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Highlights
The heat tolerance of corals is largely
determined by their microbial
photosymbionts, and manipulating
these symbiont communities may
enhance the ability of corals to sur-
vive summer heatwaves.

Experimental evolution of
Symbiodiniaceae cultures under ele-
vated temperatures has been suc-
cessfully used to enhance the upper
thermal tolerance of both symbiont
The heat tolerance of corals is largely determinedby theirmicrobial photosymbionts
(Symbiodiniaceae, colloquially known as zooxanthellae). Therefore, manipulating
symbiont communities may enhance the ability of corals to survive summer
heatwaves. Although heat-tolerant and -sensitive symbiont species occur in nature,
even corals that harbour naturally tolerant symbionts have been observed to bleach
during summer heatwaves. Experimental evolution (i.e., laboratory selection) of
Symbiodiniaceae cultures under elevated temperatures has been successfully
used to enhance their upper thermal tolerance, both in vitro and, in some instances,
following their reintroduction into corals. In this review, we present the state of this
intervention and its potential role within coral reef restoration, and discuss the next
critical steps required to bridge the gap to implementation.
cultures in vitro and corals following
inoculation.

Novel culturing, upscaling, and biodi-
versity monitoring techniques are
required to deliver experimentally
evolved coral symbionts at scale,
and success requires learning from,
or directly utilising, adjacent indus-
tries (e.g., biotechnology for algae-
based commodities).

This intervention has transitioned from
stakeholder engagement to regulatory
approval for risk assessments via small-
scale field trials, which is an essential
step on the path to implementation.
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Novel approaches for protecting tropical coral reefs
Most countries with extended tropical coastlines derive considerable economic benefits from
their coral reefs. These ecosystems support important industries, such as fisheries, tourism,
and the development and production of pharmaceuticals. They also protect coastal infrastructure
from erosion, are biodiversity hotspots, and hold substantial cultural and spiritual values, particu-
larly for Traditional Owners (see Glossary). Unfortunately, these magnificent ecosystems face
threats from various anthropogenic disturbances, primarily the escalating frequency and severity
of climate change-driven summer heatwaves, which cause widespread coral bleaching and mor-
tality (Figure 1). Coral bleaching is the loss of the Symbiodiniaceae symbionts from the coral
tissues, resulting in paling of the coral and leaving it in a nutrient-starved state. The first global
mass bleaching event in 1998 removed ∼8% of all corals worldwide and 14% was lost in the de-
cade between 2009 and 2018 [1]. Further declines of 70–99% in coral cover are predicted to
occur within this century as a result of climate change [2]. To minimise additional climate warming
and ensure the longevity of coral reefs for the benefit and enjoyment of future generations, it is im-
perative to rapidly reduce greenhouse gas emissions. However, even under best-case emission
reductions scenarios, seawater temperatures are likely to exceed bleaching thresholds for de-
cades [3]. Therefore, the use of both conventional management and active coral reef restoration
is necessary to help avert the catastrophic loss of coral reefs.

Researchers around the world are developing a suite of novel coral reef restoration approaches.
These include the use of early life stages of coral, such as: sexually produced larvae and recruits
(instead of adult coral fragments), which are settled on devices that increase their survivorship and
reduce the cost of deployment; the use of artificial structures that stabilise the reef substratum
and increase survivorship of coral recruits; and interventions aimed at enhancing coral thermal
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Figure 1. Coral–Symbiodiniaceae symbiosis and dysfunction under stress. Most stony corals (Scleractinia) form an
obligate endosymbiosis with dinoflagellate microalgae in the family Symbiodiniaceae. Under typical conditions, the coral
tissue provides a protective environment for the Symbiodiniaceae, which, in turn, produce oxygen through photosynthesis
and convert the waste byproducts of coral cellular respiration into compounds essential for coral growth and further
respiration. Anthropogenic climate change leading to elevated sea surface temperature (which acts synergistically with
other stressors, such as light) can overwhelm the photosynthetic system of the Symbiodiniaceae and cause increased
production and release of reactive oxygen species (ROS), which become a source of oxidative stress in the coral tissue.
The coral stress response mechanism is to expel the Symbiodiniaceae to prevent damage to its tissues. In the absence of
Symbiodiniaceae, the coral tissue is in a ‘bleached’ state, whereby metabolic processes slow and the coral begins to
starve. If the elevated conditions persist and the symbionts fail to repopulate, the coral will die, which is followed by rapid
degradation of the reef framework. However, many Symbiodiniaceae are not dependent on the coral host animal for their
survival and have a free-living life phase. The survival of expelled symbionts during such conditions in surrounding reef
habitats (e.g., sediments and water column) is unknown.
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bleaching tolerance [4]. A promising method to elevate the upper thermal tolerance limit of
corals involves ex hospite heat selection (i.e., experimental evolution or adaptive laboratory
evolution; Figure 2) of their microalgal photosymbionts, which reside within the cells lining the
coral gut. The upper thermal bleaching tolerance of corals is largely contingent on the specific
Symbiodiniaceae community they harbour [5,6], with both heat-tolerant and -sensitive
Symbiodiniaceae species found in nature. For instance, closely related taxa in the Cladocopium
C15 lineage are associated with differential thermal-bleaching tolerance of their coral hosts
[7,8]. Furthermore, differences in thermal tolerance between species in the Durusdinium and
Cladocopium genera are well documented, where the former tend to have higher thermal toler-
ance, which is conferred on their coral hosts [9,10]. However, even corals that predominantly
host Durusdinium have been observed to bleach during summer heatwaves [9]. Experimental
1242 Trends in Microbiology, December 2024, Vol. 32, No. 12
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Figure 2. An experimental evolution framework for enhancing Symbiodiniaceae thermal tolerance. Experimental
evolution of Symbiodiniaceae can start from amixed community (multiple genotypes) isolated from a coral fragment or from a
single cell (the latter is depicted here). The single cell is grown into a culture of multiple cells that will be genetically closely
related [Symbiodiniaceae cultures primarily reproduce asexually, but a small proportion of meiotic cells has been observed
in Cladocopium proliferum culture (E. Flynn, Master’s thesis, University of Melbourne, 2022)]. Starting from a single cell
rather than a mixed community permits in-depth understanding of genetic changes arising in response to selection. The
culture may then be further divided into replicate subcultures, which are allocated among treatments and which produce
‘wild-type’ strains kept at ambient temperatures (e.g., 27°C) and heat-evolved strains subjected to temperatures ratcheted
upwards (see Box 1) in small increments until reaching the temperature beyond which no growth occurs. After multiple gen-
erations under selection, heat-evolved strains are used to inoculate aposymbiotic larvae, juvenile, or bleached adult corals
and the holobiont tolerance to heat stress is assessed.
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Glossary
Adaptive response: genetic or
epigenetic change in a population in
response to a selective agent, resulting
in a fitter phenotype and manifesting as
enhanced resistance.
Aposymbiotic: state where a host
organism is without its usual symbiotic
partners.
Cophylogeny: where relationships
between two or more groups of
organisms, typically host species and
their associated symbionts, result in
congruent evolutionary history.
Coral holobiont: coral host animal and
its associated microbiota.
Degree Heating Weeks:
accumulation of temperature anomalies
exceeding the monthly maximum mean
sea surface temperature for a given
region.
Ex hospite: refers to outside the host
organism, in this case, outside the coral
host.
Experimental evolution:maintenance
of replicate populations of an
organism in different controlled
environments for many generations,
with the goal of studying adaptive
response to selective forces, or
enhancing certain traits of interest
(e.g., thermotolerance).
Fitness: relative contribution of a
genotype to succeeding generations
through survival and/or reproduction.
Generalist species: species/
symbionts with a broad host range.
Heat evolved: symbionts with
enhanced thermal tolerance developed
through experimental evolution under
elevated temperature
In hospite: within the host organism.
Local Symbiodiniaceae community:
multiple symbiont species coexisting
within a single colony.
Macroscale Symbiodiniaceae
community: multiple symbiont species
among conspecific corals at the site/
reef/reef cluster scale.
Maternally transmitted: symbiont
transmission occurring directly from
coral parental colonies into oocytes
before gamete release.
Mutagen: substance or agent that has
the potential to induce geneticmutations
(i.e., alterations in the DNA sequence of
an organism).
Selective agent: any factor that acts
for or against a trait, causing directional
selection in a population/experimental
treatment. Selective agents can be
physical (i.e., light, temperature),
evolution of Symbiodiniaceae offers ameans to shift their thermal tolerance limit upward, increasing
host resistance to bleaching [11–13].

Experimental evolution of Symbiodiniaceae
Experimental evolution is a common method to study adaptive responses to a small number of
selective agents. It is often conducted with microbes that have short generation times, such as
bacteria [14], yeast [15], and microalgae [16], although invertebrates [17] and vertebrates [18]
have also been used. A second aim of experimental evolution can be to produce genotypes
with improved traits that are relevant for commercial purposes, such as the generation of biofuels
[19], or to develop genotypes better adapted to changing environmental conditions, such as
Symbiodiniaceae with augmented thermal tolerance for use in coral reef restoration (Figure 2).
Few research groups have carried out experimental evolution with Symbiodiniaceae cultures,
and most efforts have been directed toward species isolated fromGreat Barrier Reef (GBR) corals.
To the best of our knowledge, outside theGBR, only Symbiodiniaceae from theMediterranean Sea
and Florida Keys have been subjected to experimental evolution. Pierangelini et al. worked with
three Symbiodiniaceae cultures in the genus Symbiodinium, which were isolated from the sea
anemone Anemonia viridis in the Mediterranean Sea [20]. These cultures were transferred from
25°C to 32°C and maintained for 1 year, after which adaptive changes to elevated temperature
were observed. However, the phenotypes were rapidly lost when the cultures were returned to
25°C; therefore, the authors concluded these phenotypes were due to acclimation
(i.e., reversible physiological adjustments) rather than adaptation (i.e., fixed changes due to genetic
mutation). Long-term thermal selection has also been conducted on Breviolum antillogorgium, the
Symbiodiniaceae symbiont of the octocoral Antillogorgia bipinnata from the Florida Keys [21,22].
Replicate heterogenous symbiont cultures were exposed to 26°C or 30°C for 2 (256–284 gener-
ations) [21] and 5 (650–700 generations) years [22], and only cultures in which a single genotype
remained were tested. Neither study yielded evidence for genetic adaptation to elevated tempera-
ture because the historical temperature (i.e., long-term selection temperature) was not a strong
Trends in Microbiology, December 2024, Vol. 32, No. 12 1243
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chemical (i.e., mutagen or nutrients), or
biological (i.e., pathogen).
Symbiont shuffling: in corals, refers to
a change in the relative abundance of
Symbiodiniaceae species that constitute
the in hospite community.
Traditional Owners: in Australia,
Traditional Owners are the descendants
of the original inhabitants of a region
before European settlement. Australian
law acknowledges that Aboriginal and
Torres Strait Islander individuals have
rights and interests in the land and Sea
Country across the length of the GBR
based on their traditional laws and
customs, recognising them as
Traditional Owners.
Transgressive segregation:
formation of extreme phenotypes, or
transgressive phenotypes, in offspring
due to novel combinations of parental
alleles at different loci that underpin
polygenic traits.
Wild-type: symbionts that have not
undergone experimental evolution but
have been maintained in a laboratory
environment under historical conditions.
predictor of contemporary temperature responses. In addition, distinct genotypes remained in the
cultures exposed to 26°C and 30°C, respectively and, therefore, no true wild-type was available
for comparison.

Research onGBR species represents the largest effort in the field of Symbiodiniaceae experimen-
tal evolution. Huertas et al. transferred two Symbiodiniaceae species from 22°C to 30°C and
showed that they were able to grow at 30°C after 55–70 cell generations (100 days at exponential
growth) of selection at this temperature, while the wild-type was unable to grow at 30°C [23]. The
strains used for this work were isolated from the corals Heliofungia actiformis and Pocillopora
damicornis, but their taxonomic affiliation was not assessed. The generalist species,
Cladocopium proliferum, which is distributed throughout the Pacific [24], has also been subjected
to laboratory selection under elevated temperatures. This work started with a heat-tolerant strain
isolated from the common scleractinian coral Acropora kenti (formerly Acropora tenuis) [25] from
an inshore reef in the central GBR [26]. Experimental evolution with elevated temperature as the
selective agent was started in mid-2011, with ten replicate cultures (hereafter referred to as
‘strains’) of C. proliferum. When one strain was tested after 2.5 years (∼80 generations), evidence
for adaptation was detected in vitro, but adaptive responses of coral holobionts inoculated with
this strain were minimal. When re-examined after ∼4 years of experimental evolution (∼120 gen-
erations), findings for this strain were similar, but three other strains (of the additional nine strains
tested) were observed to enhance thermal bleaching tolerance in A. kenti larvae [11]. All ten
strains showed enhanced tolerance in vitro. This rapid adaptive response (after 80–120 genera-
tions) for a microalga with a relatively large cell size and a large and complex genome [27,28] may
be the result of the occurrence of occasional sexual reproduction [29–32]. Subsequent examina-
tion of a subset of the same heat-evolved strains inoculated into A. kenti juveniles [12] and ex-
perimentally bleached adults of a taxonomically divergent coral species, Galaxea fascicularis
[33], confirmed the earlier findings and, in addition, demonstrated that enhanced thermal bleaching
tolerance did not compromise coral growth (over 40 and 18 weeks, respectively) at ambient tem-
perature. A trade-off against growth at ambient temperature is commonly reported in corals
hosting natural, heat-tolerant symbionts [34,35]. As often seen in temperature adaption of other
microalgae [16,36–38], in hospite differences between wild-type and heat-evolved strains were
driven by differences in algal pigments [33], and rates of photosynthesis and carbon fixation [11].
Additional Symbiodiniaceae taxa from other genera (Durusdinium, Fugacium, Gerakladium, and
Symbiodinium) have now also been heat evolved, with some showing in vitro adaptive responses
after as few as 41–80 generations [39–41], and these are awaiting in hospite testing.

Reconciling results among studies and from culture to the holobiont
Limited commonalities can be found among these early studies on Symbiodiniaceae experimen-
tal evolution. This is unsurprising given the standing genetic [42] and functional [43] variation
among the six genera subjected to selection and the biogeography of their hosts, the varying ex-
perimental designs (e.g., designation of wild-type strains) and thermal tolerance assays used, the
suite of traits quantified, and the classes of cnidarian hosts (e.g., octocoral versus scleractinian
coral) utilised for performance testing in hospite. As this field of research progresses, identifying
the unresolved issues and embracing standardised techniques could pave the way for enhanced
cross-comparability among future studies.

Many Symbiodiniaceae species exist in hospite, in reef water, and sediments [44], and some have
been established in culture. Thermal tolerance may differ depending on these lifestyles and the
experimental setting (e.g., in hospite versus in vitro), making it challenging to extrapolate findings
from one environment to another. For example, Buerger et al. [11] and Chakravarti et al. [25] ob-
served a lack of correlation between in vitro and in hospite phenotypes of heat-evolved strains,
1244 Trends in Microbiology, December 2024, Vol. 32, No. 12
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highlighting the role of host–symbiont interactions and the interdependencies of the symbiosis.
Identifying in vitro traits predictive of holobiont performance (e.g., glutathione content [45]) may
improve our ability to identify genotypes relevant for coral reef restoration. Additionally, mimicking
the in hospite environment more closely in culture assaysmay further improve the transferability of
results to the symbiotic lifestyle.

To date, most thermal tolerance assessments have been performed using reciprocal transplants
of heat-evolved and wild-type strains to ambient and elevated temperatures that induce stress.
However, reciprocal transplants to two environmental conditions provide a narrow lens of the im-
pact of experimental evolution on the thermal tolerance of a strain and potential trade-offs. Ther-
mal performance curves [46] may circumvent this limitation by capturing trait performance values
across a wider range of conditions. Furthermore, such curves enable the parametrisation of trait
performances, which can provide greater power to predict how evolved strains may perform
once reintroduced to natural environments, and enable cross-study meta-analysis and modelling
of effect sizes.

In most in vitro assessments of the thermal tolerance of heat-evolved Symbiodiniaceae, traits relat-
ing to growth (growth rates), photochemical efficiency (maximum quantum yield of photosystem II)
and levels of oxidative stress (levels of intracellular/extracellular reactive oxygen species) have been
measured. Additional metrics could be included to gain a more holistic characterisation of the likely
contribution of a heat-evolved strain to coral holobiont thermal tolerance. For instance, nutrient up-
take (nitrate, ammonium, and phosphate) and photosynthate translocation by heat-evolved strains
are poorly understood but warrant further investigation because they influence coral holobiont per-
formance [47]. Holobiont trait trade-offs associatedwith harbouring heat-evolved strains other than
growth also need to be understood andmonitored. For instance, a recent study found a correlation
between the presence of symbionts in the genus Durusdinium and stony coral tissue loss disease
in the Caribbean coral, Orbicella faveolata [48], suggesting that photosymbionts affect coral dis-
ease prevalence.

Going forward
New strategies for symbiont cultivation
Targeted isolation of naturally tolerant Symbiodiniaceae strains (e.g., genotypes adapted to the
extremes of environmental gradients) could provide valuable starting material for experimental
evolution (Box 1). Substantial literature on the thermal tolerances of Symbiodiniaceae species
has accumulated via observations of patterns in coral bleaching and can form the basis for
such targeted isolation [49,50]. However, Symbiodiniaceae isolation from corals is generally con-
sidered challenging, with varying levels of success, and progress toward a shared understanding
of ‘best practice’ is hindered by under-reporting of failed culturing attempts [51]. Generating a
collection of ecologically important Symbiodiniaceae cultures for experimental evolution may re-
quire innovating beyond standard autotrophic growth media (f/2 or IMK) as new understanding
emerges of the varying strategies of Symbiodiniaceae resource acquisition (i.e., oligotrophic
media, mixotrophic lifestyles [52], or symbiosis with prokaryotes [53]). Targeted isolations of gen-
eralist species (e.g., C. proliferum or Durusdinium trenchii) for experimental evolution will likely
continue to be desirable due to the strong potential for return on investment (i.e., evolve one sym-
biont with applicability to many coral species). In addition to trophic considerations for cultivation,
future strategies should also consider the life-histories of Symbiodiniaceae, includingmaternally
transmitted symbionts with strong host cophylogeny [54]. To the best of our knowledge, ma-
ternally transmitted Symbiodiniaceae species are yet to be cultured, but are critical to coral reef
function as the vital symbionts of some of the major reef builders (e.g., the Cladocopium symbi-
onts of Porites). It may be essential to experimentally evolve such symbionts in hospite, for
Trends in Microbiology, December 2024, Vol. 32, No. 12 1245
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Box 1. Impacts of different experimental evolution frameworks on the fitness landscape

The fitness landscape (Figure I) is a concept used in evolutionary biology to represent the relationship between genotypes
and their fitness levels in a population. In this landscape, each point represents a genotype, and the elevation of that point
the respective fitness ‘peak’ [71]. Individuals with traits that allow them to succeed in a particular environment are favoured
by selection. If these traits are heritable, the alleles that give rise to the trait increase in frequency, causing the population to
evolve and adapt to the environment [72].

Experimental Evolution (EE) influences the fitness landscape by leveraging principles of Darwinian natural selection in lab-
oratory environments. The standard framework for Symbiodiniaceae EE is the ratchet method, whereby cell cultures are
subjected to stepwise changes in an environmental condition (e.g., temperature), maintaining a selective pressure (see
Figure 2 in the main text). Temperature ratcheting has improved the thermal tolerance of Symbiodiniaceae [23,25,40]),
phytoplankton [23], and bacteriophages [73], highlighting the strength of this technique.

Genetic variation (A) is the basis of evolutionary change; increasing the standing genetic variation, for example by gener-
ating a heterogeneous culture from a population with natural genetic variance (A.II), instead of a culture originated from
a single isolated cell (A.I), or by introducing new alleles through de novo mutations (A.III), can speed up the adaptation
of microorganisms to novel environments [74–77].

Alternative selective agents (B) may provide a shorter path to a desirable trait. For instance, light tolerance is often related to
thermal tolerance due to shared physiological and adaptive responses in the photosynthetic machinery, such as coping
with excessive reactive oxygen species [78]. In addition, selection for thermal resilience in microalgae often results in the
reduction of cell size [45,79]. Selecting for small cell size and higher light tolerance (i.e., single versus multiple selective
agents [80]) has not been attempted for Symbiodiniaceae. Incorporating fluctuations into the selection regime may pro-
mote different adaptive trajectories compared with selection under homogeneous conditions [37,41]. To add such com-
plexity into EE frameworks, Symbiodiniaceae research must embrace technological advancements, such as automation
and cell sorting (Figure IC), in prospecting for desirable traits [81–83].

The use of sexual reproduction (Figure ID) among different strains/species for EE awaits exploration. Recombination be-
tween genomes carrying adaptive alleles at different loci can produce phenotypes with increased fitness, although adverse
outcomes are also possible due to negative epistasis [84]. For polygenic traits, such as thermal tolerance, it is likely that
culture strains have evolved adaptive alleles at different loci. These alleles can be combined via sexual reproduction, po-
tentially resulting in novel genotypes with better fitness (transgressive segregation).

TrendsTrends inin Microbiology Microbiology 

Figure I. Using selective agents to explore the fitness landscape. The fitness landscape concept illustrates how
genotypes relate to fitness levels, and how increasing genetic variation (A) through heterogeneous cultures or de novo
mutations can accelerate adaptation. Exploring alternative selective agents (B), high-throughput phenotyping (C), and
incorporating sexual reproduction (D) offer avenues for potentially discovering and enhancing desirable traits in
organisms, such as Symbiodiniaceae. Abbreviation: ROS, reactive oxygen species.
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example, using coral cell cultures [55], and use certain techniques (e.g., chemical bleaching) to
integrate such symbionts into other corals. One limitation is that Symbiodiniaceae divide less fre-
quently in hospite, but this may be overcome by using mutagenesis before in hospite selection.
Further, exploratory co-culture of host-specialist symbionts (i.e., with naturally high thermal toler-
ance, such as Cladocopium C15) with diverse coral cell cultures from varying species may result
in the evolution of host generalism [56].

Upscaling from a single cell to industrial-scale biomass
One strategy to utilising experimentally evolved coral symbionts for restoration at scale is to inte-
grate them with the sexual production of coral (i.e., coral spawning), inoculating aposymbiotic
recruits before field deployment. To our knowledge, research cultures are typically in the millilitre
to litre volumes, yet thousands of litres would be required to inoculate millions of coral recruits
reared from multiple reefs or regions (i.e., restoration at industrial scales). Upscaling from a single
cell to biomass suitable for experimentation requires 6 to 9 months in addition to the 2 to 3 years
[25] under selection required to shift trait values. Scaling these small experimental cultures to
thousands of litres may be time and resource intensive, especially if a desirable trait (i.e., heat
tolerance) is traded against culture growth rate at elevated temperatures. However, mass pro-
duction of Symbiodiniaceae for restoration can look to the many solutions within industries that
growmicroalgae for the purpose of yielding valuable commodities (e.g., biofuels or nutraceuticals)
to overcome bottlenecks. For example, it may be possible to fine-tune the culture conditions
(e.g., media composition, lighting, or bacterial probiotics [57]) to match the stoichiometry of re-
source requirements as trait values change under experimental evolution. Symbiodiniaceae
often exhibit benthic growth in culture (e.g., biofilm formation), which will likely result in nonlinearity
of yields when attempting to grow biomass at greater densities (e.g., self-shading). Thin-film bio-
reactors or cascades (with high surface area:volume ratios) is one such solution [58] for the mass
culture of Symbiodiniaceae. Experimental evolution aimed at restoration can further learn from, or
directly utilise, such industries where strategies are used to prevent yield loss due to genetic/trait
drift, which include cryopreservation and maintaining large volumes during subculturing to mini-
mise the effect of repeated bottlenecking [59].

Monitoring biodiversity
Reef restoration activities that alter the local (i.e., within a coral colony) and macroscale
(i.e., among colonies or reefs) Symbiodiniaceae communities should be paired with significant
upscaling in monitoring capability (e.g., genetic assays and high-throughput cell sorting). The
most used approach for characterising Symbiodiniaceae community composition is
metabarcoding of the Internal Transcribed Spacer 2 (ITS2) region [60]. This will likely be insuffi-
cient to identify and monitor heat-evolved strains because, after >10 years of subjecting
C. proliferum to selection, the ITS2 intragenomic variants were unchanged [13]. Comparatively
less research has been conducted on population genetics of Symbiodiniaceae species in the
field, or among replicate cultures that are subjected to selection and maintained in isolation.
Symbiodiniaceae population structure can emerge at small spatial scales [61], but there are
also examples of single clones dominating coral colonies across hundreds of kilometres of reef
[62]. Replicate cultures constitute a collection of allopatric populations and identifying diagnostic
genetic signatures (e.g., microsatellites, single nucleotide polymorphisms, or genomic rearrange-
ments) that emerge in these cultures against wild-type cultures or conspecific symbionts in situ
will be essential for intervention monitoring. New genetic monitoring frameworks are needed to
detect the future mixing of these populations when reunited within local or macroscale symbiont
communities. For example, given the mounting evidence for sexual reproduction in the
Symbiodiniaceae (Box 1), the potential for introgression of heat-evolved strains via intra- and in-
terspecific hybridisation (i.e., the cross-breeding of distinct populations of the same species or
Trends in Microbiology, December 2024, Vol. 32, No. 12 1247
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different species) requires the development of techniques to detect and monitor hybrid offspring.
This may be especially useful to examine whether hybrid phenotypes differ to those of both parents
(i.e., hybrid vigour or outbreeding depression). In the absence of sexual reproduction, further po-
tential for hybridisation has been observed in the form of Symbiodiniaceae protoplast fusion [63],
although long-term viability and cell division following fusion have not yet been demonstrated.

Further knowledge gaps regarding the rearrangement of community structures include the
possibility of reduced effect sizes (including the mitigation of trait trade-offs) when wild-type
and/or homologous symbionts persist alongside heat-evolved strains in an individual coral
[33]. While adult corals typically harbour a numerically dominant symbiont in addition to one
or more low-abundance strains, juvenile corals appear to be predisposed toward harbouring
more diverse assemblages [64]. The reasons for these ontogenetic changes are unknown, al-
though it is possible that this supports the transition of recruits from cryptic habitats into the
adult niche [65]. Perhaps symbiont-based interventions should inoculate coral juveniles with
communities of multiple symbiont genera [66] experimentally evolved to coexist; this may max-
imise symbiont genetic and functional diversity and improve coral resilience. Thus, bridging
these knowledge gaps and acquiring an enhanced capability to monitor coral symbionts in
space and time is critically important.

Closing the gap to reef restoration
The development of a new biodiversity conservation/restoration interventionmay entail the follow-
ing steps (noting that the regulatory frameworks differ across countries): (1) identification of the
problem and evaluation of initial proposals for intervention; (2) an open consultation with stake-
holders, including the general public, to obtain the social licence to operate; free and prior in-
formed consent for the work secured from relevant Traditional Owner groups; and permits
obtained from regulators to collect biological material from the field or for working in the field;
(3) demonstration of proof-of-concept in the lab, including via peer-reviewed scientific publica-
tions; (4) regulatory approval in place for small-scale field tests, including an ecological risk as-
sessment for larger-scale deployment of the intervention based on results from the small field
trial and the literature; (5) obtaining industry support for field testing and monitoring on a larger
scale; and (6) implementation of the intervention at local and global scales (Figure 3). The use of
coral inoculated with experimentally evolved photosymbionts is currently at Step 4, with data ex-
pected to be collected over the next year to permit progression to Step 5.

A critical decision about the efficacy of this intervention will revolve around determining whether
field-deployed corals inoculated with heat-evolved symbionts exhibit greater tolerance to sum-
mer heatwaves compared with their native counterparts, because all observations so far have
been made in the lab. The thermal tolerance phenotypes of the new symbioses are expected
to vary across environments and, therefore, we define success of the intervention as follows.
First, corals harbouring heat-evolved symbionts (alone or in combination with native symbionts)
have thermal tolerance levels that are never lower compared with native corals and are higher
at some reef habitats or sites. Second, experimentally evolved symbionts persist within the target
corals through time. While heat-evolved symbionts remained in symbiosis with corals for the full
duration of the longest lab experiment to date (2 years) [33], comparable data from field-
deployed corals are not yet available. For a coral reef restoration intervention to be economically
viable, benefits to the reef need to persist long term. Thus, the temporal stability of symbioses with
heat-evolved strains, and whether heat-evolved symbionts can increase their relative abundance
following retreat into the rare biosphere (i.e., symbiont shuffling) need to be examined in the field
(see Outstanding questions). Third, experimentally evolved symbionts can be acquired by other
corals from the surrounding environment. It is imperative to establish whether and how far
1248 Trends in Microbiology, December 2024, Vol. 32, No. 12
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Figure 3. Pathway to implementation. Successful deployment of reef intervention measures, such as those described in
this review, require multiple checkpoints, with experimental evolution of coral symbionts to enhance the thermal limits of
corals currently at Step 4.
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heat-evolved symbionts that are expelled from their coral host spread in the reef environment,
and whether they can be acquired by other corals (healthy or bleached). Healthy corals are
known to continuously expel symbionts to maintain stable symbiont cell densities, with many of
these being viable [67,68]. If the new symbionts do spread, the benefits (i.e., upscaling of the in-
tervention) and possible unintended consequences, such as heat-evolved symbionts
outcompeting native symbionts (and a loss of genetic diversity of the environmental symbiont
pool), or unexpected trait trade-offs, need to be understood.

Once the intervention has been implemented in one region, efforts can be made to upscale the
approach locally and globally. Knowledge transfer and collaboration with relevant industries
may be possible. For instance, the aquaculture industry may assist in growing heat-evolved
strains at industrial scales for inoculation of millions of coral larvae that are reared for deployment
on damaged reefs. Tourism operators may be able to provide support to implement this interven-
tion on the reefs where they operate, and financial investment from other industries that rely on
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Outstanding questions
Will symbioses between coral and
experimentally evolved symbionts
persist over time and continue to
exhibit enhanced performance?

Are there trade-offs associated with
heat-evolved symbionts (e.g., nutrient
production/translocation, coral growth,
reproductive output, or disease
susceptibility)?

Should inoculation with communities
of multiple heat-evolved symbiont
species be considered, and would
these provide larger enhancements
to holobiont performance compared
with single-symbiont inoculations?

What are the nutritional and
physicochemical requirements of
vertically transmitted symbionts?
Solving this question will allow these
symbionts to be cultured and
subjected to experimental evolution.

How can the process of experimental
evolution be sped up to reduce time
to generate enhanced phenotypes/
genotypes?

What are the barriers to upscaling
symbiont cultures and which lessons
or innovations can be leveraged from
algae-based industries?

Can the uptake of heat-evolved symbi-
onts by coral stock ear-marked for reef
restoration be optimised?

Can uptake be improved by utilising
symbiont behaviours (e.g., chemotaxis),
easing the transition between culture
and symbiotic lifestyles (e.g., nutrient gra-
dients), and/or enabling host–symbiont
recognition (e.g., cell surface modifica-
tions of the symbionts)?

Could genomic prediction be used to
enable high-throughput screening of
thermal tolerance traits that are
healthy coral reefs, such as commercial fisheries, may be sought. Knowledge around this inter-
vention (and others) should also be transferred to other coral reef regions in the world, and
there are now several grant schemes that are specifically designed for such a purpose
(e.g., The Coral Research & Development Accelerator Platform).

Concluding remarks
The Caribbean summer of 2023 saw the most severe coral bleaching event to date, with temper-
ature anomalies reaching >20 Degree Heating Weeks. Extreme levels of bleaching-related
mortality occurred both in wild corals and corals that were nursery bred and subsequently
outplanted to restore damaged reefs [69]. This emphasises the notion that reef restoration with
coral stock that is not thermally enhanced may not be the best option because climate models
predict that more extreme and frequent summer heatwaves will continue to be part of our imme-
diate future. Therefore, the development of assisted evolution methods, such as the one dis-
cussed herein, to deployment-ready tools is a time-critical task. The Caribbean event has also
taught scientists and restoration practitioners working in areas with less degraded coral reefs,
such as the GBR, that we need to be prepared for the worst and explore all options. This includes
an urgent need to invest in research and development for interventions that carry high levels of
perceived risks (and high ‘pay-off’ if they are successful) and that have received less attention,
such as the translocation of corals and symbionts from warmer reef regions (e.g., from the
Coral Triangle or Red Sea to the GBR).

While we have provided evidence that heat-evolved symbionts can boost coral thermal bleaching
tolerance, the effect size of this intervention alone may not suffice to protect corals from extreme
heatwaves, such as the 2023 event mentioned above. It is more likely that multiple interventions
will need to be combined in coral reef restoration efforts, such as assisted gene flow, managed
breeding, or manipulation of coral-associated bacteria, in combination with the use of experimen-
tally evolved Symbiodiniaceae [70]. Fortunately, many methods of enhancement can be relatively
easily combined with novel coral reef restoration methods that use sexually produced coral stock
[4]. All these interventions will be critical in maximising the likelihood that coral reefs persist into the
future, but it is imperative that these occur in tandemwith significant emissions reductions (e.g., of
carbon dioxide) and science-based reef management.
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