation (CD69highCD226lowCTV+) and late activation (CD69highCD226lowCTV-). c Bar
graphs show the mean percentage and the standard error of the mean (SEM) error

bars of CD69+ and CTV- T cells at 7d. Significance was determined using Mann-
Whitney rank analysis to compare between CD4 and CD8 T cells. *p < 0.05.
d Principal component analysis shows the relationship of mRNA and protein data
from three biological replicates across different time points. e The ratio of mRNA
and protein differentially expressed at different time points in relation to their
corresponding unstimulated controls (0 h = 1). f Bar charts indicate DE genes and
proteins in CD4 T cells and CD8 T cells as a percentage of total mRNA/ proteins
detected at each time point in relation to unstimulated cells (0 h). yellow: upregu-
lated, blue: downregulated mRNA/ proteins.

https://doi.org/10.1038/s41540-024-00346-4 Article

npj Systems Biology and Applications |           (2024) 10:21 4



responses. Interrogation of these integrateddatasets provided novel insights
into the molecular reprogramming kinetics of T cell activation.

Our data indicate a high level of temporal discordance betweenmRNA
transcription and protein expression in T cells following TCR stimulation.
Interestingly, by the late phase of activation (after 24 h), we observed con-
cordance between the reprogrammed transcriptome and proteome

resulting in proliferation. The correlation betweenmRNAtranscription and
protein expression can vary according to the cell type and functional status
and a complex discordance in these critical cellular events has been recog-
nized in multiple studies21–26. A quantitative proteome and transcriptome
mapping of paired healthy human tissues from the Human Protein Atlas
project revealed that hundreds of proteins could not be detected for highly
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expressed mRNA and strong differences were observed between mRNA
transcripts and protein quantities within and across tissues34. This dis-
cordance was partly associated with post-translational modifications of
proteins induced by external environmental signals, such as the metabolic
flux35. We speculate that the discordance observed in this study may be due
to insufficient ribosomenumber/activity to process the rapid transcriptional
activation following TCR engagement. This is supported by the observed
increase in translation pathway proteins during the early activation phase
(Fig. 4c). As changes in other mRNA silencing mechanisms such as RNA
decay36, degradation by RNases37 or sequestration to stress granules38,39 were
not identified in the present study, we have not specifically evaluated these
mechanisms and therefore cannot definitively exclude them at this stage.

T cell subsets have differential requirements for energy and biosyn-
thetic precursors during activation. Therefore, differential programming of
key metabolic processes such as glycolysis, fatty acid, and mitochondrial
metabolism can direct T cells to particular effector functions40. As an
example, a metabolic shift from oxidative to glycolytic pathways upon
engagement of TCR ensures long-termT cell survival and fuels a fast energy
supply for biosynthesis and replication41. Our integrated temporal tran-
scriptomics and proteomics design comparing CD4 and CD8 T cells from
the same donors uncovered previously uncharacterized selective tran-
scriptional and translational metabolic reprogramming. Following TCR
stimulation, the expression of key enzymes in carbohydrate and energy
pathways decreased in CD8 T cells. At the same time, CD4 T cells engage
enzymes associated with fatty acid degradation to generate acetyl-CoA for
the TCA cycle (Fig. 4) and upregulate LAMTOR5 (Fig. 3c). This activates
the mTOR pathway, increasing glycolysis and oxidative phosphorylation
required for cytokine production. These data show that CD4 T cells have
highermitochondrial respiratory capacities thanCD8Tcells.We reveal that
among the top 10proteinsupregulated inunstimulatedCD4Tcellswere the
death-associated protein 3 (Dap-3), and a subunit of the endoplasmic
reticulum (ER) membrane protein complex (EMC1), which have not been
previously characterized inT cells andmay play a role inCD4T cell biology.
Interestingly, we found that the protein content of CD4 T cells became
graduallymore similar toCD8T cells over time, including the acquisition of
cytotoxic functions by CD4 T cells, as characterized by increased levels of
GZMA and GZMM. While CD4 T cells with cytotoxic activity able to
secrete GZMB and perforin have been observed in various immune
responses42, a role for GZMM-expressing CD4 T cells is less known. It is
possible that the reduction observed in the number of DE proteins between
bothT-cell subsets is associatedwith the activationmethod employed in this
study. Even though anti-CD3/CD28 beads generate a more physiologically
relevant activation over traditional stimulation methods, such as mitogenic
lectins43, it is likely that the bulk (polyclonal) response subsequent to this
type of activation is leading to a similar developmental program in both T
cell subsets, as opposed to conditions where activation is achieved directly
through antigen-specific interactions. Supporting this concept, naturally
recognized peptides have been shown to produce a different metabolic
signature to anti-CD3/CD28 stimulation, associatedwith theirTCRbinding
affinity40.

We report a previously uncharacterized transitory downregulation of
GLUT1 during early activation. Although the mechanism controlling
transitory GLUT1 downregulation is not demonstrated in this study,
GLUT1 surface trafficking is known to be regulated through the co-
stimulatory receptor CD28, and tight regulation of this transporter is

suggested to be imperative for normal T cell activation44. Interestingly,
GLUT3 showed a similar kinetics to GLUT1. Despite the high expression of
GLUT3 mRNA transcripts, only GLUT1 was detected at the protein level.
The low number of identified proteins is partly due to using DDA but also
because of the use of the Velos mass spectrometer which gives less hits than
new-generation instruments. Despite the decreased expression of the main
glucose transporter, glycolysis in activated T cells has been shown to occur
independently of the glucose influx45. Both lipids and amino acids can be
converted into various intermediates of glycolysis and the TCA cycle,
allowing them to slip into the cellular respiration pathway through a mul-
titude of side doors including glutaminolysis, the process where glutamine
(themost abundant amino acid found in the human body) is converted into
mitochondrial TCA cycle intermediates46,47. Correlating with the absolute
requirement for glutamine to supply carbon and nitrogen to fuel energy
necessary for the synthesis of macromolecules in proliferating T cells48, our
data show an exponential increase in glutamine transporters and glutami-
nolysis enzymes in activated T cells. We confirm the upregulation of the
glutamine transporters, SLC1A5, SLC7A5, and SLC3A2, alongside gluta-
mate synthase (GLS), the key enzyme able to provide glutamine-derived
carbons to the TCA cycle49. Thesefindings indicate that glutaminemay play
an important role in fulfilling the earlymetabolic requirement unleashed by
TCR stimulation when intracellular levels of glucose are likely to be low.
Supporting the idea of crosstalk between GLUT1 and glutamine transpor-
ters in activated T cells similarly to the glucose uptake, transport of gluta-
mine into T cells is dependent on CD28 co-stimulation44,48.

The increase in glycolysis and mitochondrial respiration may lead
to the accumulation of pyruvate in activated T cells. Accordingly, we
evidence upregulation of the mitochondrial malic enzyme (ME2)
during late activation, showing that most of themalate originated from
the TCA cycle and is likely to be converted to pyruvate rather than
oxaloacetate. As pyruvate is rapidly converted into lactic acid in the cell
cytoplasm, rather than oxidized in the mitochondrial TCA cycle, a rise
in intracellular lactate level will cause premature cell death33,50. Our
data demonstrate a compensatory mechanism to protect the pro-
liferating CD4 and CD8 T cells from acidosis, mediated by upregula-
tion of the lactate transporter SLC16A3, which allows for efflux of
lactate. Interestingly, extracellular lactate correlates with T cell
proliferation51. Additional research is necessary to investigate the
possibilities of lactate recycling for the production of energy, as shown
for other human cell types52. It is important to emphasize that the
current study does not discriminate between CD4 T cells bearing
regulatory T (Treg) cells and conventional T helper phenotypes or CD8
T cells bearing MAIT and conventional CD8 T cell phenotypes.
Although it is likely that these findings will mostly reflect changes to
conventional T cells predominating among PBMC, contamination by
unconventional T cells should be taken into consideration when
interpreting these findings.

In summary, our studyprovides integrated temporal transcriptomic and
proteomic analysis of molecular events underpinning human primary CD4
and CD8 T cell responses to TCR stimulation. The concordance of mRNA
transcript and protein expression changes across multiple time points,
revealing the complexity and differences of CD4 and CD8 T cell repro-
gramming in response to the same generic stimuli. While the current paper
focuses on metabolic reprogramming, the matched transcriptomic and
proteomic datasets can be used as reference data for human T cell research.

Fig. 2 | Proteome and transcriptome rewire at late stages of T cell activation.
a Heatmaps show the expression patterns of commonly quantified mRNA tran-
scripts and proteins in CD4 and CD8 T cells. Yellow: upregulated, blue: down-
regulated. Row clustering but not column clustering was applied when generating
the heatmap. bVenn diagrams showing the overlap between quantified mRNA and
protein obtained from transcriptomic and proteomic data. cDEproteins encoded by
mRNA differentially expressed at 6 h following activation. The number of the
proteins regulated at each time point is shown. FDR < 0.05. The dotted line repre-
sents the total number of proteins upregulated (yellow) or downregulated (blue).

d Pearson correlation between DE genes and proteins over the entire time course of
T-cell activation. Blue to yellow gradient shows low to high correlation values for
CD4 and CD8 T cells at each time point. e Scatter graph with four quadrants
indicates the distribution and correlation between gene and protein expression
changes in both CD4 and CD8 T cells at different time points following activation.
Each region lists the percentage of T cells falling in each category. mRNA dis-
tribution is represented in the “x” axis and protein distribution in the “y” axis. ‘R’
represents the Pearson correlation coefficient.
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Methods
Human CD4 and CD8 T-cell isolation and stimulation
PBMCfromhealthy controlswere freshly isolated fromvolunteers atQIMR
Berghofer for transcriptomic and proteomic studies. Ethics approval was
obtained from the human research ethics committee QIMR Berghofer,
Brisbane, Queensland, Australia (HREC #P2058). In all cases, PBMC were

isolated using a Ficoll‐Paque Plus (Merck, Kenilworth, New Jersey, USA)
density gradient centrifugation from blood, and written informed consent
was obtained from volunteers.

Human PBMCs isolated from three healthy young adult volun-
teer blood donors (age 30-35 years, 2 females, 1 male) were further
purified using a human pan T-cell isolation kit and magnetically

Fig. 3 | CD4 and CD8 T cells becomemore divergent following TCR stimulation.
a Stacked bar graphs showing the total number of proteins and mRNA transcripts
DE between CD4 and CD8 T cells at each time point. Columns represent transcripts
and proteins overexpressed in each T cell subset. b Volcano plots showing proteins
mRNADE between CD4 and CD8 T cells at 0 h. Names of the top 10 overexpressed
mRNA and proteins in CD8 and CD4 T cells are indicated. c Expression kinetics of
proteins upregulated in CD4 (i) and CD8 (ii) T cells and their correspondingmRNA

transcripts. Intensities of each time point are shown as mean and the standard error
of the mean (SEM) error bars (n = 3). dHeatmap shows the relationship of protein/
mRNA expression between DE CD4 and CD8 T cells over the time course. mRNA
and protein commonly quantified between two T cell subsets were used. Average
linkage and Pearson distance measurement were used in column clustering. The
clusters of mRNA transcripts and proteins are indicated by distinct colors.
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activated cell sorting (MACS) (Miltenyi Biotech, Germany) to isolate
unlabeled CD3+ T cells. Approximately 30% of total CD3+ T cells
were purified using a human CD4 T-cell isolation kit while the rest
were sorted with a human CD8 T-cell isolation kit (Miltenyi Biotech,
Germany) using MACS to obtain untouched CD4 and CD8 T cells,

respectively. The sorted cell populations had a purity of over 90%, as
assessed by FACS. From each sample, 106 cells were aliquoted for
ex vivo proteomics and transcriptomics, respectively. The remainder
(~7.5 × 106 cells each) were harvested in Roswell Park Memorial
Institute (RPMI) 1640 medium supplemented with 10% Fetal calf
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serum (Gibco, USA) and 50 units/ml penicillin and 50 μg/ml strep-
tomycin (Gibco, USA) and activated with human T-cell activator
anti-CD3/CD28 Dynabeads (Thermo Fisher Scientific, USA) at the
bead: cell ratio of 1:1 as per the manufacturer’s instructions. CD8
T-cell cultures were supplemented with 120 IU/ml human recombi-
nant IL-2 (Sigma Aldrich, USA). T cells were aliquoted into five
samples with 1.5 × 106 cells in each condition to obtain cells at five
different time points (6 h, 12 h, 24 h, 3d, and 7d) and incubated at
37 °C in a humidified, 5% CO2 incubator. The culture medium was
changed on day 4 of post-activation. At each time point, aliquots of
activated T cells were collected washed three times with phosphate-
buffered saline (PBS), and stored for batch proteomics/tran-
scriptomics processing. T cells for proteomics were stored at –80 °C.
For transcriptomics, cells were lysed in 400 μl of cold TRIzol before
storage at -80 °C until RNA processing. At 0 h, 106T cells contained
~35–40 μg of Protein (Pierce BCA protein quantification kit, Thermo
Fisher Scientific, USA) and ~900–1000 ng of total RNA (qubit fluo-
rometer, Invitrogen, Thermo Fisher Scientific, USA). Samples from
the three donors were treated as separate replicates and not pooled for
downstream assays.

Monitoring the in vitro T-cell activation process
T-cell activation and proliferation were monitored using T-cell
activation markers and a T-cell proliferation assay. In parallel to the
main experiment, a sample of CellTraceTM Violet (CTV) (1:1000,
cat. C34557, Thermo Fisher Scientific, USA) stained T cells (CD4 and
CD8) from each donor was performed as per the protocol given by the
manufacturer. At each time point a sample of cells was stained with
CD69-PE-cy7 (1:200, cat. 557745, BD biosciences, USA), CD226-
FITC (1:300, cat. 559788, BD Biosciences, USA) GLUT-1-(1:200, cat.
566580, BD Biosciences, USA) along with CD3-APCe780 (1:300, cat.
47-0032-82, eBioscience, USA), CD4-BV711 (1:400, cat. 563033, BD
Bioscience, USA) and CD8-PerCP/Cy5.5 (1:200, cat. 344710, Biole-
gend, USA). Samples were analyzed using FACS to determine
dynamic expression changes. The percentage of CTV- cells were
analyzed to determine the T-cell proliferation rate at different time
points.

RNA extraction, mRNA library generation, and next-generation
sequencing (NGS)
Total RNA was extracted using TRIzol (Thermo Fisher Scientific,
USA) phase separation, following the protocol given by the manu-
facturer. Ultrapure glycogen (Thermo Fisher Scientific, USA) was
used to precipitate total RNA. The quality and quantity of the
extracted RNA were analyzed using a qubit fluorometer (Invitrogen,
Thermo Fisher Scientific, USA) and Agilent 2100 bioanalyzer (Agi-
lent Technologies, USA), respectively. and a RIN score of over 8.00
was confirmed for all the samples (n = 36). In each sample, 300 ng of
total RNA was aliquoted and mRNA libraries were prepared using a
TruSeq stranded mRNA library preparation kit (Illumina, USA).
After quality and quantity assessment of the generated libraries, next-
generation sequencing (NGS) was performed using NextSeq 500/550
high output v2 kit (150 cycles) (Illumina, USA) to obtain 800 × 106

paired reads per pool (50 ×106 paired reads per sample). Library
generation and NGS were performed at the analytical facility, QIMR
Berghofer.

Proteomic samplepreparationand liquidchromatography–mass
spectrometry (LC-MS/MS) data acquisition
T cells (1 ×1 06) were lysed in 2% SDS in 100 mM TEAB in the pre-
sence of a protease inhibitor cocktail. After assessing the protein
quantity using Pierce BCA protein quantification kit (Thermo Fisher
Scientific, USA), ~ 20 μg from each cell lysate was separated and
200 ng of ovalbumin was added as the internal standard. These
samples were reduced, alkylated, and digested using trypsin following
the method samples as previously described15 to obtain the peptides.
After desalting, peptides were quantified using microBCA (Thermo
Fisher Scientific, USA) protein assay to aliquot 1 μg from each sample
for MS analysis and were resuspended in MS grade water with 2%
acetonitrile, 0.1% formic acid (v/v) to obtain the final volume of 10 μl.
These samples were injected into a Protecol C18 trap column in
Prominence Nano (Shimadzu, Japan) LC system to separate the ions
in a Protecol C18 (200 Å, 3 μm particle size, 150 mm × 150 μm) col-
umn at a flow rate of 1 μl/min over 180 min linear gradient. Solvent A
(0.1% formic acid) and solvent B (100% acetonitrile and 0.1% formic
acid) were used for the mobile phase. Peptides were eluted in three
consecutive linear gradients: 5–10% solvent B over 5 min, 10–27%
solvent B over 147 min, and 27–40% solvent B over 10 min. Finally,
the column was cleaned using 40% to 95% solvent B for 10 min.
Chromeleon software (version 6.8, Dionex) embedded in Xcalibur
software (version 3.0.63, Thermo Fisher Scientific) was used in the
nano LC system. Peptides ionized by the nanospray (Thermo Fisher
Scientific, USA) ion source (ion spray voltage –1.75 V, heating tem-
perature 285 °C) were analyzed using a Velos Pro Orbitrap mass
spectrometer (Thermo Fisher Scientific, USA). In DDA-MS, the MS
was controlled and operated in the “top speed” mode using the
Xcalibur software to obtain MS1 and MS2 spectral data for peptide
ions with charge status between +2 to +4 at 1.96 s window time.

Transcriptomic data analysis
Sequence reads were trimmed for adapter sequences using Cutadapt
(version 1.11)53 and aligned using STAR (version 2.5.2a)54. to the
GRCh37 assembly with the gene, transcript, and exon features of
Ensembl (release 89) gene model. Quality control metrics were com-
puted using RNA-SeQC (version 1.1.8)55, while gene expression was
estimated using RSEM (version 1.2.30)56. Both counts per million
(CPM) and trimmed mean ofM-values (TMM) methods were used to
normalize the gene expression data and differential expression analysis
was carried out using edgeR (R package)57. mRNA with log2fc > 1.5
or < -1.5 at adj. p-value of <0.01 were considered as differentially
expressed (DE), up- and downregulated genes, respectively.

To estimate the proportions of T-cell subsets cellular deconvolution
analysis was conducted using CIBERSORTx27. The reference gene sets (93
genes with specific high expression in CD4 and CD8 T cells, shown in
Supplementary Fig. 1c) were extracted from existing signature matrix data
‘LM22’58 utilizing a density-based clusteringmethodHDBSCAN59. LM22 is

Fig. 4 |Metabolic signatures in distinct phases of T cell responses. aCo-expression
cluster of transcriptome and proteome data from CD4 and CD8 T cells. DE mRNA
transcripts of each dataset were clustered using mFuzz soft clustering (R package).
mRNA or protein intensities at each time point are shown as the mean and the
standard error of the mean (SEM) error bars. Number of mRNA/proteins included
in each cluster are indicated for CD4 and CD8 T cells, respectively. mRNA tran-
scripts with log2fc > 1.5 or < -1.5 and proteins with log2fc ≥ 1.0 or ≤ –1.0 were
considered as DE. Data is shown as fold change of mRNA and protein intensities in
activated T cells relative to 0 h. b Venn diagrams show the overlap of mRNA and
protein identified in each cluster between activated CD4 and CD8 T cells. c Enriched

KEGG pathways (FDR < 0.05) for co-expression clusters (defined in Fig. 4A) of CD4
and CD8 T cell. dMolecular interaction, reaction, and relation network showing the
relationship of the top first 20 enriched KEGG pathways categorized under ‘meta-
bolism’ (FDR < 0.05). The network was generated using all DE mRNA transcripts
and proteins. The size of each node directly correlates with the number of genes
included. Edges represent sharing of 20%ormore genes between twonodeswhile the
thickness of the edge directly correlates with the number of overlapping genes. The
number in each colored box indicates the co-expression clusters in Fig. 4a from
where the corresponding mRNA transcript/ protein was enriched.
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Fig. 5 | Rewiring of aerobic glycolysis and glutaminolysis results in T cell
expansion. T cells utilize glutamine through the glutaminolysis pathway to produce
energy during the activation. Graphs show the dynamic protein and gene expression
patterns of the main glucose and glutamine transporters and the rate-limiting/ key
enzymes of aerobic glycolysis and glutaminolysis during CD4 and CD8 T cell
activation (6 h–24 h) and proliferation (3d and 7d). Expressed proteins are named as
follows: GLUT-1 (SLC2A1)—the main glucose transporter in T cells, SLC7A5,
SLC3A2, and SLC1A5—glutamine transporters, SLC16A3 —lactate transporter,

HK2, PFKP, and PKM—the rate-limiting enzymes of glycolysis, PFKFB3—a key
allosteric activator of glycolysis, LDH—the enzyme which converts pyruvate to
lactate, GLS—the enzyme which converts glutamine to glutamate and ME2—the
enzyme which converts malate to pyruvate in the mitochondrial matrix. Data is
shown as fold change of mRNA and protein intensities in activated T cells relative to
0 h. mRNA or protein intensities at each time point are shown as the mean and the
standard error of the mean (SEM) error bars.
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a microarray-derived signature matrix with 547 genes differentially
expressed across 22 human hematopoietic cell subsets in bulk tissues,
including tumors. ‘B batch correction’ was applied to correct platform
effects between microarray and RNA-seq data.

Proteomic data analysis
After inspecting the quality of generated DDA-MS data using RawMeat
(Vast Scientific), rawfileswere analyzedusingMaxQuant software60 against
UniProt reviewed human proteome database containing 20,242 entries
(downloaded on 25thOctober 2017), UniProt chicken ovalbumin (UniProt
ID—P01012) fastafile and the list of commonMScontaminants included in
the software. maxLFQ61 was used to obtain normalized protein intensity
data. The peptide and protein data quality filter was set at 1% FDR. For
statistical analysis, proteins with only 1 unique or razor peptide orm-score
value less than 5 were excluded. Proteins with log2fc ≥ 1.0 or ≤ –1.0 at a q-
value of ≤0.05 were considered as statistically up- and downregulated,
respectively.

Identification of differentially expressed (DE) mRNA transcripts
and proteins
To obtain statistical significance, mRNA transcripts, and protein intensities
(log2 transformed) of activated T cells at different time points were com-
pared against unstimulated samples (0 h) using multiple t-tests with false
discovery determination by the two-stage linear step-up procedure of
Benjamini, Krieger, and Yekutieli (q-value)62. The three donors were con-
sidered as biological replicates for DE analysis and log2 fold-change was
calculated using their mean values. The percentage of DE mRNA and
protein was calculated as the number of DE genes/total number of quan-
tified genes) x 100. In this way, one set of DE genes/proteins was identified
for each time point.

Correlation analysis, clustering, and gene enrichment analysis of
differentially expressed mRNA and protein
Commonly quantified mRNA and protein were selected by mapping
UniProt IDs of proteomic data with the Ensemble IDs using UniProt
Retrieve/IDmapping. Using log2fc values Pearson correlation between
DE mRNA transcripts and their corresponding protein was calculated
for different time points. Correlation coefficient values ±(1.00–0.70)
were considered as a strong correlation while ± (0.69–0.40) and ±
(0.39–0.10) were taken as moderate and weak respectively63. To iden-
tify the co-expression clusters over the course of activation, mRNA or
protein significant in at least one time point were filtered and clustered
using the Mfuzz soft clustering method (R package)64. KEGG
pathways65 enriched (FDR ≤ 0.05) by the genes represented by each
cluster were identified using String: functional protein network ana-
lysis version 11.566 and ShinyGO 0.7667. Word clouds were generated
using the online tool (https://www.wordclouds.com, accessed
December 2021). Bioinformatics analysis and graph generation were
done using R Studio68 and GraphPad Prism (version 9.2.0 for Win-
dows, GraphPad Software, San Diego, California USA).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited on the Pro-
teomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD038810. The RNA-seq raw sequence data are not
publicly available because participants did not give consent for the data to be
publicly released. The RNA-seq gene count data is given in Supplementary
Table 6.
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