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Abstract

The quintessential system which is used to observe and study the effects of quantum trans-

port is that of the molecular junction: a molecular bridge bonded between two macroscopic

conducting leads. Molecules in molecular junctions are subject to current-induced forces that

can break chemical bonds, induce reactions, destabilize molecular geometry, and halt the op-

eration of the junction. Additionally, novel phenomena such as telegraphic switching between

conformations and localised heating have the possibility of being exploited for device func-

tionality. We develop a nonequilibrium Green’s function based transport theory in which

atoms on the molecular bridge are allowed to move. This is achieved by utilising the in-

herent separation of timescales between slow nuclear motion and fast electronic dynamics,

allowing us to solve for the adiabatic Green’s functions along with non-adiabatic dynamical

corrections. To make the theoretical approach fully self-consistent, the same time-separation

approach is used to develop expressions for the adiabatic, dissipative, and stochastic compo-

nents of current-induced forces in terms of adiabatic Green’s functions. Using these current

induced forces, the equation of motion for the nuclear degrees of freedom is cast in the form

of a Langevin equation. This model is applied for both static and AC driving in the leads, and

incorporates the motion of the atoms in the central region along with the atoms on the leads

interface. Furthermore, we utilise a Fokker-Planck description for the classical coordinate in

order to calculate Kramers’ first-passage times and reaction rates. We observe localized heat-

ing effects and the formation of bi-stable effective potentials for the classical coordinates which

are analysed through the use of the measured noise in the current. Negative viscosities are

shown to emerge under an applied voltage bias in a variety of systems, which demonstrate

the lack of a possible steady-state for certain configurations. An applied AC driving is shown

to be capable of producing a cooling effect to the molecular bridge, increasing the stability and

longevity of the system. We assess the validity of the Langevin approach in different regimes

by applying a novel time-stepping algorithm to solve for the classical Ehrenfest dynamics of

the molecular bridge, and find that the results produced by the Langevin method are accurate

provided that the applicable regimes are not abused.
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Chapter 1

Introduction

1.1 Setting the scene for a technological revolution

An age of unending technological innovation has lulled us into a false sense of security. The

constant scaling down of electronic components since their inception has yielded a continuous

growth to our computational prowess which allows society to cope with the demands of an

increasingly data-driven world. However, we now stand on a precipice of our own construc-

tion, in which the past century of advancement in electronics converges towards its ultimate

conclusion.

Computations at the most fundamental level are performed through the manipulation of

charge states of transistors, of which there can be hundreds of millions of transistors on a

single chip. The state of a single transistor is represented as either a 1 or a 0; this corresponds

to whether or not a small applied voltage allows for current to flow across a gate within the

transistor. This forms the basis for the so-called Boolean algebra in which calculations and

operations are phrased in terms of logical statements, where a large number of transistors

operate in unison to perform a desired function. A higher density of transistors on a given

chip will thus correspond to a larger capacity for computation. In a crude sense, the goal for

technological advancement is then clear; to cram as many transistors into as small an area as

possible! The most commonly used architecture is the metal–oxide–semiconductor field-effect

transistor (MOSFET), a schematic of which is shown in Figure 1.1. A single MOSFET consists

of a silicon substrate which has been doped in regions at either end with phosphorous while

the bulk of the substrate is doped with boron. The end regions are generally referred to as

the source and drain, where a large chemical potential is applied to the source relative to

the drain. The free electrons due to the phosphorous in the source and drain flow into the

nearby surrounding holes in the substrate due to the boron. This creates an electromagnetic

energy barrier for further electron flow, prohibiting any net current to flow from the source

to the drain - the transistor is in the 0 state. In order to induce a current flow, we introduce

a gate which is separated from the substrate by an insulating oxide layer. Application of a

1
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substrate

drainsource
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Figure 1.1: Schematic of a generic MOSFET.

small voltage on the gate opens a conducting channel between the source and drain along

the surface between the insulating layer and the substrate - the transistor is now in the 1

state. Computations are performed by manipulating the gate voltages of sets of transistors in

tandem.

The size of a transistor is measured in terms of the distance between the source and the

drain. Device miniaturisation then involves decreasing this distance while maintaining ade-

quate device functionality. Undesirable short-channel effects arise as a result of the decreased

source-drain separation. These include effects such as drain induced barrier lowering, which

lowers the energy required for an electron to traverse the region from the source to the drain

and blurs the distinction between 1 and 0 states within the device. Additionally, surface scat-

tering along the oxide layer, the hot electron effect, and impact ionisation will decrease the

device efficiency and degrade its performance over time. On very small scales, we must also

directly compete with quantum mechanical effects such as quantum tunnelling in which an

electron is capable of tunnelling directly from the source to the drain with little regard for

the energy barrier dividing them. This results in a net leakage current even in the 0 state.

While manufacturers have developed ingenious methods of circumventing short-channel ef-

fects while maintaining a steady rate of miniaturisation in accordance with Moore’s law, we

are approaching a fundamental limit in which transistors are constructed on the atomic scale

and are entirely shackled by quantum laws. This then marks the end of the current era of

electronics and a grand finale for Moore’s law, and the rush is on to uncover the next great

innovation.

A candidate with a name that has permeated even the general public is that of quantum com-

puting. If the aim is to overcome quantum effects on the small scale, perhaps we can shift

our perspective so that quantum effects are exploited to our own advantage. The quantum

computer is an entirely novel architecture which does just that. Here, the bits in a classi-

cal computer are replaced by quantum bits or qubits, a superposition between two distinct
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quantum states. These qubits are subject to quantum logic gates which manipulate the state

of the qubit according to applied electromagnetic fields in the device. Calculations are then

performed via the manipulation and interaction of a large number of qubits.

Quantum computing is a stimulating concept worthy of exploration. It does, however, come

with its own plethora of difficulties to be conquered such as decoherence and quantum error

correction. The most powerful quantum computers today are still limited to less than 100

qubits; a factor of ten-thousand too small to serve as a practical replacement to the current

technology. Additionally, a quantum computer is only as useful as the algorithms we feed it.

While quantum computers do allow for specialised algorithms for tackling problems out of

reach of classical computing, the infrastructure is not yet developed enough to provide benefits

beyond niche applications. In its current state of infancy, the field of quantum computing is

ill-equipped to take the reigns moving forward. A more immediate solution is desired.

1.2 Molecular Electronics

Another possible alternative elects to tread the middle ground between evolution and revo-

lution; this is the field of molecular electronics. The concept is to replace the conventional

semiconductor architecture by single molecules which act as the active elements in integrated

circuits. The choice of molecule used is tailored to satisfy a particular purpose within the cir-

cuit by utilising its inherent structure and conducting properties. The idea presents a number

of benefits. Firstly, electronic elements are designed and fabricated on the smallest possible

scale with quantum effects already accounted for in the system. Quantum effects can then

be utilised as an additional tool at our disposal for novel device applications, rather than

something to be feared; especially since nanostructures which fall under the regime of quan-

tum mechanics often show desirable electrical, optical, and thermal properties inaccessible

to conventional classical systems [1]. Secondly, a ground-up method of device fabrication in

which device elements are synthesised in large quantities in labs would yield a monumental

decrease to costs in comparison to the expensive top-down approach of fabrication used cur-

rently. Finally, and in contrast to quantum computing, operations are still performed using

classical bits and so the knowledge of classical computing built over the last half-century need

not go to waste.

The basic building block of molecular electronics technology is the molecular junction, where

two macroscopic electrodes or leads are connected by a molecular bridge as visualised in

Figure 1.2. In experiments, the electrodes are generally composed of gold due to its inherent

inertness which aids in the consistency and reproducibility of measurements [2], as well as

its plasticity which further facilitates junction fabrication. However, silver [3, 4], platinum
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Figure 1.2: Schematic of a molecular junction. The molecular bridge (green) connects two
macroscopic leads (yellow).

[5–7], palladium [8], and variations of graphite [9, 10] have also been used experimentally

due to their favourable conducting properties. The molecular bridge is then chosen to meet

the desired function of the device. It’s been observed that carbon-based molecules often

display the required versatility and conduction properties to produce any number of novel

functions [11]. The experimental construction of molecular junctions is facilitated by a number

of techniques. Most prevalent in the literature is that of the scanning tunnelling microscope

break-junction (STMBJ) in which the fine tip of a scanning tunnelling microscope is indented

into a metal substrate, leading to the formation of chemical bonds between the substrate and

tip. The tip is subsequently retracted, forming a short atomic wire between the tip and the

substrate which each act as the source and the drain, respectively. An alternate method of

almost equal popularity is that of the mechanically-controllable break-junction (MCBJ). Here,

a metallic bridge is attached to a flexible substrate which is then slowly bent mechanically

via a piezoelectric motor. Enough applied bending breaks the metallic bridge, forming a

nanoscale gap. The molecular bridge is then generally deposited into the junction gap from

solution. The MCBJ approach has the benefit of readily being able to include a gate electrode

unlike STMBJ.

While the original concept of molecular electronics has been around since the 1950’s, the great

experimental charge was initiated by Aviram and Ratner with their theoretical description of a

molecular rectifier [12], which demonstrated that molecular electronic devices, if constructible,

could indeed mimic the operations of conventional electronic components. Since then, a raft of

devices have been proposed and realised experimentally including but not limited to molecu-

lar switches induced both by voltage [13–15] and mechanical [16–18] means, molecular diodes

[19–21], molecular field effect transistors via inclusion of an additional electrode acting as a

gate [22], thermoelectric devices [23–25], and spintronic devices, which utilise the electronic

spin as an additional degree of freedom [26–28].

Even beyond the domain of nanoelectronic devices, molecular junctions have found utility

in theoretical pursuits as they are an ideal testing ground for quantum transport effects in
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non-equilibrium systems. They enable the study of the basic mechanisms of charge transport,

yielding transport regimes otherwise inaccessible to classical systems [29–37], along with fa-

cilitating the probing of thermodynamical laws on the most fundamental scale [38, 39].

Unfortunately, if molecular electronics is to be thought of as a legitimate successor to silicon

semiconductor technology, a number of hurdles must be overcome. Molecular junctions be-

have like insulators and require a high voltage bias for device operation [40]. As a result, the

significant operational voltage bias of a few volts across the molecular length along with large

electric current densities destroy the structural integrity of the device through chemical bond

rupture, large scale molecular geometry alteration or electromigration of the leads interfacial

atoms. Furthermore, while the construction of single molecular junctions is now achieved

experimentally using various techniques, the fabrication of integrated circuits is another chal-

lenge altogether.

1.3 Current-induced forces/phenomena

1.3.1 Experimental evidence for current-induced forces

In this section, we present a brief overview of some notable experimental demonstrations of

the effects of current-induced forces in molecular junctions.

1.3.1.1 Voltage-induced bond rupture and device breakdown

We first discuss the observed experimental breakdown of molecular junctions due to an ap-

plied voltage bias over the electrodes. Junction breakdown is generally observed experimen-

tally via observation of the conductance through the device. Stepwise decreases to the con-

ductance are indicative of bond-breakages along the molecular bridge which decreases the

possible pathways of current through the system; zero measured conductance then implies

that the molecular bridge has been severed completely. Statistical analysis over an ensemble

of such systems then allows for the calculation of the average lifetime of the molecular bridge

for a variety of parameters.

This approach was applied by Tsutsui et al. [41] in which they applied the MCBJ technique

to construct molecular junctions consisting of a benzenedithiolate (BDT) molecular bridge

connecting two gold electrodes. Measurements of the conductance indicated the presence of

one or more BDT bridges in parallel in any given junction. The lifetime of a BDT bridge

was then calculated by measuring the time spent at a given quantum of conductance before
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Figure 1.3: Lifetime distributions of BDT junctions. The green lines are Gaussian fits to the
single peak profile. The peak junction lifetime τB is denoted by the arrows, which corresponds
to the lifetime of BDT junctions with a certain configuration formed at a maximum likelihood.
Reproduced with permission from Reference [41].

decaying to a lower value. Figure 1.3 is a reproduction of their results in which the distribution

of junction lifetimes is observed for varying voltages. Increasing the voltage beyond Ve = 0.6V

results in a dramatic decrease to the lifetime of the BDT bridge. Relevant theory suggests that

the lifetime is dictated both by a voltage induced lowering of the energy barrier for dissociation

which is approximately linear below 1V, and local heating of the vibrational modes along the

molecular bridge which become important beyond a certain threshold voltage [42–44]. The

authors reason that for Ve > 0.6V, local heating due to electron-phonon interactions becomes

sufficiently large to trigger thermally-activated bond dissociation within the junction. They

then use their measurements to estimate an effective temperature of the vibrations along the

molecular bridge as a function of the voltage Ve, as shown in Figure 1.4.

Similar results have been produced by Smit et al. [45] and Sabater et al. [46] for molecular

bridges consisting of Au or Pt chains again using the MCBJ technique. They observed the

voltage induced breakdown for varying chain lengths, finding that longer chains were subject

to bond rupture at smaller voltages.
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Figure 1.4: Bias dependence of Teff (circles) and τB (triangles) of BDT molecular junctions (red)
and Au single-atom contacts (blue). Reproduced with permission from Reference [41].

1.3.1.2 Probing the vibrations

While vibrations along the molecular bridge cannot be observed directly, information about

them can be garnered via measurement of the transport properties of the junction. The excita-

tion of vibrational modes manifest as tiny variations in the transport properties of the system

which become more obvious when measuring the conductance and higher derivatives of the

current with respect to the voltage. An example of such an analysis is displayed in Figure 1.5

as reproduced from Kushmerick et al. [47]. In this study, they constructed crossed-wire tunnel

junctions in which the junction separation is controllable via the Lorentz force generated by

a small DC current. Deposited within the junction was oligo(phenylene ethynylene) (OPE),

a molecular configuration which has been widely studied for possible technological appli-

cations [48–51]. Measurement of d2 I
dV2 shows prominent peaks at specific voltages indicating

a change to the transport properties of the system. Comparison with previous experiments

along with density functional theory calculations allowed the authors to associate the peaks

with the excitation of vibrational modes of specific bonds along the OPE molecule.

There exists a vast array of literature which applies this technique for both the characterisation

and identification of vibrational modes over various parameter regimes [52–61].

1.3.1.3 Configurational changes and switching

Beyond affecting basic transport properties, the excitation of vibrational modes along the

bridge can result in large-scale configurational changes to the molecular geometry. This is

exhibited in experimental observations via the apparent switching of the electric current be-

tween two or more states. An appropriate example is an experiment performed by Stipe et al.

[62] in which an STM tip was utilised to induce the reversible rotation of molecular oxygen
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Figure 1.5: Inelastic electronic tunnelling spectrum of an OPE junction. Mode assignments are
from density-functional theory calculations of the free molecule. Reproduced with permission
from Reference [47].

Figure 1.6: Tunneling current during a 0.3V pulse above an isolated O2 molecule. Rotation
is followed by dissociation (step at t ∼ 610ms) Reproduced with permission from Reference
[62].

on a platinum surface. They found that under the influence of a tunnelling current, the O2

molecules could occupy three separate energetically stable orientations. They propose that

this is a result of the excitation of the rotational vibration mode due to the inelastic tunnelling

of electrons. They additionally found that a large enough applied voltage could result in com-

plete dissociation of the O2 molecule; an example trajectory of this is found in Figure 1.6 where

the molecule dissociates after 610ms. The dissociation corresponds to the stretch mode of the

O2 which has a larger energy barrier than the rotational modes. This is an example of the

large-scale configurational changes which can occur under the influence of current-induced

forces. However, the effects are not limited to the collective modes of a given molecule.

Auwärter et al. [14] considered a free-base tetraphenyl-porphyrin molecule which is anchored

to a silver surface under the influence of an STM tip. Rather than inducing bulk vibrations in

the molecular configuration, they were able manipulate the configuration of individual pro-
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(a) (b)

(c)

Figure 1.7: Model highlighting the position of the hydrogen pair (yellow) in configuration (a)
Hα and (b) Hκ. (c) Current versus time trace recorded at -1.9 V. A switching between two
current levels representing the high (h) and low (l) conductance states is clearly discernible.
Reproduced with permission from Reference [14].

tons, thus producing an atomic switch on the smallest possible scale. As shown in Figure 1.7a

and 1.7b, the central pair of protons can exist in two possible states which they dub the Hα and

Hκ configurations. Careful placement of the STM tip and the application of a voltage over the

junction produces an inelastic tunnelling current which yields the required energy to change

between the configurations. This then results in a bi-stable switching in the current trajectory

as observed in Figure 1.7c. Conductance switching in molecular junctions is ubiquitous in

experimental literature for a range of different systems and molecular configurations [63–71].

1.3.1.4 Current-induced chemical reactions

An intimate understanding of the effects of the current-induced forces allows for molecular

engineering, in which complex chemical reactions are carried out in molecular junctions solely

due to the controlled dissociation of specific bonds on the molecular bridge. With more de-

velopment, this may allow for the precise construction of molecular-scale devices to suit a

specific purpose. Additionally, the research can be applied to better understand problems in

surface science. A pioneering experiment by Lauhon and Ho [72] saw a multi-step unimolec-

ular reaction performed entirely using an STM tip. The main reaction discussed was a two

step reaction from acetylene (HCCH) to produce molecular ethynyl (CCH) and subsequently,
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Figure 1.8: Schematic illustration of the STM tip-induced synthesis steps of a biphenyl
molecule. (a),(b) Electron-induced selective abstraction of iodine from iodobenzene. (c) Re-
moval of the iodine atom to a terrace site by lateral manipulation. (d) Bringing together two
phenyls by lateral manipulation. (e) Electron induced chemical association of the phenyl cou-
ple to biphenyl. (f) Pulling the synthesized molecule by its front end with the STM tip to
confirm the association. Reproduced with permission from Reference [73].

dicarbon (CC). This was achieved by the application of precise voltages to excite vibrational

modes in specific bonds:

HCCH −→︸︷︷︸
V=2.8eV

CCH −→︸︷︷︸
V=2.1eV

CC (1.1)

Hla et al. [73] went a step further by synthesizing biphenyl from iodobenzene adsorbed on a

Cu(111) substrate. This was achieved by first applying a tunnelling current to extract iodine

from the iodobenzene, leaving a single phenyl molecule. Then, two phenyl molecules are

brought into contact via lateral manipulation using the STM tip. The chemical association of

the two phenyl molecules into biphenyl was then induced by another tunnelling current which

rotated the molecules such that the appropriate orbitals were aligned to facilitate bonding. A

schematic of the procedure is reproduced in Figure 1.8.

Finally, a more recent study by Aragonés et al. [74] used the applied external field present

in an STMBJ to accelerate bond formation processes in a Diels–Alder reaction; demonstrating

the importance of not only the current-induced forces, but also the electric field produced by

the non-equilibrium leads.
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1.3.2 Theoretical consideration of the current-induced Forces

1.3.2.1 Fully-Quantum methods

We find it appropriate to begin the discussion on the theoretical treatment of current-induced

forces by considering methods which accurately account for the quantum nature of both the

electronic environment and nuclei along the bridge; the goal being to minimise the number

of assumptions being made about the system. Unfortunately, assumptions are a necessary

requirement for the problem to be soluble and a fully-quantum treatment of the entire sys-

tem often requires assumptions which are directly at odds with the experimentally observed

phenomena which we seek to reproduce theoretically.

A class of numerically exact approaches relies on the calculation of the wavefunction describ-

ing a closed system via the propagation of the time-dependent Schrodinger equation:

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (1.2)

in which the system of interest is coupled to a bath represented by a finite number of bath

modes. A notable propagation technique which has seen success is the multilayer multicon-

figuration time-dependent Hartree approach (ML-MCTDH) [75–81]. Here, the wavefunction

is subject to a recursive expansion into a hierarchy of single-particle functions which is trun-

cated at a chosen layer determined by convergence testing for the given system. Express-

ing the base layer in terms of time-independent basis functions then allows each layer to be

evolved according to its own equation of motion. While accounting for all desired quantum

effects, such methods suffer from a number of drawbacks. Firstly, the baths must be finite

since the system is closed. Many bath modes are required for convergence of the method

at the cost of computational efficiency. In addition, numerical simulations are limited by

electronic time-scales. Experimentally observed phenomena such as bond-rupture and large

scale configuration changes on the molecular bridge instead occur over much longer nuclear

time-scales which are inaccessible to the method due to convergence limitations [75].

In the context of our research, it is more appropriate to consider open quantum systems in

which the molecular bridge is attached to infinite reservoirs of electrons which constitute

the environment. The Hamiltonian for the bridge can be decomposed into electronic and

vibrational components along with the coupling between the two:

Ĥsys = Ĥel + Ĥvib + Ĥel−vib, (1.3)

The electronic-vibrational coupling Ĥel−vib will in general have a complicated dependence on

the vibrational coordinate itself. To simplify the problem and avoid the presence of two-body
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and higher interaction terms, it’s generally assumed that the amplitude of vibrational motion

is small. The interaction is then expanded to first order in the deviations of nuclei from their

equilibrium configuration [82], yielding

Ĥel−vib = λâ† â(b̂ + b̂†), (1.4)

where λ is the interaction strength as computed via electronic structure calculations. For

ease of explanation, in the equations presented we explicitly consider the case of a single

electronic level and vibrational mode on the molecular bridge in this section; this is known

as the Holstein model. We use â† to denote the fermionic creation operator corresponding to

the electronic level on the bridge, while b̂† is the bosonic creation operator for a vibrational

mode, and likewise for the annihilation operators. The vibrational modes contained in Ĥvib

are commonly assumed to be harmonic [77, 78, 83–93] or limited to other generic vibrational

potentials [94, 95]; the harmonic case is given by

Ĥvib = h̄ω(b̂†b̂ +
1
2
). (1.5)

These assumptions emphasise the difficulties with a quantum treatment of the vibrations.

Many-body interactions in the Hamiltonian present theoretical troubles which are circum-

vented by assuming that the vibrations are small and harmonic. Unfortunately, this is directly

at odds with the experimental phenomena which we seek to reproduce with the model in

which the current-induced forces may produce large-scale changes to the molecular geometry.

From this Hamiltonian, the system can be solved for via numerically exact or perturbative ap-

proaches. The hierarchical quantum master equation (HQME) approach is a numerically exact

method [85, 95–102]. The system is described in terms of a density matrix which contains in-

formation on the coupling of the system to an environment. In a similar vein as ML-MCTDH,

the full density matrix is decomposed into a hierarchy of auxiliary density matrices which are

each calculated according to their own equations of motion and convergence tests again dic-

tate where to truncate the hierarchy. While HQME provides a numerically exact scheme for

simulating the dynamics of a system interacting with an environment over short time-scales,

it is generally limited to the aforementioned simplistic descriptions of the molecular bridge.

However, recent developments to the theory which utilise a discrete variable representation

of vibrational modes have proved successful in moving beyond the harmonic approximation

[95, 101, 102].

Beyond numerically exact methods, the introduction of a small parameter is often utilised

to facilitate a perturbative treatment of the problem. This can lead to greater computational

efficiency and allows for the consideration of larger and more complex systems. One such per-

turbative scheme is the self-consistent Born approximation, in which the interaction strength

λ is assumed small relative to Γ; Γ being the level broadening due to the interaction with the
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leads while 1/Γ is associated with the characteristic tunnelling time of an electron through

the bridge. From here, the problem is then treated within an appropriate framework such

as non-equilibrium Green’s functions [77, 87, 103–108]. The converse case where λ � Γ can

instead be treated using master equations [85, 90, 109–117].

1.3.2.2 Quasi-Classical methods

A fully quantum treatment of the system is not conducive to the observation of experimental

phenomena such as current-induced configurational changes and bond rupture. A semi-

classical description for the nuclear dynamics allows for the description of such phenomena

while greatly reducing the computational load since the vibrations can now be evolved in

time according to classical equations of motion. This comes at the cost of neglecting quantum

effects such as quantum tunnelling of the nuclei, coherences, and the quantized nature of the

vibrational modes. However, this can often be justified depending on the parameter regime

in which the system is operating. Quantum tunnelling of the nuclei generally only becomes

relevant at very low temperatures where thermalization effects are decreased [118, 119], while

coherences quickly dissipate over the long time-scales of nuclear motion [120]. The quantized

nature of vibrational modes depends on the molecule considered; larger collective vibrations

can be reasonably approximated as a continuum of vibrational states.

The consideration of classical vibrations allows for much manoeuvrability in the form of the

Hamiltonian. The components of the Holstein model described in the previous section now

become

h̄ω(b̂†b̂ +
1
2
)→ 1

2
mv2 + U(x), (1.6)

h0 â† â + λâ† â (b̂ + b̂†)︸ ︷︷ ︸
x̂

→ V(x)â† â, (1.7)

where we have introduced the classical position and velocity, x and v. The advantages are

clear, we are now able to consider arbitrary vibrational potentials U(x) as well as arbitrary

functional dependence of the interaction V(x) without fear of having to consider many-body

interactions, since the vibrational coordinates have been demoted from operators to variables.

This provides a natural and intuitive means of exploring large-scale configurational changes

within the system which are otherwise difficult to model on a quantum footing. The remain-

ing task is to then appropriately model the forces acting on the classical coordinates such that

they can be evolved according to

F = ma. (1.8)

This is achieved through a variety of methods including surface-hopping schemes [121–131],



14 Introduction

Ehrenfest dynamics [100, 132–140], and Langevin dynamics [141–152]. The electronic compo-

nents of the Hamiltonian can be expressed in the form

Ĥel + Ĥel−vib = Vc(x)â† â−Vu(x)(â† â− 1), (1.9)

where Vc is the charged potential and Vu is the uncharged potential. When the electronic

level on the molecular bridge is occupied and â† â = 1, the classical coordinate vibrates in the

charged potential and when it is unoccupied, â† â = 0 and it oscillates in the uncharged po-

tential. Surface-hopping schemes consider unperturbed classical vibrations in these potentials

where at any given time, the potential may change from uncharged to charged (or vice versa)

as determined by hopping rates which are usually computed in an ad-hoc manner to satisfy

thermodynamic equilibrium conditions. Such schemes have found success in describing the

vibrational relaxation of molecules near metal surfaces and with some extensions, has been

applied to non-equilibrium transport [121]. However, the applicable regimes of the method

are not always clear a priori since it lacks the rigorous theoretical foundation of other methods

[153].

In contrast, Ehrenfest dynamics opts to only consider the average occupation at any given

time as determined by the nuclear geometry. The average occupation of the electronic level

〈a†a〉 varies continuously as a function of the classical vibrations, which then generates the

time-dependent vibrational potential. Treating the interaction with the electronic environment

on an average level in this way neglects the microscopic detail in the electronic density and

does not account for the electron-nuclear correlations required to accurately describe effects

such as joule heating [133, 134, 154–156]. However, extensions beyond Ehrenfest dynamics

which account for electron-nuclear correlations via a perturbative expansion in the nuclear

fluctuations about the mean trajectory have alleviated these issues [155, 156]. We will discuss

the Ehrenfest approach in more detail in Section 7.

An approach which does accurately describe heating effects is the Langevin approach. Since

Langevin dynamics is the primary focus of this study, we review the approach in significant

detail in the following sections.

1.4 The Langevin equation

The Langevin equation was first applied to the study of Brownian motion. Here, we have a

large particle such as a grain of pollen floating on the surface of water. The pollen can be

observed to undergo rapid directional changes and unpredictable motion as it interacts with

the constituent water molecules in the fluid. Treating this system on an exact footing would

entail one to solve the coupled equations of motion for each of the many (∼ 1023) particles; an
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unachievable and unnecessary goal, especially considering that we only desire a description of

the motion of the single of grain of pollen. We instead opt to search for a reduced description

of the system in which the interaction of the grain of pollen with the surrounding environment

is treated on a phenomenological level.

The dynamics of the pollen is assumed to be governed chiefly by a velocity-proportional vis-

cosity force. This is justified by the realisation that for some positive velocity v, the pollen

will on average experience more collisions from in front than from behind, in which case the

velocity at the next instant of time depends only on the current velocity and not on previ-

ous values. However, this implies that the velocity of the pollen should decay to zero after

some time which contradicts our observations and intuition. This is because we are still not

accounting for the random thermal vibrations within the fluid which are constantly buffeting

our Brownian particle. These are accounted for by an additional stochastic force δ f (t) which

will act to re-energize the particle such that we observe a non-zero steady state temperature.

The equation of motion now becomes

m
dv
dt

= −ξv + δ f (t). (1.10)

The stochastic force is quantified according to its moments. By invoking the central-limit the-

orem, it is often a reasonable assumption to propose δ f (t) to be a Gaussian process, meaning

it is defined entirely by its first two moments. Thus, we assume that

〈δ f (t)〉 = 0, 〈δ f (t)δ f (t′)〉 = Dδ(t− t′), (1.11)

where 〈〉 represents an average over many samples of the stochastic force. The zero mean can

be justified by the realization that any directionality component should be appropriately cap-

tured by the frictional force, leaving only the homogeneous thermal vibrations to the stochastic

force. The second moment describes the strength of the stochastic force and its correlations

at different times. In accordance with the original description of Brownian motion, we have

assumed that the stochastic force is uncorrelated at different times as described by δ(t− t′).

This amounts to assuming that the environment relaxes instantaneously with respect to the

motion of the Brownian particle such that at any given time step, the environment has no

memory of previous times.

Naturally, one would expect a relationship between the viscosity coefficient ξ and the diffu-

sion coefficient D, since each emerge due to interactions with the same surrounding fluid.

Additionally, they both act to entirely determine the dynamics of our Brownian particle and

its steady-state temperature. This relationship is the aptly named fluctuation-dissipation the-

orem.
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1.4.1 Fluctuation-Dissipation theorem

We aim to find a relationship between ξ and D along with the steady-state temperature. Let’s

begin with our Langevin equation as defined in (1.10) and first find an explicit expression for

v(t). Using the conventional approach for a first-order differential equation, we find

v(t) = e−
ξ
m tv(0) +

1
m

t∫
0

dt′e−
ξ
m (t−t′)δ f (t′). (1.12)

In the hopes of relating v(t) to the kinetic energy, we now square the above equation to obtain

v(t)2 = e−
−2ξ

m tv(0)2 +
2
m

e−
ξ
m tv(0)

t∫
0

dt′e−
ξ
m (t−t′)δ f (t′) (1.13)

+
1

m2

t∫
0

dt′dt′′e−
ξ
m (t−t′)e−

ξ
m (t−t′′)δ f (t′)δ f (t′′). (1.14)

Apply an average over many iterations of the stochastic force and leverage (1.11) to obtain

〈
v(t)2〉 = e−

−2ξ
m tv(0)2 +

1
m2

t∫
0

dt′dt′′e−
ξ
m (t−t′)e−

ξ
m (t−t′′) 〈δ f (t′)δ f (t′′)

〉
(1.15)

= e−
−2ξ

m tv(0)2 +
D
m2

t∫
0

dt′dt′′e−
ξ
m (t−t′)e−

ξ
m (t−t′′)δ(t′ − t′′) (1.16)

= e−
−2ξ

m tv(0)2 +
D
m2

t∫
0

dt′e−
2ξ
m (t−t′) (1.17)

= e−
−2ξ

m tv(0)2 +
D

2mξ

(
1− e−

2ξ
m t
)

. (1.18)

In the long time limit as the system approaches equilibrium, the exponentials will disappear

and we are left with

〈v2〉 = D
2mξ

. (1.19)

According to the equipartition theorem, the temperature of our Brownian particle must satisfy

1
2

T =
m〈v2〉

2
. (1.20)

Finally, substitution of (1.19) yields

T =
D
2ξ

. (1.21)

Equation (1.21) is the fluctuation-dissipation relation, which defines the equilibrium tempera-

ture of a Brownian particle according to the viscosity coefficient ξ and the diffusion coefficient

D. It provides the delicate balance between excitational and dissipative forces. It must be
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Figure 1.9: (a) Langevin dynamics in its original conception, applied to a grain of pollen
undergoing forces from the surrounding fluid. (b) The application of Langevin dynamics
in molecular junctions, where the quantum electronic environment induces vibrations in the
nuclear degrees of freedom.

noted that this derivation assumes the Langevin coefficients to be constant. Our model allows

for multiplicative noise, meaning the Langevin coefficients are dependent on the classical

Brownian coordinate. In this regime, an explicit derivation of the fluctuation-dissipation rela-

tion is difficult to find. We do, however, find it convenient to define an effective temperature of

the classical vibrations in analogy to the fluctuation-dissipation relation derived above.

1.4.2 Application to molecular electronics

The Langevin approach to modelling Brownian motion proved to be a great success, repro-

ducing predictions obtained by Einstein and Smoluchowski via a Fokker-Planck equation.

However, the approach is not limited to the study of particle diffusion or, in fact, the realms of

physics whatsoever. Such is the generality of the method that the Brownian particle need not

be a particle at all, but can describe some collective property of a system under the influence

of approximately stochastic effects. Indeed, the Langevin equation has found applications in

chemistry, biology and even finance.

In terms of the description of molecular junctions, the Brownian particle models the motion

of a classical degree of freedom interacting with a quantum electronic environment as an elec-

tric current flows through the junction. A visualisation of the transition from conventional

Brownian motion to Langevin dynamics in molecular junctions is presented in Figure 1.9. The

choice of classical degree of freedom is dependent on the system under consideration; an en-

semble of Langevin equations may be used to model the motion of the 3N degrees of freedom

of the N nuclei present, or the motion could rather be considered collectively as a large-scale

stretching or rotation of a molecular configuration. The choice is generally informed by the

calculation of vibrational modes corresponding to the molecular bridge considered.
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1.4.3 Langevin equation assumptions

1.4.3.1 Memory effects

The Langevin approach is reliant on the inherent time-scale separation between the motion of

the Brownian particle and the surrounding environment. If we were to consider exactly the

motion of each particle in the environment according to the appropriate coupled equations of

motion, then the evolution of the system would be entirely Markovian; the state of the system

at the next instant of time would depend only on the current state of the system, and not on

earlier times. This is because Newton’s laws themselves are Markovian. When we choose to

eliminate the individuality of the particles in the fluid and consider them collectively as an

environment acting on our Brownian particle, this property of Markovianity is lost. However,

equation (1.10) itself is Markovian. Clearly then, the description as it stands is incomplete.

A more accurate description may be obtained via a generalised Langevin equation, such as:

m
dv
dt

= −
∫ t

0
dt′Z(t− t′)v(t′) + δ f (t). (1.22)

Here, Z(t− t′) replaces our usual viscosity coefficient. The frictional force then not only de-

pends on the current velocity of the Brownian particle, but also the velocity at previous times.

In such a case, the environment is not required to equilibrate instantaneously with respect to

the motion of the Brownian particle. Rather, the Brownian particle is capable of influencing

a flow in the environmental degrees of freedom which can affect the forces at a later time.

Generalised Langevin equations prove especially useful in the modelling of molecular junc-

tions when one wants to also consider the nuclear vibrations in the baths themselves [157–

160]. However, solving for the generalised Langevin coefficients in a self-consistent manner is

computationally costly and the Markovian description is usually adequate.

Memory in the environment will also have an effect on the correlations in the stochastic

force presented in (1.11). Our assumption of delta-correlation was again predicated on the

environment equilibrating instantaneously. This is the so-called white-noise approximation.

The separation of time-scales implied in the usage of a Langevin description is usually used as

justification for the white-noise approximation. We analyse the validity of this approximation

in molecular junctions in Section 7.
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1.4.3.2 Stochastic force as a Gaussian process

Assuming that the stochastic force is a Gaussian process enables us to entirely quantify it

in terms of its first two moments shown in (1.11). Over the time-scales of the motion of the

Brownian particle it will experience many random forces due to the surrounding environment;

then over any given time-step, the stochastic force acting on the particle will be the mean of

the individual random forces from the environment over that time-step. The central-limit

theorem states that the distribution of the mean of random samples from a distribution will

approach a Gaussian in the limit of many large samples [161]. As a result, the stochastic force

δ f which acts as the mean of the random forces experienced over a time-step, must approach

a Gaussian process in the limit of a large time-scale separation.

This property is also demonstrated in the following section in a more rigorous manner, in

which the stochastic force is shown to become Gaussian in the classical limit of vibrations.

1.4.4 Quantum mechanically motivated derivation of the Langevin Equation

Our intuition which guided us to a Langevin description of a classical Brownian particle im-

mersed in a fluid becomes somewhat obfuscated when we delve into the quantum regime

present inside molecular junctions in which forces due to the environment arise from inter-

actions with tunnelling electrons. It is not immediately clear that the approach is applicable

in the case where the environment is quantum in nature. Fortunately, the path-integral for-

mulation of quantum mechanics allows us to derive a Langevin description for a vibrational

coordinate in the classical limit, starting from first principles. In this section, we illustrate the

main conceptual steps of the derivation as guided by Reference [162]. We will not cover the

derivation in any detail; rather, we only hope to get a sense of the procedure. The approach

has been applied by a number of authors [157, 163–167].

Let’s consider a quantum system with a nuclear degree of freedom interacting with an elec-

tronic bath. The reduced density matrix for the nuclear vibrations is found by taking a trace

over the bath states of the full density matrix, TrB {ρ̂}. An arbitrary element in the coordinate

representation is then given by

ρvib(x2, y2) =
∫

dx1

∫
dy1K(x2, y2; x1, y1)ρvib(x1, y1). (1.23)

Here, K is the nuclear propagation kernel defined as

K(x2, y2; x1, y1) =
∫ (x2,y2)

(x1,y1)
D(x, y)ei(S(x)−S(y))F (x, y), (1.24)
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Figure 1.10: Nuclear coordinates on time-ordered, x(t), and anti-time-ordered, y(t), branches
of the Keldysh contour. Reproduced with permission from Reference [162].

where S(x) is the classical action associated with the path x and F is the influence functional

which describes the influence of the bath on the time evolution of the vibrational density

matrix. We use x to denote the trajectory for the time-ordered segment of the Keldysh contour,

while y is the trajectory for the anti time-ordered segment, and
∫
D(x, y) is the integral over

paths for both x and y. The influence functional is found to be

F (x, y) = 〈UC(τ
′
0, τ0; t)〉B, (1.25)

where UC(τ
′
0, τ0; t) denotes a time-evolution from τ0 (t0 on the top part of the contour) for-

wards in time t, then backwards to τ′0 (t0 on the bottom part of the contour). Since we have

traced over the bath degrees of freedom, the time evolution of the system is now non-unitary

and the evolution along the top and bottom parts of the contour will deviate from each other.

This is shown diagrammatically in Figure 1.10. We introduce the Wigner coordinates for the

position as

Q =
x + y

2
, ξ = x− y, (1.26)

where Q and ξ are the average and difference paths of the nuclear degree of freedom, respec-

tively. The average path corresponds to the diagonal elements of the density matrix. We can

also interpret these coordinates in terms of classical and quantum contributions, where the

off-diagonals of the density matrix correspond to deviations away from the classical path. To

see this, let’s consider the nuclear propagation kernel as per (1.24) in the absence of a cou-

pling to the bath, meaning F = 1. Taking the classical limit corresponds to assuming that

deviations away from the classical trajectory, as described by ξ, are small. Let’s consider the
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classical action terms in the exponent; taking a linear expansion in ξ results in

S(x)− S(y) = S[Q +
ξ

2
]− S[Q− ξ

2
] (1.27)

≈ −
∫ t

t0

dt′
(
mQ̈(t′) + V ′(Q(t′))

)
ξ(t′), (1.28)

where we have expressed S as a time integral over the Lagrangian and used a functional Taylor

series to expand each to the first order in ξ. The reduced density matrix, now expressed in

terms of the Wigner coordinates, is then given by

ρvib(Q2, ξ2) =
∫

dQ1

∫
dξ1ρvib(x1, y1)

∫ Q2

Q1

DQ
∫ ξ2

ξ1

Dξe−i
∫ t

t0
dt′(mQ̈(t′)+V′(Q(t′)))ξ(t′). (1.29)

We can define a functional Dirac-delta function according to

δ(G(t1)) =
∫
DΣei

∫
dt1Σ(t1)G(t1). (1.30)

The functional integral over ξ in (1.29) can then be expressed as δ(mQ̈(t′) + V ′(Q(t′))), which

dictates that the only trajectory which has a non-zero contribution to ρvib is the one that

satisfies

mQ̈(t′) = −V ′(Q(t′)). (1.31)

In the absence any influence from the bath, our average coordinate Q of the system can be

interpreted to be undergoing classical motion according to Newton’s laws. Now, if we account

for the interaction with the bath such that F 6= 1, instead of producing a functional Dirac-

delta function we will instead find a Gaussian with a width characteristic of the bath and

interactions considered. To solve for a classical equation of motion in a similar vein as above

while including effects due to the bath, we require the influence functional to be of the form

F = eiφ (1.32)

where φ is the influence phase. With significant work and again taking expansions to first

order in ξ, the influence functional is found as

F = exp
{
−i
∫ t

0
dt1ξ(t1)TrB

{
∂QH I

el(Q(t1))ρB(t1)
}
− 1

2

∫ t

0
dt1

∫ t

0
dt2ξ(t1)Π(t1, t2)ξ(t2)

}
,

(1.33)

where

Π(t1, t2) = TrB

([
∂QH I

el(Q(t1)), ∂QH I
el(Q(t2))

]
+

ρB(0)
)

, (1.34)

and H I
el denotes the electronic Hamiltonian in the interaction picture. Since we now have F

in the form given by (1.32), it may seem that the problem just requires a straight forward

application of the functional Dirac-delta function. However, if we recall (1.30), we require the

exponential to be first order in our integration variable ξ. Clearly, the second term in (1.33)
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is quadratic in ξ. To define an effective equation of motion for the system we would like the

influence functional to be expressed in the form

F = ei
∫ t

0 dt1ξ(t1)χ(Q(t1)), (1.35)

where χ is some place-holder function. This would allow us to apply (1.30), meaning that the

only trajectory which contributes must satisfy

mQ̈(t1) = −∂QV(Q(t1)) + χ(Q(t1)). (1.36)

This is the classical equation of motion we desire. Thus, we must see if we can find a way to

re-express the last quadratic term in ξ instead in a form linear in ξ:

κ = −1
2

∫ t

0
dt1

∫ t

0
dt2ξ(t1)Π(t1, t2)ξ(t2) = i

∫ t

0
dt1ξ(t1)η(t1). (1.37)

As it turns out, there is no such function η that satisfies this while also being independent of

ξ. In other words, there is no way for us to obtain a deterministic effective equation of motion

for Q while accounting for the influence of the bath. However, we can instead consider the

possibility that eκ is the average of some stochastic term. Specifically, we can interpret it as

the characteristic function of a probabilistic process describing a random variable η:

eκ = 〈ei
∫ t

0 dt1ξ(t1)η(t1)〉, (1.38)

where 〈〉 denotes a statistical average over η. Thus, the unwieldy quadratic term becomes

e−
1
2

∫ t
0 dt1

∫ t
0 dt2ξ(t1)Π(t1,t2)ξ(t2) = 〈ei

∫ t
0 dt1ξ(t1)η(t1)〉, (1.39)

where η becomes a Gaussian stochastic variable quantified according to

〈η(t)〉 = 0, 〈η(t1)η(t2)〉 = Π(t1, t2). (1.40)

This is formally known as the Hubbard-Stratonovich transformation, which takes a determin-

istic non-local exponent and transforms it to one involving local stochastic terms that must be

averaged over a distribution. The Hubbard-Stratonovich transformation maps the true propa-

gator to the average of a set of stochastic propagations. By averaging over the trajectories these

propagators generate, one is able to obtain the reduced density matrix. We now observe that

(1.39) is linear in ξ as desired. This allows us to introduce a functional Dirac-delta function

which enforces Q to satisfy the stochastic equation of motion,

mQ̈(t1) = −∂QV(Q(t1))− 〈∂QH I
el(Q(t1))〉+ η(t1). (1.41)

This can then be transformed into a Langevin equation by applying a time-scale separation in
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the system, which allows for the second term on the right-hand side to be decomposed into

an adiabatic force and a frictional force, while the autocorrelations in the stochastic force can

be assumed to be delta-correlated.

So, we have seen that a classical equation of motion for a vibrational degree of freedom can

be found in the classical limit; the caveat being that the resultant equation must contain a

stochastic term. This is then manipulated into the form of a Langevin equation. The allure of

the described method is the rigorous application of the classical limit which leads naturally to

a classical equation of motion. Our method, described in section 2, instead applies an ad-hoc

approach in which an equation for the quantum force operator is mapped onto a classical

equation.

1.5 Outline

The purpose of this study is to further elucidate the effects of current-induced forces in

molecular junctions from a theoretical standpoint to gain a better understanding of stabil-

ity/instability, heating effects, and novel device applications.

We begin in Chapter 2 by deriving the framework of our model: the theory describing the

evolution of the non-equilibrium Green’s functions. From this scaffolding, we then in Chap-

ter 3 derive a Langevin description for an arbitrary classical coordinate. This involves the

assumption of a time-scale separation between slow classical and fast electronic degrees of

freedom, in which the Green’s functions are decomposed into adiabatic components and non-

adiabatic corrections. This additionally allows us to calculate the electric current through the

system in terms of an adiabatic component and a first-order non-adiabatic correction due to

the non-zero velocity of the classical coordinate.

In Chapter 4, we pay particular attention to the effects of nuclear motion on the leads interface.

We observe the emergence of negative viscosity coefficients at high voltages as a direct result

of this motion. Additionally, we quantify parameter regimes in which the potential for the

classical degree of freedom becomes bistable. Calculation of the Fano factor shows that the

noise becomes highly non-Poissonian in the bistable regime, producing Fano factors of over

400.

Chapter 5 sees the addition of a time-dependent sinusoidal driving to the leads energy levels

with the goal being to utilise the driving to actively cool the junction and prolong the device

stability. The effective temperature of the classical coordinate is calculated in analogy with the

fluctuation-dissipation theorem, where the viscosity and diffusion coefficients are calculated

self-consistently with the time-dependent driving. We observe that a slow AC driving can
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have the effect of cooling the vibrations in the system while maintaining the same average

current through the device.

Chapter 6 instead focuses on chemical reaction rates in molecular junctions, where the energy

required for a reaction to occur is provided by the current-induced forces due to tunnelling

electrons. A Fokker-Planck description allows us to derive expressions for the mean first-

passage time of a reaction coordinate, describing the average amount of time passed before the

reaction occurs. We find that the reaction rate is determined by the size of the energy barrier

as determined by electronic occupations within the system, along with the inhomogeneous

effective temperature over the reaction potential.

Finally, in Chapter 7 we utilise Ehrenfest dynamics via a novel algorithm as a means of bench-

marking our time-scale separation and in doing so, once again observe the emergence of neg-

ative viscosities. Furthermore, the approach allows us to observe and quantify the coloured

noise in the stochastic force, from which we can assess the validity of the white-noise approx-

imation. We find that the white-noise approximation is valid when there is a clear time-scale

separation within the system.

From this point forward we will be fluid with our use of operator notation, applying the ˆ

notation to denote an operator only when it is not contextually clear already. We also use

atomic units for all presented results and calculations which allows us to set h̄ = e = me = 1,

where e is the charge of an electron and me is the electron mass.



Chapter 2

Application of non-equilibrium

Green’s functions to quantum transport

In this chapter, we introduce the theoretical backbone required for our model. The content

presented in this section is well established in the literature. After discussing in detail the

tunnelling junction model, we introduce the formalism of non-equilibrium Green’s functions

for quantum transport in Section 2.3 as aided by Reference [168], the goal being to derive

explicit equations of motion for the Green’s functions. We then apply the formalism to the

tunnelling junction in Section 2.4.

2.1 The tunnelling junction model

We will now introduce and justify the tunnelling junction model. Let’s begin by considering a

completely general Hamiltonian for the system shown in Figure 1.2. The Hamiltonian can be

split into the contributions from nuclei and electrons as well as the inter-particle interactions

according to

H = He + HN + HeN + HNN + Hee. (2.1)

Here, He and HN correspond to the kinetic energies of electrons and nuclei, respectively, while

HeN , HNN and Hee are two-body interaction terms between each particle. Let’s first focus on

the nuclear terms; we have [169]

HN = ∑
i

P̂2
i

2Mi
, HNN = ∑

i<j

ZiZj

|X̂i − X̂j|
, (2.2)

where P̂i and X̂i are the momentum and position operators for the ith nuclei, while Mi is the

mass and Zi is the atomic number. However, the modelling of a many-body open system is

generally insoluble when considering the above nuclear components exactly. We opt to treat

the nuclei as behaving according to some classical degree of freedom, demoting the P̂ and X̂

25
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operators to variables. We can then encapsulate the behaviour of the nuclei according to a

chosen classical Hamiltonian:

Hcl = ∑
i

P2
i

2Mi
+ Ucl(X), (2.3)

where the sum over i is a sum over the classical degrees of freedom and X is the vector of

classical coordinates. Note that Ucl will necessarily contain the contribution from HNN as well

as contributions from HeN due to electron-nuclear attraction, and can be thought of as the

classical bonding potential for the nuclei.

The electronic component of the Hamiltonian is treated on a quantum-mechanical footing.

However, we choose to neglect the two-body electron-electron interactions in the system.

While it has been shown theoretically that the inclusion of electron-electron interactions can

have a large effect on the conductance profile of the system as well as allowing for interest-

ing phenomena such as negative differential resistance and Kondo effect [84, 170–172], we do

not include them in our model. We do, however, note that electron-electron interactions have

been shown to affect the friction tensor which is a major object of this study [149]. While the

exact two-body electron-electron interactions are not included, the electron-electron repulsion

is included implicitly into the model via the elements of the electronic Hamiltonian which are

input for a given system. The electronic Hamiltonian is given by

Hel = He + HeN + Hee︸ ︷︷ ︸
HeN,ee

, (2.4)

where we have grouped the electron-nuclear attraction and electron-electron repulsion into

HeN,ee. In terms of creation and annihilation operators in the position basis, we then re-express

this as

Hel = He + HeN,ee =
∫

dxa†(x)
p̂2

2m
a(x) +

∫
dxa†(x)U(x̂)a(x), (2.5)

where p̂ and x̂ are the operators for the electronic momentum and position, respectively, while

U(x̂) represents the coulomb potential experienced by an electron due to the surrounding

nuclei and electrons. Using p̂ = −ih̄ d
dx and integrating by parts, we find

Hel =
h̄2

2m

∫
dx

d
dx

a†(x)
d

dx
a(x) +

∫
dxa†(x)U(x̂)a(x). (2.6)

It is mathematically convenient for us to instead consider a discrete position basis such that for

an arbitrary integrand f (x), the integrals become summations over a grid of position points

according to ∫
dx f (x) = lim

∆x→0
∆x ∑

n
fn, (2.7)

while the derivatives become

d
dx

fn = lim
∆x→0

fn+1 − fn−1

2∆x
. (2.8)
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𝑒− 𝑒−

𝑒− 𝑒−

Figure 2.1: The system has been partitioned into a central region and left/right leads, where
we choose to focus on only the dynamics of the central region. Electron tunnelling between
the leads and central region is facilitated by non-local terms in (2.11). The leads are now
described by a continuum of electronic states as quantified in terms of an average electronic
temperature and chemical potential.

Our electronic Hamiltonian in the discrete basis is then given by

Hel = lim
∆x→0

h̄2

8m∆x ∑
n
(a†

n+1 − a†
n−1)(an+1 − an−1) + ∆x ∑

n
a†

nU(x̂)an (2.9)

= lim
∆x→0

h̄2

8m∆x

(
∑
n

2a†
nan −∑

n
(a†

n−1an+1 + h.c.)
)
+ ∆x ∑

n
a†

nU(x̂)an. (2.10)

Thus, we observe that the kinetic energy component of the electronic Hamiltonian contributes

both local and non-local terms. Let’s then express the electronic Hamiltonian in terms of

separate local and non-local components in accordance with

Hel = ∑
n

εna†
nan + ∑

ij

(
tija†

i aj + h.c.
)

, (2.11)

where we have grouped any scaling constants into ε and t. We can now begin to construct

the tunnelling junction. Our observations concern only the dynamics of the molecular bridge

which spans the length between the macroscopic leads. As such, we choose to partition the

system into three components; the left and right leads, and the central region (sometimes

referred to as the scattering region). This partition is demonstrated in Figure 2.1. In doing

so, our electronic Hamiltonian in (2.11) is separated into components describing the leads and

the central region, along with a term which describes the coupling between them:

Hel = HM + HL + HR + HML + HMR. (2.12)

HM is the Hamiltonian for the molecular bridge as described by

HM = ∑
ij

hija†
i aj, (2.13)
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which contains both local contributions from the diagonal components of h, along with non-

local components where hij is the hopping amplitude of an electronic jump between states i

and j in the central region. The Hamiltonians for the left and right leads are given by HL and

HR, respectively, and take the form

HL + HR = ∑
k

εkLa†
kLakL + ∑

k
εkRa†

kRakR, (2.14)

where the summation is taken over the leads states k. The leads act as a macroscopic reservoir

for electrons; macroscopic in the sense that the state of the central region has no tangible

effect on the leads. The electronic population of the leads can be described by a Fermi-

Dirac distribution, such that the state of the leads is characterised entirely by the macroscopic

temperature and chemical potential. Additionally, we will make frequent use of the wide-band

approximation when describing the leads. This implies that the conducting band of each lead

is taken to be infinitely wide. While a theoretical treatment which goes beyond the wide-

band limit is often necessary when trying to reproduce the results of a specific experimental

configuration [100, 173, 174], it is not necessary in our case.

Finally, the coupling between the central region and the leads arises via non-local components

in (2.11). These are given by

HML = ∑
ik

ti,kLa†
kLai + h.c., HMR = ∑

ik
ti,kRa†

kRai + h.c.. (2.15)

The t coupling elements are generally taken as a parameter for the model, which is informed

by experiment.

Note that upon partitioning the system into central region and leads, we also neglect the

classical vibrational component of the Hamiltonian arising from the leads and consider only

the component which emerges due to the molecular bridge. In general, the contribution

due to nuclear vibrations within the leads is significantly overshadowed by the electronic

contribution and can be reasonably neglected [82]. Thus, our theoretical tunnelling junction

is shown diagrammatically in Figure 2.2.

2.2 Important time-scales

As we will see, the self-consistent modelling of vibrations within the system in tandem with

the quantum electronic environment requires the identification of a small parameter which can

be leveraged to find a perturbative solution. The desired small parameter naturally emerges

from our assumption of classical vibrations. In this case, the time-scale for nuclear motion is

large relative to the time-scale in which electrons tunnel through the junction, whereby the
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Figure 2.2: The theoretical description of the tunnelling junction. The central region contains
a number of electronic levels described by HM, which are coupled to the leads according to
HML and HMR. The central levels along with the couplings are allowed to be dependent on
the nuclear vibrations in the central region, described by ~x. The electronic populations of the
leads are described by Fermi-Dirac distributions and nuclear vibrations within the leads are
neglected.

electrons "observe" the nuclei as almost stationary. The traversal time for an electron can be

reasonably estimated by the following [11, 82]:

τ =
h̄√

∆E2 + Γ2
. (2.16)

Here, ∆E is the injection energy of the electron while Γ is the level broadening; Γ will be

introduced rigorously in Section 3.1.3. The concept of a traversal time is generally limited

to coherent tunnelling regimes in which electrons tunnel quickly through the system; this is

valid for our model. Likewise, the time-scale for classical vibration can be encapsulated by

τcl =
1
Ω

, (2.17)

where we use Ω to denote the vibrational frequency. Thus, we exploit the fact that τ � τcl

and our condition for perturbative expansion becomes

Ω
Γ
� 1, (2.18)

where we have assumed that ∆E becomes negligible in the resonance regime. In any case,

the inclusion of ∆E will only serve to further justify our small parameter. Interestingly, the

quantum nature of the nuclei once again becomes important in the limit of very small Ω. In
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Ω = Γ

Ω/Γ increasing

Figure 2.3: Categorisation of modelling regimes in terms of Ω/Γ. Green: Our operating
regime where Ω < Γ, such that nuclear vibrations are slow but quantum tunnelling of nuclei
is negligible. Red: Quantum tunnelling becomes non-negligible - the theory breaks down.
Yellow: Ω > Γ such that our perturbative treatment is no longer valid - the theory breaks
down.

this limit, quantum tunnelling of the nuclei starts to dominate over the classical diffusion due

to interaction with the electronic environment [118, 119]. However, this can safely be ignored

in our theory since we consider leads temperatures on the order of 300K such that Ω is still

sufficiently high to disregard tunnelling effects. The modelling regimes are summarised in

Figure 2.3.

2.3 Non-equilibrium Green’s functions

In this section, we will formally derive the underlying theory of non-equilibrium Green’s

functions, before applying it directly to the problem of our theoretical tunnelling junction.

The Green’s function is a mathematical object which contains the desired information about

any observables within our system. In order to be able to solve for the Green’s functions,

we must first express them as a solution to integro-differential equations; namely, the Dyson

equations and Kadanoff-Baym equations. Arriving at these equations is our first goal.

2.3.1 Motivation: Green’s functions in first quantization

The ultimate goal of a theory is to model the time evolution of the dynamical variables of

a system. In classical mechanics this amounts to the solution of Newton’s laws, while in

quantum mechanics we seek the solution to the Schrodinger equation.

Using the Schrodinger equation, we can define a time evolution operator which acts on a

quantum state according to

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉. (2.19)

Through the use of the resolution of identity, we can instead define the time evolution of the
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wavefunction as

Ψ(x, t) =
∫

dx′ 〈x|U(t, t0)|x′〉︸ ︷︷ ︸
G(xt,x′t0)

Ψ(x′, t0). (2.20)

Here, 〈x|U(t, t0)|x′〉 or 〈xt|x′t0〉 is known as the propagator or Green’s function. It contains

information on the probability for a state at position x′ at time t0 to evolve to position x at

time t. Clearly, knowledge of the Green’s function in tandem with the initial conditions yields

all information about the system. Thus, the modelling of the system reduces to the calculation

of the Green’s function.

2.3.2 Green’s functions in a many-body open system

The problem is significantly complexified when the consideration is shifted to an open quan-

tum system, in which we trace out the environmental degrees of freedom. The Green’s func-

tions are now expressed in the language of second quantization where one must now consider

the hierarchy of many-body correlation functions of the creation and annihilation operators.

However, application of Wick’s theorem often simplifies the problem, requiring us to calcu-

late only the single-body correlation functions depending on the problem. In connection with

(2.20), the single-body correlation function expressed in the language of second quantization

is

Tr
[
ρ(t0)ψ(x, t)ψ†(x′, t′)

]
, (2.21)

where we have introduced the creation and annihilation operators in the position basis as ψ†

and ψ, respectively, and the system is prepared in an ensemble described by density matrix

ρ(t0) at time t = t0. Thus, our consideration for a many-body system is shifted to the calcu-

lation of these correlation functions. Let’s consider what this calculation entails explicitly by

introducing the time evolution operators:

Tr
[
ρ(t0)U(t0, t)ψ(x)U(t, t0)U(t0, t′)ψ†(x′)U(t′, t0)

]
, (2.22)

Thus, the calculation involves both an evolution forwards and backwards in time from t0, as

visualised in Figure 2.4. The mathematical treatment with the full interacting density matrix

at t0 is generally difficult. The problem is simplified by implementing assumptions. We will

exemplify this with the following Hamiltonian:

h = h0 + h′ + V(t). (2.23)

We use h0 to denote the Hamiltonian for a non-interacting system such as the central region

in our molecular junction, while h′ contains the coupling of that system to some environment

(such as our macroscopic leads). For generality, we also include some external time-dependent
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Figure 2.4: A visualisation of the time evolution involved in the calculation of (2.21).

potential which is switched on at time t0 - the inclusion of this is relevant to our study of

AC driving in Section 5. We do not include any two-body interaction terms in any of the

derivations presented. We assume that in the infinite past the system is in a state of thermal

equilibrium according to a Gibbs distribution such that the density matrix takes the form

ρ0 =
e−βh0

Tre−βh0
. (2.24)

We then assume that the full density matrix at time t0 can be generated by evolving the initial

non-interacting density matrix ρ0 in time after turning on the interaction with the macroscopic

environment. Thus, the density matrix ρ(t0) is found according to

ρ = lim
t′→−∞

U(t0, t′)ρ0U(t′, t0), (2.25)

e−β(h0+h′)

Tre−β(h0+h′)
= lim

t′→−∞
e−i(h0+h′)(t0−t′) e−βh0

Tre−βh0
e−i(h0+h′)(t′−t0). (2.26)

The assumption of (2.26) greatly simplifies the mathematical treatment, allowing the correla-

tion function in (2.21) to be expressed according to

= Tr
[
ρ(t0)ψ(x, t)ψ†(x′, t′)

]
(2.27)

= Tr
[
U(t0,−∞)ρ0(−∞)U(−∞, t0)ψ(x, t)ψ†(x′, t′)

]
(2.28)

= Tr
[
ρ0(−∞)U(−∞, t0)ψ(x, t)ψ†(x′, t′)U(t0,−∞)

]
. (2.29)

Thus, we see that only ρ0 needs to be considered, at the cost of the evolving the system to −∞.

We are additionally free to insert I = U(tmax, ∞)U(∞, tmax) anywhere into the equation where

tmax = max{t, t′} and I is the identity operator, such that the evolution is from −∞ → ∞ →
−∞. This is the so-called Keldysh contour which forms the basis for all of our calculations
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Figure 2.5: The four possibilities for defining the Green’s function along the Keldysh contour.

using non-equilibrium Green’s functions. Naturally, our choice of where to insert I dictates

which segment (forwards or backwards) the times t and t′ lie on. For arbitrary t and t′,

there are four possibilities as represented in Figure 2.5. These possibilities are quantified

mathematically according to

G++(x1t1, x2t2) = −i
〈

T
(

aH(x1t1)a†
H(x2t2)

)〉
, (2.30)

G−−(x1t1, x2t2) = −i
〈

T̃
(

aH(x1t1)a†
H(x2t2)

)〉
, (2.31)

G−+(x1t1, x2t2) = −i
〈

aH(x1t1)a†
H(x2t2)

〉
, (2.32)

G+−(x1t1, x2t2) = i
〈

a†
H(x2t2)aH(x1t1)

〉
, (2.33)

where T is the time ordering operator and T̃ is the anti-time ordering operator. We use 〈...〉 to

denote an average over the non-interacting density matrix ρ0. The indices on Gnm inform us

as to whether the corresponding times lie on the top (+) or bottom (−) parts of the contour.

In general, the calculation of dynamical properties of a system involves the calculation of the

G+− component due to its correspondence with the number operator in second quantization;

this is shown in the top-right of Figure 2.5. As we shall see, G+− is inevitably coupled with the

other real-time representations. Each real-time representation can together be encapsulated

according to

G(x1τ1, x2τ2) = −i
〈

Tc

(
aH(x1τ1)a†

H(x2τ2)
)〉

, (2.34)

where we have introduced the contour time τ and the contour time ordering operator Tc

which orders operators according to their point of occurence along the contour. This is the

formal definition of the non-equilibrium Green’s function. The mapping between the contour
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time representation and real-time is defined explicitly according to

G(x1τ1, x2τ2) =

(
G++(x1t1, x2t2) G+−(x1t1, x2t2)

G−+(x1t1, x2t2) G−−(x1t1, x2t2)

)
, (2.35)

where the right-hand side is expressed in the Keldysh-Schwinger space. Thus far, it appears

as though our treatment has only served to further complicate the problem! However, we will

soon see that from this foundation we are able to derive integro-differential equations for the

components of G. This then enables the possibility of a perturbative solution via an identified

small parameter in the system or in some cases, a numerically exact solution is possible.

2.3.3 Evolving the system along the contour

2.3.3.1 The interaction picture

Consider a system described by the Hamiltonian:

H(t) = h + H′(t). (2.36)

Here we have split the full Hamiltonian H into a time independent non-interacting compo-

nent h and a time dependent interacting component H′(t). We will take the general time

evolution operator for a time-dependent Hamiltonian and partition it into interacting and

non-interacting components as follows:

U(t, t0) = T
{

e−i
∫ t

t0
dt′H(t′)

}
= T

{
e−i

∫ t
t0

dt′(h+H′(t′))
}

= e−ih(t−t0)S(t, t0), (2.37)

where S(t, t0) is yet to be determined. The form of S(t, t0) can be found via the consideration

of the full time evolution operator as a solution to the Schrodinger equation and utilising

(2.37),

i
d
dt

U(t, t0) = H(t)U(t, t0) (2.38)

i
d
dt

(
e−ih(t−t0)S(t, t0)

)
=
(
h + H′(t)

)
e−ih(t−t0)S(t, t0). (2.39)

Some menial rearrangement leads to

i
d
dt

S(t, t0) = H′h(t)S(t, t0), (2.40)
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where we have let H′h(t) = eih(t−t0)H′(t)e−ih(t−t0) (the subscript h denotes a time evolution due

to the non-interacting Hamiltonian). This equation has an equivalent form to the Schrodinger

equation for a time-dependent Hamiltonian, and thus S(t, t0) can be found to be

S(t, t0) = T
{

e−i
∫ t

t0
dt′H′h(t

′)
}

. (2.41)

As a result, the full time evolution operator can be expressed as

U(t, t0) = e−ih(t−t0)T
{

e−i
∫ t

t0
dt′H′h(t

′)
}

. (2.42)

2.3.3.2 Time evolution along the contour

Now let’s consider an operator A in the Heisenberg representation acting at some arbitrary

time t and relate this back to our contour. The full time-evolved operator is given by

AH(t) = U†(t, t0)AU(t, t0)

= S†(t, t0)e−ih(t−t0)Ae−ih(t−t0)S(t, t0)

= S†(t, t0)Ah(t)S(t, t0). (2.43)

We will now prove the following theorem:

Theorem

AH(t) = Tc

[
e−i

∫
c dτH′h(τ)Ah(t)

]
, (2.44)

where Tc is the contour time ordering operator along the contour c, which we define to range

from −∞ to t, and back again.

Proof

We begin with the right hand side of (2.44) and solve this to find AH(t). First, we partition the

contour into two separate sections; the forwards section c→ from −∞→ t and the backwards

section c← from t→ −∞ such that

c = c→ + c←. (2.45)
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−∞ ∞

Figure 2.6: The Keldysh contour along the time axis.

Now we can utilise the commutativity of terms under the time ordering to find

AH(t) = Tc

[
e−i

∫
c dτH′h(τ)Ah(t)

]
(2.46)

= Tc

[
e−i

∫
c→ dτH′h(τ)−i

∫
c← dτH′h(τ)Ah(t)

]
(2.47)

= Tc

[
e−i

∫
c← dτH′h(τ)Ah(t)e

−i
∫

c→ dτH′h(τ)
]

(2.48)

= T←
[
e−i

∫
c← dτH′h(τ)

]
Ah(t)T→

[
e−i

∫
c→ dτH′h(τ)

]
(2.49)

= S†(t, t0)Ah(t)S(t, t0), (2.50)

where T→ denotes a contour ordering along the forwards part of the contour, and vice versa.

We have arrived at (2.43) and thus the theorem is proved. Additionally, it is clear that we can

safely extend the contour up to +∞ since the components of the integrals when τ > t will

cancel out. In this case, the contour c then becomes the Keldysh contour.

2.3.3.3 Interaction picture for the Green’s functions

Using (2.44), we can re-express our creation/annihilation operators in the Heisenberg picture

as

aH(x1t1) = Tc

[
e−i

∫
c dτH′h(τ)ah(x1t1)

]
, (2.51)

a†
H(x2t2) = Tc

[
e−i

∫
c dτH′h(τ)a†

h(x2t2)
]

. (2.52)

It is then trivial to show that

Tc

(
aH(1)a†

H(2)
)
= Tc

[
e−i

∫
c dτH′h(τ)ah(1)a†

h(2)
]
= Tc

[
ζcah(1)a†

h(2)
]

, (2.53)

where

ζc = e−i
∫

c dτH′h(τ). (2.54)

ζc is called the scattering matrix on the Keldysh contour as it is the evolution which accounts

for any interactions within the system.
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2.3.4 Perturbative expansion of the Green’s functions

We can now begin our quest to derive workable equations of motion for the Green’s functions.

Let’s consider the generic Hamiltonian in the position basis,

H(t) = h + H′(t), (2.55)

where

H′(t) =
∫

dxV(x, t)a†(x)a(x). (2.56)

We have partitioned the Hamiltonian in such a way that V will later contain information about

the leads-system coupling as well as any time-dependent external potentials. However, at this

point we need not assign any explicit physical meaning to V. For brevity, we can choose

to represent the indices (x1τ1, x2τ2, ...) as (1, 2, ...). Consider the definition for the Green’s

function while utilizing (2.53);

G(1, 1′) = −i
〈

Tc

(
ζcah(1)a†

h(1
′)
)〉

= −i
〈

Tc

(
e−i

∫
c dτH′h(τ)ah(1)a†

h(1
′)
)〉

. (2.57)

We take the Mclaurin series expansion of the exponential and truncate after the 1st order to

find

≈ G0(1, 1′) + (−i)2
〈

Tc

(∫
c

dτH′h(τ)ah(1)a†
h(1
′)

)〉
. (2.58)

Here we have defined G0 to be the free-field Green’s function, given by

G0(1, 1′) = −i
〈

Tc

(
ah(1)a†

h(1
′)
)〉

. (2.59)

It depends only on the non-interacting component of the Hamiltonian and does not take into

account the external field. The free-field Green’s function forms the basis for our perturbation.

Using (2.56), we obtain the following expression for G(1, 1′). Note that
∫

c d2 =
∫

c dx2dτ2;

= G0(1, 1′) + (−i)2
∫

c
d2V(2)

〈
Tc

(
a†

h(2)ah(2)ah(1)a†
h(1
′)
)〉

. (2.60)

By applying Wick’s theorem to decompose the string of operators and retaining only the

non-zero terms, we arrive at the following

= G0(1, 1′)− (−i)2
∫

c
d2V(2)

〈
Tc

(
a†

h(2)ah(1)
)〉 〈

Tc

(
ah(2)a†

h(1
′)
)〉

(2.61)

= G0(1, 1′) +
∫

c
d2G0(1, 2)V(2)G0(2, 1′). (2.62)

Thus, we see that we have been able to decompose the first order component of the Green’s

function in terms of the free-field Green’s functions. An equivalent process can be applied

to the second order term in the expansion, such that the full Green’s function up to the 2nd
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order approximation can be given by,

∴ G(1, 1′) = G0(1, 1′) +
∫

c
d2G0(1, 2)V(2)G0(2, 1′) +

∫
c

d2d3G0(1, 2)V(2)G0(2, 3)V(3)G0(3, 1′).

(2.63)

It is clear that there is a pattern emerging and we can in fact write the entire exact Green’s

function as

G = G0 + G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + .... (2.64)

Here we have omitted the
∫

c d2d3 and any indices for brevity. By realising that this expression

for G contains itself, we observe that

G = G0 + G0VG = G0 + GVG0. (2.65)

Here, we have an integral equation for G in terms of the free-field Green’s functions. We now

aim to transform this to a differential equation.

2.3.5 Time derivative on the Keldysh contour

Consider an arbitrary function of τ on the Keldysh contour, f (τ). The derivative can be

defined in the standard way:

d f (τ)
dτ

= lim
τ′→τ

f (τ′)− f (τ)
τ′ − τ

. (2.66)

If τ is on the upper branch, then τ = t and we can say that τ′ = t + ε,

∴
d f (τ)

dτ
= lim

ε→0

f (t + ε)− f (t)
ε

=
d f
dt

. (2.67)

If τ is on the lower branch, then τ = t and we say that τ′ = t− ε,

∴
d f (τ)

dτ
= lim

ε→0

f (t− ε)− f (t)
−ε

= lim
ε→0

f (t)− f (t− ε)

ε
=

d f
dt

. (2.68)

∴
d f (τ)

dτ
=

d f
dt

. (2.69)

Therefore, it is the clear that the contour time derivative is irrespective of which segment of

the contour it is taken on. Consider a contour ordered pair of operators

Tc (A(τ1)B(τ2)) = θc(τ1 − τ2)A(τ1)B(τ2)± θc(τ2 − τ1)B(τ2)A(τ1), (2.70)
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where θc is the Heaviside step function along the contour and the ± refers to bosonic and

fermionic operators, respectively. Let’s express θc in terms of our Keldysh-Schwinger space;

θc(τ1 − τ2) =

(
θ(t1 − t2) 0

1 θ(t2 − t1)

)
, (2.71)

dθc(τ1 − τ2)

dτ1
=

(
δ(t1 − t2) 0

0 −δ(t1 − t2)

)
= δc(τ1 − τ2), (2.72)

and similarly,
dθc(τ2 − τ1)

dτ1
= −δc(τ1 − τ2). (2.73)

Now we utilize (2.73) to solve,

d
dτ1

(Tc (A(τ1)B(τ2))) =
d

dτ1
[θc(τ1 − τ2)A(τ1)B(τ2)± θc(τ2 − τ1)B(τ2)A(τ1)]

= δc(τ1 − τ2) [A(τ1), B(τ2)]∓ + Tc

(
dA(τ1)

dτ1
B(τ2)

)
. (2.74)

Likewise,

d
dτ2

(Tc(A(τ1)B(τ2))) = −δc(τ1 − τ2) [A(τ1), B(τ2)]∓ + Tc

(
A(τ1)

dB(τ2)

dτ2

)
, (2.75)

where we have the commutator [A, B]∓ = AB∓ BA. Using these identities, we can now begin

to construct differential equations for the Green’s functions.

2.3.6 Equation of motion for the non-equilibrium Green’s function

Continuing with our full many-body Hamiltonian in second quantization:

H =
∫

dxa†(x)(h(x) + V(x, t))a(x). (2.76)

Here we use x = {r, σ, ...} to denote the appropriate quantum numbers for the system we are

dealing with. Begin by taking the contour time derivative of our definition for the Green’s

function,
d

dτ1
G(1, 1′) =

d
dτ1

(
−i
〈

Tc(aH(1)a†
H(1

′))
〉)

. (2.77)
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Using (2.74),

i
d

dτ1
G(1, 1′) = δc(τ1 − τ2)

〈[
aH(1), a†

H(1
′)
]
∓

〉
+

〈
Tc

(
daH(1)

dτ1
a†

H(1
′)

)〉
= δc(τ1 − τ2)δ(x1 − x1′) +

〈
Tc

(
daH(1)

dτ1
a†

H(1
′)

)〉
= δc(1− 1′) +

〈
Tc

(
daH(1)

dτ1
a†

H(1
′)

)〉
. (2.78)

Here we have utilized the second quantization commutator relation
[
a†(x1), a(x1′)

]
∓ = δ(x1−

x1′). Now we compute daH(1)
dτ1

= daH(1)
dt1

through the use of the Heisenberg Equation of Motion

which is defined as:
d
dt

aH(x, t) = −i [aH(x, t), HH(t)] . (2.79)

Substituting in (2.76) and utilizing the commutation relation: [A, BC] = [A, B]C + B[A, C], we

find

d
dt

aH(x, t) = −i
∫

dx1

[
aH(x, t), a†

H(x1, t)
]
∓
(h(x1) + V(x1, t))aH(x1,t), (2.80)

= −i(h(x) + V(x, t))aH(x, t). (2.81)

Once again in terms of contour time, we have

d
dτ1

aH(1) = −i(h(1) + V(1))aH(1). (2.82)

Substitute (2.82) back into (2.78) to find

∴
(

i
d

dτ1
− h(1)−V(1)

)
G(1, 1′) = δc(1− 1′). (2.83)

This is the Keldysh-Kadanoff-Baym (KKB) equation. Thus, we have derived a differential

equation for G along our abstract contour construction. We must now consider the real-time

formulation of this equation.

2.3.7 From Keldysh contour to real time

We recall that the real-time representations of the Green’s function are given by

G(1, 1′) = G(x1τ1, x′1τ′1) =

(
G++(x1t1, x′1t′1) G+−(x1t1, x′1t′1)

G−+(x1t1, x′1t′1) G−−(x1t1, x′1t′1)

)
. (2.84)
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Thus, if we consider (2.65) as a matrix equation, a specific real-time matrix element of G is

then found according to

Gαβ = G0,αβ +
∫ ∞

−∞
d2G0,α1VG1β +

∫ −∞

∞
d2G0,α2VG2β. (2.85)

Note that our notation is now in terms of real time (i.e. d2 = dx2dt2). Now, putting the

equation back into matrix form (here we use a hat to represent a matrix in the Schwinger-

Keldysh space);

Ĝ = Ĝ0 +
∫ ∞

−∞
d2Ĝ0

(
V 0

0 −V

)
Ĝ, (2.86)

= Ĝ0 +
∫ ∞

−∞
d2Ĝ0Vσ̂3Ĝ. (2.87)

Here we have found it useful to utilise the σ̂3 Pauli matrix. To simplify the equation further,

we choose to eliminate one component of our Green’s function matrices. We begin by proving

the following relation;

G++ + G−− = G+− + G−+. (2.88)

Beginning with the left hand side:

G++(1, 2) + G−−(1, 2) = −i
〈

T
(

a(1)a†(2)
)〉
− i
〈

T̃
(

a(1)a†(2)
)〉

(2.89)

= −iθ(t1 − t2)
〈

a(1)a†(2)
〉
+ iθ(t2 − t1)

〈
a†(2)a(1)

〉
(2.90)

+iθ(t1 − t2)
〈

a†(2)a(1)
〉
− iθ(t2 − t1)

〈
a(1)a†(2)

〉
(2.91)

= −i
〈

a(1)a†(2)
〉
+ i
〈

a†(2)a(1)
〉

, (2.92)

∴ G++(1, 2) + G−−(1, 2) = G−+(1, 2) + G+−(1, 2), (2.93)

∴ G−−(1, 2) = G−+(1, 2) + G+−(1, 2)− G++(1, 2). (2.94)

We now perform a rotation of the Green’s function matrix in the Schwinger-Keldysh space

using the rotation matrix L̂, which will allow us to begin to cancel terms using (2.94),

L̂ =
1√
2

(
1 −1

1 1

)
, L̂† =

1√
2

(
1 1

−1 1

)
. (2.95)

Note that

L̂L̂† = L̂† L̂ =

(
1 0

0 1

)
= Î. (2.96)
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Applying this transformation to (2.87) (we neglect the integral notation for brevity) and uti-

lizing (2.96), we obtain

L̂ĜL̂† = L̂Ĝ0 L̂† + L̂Ĝ0 L̂† L̂σ̂3VL̂† L̂ĜL̂†. (2.97)

First we focus on the left hand side, whose results will also apply to the terms on the right

hand side.

L̂ĜL̂† =
1
2

(
1 −1

1 1

)(
G++ G+−

G−+ G−−

)(
1 1

−1 1

)
(2.98)

=
1
2

(
G++ + G−− − G+− − G−+ G++ − G−− + G+− − G−+
G++ − G−− − G+− + G+− G++ + G−− + G+− + G−+

)
. (2.99)

Now, utilizing (2.94);

=
1
2

(
0 G++ − G+− − G−+ + G++ + G+− − G−+

G++ − G+− − G−+ + G++ − G+− + G−+ G++ + G+− + G−+ − G++ + G+− + G−+

)

=

(
0 G++ − G−+

G++ − G+− G+− + G−+

)
=

(
0 GA

GR GK

)
. (2.100)

Here we have introduced the advanced, the retarded, and the Keldysh Green’s functions.

The same derivation can be applied to the terms on the right hand side. In doing so, the

Kadanoff-Baym equation becomes(
0 GA

GR GK

)
=

(
0 GA

0

GR
0 GK

0

)
+

(
0 GA

0

GR
0 GK

0

)(
0 1

1 0

)
V

(
0 GA

GR GK

)
. (2.101)

Here we have used the relation

L̂σ̂3 L̂† =

(
0 1

1 0

)
, (2.102)

∴

(
0 GA

GR GK

)
=

(
0 GA

0

GR
0 GK

0

)
+

(
GA

0 0

GK
0 GR

0

)
V

(
0 GA

GR GK

)
. (2.103)

We compute the components on the right hand side to find(
0 GA

GR GK

)
=

(
0 GA

0

GR
0 GK

0

)
+

(
0 GA

0 VGA

GR
0 VGR GK

0 VGA + GR
0 VGK

)
. (2.104)

Thus, this matrix equation yields the three Kadanoff-Baym equations for the advanced, re-

tarded and Keldysh Green’s functions. Explicitly including all integrals and functional de-

pendence, these are given by

GA/R(xt, x′t′) = GA/R
0 (xt, x′t′) +

∫ ∞

−∞
dx1dt1GA/R

0 (xt, x1t1)V(x1t1)GA/R(x1t1, x′t′), (2.105)
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GK(xt, x′t′) = GK
0 (xt, x′t′)

+
∫ ∞

−∞
dx1dt1GK

0 (xt, x1t1)V(x1t1)GA(x1t1, x′t′) + GR
0 (xt, x1t1)V(x1t1)GK(x1t1, x′t′). (2.106)

Here we have expressed the advanced/retarded equations collectively, as we will often find it

convenient to do. It is often desirable to express equations in terms of G< rather than GK due

to its relevance to physical observables. In doing so, we utilise the following relations:

GK = G+− + G−+ = G< + G>, (2.107)

GA − GR = G+− − G−+ = G< − G>. (2.108)

It is then straight forward to show that

G< =
1
2
(GK + GA − GR), (2.109)

and some tedious manipulation yields

G<(xt, x′t′) = G<
0 (xt, x′t′)

+
∫ ∞

−∞
dx1dt1G<

0 (xt, x1t1)V(x1t1)GA(x1t1, x′t′) + GR
0 (xt, x1t1)V(x1t1)G<(x1t1, x′t′). (2.110)

Note that due to the symmetry in (2.65), we are able to make the term on the right the free-

field Green’s function and the term on the left the full Green’s function in our Dyson equations

without repercussion.

2.3.8 Kadanoff-Baym equations in real time

An equivalent process can be applied to take the KKB equation from contour time to real time.

Begin by writing (2.83) in the Schwinger-Keldysh space by utilising (2.72),(
i

d
dt1
− h(1)−V(1)

)
Ĝ(1, 1′) = σ̂3δ(1− 1′). (2.111)

As in the previous section, we perform a rotation in the Schwinger-Keldysh space by appling

L̂ and L̂† from the left and right, respectively. This results in

(
i

d
dt1
− h−V

)(
0 GA

GR GK

)
=

(
0 1

1 0

)
δ(1− 1′), (2.112)
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Again, we make the transition from GK to G<, such that our real-time KKB equations take the

form (
i

d
dt1
− h(1)−V(1)

)
GA/R(1, 1′) = δ(1− 1′), (2.113)

(
i

d
dt1
− h(1)−V(1)

)
G<(1, 1′) = 0. (2.114)

2.4 Application of Green’s functions to the tunnelling junction

In this section, we forge the connection between the integro-differential equations which de-

scribe the Green’s functions and our tunnelling junction model. We will now reformulate our

Dyson and Kadanoff-Baym equations in terms of our chosen Hamiltonian.

2.4.1 Dyson equations in a discrete basis

Given our choice to express our tunnelling junction Hamiltonian in Section 2.1 in terms of

a discrete position basis, we must now transform our Dyson equations from the continuous

basis in (2.105) and (2.110) to a discrete basis. We start by introducing an arbitrary discrete

basis λ such that

|x〉 = ∑
λ

|λ〉 〈λ| x〉 . (2.115)

Now we can define the creation and annihilation operators of our old continuous basis in

terms of a projection onto the new discrete basis,

Ψ†(x) = ∑
λ

〈λ| x〉 a†
λ = ∑

λ

φ(x)a†
λ, (2.116)

Ψ(x) = ∑
λ

〈x| λ〉 aλ = ∑
λ

φ∗(x)aλ. (2.117)

Thus, the free-field Green’s function can be expressed in the discrete basis as

G0(x1τ1, x2τ2) = −i
〈

TC

{
Ψh(x1τ1)Ψ†

h(x2τ2)
}〉

(2.118)

= −i

〈
TC

{
∑
λλ′

φ∗λ(x1)φλ′(x2)ah(λτ1)a†
h(λ
′τ2)

}〉
(2.119)

= ∑
λλ′

φ∗λ(x1)φλ′(x2)G0,λλ′(τ1, τ2). (2.120)
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Similarly, the full Green’s function is given by

G(x1τ1, x2τ2) = −i
〈

TC

{
e−i

∫
C dτH′h(τ)Ψh(x1τ1)Ψ†

h(x2τ2)
}〉

(2.121)

= ∑
λλ′

φ∗λ(x1)φλ′(x2)Gλλ′(τ1, τ2), (2.122)

where the interaction Hamiltonian in the discrete basis becomes

H′h(τ) = ∑
λλ′

∫ ∞

−∞
dxa†

λ(τ)φλ(x)V(x, τ)φ∗λ′(x)aλ′(τ) (2.123)

= ∑
λλ′

a†
λ(τ)〈λ|V̂(x̂, τ)|λ′〉aλ′(τ) (2.124)

= ∑
λλ′

a†
λ(τ)Vλλ′(τ)aλ′(τ). (2.125)

Any real-time element of the Green’s function matrix in the Keldysh-Schwinger space can be

expressed in the discrete basis as

Gij(x1t1, x2t2) = ∑
λλ′

φ∗λ(x1)φλ′(x2)Gij,λλ′(t1, t2). (2.126)

Now, given that GA/R/< are each just linear combinations of the above matrix elements, this

basis change relation will also to apply to GA/R/< such that

GA/R/<(x1t1, x2t2) = ∑
λλ′

φ∗λ(x1)φλ′(x2)GA/R/<
λλ′ (t1, t2), (2.127)

and this same process also applies for the free-field Green’s functions. Now, we consider the

advanced/retarded Dyson equation as given by (2.105) and utilise (2.127) and (2.125) to solve

for

∑
λλ′

φ∗λ′(x1)φλ(x2)GA/R
λ′λ (t1, t2) = ∑

λλ′
φ∗λ′(x1)φλ(x2)GA/R

0,λ′λ(t1, t2)

+
∫ ∞

−∞
dt′∑

λλ′
∑

λ1λ2

φ∗λ′(x1)φλ2(x2)GA/R
0,λ′λ(t1, t′)Vλλ1(t

′)GA/R
λ1λ2

(t′, t2). (2.128)

By acting
∫

dx1φλi(x1) on each side of the equation, we can pull out the identity operator∫
dx1|x1〉〈x1|. Then using 〈λi|λ′〉 = δλiλ′ , we can simplify to

∑
λ

φλ(x2)GA/R
λiλ

(t1, t2) = ∑
λ

φλ(x2)GA/R
0,λiλ

(t1, t2)

+
∫ ∞

−∞
dt′ ∑

λλ1λ2

φλ(x2)GA/R
0,λiλ2

(t1, t′)Vλ2λ1(t
′)GA/R

λ1λ (t′, t2). (2.129)
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Act
∫

dx2φ∗λj
(x2) and repeat the above step to find

GA/R
λiλj

(t1, t2) = GA/R
0,λiλj

(t1, t2) +
∫ ∞

−∞
dt′ ∑

λ1λ2

GA/R
0,λiλ2

(t1, t′)Vλ2λ1(t
′)GA/R

λ1λj
(t′, t2). (2.130)

We have obtained the advanced/retarded Kadanoff-Baym equations in terms of our arbitrary

discrete basis. The exact same process can be applied to the lesser Dyson equation to find

G<
λiλj

(t1, t2) = G<
0,λiλj

(t1, t2) +
∫ ∞

−∞
dt′ ∑

λ1λ2

[
G<

0,λiλ2
(t1, t′)Vλ2λ1(t

′)GA
λ1λj

(t′, t2)

+ GR
0,λiλ2

(t1, t′)Vλ2λ1(t
′)G<

λ1λj
(t′, t2)

]
. (2.131)

2.4.2 Free-field Green’s functions in the leads

Here we will derive useful expressions for the free-field Green’s functions in the leads, denoted

GA/R/<
0,kk′ where k and k′ are each states in the same lead since we neglect any interactions

between separate leads. The free-field Green’s function then evolves according to the leads

Hamiltonian

H(t) = ∑
k′

εk′(t)a†
k′ak′ , (2.132)

where we have assumed a time-dependence on the electronic states in the leads for generality.

This time-dependence will become important for us in Section 5 when we consider an AC

driving on the leads. We prove three lemmas on the road to our final expressions.

Lemma 1:

U†(t, t0)akU(t, t0) = e−i
∫ t

t0
dt1εk(t1)ak, (2.133)

Proof:

[ak, H(t)] = ∑
k′

εk(t)[ak, a†
k′ak′ ] (2.134)

= ∑
k′

εk′(t)
(
[ak, a†

k′ ]ak′ + a†
k′ [ak, ak′ ]

)
(2.135)

= ∑
k′

εk′δkk′(t)ak′ (2.136)

= εk(t)ak, (2.137)



§2.4 Application of Green’s functions to the tunnelling junction 47

∴ ak H(t) = εk(t)ak + H(t)ak,= (εk(t) + H(t))ak. (2.138)

Now consider the following,

akU(t, t0) = ake−i
∫ t

t0
dt1 H(t1) (2.139)

= ak

∞

∑
n=0

(−i)n

n!

(∫ t

t0

dt1H(t1)

)(∫ t

t0

dt2H(t2)

)
... (2.140)

=
∞

∑
n=0

(−i)n

n!

(∫ t

t0

dt1(εk(t2) + H(t1))

)(∫ t

t0

dt2(εk(t2) + H(t2))

)
...ak (2.141)

= e−i
∫ t

t0
dt1(εk(t1)+H(t1))ak, (2.142)

where we have used (2.138).

∴ U†(t, t0)akU(t, t0) = ei
∫ t

t0
dt1 H(t1)e−i

∫ t
t0

dt2(εk(t2)+H(t2))ak, (2.143)

= e−i
∫ t

t0
dt1εk(t1)ak. (2.144)

Lemma 2:

GA
0,kk′(t, t′) = iθ(t′ − t)〈{ak(t), a†

k′(t
′)}〉, (2.145)

where θ(t− t′) is the Heaviside step function and the creation/annihilation operators are in

the Heisenberg picture. {, } denotes the anti-commutator.

Proof:

GA
0,kk′(t, t′) = G11,kk′(t, t′)− G21,kk′(t, t′) (2.146)

= −i〈T(ak(t)a†
k′(t
′))〉+ i〈ak′(t′)a†

k(t)〉 (2.147)

= −iθ(t− t′)〈ak(t)a†
k′(t
′)〉+ iθ(t′ − t)〈a†

k′(t
′)ak(t)〉

+ i(θ(t− t′) + θ(t′ − t))〈ak(t)a†
k′(t
′)〉 (2.148)

= iθ(t′ − t)〈{ak(t)a†
k′(t
′)}〉. (2.149)

A similar approach can be applied to the retarded and the lesser which yields

GR
0,kk′(t, t′) = −iθ(t− t′)〈{ak(t), a†

k′(t
′)}〉, (2.150)

G<
0,kk′(t, t′) = i〈a†

k′(t
′), ak(t)〉. (2.151)
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Lemma 3:

{ak(t), a†
k′(t
′)} = e−i

∫ t
t′ dt1εk(t1)δkk′ , (2.152)

Proof:

{ak(t), a†
k′(t
′)} = ak(t)a†

k′(t
′) + a†

k′(t
′)ak(t) (2.153)

= U†(t, t0)akU(t, t0)U†(t′, t0)a†
k′U(t′, t0)

+ U†(t′, t0)a†
k′U(t′, t0)U†(t, t0)akU(t, t0) (2.154)

= e−i
∫ t

t0
dt1εk(t1)ei

∫ t′
t0

dt2εk′ (t2){ak, a†
k′} (2.155)

= e−i
∫ t

t′ εk(t1)δkk′ , (2.156)

where we have utilized (2.133) as well as {ak, a†
k′} = δkk′ .

Final Result

As a result, we can substitute (2.156) into (2.149), (2.150) and (2.151) to find the following

expressions for our adiabatic Green’s functions:

GA
0,kk′(t, t′) = iθ(t′ − t)e−i

∫ t
t′ dt1εk(t1)δkk′ , (2.157)

GR
0,kk′(t, t′) = −iθ(t− t′)e−i

∫ t
t′ dt1εk(t1)δkk′ , (2.158)

G<
0,kk′(t, t′) = ie−i

∫ t
t′ dt1εk(t1) fkδkk′ . (2.159)

Here we have introduced the occupation number fk for state k in the leads, defined as

fk = 〈a†
k ak〉. (2.160)

The electronic occupations in the leads will be modelled according to a Fermi-Dirac distribu-

tion.
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2.4.3 Dyson equations in the central region

Now we shrink our system space down such that it encompasses only the molecular bridge

in the central region, while the leads act as the external environment. We then define V to

account for the non-local interaction between the central region and leads states. Thus, V

corresponds to the coupling elements of HML and HMR as in (2.15).

2.4.3.1 Advanced/Retarded Dyson equations for the central region

We use (2.130) and take λi and λj to be the arbitrary states c and c′ in the central region:

GA/R
cc′ (t1, t2) = GA/R

0,cc′ (t1, t2) +
∫ ∞

−∞
dt′ ∑

λ1λ2

GA/R
0,cλ2

(t1, t′)tλ2λ1(t
′)GA/R

λ1c′ (t
′, t2). (2.161)

In order to obtain a solution beyond the free-field solution, we require that λ2 is also a state

in the central region. This is clear if we recall (2.59), which does not contain any interaction

between the central region and the leads. Then we find that λ1 must be a state in the leads for

the tλ1λ2 element to be non-zero. Thus, we obtain

GA/R
cc′ (t1, t2) = GA/R

0,cc′ (t1, t2) +
∫ ∞

−∞
dt′ ∑

kαc1

GA/R
0,cc1

(t1, t′)tc1kα(t′)GA/R
kαc′ (t

′, t2), (2.162)

where c1 denotes a central region state and as usual, kα denotes a state k in the α lead. Consider

the GA/R
kαc′ term on the right hand side; we can apply the Dyson equation on this term to find

GA/R
kαc′ (t

′, t2) = GA/R
0,kαc′(t

′, t2) +
∫ ∞

−∞
dt3 ∑

λ1λ2

GA/R
0,kαλ2

(t′, t3)tλ2λ1(t3)GA/R
λ1c′ (t3, t2) (2.163)

=
∫ ∞

−∞
dt3 ∑

c2k′α
GA/R

0,kαk′α(t
′, t3)tk′αc2(t3)GA/R

c2c′ (t3, t2) (2.164)

=
∫ ∞

−∞
dt3 ∑

c2

GA/R
0,kαkα(t

′, t3)tkαc2(t3)GA/R
c2c′ (t3, t2), (2.165)

where we have utilised the fact that GA/R
0,kαk′α ∼ δkαk′α in accordance with (2.157) and (2.158).

Let’s substitute this back into (2.162) to find

GA/R
cc′ (t1, t2) = GA/R

0,cc′ (t1, t2) +
∫ ∞

−∞
dt′dt′′ ∑

kαc1c2

GA/R
0,cc1

(t1, t′)tc1kα(t′)GA/R
0,kαkα(t

′, t′′)tkαc2(t
′′)GA/R

c2c′ (t
′′, t2),

(2.166)

= GA/R
0,cc′ (t1, t2) +

∫ ∞

−∞
dt′dt′′ ∑

c1c2

GA/R
0,cc1

(t1, t′)ΣA/R
c1c2

(t′, t′′)GA/R
c2c′ (t

′′, t2), (2.167)
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where we have introduced the self-energy for the leads as defined by

ΣA/R
c1c2

(t′, t′′) = ∑
kα

tc1kα(t′)GA/R
0,kαkα(t

′, t′′)tkαc2(t
′′). (2.168)

It is instead convenient for us to represent (2.167) as the matrix equation in the central region:

GA/R(t1, t2) = GA/R
0 (t1, t2) +

∫ ∞

−∞
dt′dt′′GA/R

0 (t1, t′)ΣA/R(t′, t′′)GA/R(t′′, t2), (2.169)

where the lack of indices make it clear that each term is now a matrix in the space of central

region states. Thus, we have obtained the Dyson equation for the central region in which any

interaction with the surrounding environment is encapsulated through the self-energy term.

2.4.3.2 Lesser Dyson equation for the central region

An entirely equivalent derivation can be performed for the lesser Green’s function case,

whereby we obtain

G<
cc′(t1, t2) = G<

0,cc′(t1, t2) +
∫ ∞

−∞
dt′dt′′ ∑

c1c2

[
G<

0,cc1
(t1, t′)Σ<

c1c2
(t′, t′′)GA

c2c′(t
′′, t2)

+ GR
0,cc1

(t1, t′)Σ<
c1c2

(t′, t′′)GA
c2c′(t

′′, t2) + GR
0,cc1

(t1, t′)ΣR
c1c2

(t′, t′′)G<
c2c′(t

′′, t2)
]
. (2.170)

The lesser self-energy is similarly defined according to

Σ<
c1c2

(t′, t′′) = ∑
kα

tc1kα(t′)G<
0,kαkα(t

′, t′′)tkαc2(t
′′). (2.171)

When expressed as a matrix equation in the central region, it becomes

G<(t1, t2) = G<
0 (t1, t2) +

∫ ∞

−∞
dt′dt′′

[
G<

0 (t1, t′)Σ<(t′, t′′)GA(t′′, t2)

+ GR
0 (t1, t′)Σ<(t′, t′′)GA(t′′, t2) + GR

0 (t1, t′)ΣR(t′, t′′)G<(t′′, t2)
]
. (2.172)

2.4.4 Kadanoff-Baym equations for the central region

Using the results of the previous section, we can now derive the Keldysh-Kadanoff-Baym

equations for the central region. These will be the final equations we need to perturbatively

solve for the Green’s functions. To begin, we take (2.113) and (2.114) and consider the free-field

case. Thus, V = 0 and G = G0 and our equations become(
i

d
dt1
− h(x1, t1)

)
GA/R

0 (x1t1, x2t2) = δ(x1 − x2)δ(t1 − t2), (2.173)
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(
i

d
dt1
− h(x1, t1)

)
G<

0 (x1t1, x2t2) = 0. (2.174)

We can now make the transformation from the continuous position basis to a discrete basis

via an equivalent process as performed in Section 2.4.1. This yields

∑
λ

(
i

∂

∂t1
Iλiλ − hλiλ(t1)

)
GA/R

0,λλj
(t1, t2) = δλiλj δ(t1 − t2), (2.175)

∑
λ

(
i

∂

∂t1
Iλiλ − hλiλ(t1)

)
G<

0,λλj
(t1, t2) = 0. (2.176)

Once again, we shrink our system down to consider only the central region. As such, λi and

λj become states in the central region. In order to find non-trivial solutions, the free-field

Green’s function forces λ to also be a central region state. Now we can express (2.175) and

(2.176) as matrix equations in the space of central region states according to(
i

∂

∂t1
I − h(t1)

)
GA/R

0 (t1, t2) = Iδ(t1 − t2), (2.177)

(
i

∂

∂t1
I − h(t1)

)
G<

0 (t1, t2) = 0. (2.178)

To find the Kadanoff-Baym equations in the central region, we now have to apply the (i ∂
∂t1

I −
h(t1)) operator to both (2.169) and (2.172) while making use of (2.177) and (2.178). This results

in our final equations:(
i

∂

∂t1
I − h(t1)

)
GA/R(t1, t2) = Iδ(t1 − t2) +

∫ ∞

−∞
dt′ΣA/R(t1, t′)GA/R(t′, t2), (2.179)

(
i

∂

∂t1
I − h(t1)

)
G<(t1, t2) =

∫ ∞

−∞
dt′
[
Σ<(t1, t′)GA(t′, t2) + ΣR(t1, t′)G<(t′, t2)

]
. (2.180)
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Chapter 3

Non-adiabatic corrections to

observables

The scaffolding established in the previous chapter now allows us derive the theory which

forms the basis for our own novel research. This chapter covers the theory common to all fol-

lowing chapters and subsequent published results. Any expansions on the theory required by

a specific chapter will then be derived as needed later on. We begin by solving for explicit adi-

abatic expressions for the Green’s functions along with dynamical corrections which account

for the motion of nuclei in Section 3.1. We liberally refer to these corrections as non-adiabatic.

This then allows us to calculate non-adiabatic expansions to the Meir-Wingreen formula for

the electric current through the tunnelling junction in Section 3.2. Finally, Section 3.3 sees us

cast the nuclear motion in terms of a Langevin equation, in which the Langevin coefficients

are calculated self-consistently using the perturbatively solved-for Green’s functions.

3.1 Solution of the Green’s functions in the Wigner space

3.1.1 The Wigner transform

Unfortunately, (2.179) and (2.180) are generally insoluble beyond intensive numerical schemes.

Useful analytical solutions to the Green’s functions are found only via perturbative approxi-

mations. In our case, a perturbative solution is enabled by the introduction of Wigner coordi-

nates in the time domain:

T =
t + t′

2
, τ = t− t′. (3.1)

The relative time τ is associated with the microscopic properties of the system on short time-

scales, whereas the central time T describes the macroscopic features of the system. As we

will soon see, these Wigner coordinates are conducive to a perturbative approximation as

the separation of time-scales between the fast quantum electrons and slow classical nuclear

53
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coordinate is easily observed and abused. In terms of the Wigner coordinates, an arbitrary

Green’s function becomes

G(t, t′) = G(T + τ/2, T − τ/2). (3.2)

We now introduce the Wigner transform. In a similar vein to the Fourier transform, the

Wigner transform is a transformation from the relative time domain to the frequency domain.

It is defined according to

G̃(T, ω) =
∫ ∞

−∞
dτeiωτG(t, t′), G(t, t′) =

∫ ∞

−∞

dω

2π
eiωτG̃(T, ω), (3.3)

where we use G̃ to denote a Green’s function in the Wigner space. We will also make frequent

use of the following Wigner convolution identity:∫ ∞

−∞
dτeiωτ

∫
dt1 A(t, t1)B(t1, t′) = e

1
2i (∂

A
T ∂B

ω−∂A
ω∂B

T) Ã(ω, T)B̃(ω, T). (3.4)

Here we have used ∂A
T to denote a derivative of the A term with respect to T, while ∂B

ω denotes

a derivative of the B term with respect to ω, and so on. We will frequently make use of this

notation from this point forwards.

3.1.2 Free-field Green’s functions in the Wigner space

3.1.2.1 Advanced/Retarded Green’s function

Our task is now to start calculating the Green’s functions in the Wigner space. The first step is

to derive expressions for the self-energies in the Wigner space, which depend on the free-field

Green’s functions. We will disregard the time dependence of the leads energy levels in this

section. The derivation for the time dependent case is more involved and will be treated in

Section 5. We will first consider the advanced case. To begin, we take the Wigner transform

of an element of GA
0 by utilizing the expression derived in (2.157):

G̃A
0,kk′(ω, T) =

∫ ∞

−∞
dτeiωτGA

0,kk′(T, τ), (3.5)

=
∫ ∞

−∞
dτeiω(t−t′)iθ(t′ − t)e−iεk(t−t′)δkk′ . (3.6)

We note that the free-field Green’s functions are dependent only on τ and as such, the Wigner

transform becomes a Fourier transform. Noting that this expression is zero when τ is positive,
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we can redefine our integral limits to be

=
∫ 0

−∞
dτeiω(t−t′)ie−iεk(t−t′)δkk′ , (3.7)

=
∫ 0

−∞
dτei(ω−εk)(t−t′)iδkk′ . (3.8)

This integral is not well-defined at the limit −∞ due to the complex exponential. In order to

counteract this, we introduce a new term −iη into the exponential where η > 0 and take the

limit as η goes to zero so that we have

= lim
η→0

∫ 0

−∞
dτei(ω−εk−iη)(t−t′)iδkk′ (3.9)

= lim
η→0

iδkk′

i(ω− εk − iη)
ei(ω−εk−iη)(t−t′) |0−∞ (3.10)

= lim
η→0

δkk′

(ω− εk − iη)
− δkk′

(ω− εk − iη)
ei(ω−εk)(−∞)eη(−∞). (3.11)

Clearly eη(−∞) → 0 and so the entire second term will go to zero, leaving us with

G̃A
0,kk′(ω, T) = lim

η→0

δkk′

(ω− εk − iη)
. (3.12)

In the retarded case, we instead introduce +iη into the exponential and perform an equivalent

derivation to find

G̃R
0,kk′(ω, T) = lim

η→0

δkk′

(ω− εk + iη)
. (3.13)

3.1.2.2 Lesser Green’s Function

Beginning with (2.159), take the Wigner transform:

G̃<
0,kk′(ω, T) =

∫ ∞

−∞
dτeiωτG<

0,kk′(T, τ) (3.14)

=
∫ ∞

−∞
dτeiωτie−iεk(t−t′) fkδkk′ (3.15)

=
∫ ∞

−∞
dτei(ω−εk)τi fkδkk′ (3.16)

= 2πi fkδkk′δ(ω− εk), (3.17)

where we have utilized the definition of the Dirac-Delta function as given by

δ(ω− εk) =
1

2π

∫ ∞

−∞
dτei(ω−εk)τ. (3.18)
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3.1.3 Self-energies in the Wigner space

3.1.3.1 Generalised self-energy

Rather than considering the expression for the self-energy as in (2.168), we will instead con-

sider the following more general expression

ΞA/R/<
α,cc′ = ∑

k
Ackα(t)GA/R/<

kαkα (t, t′)Bkαc′(t′), (3.19)

where A and B are arbitrary functions of time. Obviously, when A = B = t where t is our

Hamiltonian element, then we obtain ΣA/R/<. The need for this generality will only become

clear in Section 3.3. We will neglect the A/R/ < notation in the following. Apply the Wigner

transform to the above to obtain

Ξ̃α,cc′ = ∑
k

∫ ∞

−∞
dτeiωτ Ackα(T + τ/2)Gkαkα(t, t′)Bkαc′(T − τ/2) (3.20)

= ∑
k

∫ ∞

−∞
dτeiωτe

τ
2 dA

T Ackα(T)Gkαkα(t, t′)e
−τ
2 dB

T Bkαc′(T) (3.21)

= ∑
k

∫ ∞

−∞
dτeiωτe

τ
2 (d

A
T−dB

T)Ackα(T)Gkαkα(t, t′)Bkαc′(T) (3.22)

= ∑
k

∫ ∞

−∞
dτeiωτe

1
2i
←−
∂e

ω(dA
T−dB

T)Ackα(T)Gkαkα(t, t′)Bkαc′(T). (3.23)

(3.24)

Here we have applied the Lagrange shift operator to A and B. The
←−
∂e

ω notation denotes the

derivative operator acting to the left on the exponential. Now we take all the terms that are

independent of τ outside of the integral, leaving us with

Ξ̃α,cc′ = ∑
k

e
1
2i
−→
∂e

ω(dA
T−dB

T)Ackα(T)Bkαc′(T)
∫ ∞

−∞
dτeiωτGkαkα(t, t′) (3.25)

= ∑
k

e
1
2i

−→
∂G

ω(dA
T−dB

T)Ackα(T)Bkαc′(T)G̃kαkα(T, ω). (3.26)

(3.27)

Finally, we take a Mclaurin series expansion of the exponential to find

Ξ̃α,cc′ = ∑
k

AckαG̃kαkαBkαc′ +
1
2i ∑

k

∂G̃kαkα

∂ω

(
dAckα

dT
Bkαc′ − Ackα

dBkαc′

dT

)
+ ... (3.28)

= Ξ̃(0),α,cc′ + Ξ̃(1),α,cc′ + ..., (3.29)

where the functional dependencies are clear from the context. We will find that the higher or-

der terms in the expansion become important when considering motion on the leads interface
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in which a time dependence emerges in the tckα element due to classical motion. This will be

considered in Section 4.

3.1.3.2 Advanced/Retarded self-energy

Our main aim is still to calculate expressions for the self-energies in the Wigner space. For

now we will consider only the 0th order term from the expansion in (3.28) and let A = B = t.

Let’s first consider the advanced case whereby we substitute (3.12) to find

Σ̃A
(0),α,cc′ = lim

η→0
∑

k

t∗kαctkαc′

(ω− εkα − iη)
(3.30)

= lim
η→0

∑
k

t∗kαctkαc′

(ω− εkα)2 + η2 (ω− εkα + iη) (3.31)

= lim
η→0

(
∑

k

t∗kαctkαc′(ω− εkα)

(ω− εkα)2 + η2 + i ∑
k

t∗kαctkαc′η

(ω− εkα)2 + η2

)
, (3.32)

where we have noted that tckα = t∗kαc since the Hamiltonian is hermitian. We now make use of

the following Dirac-delta function identity in order to simplify the second term:

lim
η→0

η

x2 + η2 = πδ(x). (3.33)

As a result, we find

Σ̃A
(0),α,cc′ = lim

η→0
∑

k

t∗kαctkαc′(ω− εkα)

(ω− εkα)2 + η2 + iπ ∑
k

t∗kαctkαc′δ(ω− εkα) (3.34)

= Λα,cc′ +
i
2

Γα,cc′ , (3.35)

where we have introduced

Λα,cc′ = lim
η→0

∑
k

t∗kαctkαc′(ω− εkα)

(ω− εkα)2 + η2 , (3.36)

Γα,cc′ = 2π ∑
k

t∗kαctkαc′δ(ω− εkα). (3.37)

The expression for Γ can be further simplified. First we let the terms under the summation

equal to a function n(εk);

∴ Γα,cc′ = 2π ∑
k

n(εk). (3.38)
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Now by introducing an arbitrary variable χ, we can rewrite ∑k n(εk) as the following:

∑
k

n(εk) =
∫ ∞

−∞
dχ ∑

k
n(χ)δ(εk − χ) (3.39)

=
∫ ∞

−∞
dχn(χ)∑

k
δ(εk − χ) (3.40)

=
∫ ∞

−∞
dχn(χ)ρα(χ), (3.41)

where ρ(χ) is the density of states:

ρα(χ) = ∑
k

δ(εk − χ). (3.42)

As one would expect, when the density of states is integrated over some region it provides

the number of states within the limits of that integration. Now utilizing (3.41), we can rewrite

Γ as

Γα,cc′ = 2π
∫ ∞

−∞
dχ f (χ)ρα(χ) (3.43)

= 2π
∫ ∞

−∞
dχt∗αctαc′δ(ω− χ)ρα(χ) (3.44)

= 2πt∗kαctkαc′ρα(ω). (3.45)

In doing so, we have assumed that tkαc is independent of the leads state k under consideration,

such that tkαc = tαc. Naturally, an equivalent derivation can be performed for the retarded self-

energy in which we obtain

Σ̃R
(0),α,cc′ = Λα,cc′ −

i
2

Γα,cc′ . (3.46)

The Γ term accounts for the energy broadening of the central state due to interactions with

the leads while the Λ term accounts for a shift in the energy level.

3.1.3.3 Lesser Self-Energy

Again, we take the 0th order term from the expansion in (3.28) and let A = B = t while we

now consider the lesser case. We utilise (3.17) to find

Σ̃<
(0),α,cc′ = 2πi ∑

k
t∗kαctkαc′ fkδ(ω− εk). (3.47)

If we assume that the electronic populations in the leads as denoted by fk can be described by

a Fermi-Dirac distribution, then we can further simplify the above to

Σ̃<
(0),α,cc′(ω, T) = i fα(ω)Γα,cc′(ω, T), (3.48)
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where

fα(ω) =
1

e
ω−µα
kBTα + 1

. (3.49)

Here, µα is the chemical potential for the α lead while Tα is the macroscopic temperature and

kB is Boltzmann’s constant.

3.1.3.4 Wide-Band Approximation

To simplify the self-energy equations, we implement the wide-band approximation. Consider

the equation for Λ as given in (3.36):

Λα,cc′ = lim
η→0

∑
k

t∗αctαc′(ω− εkα)

(ω− εkα)2 + η2 (3.50)

= lim
η→0

t∗αctαc′ ∑
k

∫ ∞

−∞
dω′δ(ω′ − εkα)

(ω−ω′)

(ω−ω′)2 + η2 (3.51)

= lim
η→0

t∗αctαc′

∫ ∞

−∞
dω′ρ(ω′)

(ω−ω′)

(ω−ω′)2 + η2 . (3.52)

Now we assume that the density of states in the leads is a constant such that

ρ(ω) =

 ρ

0

ωmin ≤ ω ≤ ωmax

otherwise
, (3.53)

where ωmin and ωmax denote the edges of the leads conduction band. As a result, ρ can be

pulled out of the integral in (3.52) and we can truncate the integral limits to find

Λα,cc′ = t∗αctαc′ρ
∫ ωmax

ωmin

dω′
1

(ω−ω′)
(3.54)

= t∗αctαc′ρ ln
∣∣∣∣ωmin −ω

ωmax −ω

∣∣∣∣ . (3.55)

where we have allowed the η term to go to zero as it will no longer affect our calculations. We

now introduce the wide-band approximation which assumes that the conducting band for the

electrons within the leads is wide such that we can approximate ωmax → ∞ and ωmin → −∞.

Under this approximation, it can be seen that Λ will go to zero.
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3.1.3.5 Summary

Here we summarise the main equations derived in this section. Under the wide-band approx-

imation, our adiabatic self-energies simplify to:

Σ̃A
(0),α,cc′(T) =

i
2

Γα,cc′(T), (3.56)

Σ̃R
(0),α,cc′(T) = −

i
2

Γα,cc′(T), (3.57)

Σ̃<
(0),α,cc′(ω, T) = i fα(ω)Γα,cc′(T), (3.58)

given that

Γα,cc′ = 2πt∗αc(T)tαc′(T)ρα. (3.59)

We take Γ as a parameter input for our model and thus, we are now able to calculate the

self-energies.

3.1.4 Kadanoff-Baym equations in the Wigner space

3.1.4.1 Left-hand side

We seek to transform our Kadanoff-Baym equations presented in (2.179) and (2.180) into the

Wigner space. We begin by considering the left-hand side (LHS) individually, which is equiv-

alent for each of the advanced, retarded and lesser case. Application of the Wigner transform

yields

LHS =
∫ ∞

−∞
dτeiωτ

(
i

∂

∂τ
I +

i
2

∂

∂T
I − h(T + τ/2)

)
G(T + τ/2, T + τ/2), (3.60)

where we have expressed the real-time derivative in terms of the Wigner coordinates according

to

∂

∂t
=

∂τ

∂t
∂

∂τ
+

∂T
∂t

∂

∂T
(3.61)

=
∂

∂τ
+

1
2

∂

∂T
. (3.62)
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Let us now consider each term in this equation individually, starting with the i ∂
∂τ term.

=
∫ ∞

−∞
dτeiωτi

∂

∂τ
IG (3.63)

= i
∫ ∞

−∞
dτ

∂

∂τ

[
eiωτG

]
− ∂

∂τ

[
eiωτ

]
G (3.64)

= −i
∫ ∞

−∞
dτ

∂

∂τ

[
eiωτ

]
G (3.65)

= ωIG̃. (3.66)

We have used the fact that ∫ ∞

−∞
dτ

∂

∂τ

[
eiωτG

]
= 0, (3.67)

since G(T + τ/2, T − τ/2) → 0 as |τ| → ∞. The second term in (3.60) is trivial; we thus

consider the third term. By utilising the Lagrange shift operator, we find

= −
∫ ∞

−∞
dτeiωτe

τ
2 ∂h

T h(T)G(T + τ/2, T − τ/2) (3.68)

= −e
1
2i
−→
∂e

ω∂h
T h(T)

∫ ∞

−∞
dτeiωτG(T + τ/2, T − τ/2) (3.69)

= −e
1
2i ∂G

ω∂h
T h(T)G̃(T, ω). (3.70)

The entire left-hand side can now be written as

LHS =

(
ωI +

i
2

∂

∂T
I − e

1
2i ∂G

ω∂h
T h(T)

)
G̃(T, ω).

3.1.4.2 Right-Hand Side

We now consider the Wigner transform of the right-hand side of (3.60). We will explicitly

show the advanced/retarded case. We find

RHS =
∫ ∞

−∞
dτeiωτ Iδ(t− t′) +

∫ ∞

−∞
dτeiωτ

∫ ∞

−∞
dt′ΣA/R(t1, t′)GA/R(t′, t2) (3.71)

= I + e
1
2i{∂Σ

T ∂G
ω−∂Σ

ω∂G
T}Σ̃A/R(T, ω)G̃A/R(T, ω), (3.72)

where we have utilized the Wigner convolution theorem as introduced in (3.4).
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3.1.4.3 Summary

Our Kadanoff-Baym equations for the Green’s functions in the Wigner space are given by(
ωI +

i
2

∂

∂T
I − e

1
2i ∂G

ω∂h
T h(T)

)
G̃A/R(T, ω) = I + e

1
2i{∂Σ

T ∂G
ω−∂Σ

ω∂G
T}Σ̃A/R(T, ω)G̃A/R(T, ω), (3.73)

(
ωI +

i
2

∂

∂T
I − e

1
2i ∂G

ω∂h
T h(T)

)
G̃<(T, ω) = e

1
2i{∂Σ

T ∂G
ω−∂Σ

ω∂G
T}
[
Σ̃<(T, ω)G̃A(T, ω) + Σ̃R(T, ω)G̃<(T, ω)

]
.

(3.74)

3.1.5 System energy-scales and the small parameter

We are now at the point where we can solve (3.73) and (3.74) perturbatively for the Green’s

functions via leveraging our small parameter introduced in Section 2.2. In the absence of an

AC driving in the leads, the central time dependence of each term in these equations arises

implicitly via the influence of the classical coordinate on our Hamiltonian elements. Then we

have

h(T) = h(x[T]), t(T) = t(x[T]), (3.75)

where x is the vector of classical degrees of freedom. The base-case for our perturbation is the

adiabatic case in which the nuclear geometry evolves adiabatically such that the tunnelling

electrons view the nuclei as entirely stationary. In this regime, any ∂T terms will become

negligible since the classical coordinates are unchanging relative to the electrons. Corrections

due to the nuclear motion are then included by allowing for ∂T terms to be non-zero. As will

be observed, the pairing of ∂ω and ∂T terms in (3.73) and (3.74) result in our small parameter,

Ω/Γ, naturally emerging from the higher order terms in the expansions of the exponentials.

This then allows us to truncate the expansion at a chosen point. We will make the following

ansatzes:

G̃ = G̃(0) + G̃(1) + ..., (3.76)

Σ̃ = Σ̃(0) + Σ̃(1) + ..., (3.77)

where G̃(n) and Σ̃(n) are each nth order in Ω/Γ. We will solve for the 0th and 1st order Green’s

functions via (3.73) and (3.74). As it happens, we have already solved for the self-energies; the

adiabatic component given in (3.56)-(3.58), while the first order correction can be found from

(3.28) which also contains a ∂T∂ω pair. We choose to neglect terms higher than first order in

our small parameter.
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3.1.6 Perturbatively solving for the Green’s functions

3.1.6.1 Adiabatic case

We will consider the advanced/retarded case explicitly. We begin by substituting (3.76) and

(3.77) into (3.73) to obtain(
ωI +

i
2

∂

∂T
I − e

1
2i ∂G

ω∂h
T h
)(

G̃A/R
(0) + ...

)
= I + e

1
2i{∂Σ

T ∂G
ω−∂Σ

ω∂G
T}
(

Σ̃A/R
(0) + ...

) (
G̃A/R
(0) + ...

)
. (3.78)

We will also take a Maclaurin series expansion of the exponentials on both sides of the equa-

tion. In the adiabatic case, we retain only the 0th order term in each expansion such that we

find

(ωI − h) G̃A/R
(0) = I + Σ̃A/R

(0) G̃A/R
(0) , (3.79)

G̃A/R
(0) =

(
ωI − h− Σ̃A/R

(0)

)−1
. (3.80)

As usual, an equivalent method is applied in the lesser case to find the adiabatic form of the

Keldysh equation,

G̃<
(0) = G̃R

(0)Σ̃
<
(0)G̃

A
(0). (3.81)

3.1.6.2 First-order correction

Solving for the first-order corrections to the Green’s functions is much the same process as

in the adiabatic case, except we now truncate all expansions after the first order. In the

advanced/retarded case, we find

G̃A/R
(1) = G̃A/R

(0) Σ̃A/R
(1) G̃A/R

(0) +
1
2i

G̃A/R
(0)

(
AA/R∂TG̃A/R

(0) + BA/R∂ωG̃A/R
(0)

)
, (3.82)

where we have introduced the convenient quantities, A and B, given by

AA/R = 1− ∂ωΣ̃A/R
(0) , BA/R = ∂Th + ∂TΣ̃A/R

(0) . (3.83)

The first order expression can be further simplified by explicitly calculating the Green’s func-

tion derivatives as per

∂TG̃A/R
(0) = G̃A/R

(0) B
A/RG̃A/R

(0) , ∂ωG̃A/R
(0) = −G̃A/R

(0) A
A/RG̃A/R

(0) . (3.84)
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Substituting these in, we now find

G̃A/R
(1) = G̃A/R

(0) Σ̃A/R
(1) G̃A/R

(0) +
1
2i

G̃A/R
(0)

(
AA/RG̃A/R

(0) B
A/RG̃A/R

(0) −B
A/RG̃A/R

(0) A
A/RG̃A/R

(0)

)
, (3.85)

= G̃A/R
(0) Σ̃A/R

(1) G̃A/R
(0) +

1
2i

G̃A/R
(0)

[
AA/RG̃A/R

(0) ,BA/RG̃A/R
(0)

]
−

. (3.86)

We note that the commutator will go to zero in the case of a single electronic level. The same

procedure is applied in the lesser case, in which we utilise the following derivatives:

∂ωG̃<
(0) = −G̃R

(0)A
RG̃<

(0) − G̃<
(0)A

AG̃A
(0) + G̃R

(0)∂ωΣ̃<G̃A
(0), (3.87)

∂TG̃<
(0) = G̃R

(0)B
RG̃<

(0) + G̃<
(0)B

AG̃A
(0) + G̃R

(0)∂TΣ̃<G̃A
(0). (3.88)

This then yields the final expression,

G̃<
(1) = G̃R

(0)Σ̃
<
(1)G̃

A
(0) + G̃R

(0)Σ̃
<
(0)G̃

A
(1) + G̃R

(1)Σ̃
<
(0)G̃

A
(0)

+
1
2i

G̃R
(0)

[
BRG̃R

(0)∂ωΣ̃<
(0) +A

RG̃<
(0)B

A +ARG̃R
(0)∂TΣ̃<

(0) + h.c.
]

G̃A
(0). (3.89)

There is generally little need to simplify this further into the base components and so we leave

it in this form.

3.1.6.3 A note on the conjugate transpose

By applying our original Green’s function definitions in the Schwinger-Keldysh space accord-

ing to (2.30)-(2.33), along with utilising (2.88), it is reasonably simple to show that the full

Green’s functions obey the following conjugate transpose relations:

[
GA
]†

= GR,
[

G</>
]†

= −G</>. (3.90)

These properties are also carried into the Wigner space. In the advanced/retarded case this is

demonstrated by

G̃A(ω, T) =
∫ ∞

−∞
dτeiωτGA(T + τ/2, T − τ/2), (3.91)[

G̃A(ω, T)
]†

=
∫ ∞

−∞
dτe−iωτGR(T − τ/2, T + τ/2). (3.92)

(3.93)
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Now introduce the new dummy variable τ0 = −τ and manipulate the integration limits to

find [
G̃A(ω, T)

]†
= −

∫ −∞

∞
dτeiωτGR(T + τ/2, T − τ/2), (3.94)

=
∫ ∞

−∞
dτeiωτGR(T + τ/2, T − τ/2), (3.95)

= G̃R(ω, T). (3.96)

A similar approach is applied in the lesser/greater case. It is also clear that upon taking our

ansatz as in (3.76), the Green’s function of any arbitrary order n in our small parameter will

also satisfy the relations. The argument is as follows:

[
G̃A
]†

= G̃R, (3.97)[
G̃A
(0) + λG̃A

(1) + ... + λnG̃A
(n) + ...

]†
= G̃R

(0) + λG̃R
(1) + ... + λnG̃R

(n) + ..., (3.98)

(3.99)

where we have introduced the book-keeping parameter λ which tells us that a term with λn

is of order n in our small parameter. Simple rearrangement leads to([
G̃A
(0)

]†
− G̃R

(0)

)
+ λ

([
G̃A
(1)

]†
− G̃R

(1)

)
+ ... + λn

([
G̃A
(n)

]†
− G̃R

(n)

)
+ ... = 0. (3.100)

Given that we have free rein over the choice of size of our small parameter and that we require

the above equation to always be satisfied, we find that

[
G̃A
(n)

]†
= G̃R

(n), (3.101)

for any order n. An equivalent argument can be applied for the lesser/great relation. The

argument also applies to our self-energy expansion as in (3.77).

3.2 Meir-Wingreen formula for the electric current with non-adiabatic

corrections

In this section we derive a Meir-Wingreen type formula for the electric current through the

molecular junction following the ideas of Yigal Meir and Ned Wingreen in their seminal paper

[175]. Our derivation differs in that we allow nuclei within the junction to move through our

choice of classical coordinates, which produces non-adiabatic dynamical corrections to the

current due to the nuclear motion. Additionally, we allow for the coupling element between

the central region and the leads to be implicitly time dependent through the motion of the
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classical coordinate; this is explored thoroughly in Section 4.

To begin, we define the current leaving the α lead, denoted Iα, according to:

Iα = −e
〈

dN̂α

dt

〉
= −

〈
dN̂α

dt

〉
, (3.102)

where N̂α is the total electronic occupation operator of the α lead and e is the charge of an

electron. In atomic units e = 1. To avoid ambiguity in the following derivation, we will

explicitly consider the left current while an equivalent derivation will also apply for the right

current. Utilising the Heisenberg equation of motion for dN
dt yields

IL(t) = −ie
〈[

Ĥ(t), N̂L(t)
]〉

, (3.103)

where H is the Hamiltonian for the system. All operators here are time-dependent under the

Heisenberg representation. The Hamiltonian for our system is given by

Ĥ(t) = ∑
kα

εkαa†
kαakα + ∑

ij
hij(x[t])a†

i aj + ∑
kαi

[
tkαi(x[t])a†

kαai + tikα(x[t])a†
i akα

]
+ K(t) + U(x[t]),

(3.104)

while the total occupation operator for the left-lead is given by

N̂L(t) = ∑
kL

a†
kLakL. (3.105)

Note that the creation and annihilation operators here are also in the Heisenberg picture; we

have only neglected to show the time dependence explicitly for brevity. With some manipula-

tion, it is clear that the only non-zero terms arising from the commutator in (3.103) are going

to be from the leads coupling terms of the Hamiltonian. Our expression for the current then

becomes

IL(t) = −i

〈[
∑
kαi

[
tkαia†

kαai + tikαa†
i akα

]
, ∑

kL′
a†

kL′akL′

]〉
(3.106)

= −i

〈[
∑
kαi

∑
kL′

(
tkαi

[
a†

kαai, a†
kL′akL′

]
+ tikα

[
a†

i akα, a†
kL′akL′

])]〉
(3.107)

= −i ∑
kαi

∑
kL′

(
tkαi

〈[
a†

kαai, a†
kL′akL′

]〉
+ tikα

〈[
a†

i akα, a†
kL′akL′

]〉)
(3.108)

= −i ∑
kαi

∑
kL′

(
tkαi

〈
δkαkL′a†

kL′ai

〉
− tikα

〈
δkαkL′a†

i akL′
〉)

(3.109)

= −i ∑
kLi

(
tkLi

〈
a†

kLai

〉
− tikL

〈
a†

i akL

〉)
(3.110)

= ∑
kLi

(tkLi(t)G<
ikL(t, t)− tikL(t)G<

kLi(t, t)) . (3.111)

Here we have used the standard second quantization commutator relations as well as the
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general commutator identity:

[AB, CD] = A [B, C] D + [A, C] BD + CA [B, D] + C [A, D] B. (3.112)

In order to facilitate a transformation to the Wigner space where we can easily identify the

different system time-scales, it necessary to introduce an auxiliary function, I(t, t′), which

satisfies the property, I(t, t) = I(t) when t = t′. This will allow us to perform manipulations

on I in the Wigner space before letting t = t′ upon which we find the expression for the

current. We define

I(t, t′) = ∑
kαi

(
tkαi(t)G<

ikα(t, t′)− tikα(t)G<
kαi(t, t′)

)
. (3.113)

The Green’s functions here span both the central region and left lead. We make use of the

Dyson equation found in (2.131) to re-express this in terms of Green’s functions for the central

region where the influence of the leads is contained within the leads self-energies. Inputting

the Dyson expansion yields

I(t, t′) =
∫ ∞

−∞
dt1 ∑

kαij

(
tkαi(t)G<

ij (t, t1)tjkα(t1)GA
kαkα(t1, t′) + tkαi(t)GR

ij (t, t1)tjkα(t1)G<
kαkα(t1, t′)

− tikα(t)G<
kαkα(t, t1)tkαj(t1)GA

ji (t1, t′)− tikα(t)GR
kαkα(t, t1)tkαj(t1)G<

ji (t1, t′)
)

. (3.114)

The free-field Green’s functions here are given by Gkαkα = G0,kαkα. This is made clear through

the indices since the leads are always non-interacting. Now we introduce the self-energies

according to (2.168) and (2.171) to obtain

I(t, t′) =
∫ ∞

−∞
dt1Tr

{
G<(t, t1)ΣA

α (t1, t′) + GR(t, t1)Σ<
α (t1, t′) (3.115)

− Σ<
α (t, t1)GA(t1, t′)− ΣR

α (t, t1)G<(t1, t′)
}

, (3.116)

where the summation over matrix elements has been simplified to a trace over matrices. We

now find the equation in a form consisting of familiar quantities and are now in a position to

transition to the Wigner space. Apply the Wigner transform and use (3.4) to find∫ ∞

−∞
dτeiωτIα(t, t′) = Tr

{
e

1
2i (∂

G
T ∂Σ

ω−∂G
ω∂Σ

T)
(

G̃<Σ̃A
α + G̃RΣ̃<

α

)
− e

1
2i (∂

Σ
T ∂G

ω−∂Σ
ω∂G

T )
(

Σ̃<
α G̃A + Σ̃R

α G̃<
)}

,

(3.117)

where we have subdued the functional dependencies. Finally, we apply the inverse Wigner

transform and let t = t′ such that I(t, t) = I(t) which yields the final expression:

Iα(t) =
1

2π

∫ ∞

−∞
dωTr

{
e

1
2i (∂

G
T ∂Σ

ω−∂G
ω∂Σ

T)
(

G̃<Σ̃A
α + G̃RΣ̃<

α

)
− e

1
2i (∂

Σ
T ∂G

ω−∂Σ
ω∂G

T )
(

Σ̃<
α G̃A + Σ̃R

α G̃<
)}

.

(3.118)

We are now poised to find a perturbative solution to the current in a similar manner to the

Green’s functions in Section 3.1.6.
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3.2.1 Adiabatic Case

The adiabatic component of the electric current depends only on the instantaneous geometry

of the molecular bridge but disregards its motion. To solve for it, we once again input our

ansatzes according to (3.76) and (3.77) while considering the 0th order term in the expansion

of the exponentials. In doing so, we obtain

I(0)α =
1

2π

∫ ∞

−∞
dωTr

{
G̃<
(0)Σ̃

A
α(0) + G̃R

(0)Σ̃
<
α(0) − Σ̃<

α(0)G̃
A
(0) − Σ̃R

α(0)G̃
<
(0)

}
(3.119)

=
1
π

∫ ∞

−∞
dωReTr

{
G̃<
(0)Σ̃

A
α(0) + G̃R

(0)Σ̃
<
α(0)

}
. (3.120)

3.2.2 First Order Correction

The first order correction to the current will contain terms linear in ∂T. A simple application

of the chain rule tells us that each term is then proportional to the velocities of the classical

coordinates. Thus, the first order correction accounts for the effects of the slow but non-zero

nuclear motion on the electronic environment. We once again input our ansatzes and expand

the exponentials to the 1st order, and retain only the first order terms to find

I(1)α =
1

2π

∫ ∞

−∞
dωTr

{
G̃<
(1)Σ̃

A
α(0) + G̃R

(1)Σ̃
<
α(0) − Σ̃<

α(0)G̃
A
(1) − Σ̃R

α(0)G̃
<
(1) (3.121)

+ G̃<
(0)Σ̃

A
α(1) + G̃R

(0)Σ̃
<
α(1) − Σ̃<

α(1)G̃
A
(0) − Σ̃R

α(1)G̃
<
(0) (3.122)

+
1
2i

∂TG̃<
(0)∂ωΣ̃A

α(0) −
1
2i

∂ωG̃<
(0)∂TΣ̃A

α(0) +
1
2i

∂TG̃R
(0)∂ωΣ̃<

α(0) −
1
2i

∂ωG̃R
(0)∂TΣ̃<

α(0) (3.123)

+
1
2i

∂TΣ̃<
α(0)∂ωG̃A

(0) −
1
2i

∂ωΣ̃<
α(0)∂TG̃A

(0) +
1
2i

∂TΣ̃R
α(0)∂ωG̃<

(0) −
1
2i

∂ωΣ̃R
α(0)∂TG̃<

(0)

}
. (3.124)

The previously discussed conjugate transpose relations then allow us to simplify to

I(1)α =
1
π

∫ ∞

−∞
dωReTr

{
G̃<
(1)Σ̃

A
α(0) + G̃R

(1)Σ̃
<
α(0) + G̃<

(0)Σ̃
A
α(1) + G̃R

(0)Σ̃
<
α(1) (3.125)

+
1
2i

(
∂TG̃<

(0)∂ωΣ̃A
α(0) − ∂ωG̃<

(0)∂TΣ̃A
α(0) + ∂TG̃R

(0)∂ωΣ̃<
α(0) − ∂ωG̃R

(0)∂TΣ̃<
α(0)

)}
. (3.126)

We now have these equations for the current in the form of an integral over terms with known

expressions. We will generally take the integral numerically.
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3.3 A Langevin description in terms of Green’s functions

So far, we have derived perturbative solutions to the Green’s functions which have allowed us

to calculate the adiabatic current along with dynamical corrections due to the nuclear motion.

However, we do not yet know how to calculate the nuclear motion self-consistently due to in-

teractions with the electronic environment. To this end, we follow the ideas of Bode, Kusmin-

skiy, Egger and Von Oppen in Reference [152], in which they derive a Langevin description

for the classical motion whereby the Langevin coefficients are calculated via the electronic

Green’s functions. Our derivation expands on this by allowing for a position dependency in

the coupling element between the leads and central region.

3.3.1 Force due to the quantum environment

For generality, we will consider an arbitrary number of classical degrees of freedom describing

the nuclear motion. Our vector classical coordinates is then given by

x = [ν1, ν2, . . . , νn]
T . (3.127)

The force operator for the force acting on the classical coordinates due to the quantum envi-

ronment is given by

f̂ = −∇Ĥ, (3.128)

where ∇ = [∂ν1 , ∂ν2 , . . .]T and ∂ν1 is the partial derivative with respect to the classical coordi-

nate ν1, and so on. For our purposes, it is simpler to consider each nuclear degree of freedom

separately as each will have its own respective Langevin equation to describe its motion. The

force on an arbitrary degree of freedom ν is given by

f̂ν = −∂νĤ. (3.129)

Let’s now substitute in our expression for the full Hamiltonian Ĥ and retain only the terms

which are non-zero under the derivative:

f̂ν = −∂νU(x)− ∂νĤM(x)− ∂νĤLM(x)− ∂νĤRM(x), (3.130)

This then leads to

f̂ν = −∂νU −∑
ij

∂νhij(x)a†
i aj −∑

kαi

[
Λν

kαi(x)a†
kαai + Λν

ikα(x)a†
i akα

]
, (3.131)
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where we have introduced the quantity Λν
kαi = ∂νtkαi. Expressed in the Heisenberg picture,

the force operator becomes

f̂ν(t) = −∂νU −∑
ij

∂νhij(x[t])a†
i (t)aj(t)−∑

kαi

[
Λν

kαi(x[t])a†
kα(t)ai(t) + Λν

ikα(x[t])a†
i (t)akα(t)

]
.

(3.132)

3.3.2 Partitioning of the force

We now partition the quantum force operator into two separate contributions; a mean com-

ponent and a component which captures the quantum fluctuations about the mean:

f̂ν(t) = fν(t) + δ f̂ν(t), (3.133)

where f (t) = 〈 f̂ (t)〉. The mean force is also known as the Ehrenfest force and it will be

discussed in detail in chapter 7. So far, we have not yet made any assumptions beyond our

classical nuclei assumption.

3.3.3 Priming the mean force for a perturbative solution

The mean force is obtained by taking a quantum average of (3.132) which yields

fν(t) = −∂νU −∑
ij

∂νhij(t)
〈

a†
i aj

〉
−∑

kαi

[
Λν

kαi

〈
a†

kαai

〉
+ Λν

ikα

〈
a†

i akα

〉]
= −∂νU + i ∑

ij
∂νhij(t)G<

ji (t, t) + i ∑
kαi

[Λν
kαi(t)G

<
ikα(t, t) + Λν

ikα(t)G
<
kαi(t, t)] , (3.134)

where we have introduced our non-equilibrium Green’s functions. The approach now is

clear, we transform the mean force to the Wigner space where we can implement a pertur-

bative solution. To do so, we introduce an auxilliary two-time function Fν(t, t′) that satisfies

Fν(t, t) = fν(t). We then have

Fν(t, t′) = −∂νU + i ∑
ij

∂νhij(t)G<
ji (t, t′) + i ∑

kαi

[
Λν

kαi(t
′)G<

ikα(t, t′) + Λν
ikα(t)G

<
kαi(t, t′)

]
. (3.135)

The choices of t and t′ here are not arbitrary, this becomes important upon introducing the

leads self-energies. The system-leads coupling component introduces Green’s functions which

span the space of central region and leads. As performed similarly when deriving the current,



§3.3 A Langevin description in terms of Green’s functions 71

we can decompose these troublesome Green’s functions via (2.131) to find

Fν(t, t′) = −∂νU + i ∑
ij

∂νhij(t)G<
ji (t, t′)

+ i ∑
kαij

∫ ∞

−∞
dt1

[
Λν

kαi(t
′)G<

ij (t, t1)tjkα(t1)GA
kα(t1, t′) + Λν

kαi(t
′)GR

ij (t, t1)tjkα(t1)G<
kα(t1, t′)

+ Λν
ikα(t)G

<
kα(t, t1)tkαj(t1)GA

ji (t1, t′) + Λν
ikα(t)G

R
kα(t, t1)tkαj(t1)G<

ji (t1, t′)
]
. (3.136)

Cyclical permutation of the matrix elements is allowed here so that we can encompass the

influence of the leads in self-energy terms, yielding

Fν(t, t′) = −∂νU + i ∑
ij

∂νhij(t)G<
ji (t, t′)+ i ∑

ij

∫ ∞

−∞
dt1

[
G<

ij (t, t1)ΦA
ν,ji(t1, t′)+GR

ij (t, t1)Φ<
ν,ji(t1, t′)

+ Ψ<
ν,ij(t, t1)GA

ji (t1, t′) + ΨR
ν,ij(t, t1)G<

ji (t1, t′)
]
. (3.137)

Here we have introduced the self-energy like terms, Ψ and Φ, such that

ΨA/R/<
ν,ij (t, t′) = ∑

kα

Λν
ikα(t)G

A/R/<
kαkα (t, t′)tkαj(t′), (3.138)

ΦA/R/<
ν,ij (t, t′) = ∑

kα

tikα(t)GA/R/<
kαkα (t, t′)Λkαj(t′). (3.139)

This then explains our insistence on considering the expansion to the generalised self-energy

as in (3.28). Indeed, we will also have to consider a perturbative expansion to Ψ and Φ. Let’s

first simplify the sum over matrix elements to a trace over matrices:

Fν(t, t′) = Tr
{

i∂νh(t)G<(t, t′) + i
∫ ∞

−∞
dt1

[
G<(t, t1)ΦA

ν (t1, t′) + GR(t, t1)Φ<
ν (t1, t′)

+ Ψ<
ν (t, t1)GA(t1, t′) + ΨR

ν (t, t1)G<(t1, t′)
]}

. (3.140)

We are now in a position to apply the Wigner transform to both sides, where we find

∫ ∞

−∞
dτeiωτFν(t, t′) = Tr

{
ie

1
2i dh

T∂G
ω ∂νhG̃< + ie

1
2i (∂

Ψ
T ∂G

ω−∂Ψ
ω∂G

T )
(

Ψ̃<
ν G̃A + Ψ̃R

ν G̃<
)

+ ie
1
2i (∂

G
T ∂Φ

ω−∂G
ω∂Φ

T )
(

G̃<Φ̃A
ν + G̃RΦ̃<

ν

) }
. (3.141)

In solving for the first term on the right side, we have applied a method equivalent as in

solving for (3.70) while we have again applied (3.4) for the remaining terms. Finally, we apply

the inverse Wigner transform and let t = t′ to find our final equation:

fν(t) =
1

2π

∫ ∞

−∞
dωTr

{
ie

1
2i dh

T∂G
ω ∂νhG̃< + ie

1
2i (∂

Ψ
T ∂G

ω−∂Ψ
ω∂G

T )
(

Ψ̃<
ν G̃A + Ψ̃R

ν G̃<
)

+ ie
1
2i (∂

G
T ∂Φ

ω−∂G
ω∂Φ

T )
(

G̃<Φ̃A
ν + G̃RΦ̃<

ν

) }
. (3.142)



72 Non-adiabatic corrections to observables

3.3.4 Perturbative solution to the mean force

We apply our usual approach for the calculation of a perturbative solution. We consider our

previous ansatz for the Green’s functions as in (3.76) while we must now also apply equivalent

ansatzes for Ψ and Φ such that

Ψ̃ = Ψ̃(0) + Ψ̃(1) + ..., (3.143)

Φ̃ = Φ̃(0) + Φ̃(1) + .... (3.144)

We will once again truncate our expansions after the first order, such that we solve for an

adiabatic contribution to the force as well as a first order correction due to the nuclear motion.

3.3.4.1 Adiabatic force

Retaining only the 0th order terms in the exponential expansions as well as our ansatzes yields

the adiabatic force which depends only on the instantaneous nuclear geometry. It is given by

f(0),ν =
1

2π

∫ ∞

−∞
dωTr

{
i∂νhG̃<

(0)

}
− 1

π

∫ ∞

−∞
dωImTr

{
Ψ̃<

ν,(0)G̃
A
(0) + Ψ̃R

ν,(0)G̃
<
(0)

}
, (3.145)

where Ψ(0) and Φ(0) can be solved for via (3.28). We use ImTr to denote taking the imaginary

part of the trace. The adiabatic force can be thought of as a renormalisation to the classical

potential due to the presence of the electronic environment.

3.3.4.2 First order force

The first order force is obtained by substituting in our ansatzes and retaining only the first

order terms. Some simplification leads to

f(1),ν =
1

2π

∫ ∞

−∞
dωTr

{
i∂νhG̃<

(1)

}
− 1

π

∫ ∞

−∞
dωImTr

{
Ψ̃R

ν(0)G̃
<
(1) + Ψ̃<

ν(1)G̃
A
(0) + Ψ̃R

ν(1)G̃
<
(0) + Ψ̃<

ν(0)G̃
A
(1)

}
+

1
2π

∫ ∞

−∞
dωReTr

{
∂TΨ̃<

ν(0)∂ωG̃A
(0) + ∂TΨ̃R

ν(0)∂ωG̃<
(0) − ∂ωΨ̃<

ν(0)∂TG̃A
(0) − ∂ωΨ̃R

ν(0)∂TG̃<
(0)

}
.

(3.146)
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3.3.5 Viscosity coefficient tensor

Through some manipulation, we find that this first order force is the very frictional force

which we desire for our Langevin description! This is observed by utilising the chain rule

for the time derivatives in both the above expression and the expressions for the first order

Green’s function corrections in (3.86) and (3.89) where we see that

∂

∂T
= vν1

∂

∂ν1
+ vν2

∂

∂ν2
+ ...vνn

∂

∂νn
. (3.147)

Here, vν1 is the velocity of the ν1 classical coordinate and so on. It then becomes clear that the

total mean force acting on an arbitrary classical coordinate ν can be decomposed into a sum

of forces due to the motion in each individual classical coordinate, according to

f(1),ν = f(1),νν1
+ f(1),νν2

+ ... + f(1),ννn . (3.148)

Here, f(1),νν1
denotes the force acting in the ν direction due to motion in the ν1 direction. We

then define elements of the viscosity coefficient tensor according to

ξνν′ = −
f(1),νν′

vν′
. (3.149)

We can then express the vector of first order forces acting on each classical coordinate accord-

ing to 
f(1),ν1

f(1),ν2
...

f(1),νn

 = −


ξν1ν1 ξν1ν2 . . . ξν1νn

ξν2ν1 ξν2ν2 . . . ξν2νn

...
...

. . .
...

ξνnν1 ξνnν2 . . . ξνnνn




vν1

vν2

...

vνn

 , (3.150)

f(1) = −ξ̂v. (3.151)

We use the hat on ξ̂ to denote that it is a tensor in the space of classical coordinates.

3.3.5.1 Symmetric and antisymmetric components

The diagonal components of ξ̂ act as a conventional viscosity, directly opposing the motion

of the given classical coordinate. However, the off-diagonal components introduce non-trivial

forces which are not so well behaved. In order to analyse this further, the viscosity coefficient

tensor can be split into symmetric and antisymmetric components as
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ξ̂ =
1
2

(
ξ̂ + ξ̂T + ξ̂ − ξ̂T

)
(3.152)

= ξ̂s + ξ̂a, (3.153)

where

ξ̂s =
1
2

(
ξ̂ + ξ̂T

)
, ξ̂a =

1
2

(
ξ̂ − ξ̂T

)
. (3.154)

We observe that the antisymmetric component produces a force which always acts orthogonal

to the motion through the space of classical coordinates and is often referred to as a "Lorentz-

like" force due to this. This property can be observed by considering the dot product of the

antisymmetric force and the velocity vector:

f(1),a · v = (−ξ̂av) · v (3.155)

= v · (ξ̂av) (3.156)

= −v · f(1),a, (3.157)

∴ f(1),a · v = −f(1),a · v (3.158)

= 0, (3.159)

where we have used ξ̂T
a = −ξ̂a. Clearly then, the antisymmetric component does no work on

the system but can produce interesting dynamics.

3.3.6 Stochastic force

We recall that we chose to partition our force according to

f̂ν(t) = fν(t) + δ f̂ν(t). (3.160)

Our perturbative treatment of the mean force was completed in the previous section. We now

must consider the quantum fluctuations about the mean. We know from its definition that

the mean of δ f̂ (t) must be zero. In our work, we also assume a priori that the stochastic force

is a Gaussian process; a result which emerges naturally in the classical limit [162]. Thus, the

stochastic force is entirely quantified according to

〈δ f̂ν(t)〉 = 0, 〈δ f̂ν(t)δ f̂ν′(t′)〉 = Dνν′(t, t′), (3.161)

where we have introduced the exact diffusion coefficient D. The expressions on the left hand

side of the above are also known as the first and second moments, respectively. The assump-

tion of Gaussianity implies that δ f̂ (t) is entirely defined by these two moments while any
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higher moments go to zero. The above autocorrelation function in general corresponds to

coloured noise in the stochastic force.

3.3.6.1 White-noise assumption for the diffusion

Coloured noise is notoriously difficult to simulate computationally, especially in the case of

an inhomogeneous environment such as ours. To alleviate this difficulty, the white-noise

assumption is often applied. Here, we assume that the exact, coloured-noise diffusion can be

replaced by a Markovian, white-noise equivalent:

D(t, t′) ≡ Dw(T)δ(t− t′), (3.162)

where we have introduced the white-noise diffusion Dw. The question remains, how do we

calculate Dw to best approximate the dynamics produced by D(t, t′)? In an attempt to answer

this, we consider a pedagogical example in which we neglect all forces except the stochastic

force. The governing equation of motion is then given by

m
dv
dt

= δ f (t). (3.163)

This is solved for the velocity at time t according to

v(t) = v(0) +
1
m

∫ t

0
dt′δ f (t′). (3.164)

The change in kinetic energy of the classical coordinate is then found by squaring the above

and taking an average over the fluctuations such that we obtain

∆KE =
1

2m

∫ t

0
dt′
∫ t

0
dt′′D(t′, t′′). (3.165)

Now, we implement the white noise approximation according to (3.162) and solve for an

equation for Dw which yields the same change in kinetic energy as produced when using the

exact diffusion. Making the transformation from (t′, t′′) to (T, τ) yields

∆KE =
1

2m

∫ t

0
dT
∫ t

−t
dτDw(T)δ(τ) (3.166)

=
1

2m

∫ t

0
dTDw(T). (3.167)

By enforcing that (3.167) and (3.165) are equal, we find

∫ t

0
dTDw(T) =

∫ t

0
dT
∫ t

−t
dτD(T, τ). (3.168)
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Application of d
dt to both sides and using the symmetry property, D(T, τ) = D(T,−τ) (this

property is a consequence of δ f being a classical force and is explained in more detail in

section 7.3.3), then yields

Dw(t) =
∫ t

−t
dτD(t, τ) + 2

∫ t

0
dTD(T, t). (3.169)

Finally, we assume that time t is sufficiently large such that D(T, t) is approximately zero.

This amounts to assuming that the correlations in the stochastic force decay to zero over

time intervals of t or longer. The second term disappears, while we can safely extend the

integration region of the first term from −∞→ ∞, leaving us with our final expression for the

white-noise diffusion coefficient:

Dw(t) =
∫ ∞

−∞
dτD(t, τ). (3.170)

Clearly, the white noise approximation in this case will produce the same observable change in

kinetic energy over any time-scale. However, the inclusion of a frictional force and an external

potential will limit the validity of the approximation to finite time-scales dependent on their

respective strengths. This is because these forces may produce an appreciable effect on the

dynamics over the time-scales for which the stochastic force is correlated. We will analyse the

validity of the white-noise approximation in detail in chapter 7. Our task is now to calculate

Dw in terms of the Green’s functions, as given by

Dw(T) =
∫ ∞

−∞
dτ〈δ f̂ (t)δ f̂ (t′)〉. (3.171)

We will not encounter the exact diffusion coefficient again until chapter 7. Until that point,

when referring to the diffusion coefficient we will be talking about the white-noise diffusion

coefficient which we will denote simply as D for brevity.

3.3.6.2 Calculating the white-noise diffusion

We now calculate the diffusion coefficient tensor with which we will have all the required

ingredients to simulate the classical dynamics according to a Langevin equation. We need to

start by finding an expression for the autocorrelation function. Let’s take (3.160) and square it

for arbitrary times and classical degrees of freedom:

〈 f̂ν(t) f̂ν′(t′)〉 = 〈 fν(t) fν′(t′)〉+ 〈δ f̂ν(t)δ f̂ν′(t′)〉+ fν(t)〈δ f̂ν′(t′)〉+ 〈δ f̂ν(t)〉 fν′(t′) (3.172)

= fν(t) fν′(t′) + 〈δ f̂ν(t)δ f̂ν′(t′)〉. (3.173)
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The autocorrelation function is then given by

〈δ f̂ν(t)δ f̂ν′(t′)〉 = 〈 f̂ν(t) f̂ν′(t′)〉 − fν(t) fν′(t′). (3.174)

We already have expressions for f̂ν(t) and fν(t) given in (3.132) and (3.134), respectively.

The first term on the right hand side of (3.174) will result in quantum averages of creation and

annihilation operators of the form

〈a†
AaBa†

CaD〉 = 〈a†
AaB〉〈a†

CaD〉+ 〈a†
AaD〉〈aBa†

C〉, (3.175)

where the right hand side is obtained via a Wick decomposition. In a serendipitous twist of

fate, the terms involving no permutation of the operators will cancel exactly with the terms

produced by fν(t) fν′(t′) and so we only need to consider the terms involving a permutation.

As a result, (3.174) takes the form

〈δ f̂ν(t)δ f̂ν(t′)〉 = ∑
ijī j̄

∂νhij∂ν′hī j̄〈d†
i d j̄〉〈djd†

ī 〉

+ ∑
ikαīk̄α

(
Λν

kαiΛ
ν′

k̄αī〈d
†
kαdī〉〈did†

k̄α
〉+ Λν

ikαΛν′

īk̄α
〈d†

i dk̄α〉〈dkαd†
ī 〉

+ Λν
kαiΛ

ν′

īk̄α
〈d†

kαdk̄α〉〈did†
ī 〉+ Λν

ikαΛν′

k̄αī〈d
†
i dī〉〈dkαd†

k̄α
〉
)

+ ∑
ijīk̄α

(
∂νhijΛν′

k̄αī〈d
†
i dī〉〈djd†

k̄α
〉+ ∂νhijΛν′

īk̄α
〈d†

i dk̄α〉〈djd†
ī 〉
)

+ ∑
ī j̄ikα

(
Λν

kαi∂ν′hī j̄〈d†
kαd j̄〉〈did†

ī 〉+ Λν
ikα∂ν′hī j̄〈d†

i d j̄〉〈dkαd†
ī 〉
)

. (3.176)

In an attempt to somewhat simplify the notation, an index here also encompasses a time; an

index without an overbar denotes time t while an index with an overbar denotes time t′ so

that we need not show the time dependence explicitly. Note that i and ī do not necessarily

index the same state, they are entirely different indices. Appropriate letters are hard to come

by! We can now substitute in our Green’s functions to obtain

〈δ f̂ν(t)δ f̂ν′(t′)〉 = ∑
ijī j̄

∂νhij∂ν′hī j̄G
<
j̄i G>

jī

+ ∑
ikαīk̄α

(
Λν

kαiΛ
ν′

k̄αīG
<
īkα

G>
ik̄α

+ Λν
ikαΛν′

īk̄α
G<

k̄αiG
>
kαī

+ Λν
kαiΛ

ν′

īk̄α
G<

k̄αkα
G>

iī + Λν
ikαΛν′

k̄αīG
<
īi G>

kαk̄α

)
+ ∑

ijīk̄α

(
∂νhijΛν′

k̄αīG
<
īi G>

jk̄α
+ ∂νhijΛν′

īk̄α
G<

k̄αiG
>
jī

)
+ ∑

ī j̄ikα

(
Λν

kαi∂ν′hī j̄G
<
j̄kα

G>
iī + Λν

ikα∂ν′hī j̄G
<
j̄i G>

kαī

)
. (3.177)

Once again, we have Green’s functions spanning the system space and the leads. Also note
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that we have Green’s functions Gkαk̄α which will contain terms which span over both leads.

These can all be decomposed according to the Dyson equation in (2.131). Doing so is ardu-

ous and requires significant attention to detail. However, after doing this and subsequently

introducing our self-energy terms, we find

〈δ f̂ν(t)δ f̂ν′(t′)〉 = Tr
{

∂νh(t)G>(t, t′)∂ν′h(t′)G<(t′, t)

+
∫ ∞

−∞
dt1dt2

(
G>(t, t2)ΦA

ν′(t2, t′)G<(t′, t1)ΦA
ν (t1, t) (3.178)

+ GR(t, t2)Φ>
ν′(t2, t′)G<(t′, t1)ΦA

ν (t1, t)

+ G>(t, t2)ΦA
ν′(t2, t′)GR(t′, t1)Φ<

ν (t1, t) + GR(t, t2)Φ>
ν′(t2, t′)GR(t′, t1)Φ<

ν (t1, t)

+ Ψ>
ν (t, t2)GA(t2, t′)Ψ<

ν′(t
′, t1)GA(t1, t) + ΨR

ν (t, t2)G>(t2, t′)Ψ<
ν′(t
′, t1)GA(t1, t)

+ Ψ>
ν (t, t2)GA(t2, t′)ΨR

ν′(t
′, t1)G<(t1, t) + ΨR

ν (t, t2)G>(t2, t′)ΨR
ν′(t
′, t1)G<(t1, t)

+ G>(t, t′)ζ<ν′ν(t
′, t) + ζ>νν′(t, t′)G<(t′, t)

+ G>(t, t′)Ψ<
ν′(t
′, t1)GA(t1, t2)ΦA

ν (t2, t) + Ψ>
ν (t, t1)GA(t1, t2)ΦA

ν′(t2, t′)G<(t′, t)

+ G>(t, t′)ΨR
ν′(t
′, t1)G<(t1, t2)ΦA

ν (t2, t) + ΨR
ν (t, t1)G>(t1, t2)ΦA

ν′(t2, t′)G<(t′, t)

+ G>(t, t′)ΨR
ν′(t
′, t1)GR(t1, t2)Φ<

ν (t2, t) + ΨR
ν (t, t1)GR(t1,t2)Φ>

ν′(t2, t′)G<(t′, t)
)

+
∫ ∞

−∞
dt1

(
G>(t, t1)ΦA

ν′(t1, t′)G<(t′, t)∂νh(t) + GR(t, t1)Φ>
ν′(t1, t′)G<(t′, t)∂νh(t)

+ G>(t, t′)Ψ<
ν′(t
′, t1)GA(t1, t)∂νh(t) + G>(t, t′)ΨR

ν′(t
′, t1)G<(t1, t)∂νh(t)

+ G>(t, t′)∂ν′h(t′)G<(t′, t1)ΦA
ν (t1, t) + G>(t, t′)∂ν′h(t′)GR(t′, t1)Φ<

ν (t1, t)

+ Ψ>
ν (t, t1)GA(t1, t′)∂ν′h(t′)G<(t′, t) + ΨR

ν (t, t1)G>(t1, t′)∂ν′h(t′)G<(t′, t)
)}

.

(3.179)

In deriving this rather cumbersome expression, we have collapsed the summations over in-

dices into a trace and cyclically permuted terms such that each group starts and ends at time t.

Additionally, we have introduced another self-energy quantity ζ, whose elements are defined

as

ζνν′,ij(t, t′) = ∑
kα

Λν
ikα(t)Gkαkα(t, t′)Λν′

kαj(t
′). (3.180)

Let’s not forget that we wish to find the diffusion coefficient from this equation:

Dνν′(T) =
∫ ∞

−∞
dτ
〈
δ fν(t)δ fν′(t′)

〉
. (3.181)

We would like to be able to calculate D via our Green’s functions and self-energies in the

Wigner space. The right hand side here is very nearly a Wigner transform and can be coerced

into a full Wigner transform with some work. However, the method applied depends on which

term in (3.179) we consider. There are three different possibilities; terms with no integrals,

terms with one integral over time, and terms with two integrals over time. We consider each

case separately. Before we begin, we note that we will consider the diffusion coefficient to



§3.3 A Langevin description in terms of Green’s functions 79

be wholly adiabatic. This means that our perturbative expansions will be truncated after the

0th order. This is for pragmatic purposes, since the Langevin equation and its surrounding

context assumes the diffusion coefficient to be independent of the motion of the Brownian

particle. In any case the inclusion of, for example, a velocity dependent term in the diffusion

coefficient would presumably have little effect since the velocity would average to zero over

any relevant experimental time scales.

Double Integral:

Let’s consider an arbitrary term from (3.179) with two integrals, which we will denote by a

subscript A. The same derivation will apply to all other terms with two integrals. We have〈
δ f̂ν(t)δ f̂ν′(t′)

〉
A
=
∫ ∞

−∞
dt1dt2G>(t, t2)ΦA

ν′(t2, t′)G<(t′, t1)ΦA
ν (t1, t), (3.182)

and

DA,νν′ =
∫ ∞

−∞
dτ
∫ ∞

−∞
dt1dt2G>(t, t2)ΦA

ν′(t2, t′)G<(t′, t1)ΦA
ν (t1, t) (3.183)

=
∫ ∞

−∞
dτA(t, t′)B(t′, t) (3.184)

=
∫ ∞

−∞
dτA(T, τ)B(T,−τ), (3.185)

where we have simply grouped together consecutive terms and included their respective in-

tegrals. Next, we are free to introduce an integral over a Dirac-delta function so that we

obtain

DA,νν′ =
∫ ∞

−∞
dτ
∫ ∞

−∞
dτ1δ(τ + τ1)A(T, τ)B(T,−τ) (3.186)

=
∫ ∞

−∞
dτ
∫ ∞

−∞
dτ1δ(τ + τ1)A(T, τ)B(T, τ1) (3.187)

=
1

2π

∫ ∞

−∞
dω

∫
dτ
∫ ∞

−∞
dτ1eiω(τ+τ1)A(T, τ)B(T, τ1) (3.188)

=
1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dτeiωτ A(T, τ)

∫ ∞

−∞
dτ1eiωτ1 B(T, τ1) (3.189)

=
1

2π

∫ ∞

−∞
dωÃ(T, ω)B̃(T, ω), (3.190)

where we have used the following Dirac-Delta function identity:

δ(x− a) =
1

2π

∫ ∞

−∞
dωeiω(x−a).
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Then the Wigner convolution theorem in (3.4) can be applied to calculate Ã and B̃. For Ã, we

find

Ã(T, ω) =
∫ ∞

−∞
dτeiωτ

∫ ∞

−∞
dt2G>(t, t2)ΦA

ν′(t2, t′) (3.191)

= e
1
2i{∂G

T ∂Φ
ω−∂G

ω∂Φ
T}G̃>(T, ω)Φ̃A

ν′(T, ω) (3.192)

= G̃>
(0)(T, ω)Φ̃A

(0),ν′(T, ω), (3.193)

since we only consider the 0th order. Similarly applying this logic to B̃, we find the contribution

to the diffusion coefficient from this entire term to be

DA,νν′ =
1

2π

∫ ∞

−∞
dωG̃>

(0)Φ̃
A
(0),ν′ G̃

<
(0)Φ̃

A
(0),ν. (3.194)

Single Integral:

Consider the single integral term〈
δ f̂ν(t)δ f̂ν′(t′)

〉
B
=
∫ ∞

−∞
dt1∂νh(t)G>(t, t1)ΦA

ν′(t1, t′)G<(t′, t). (3.195)

In this case it is convenient for us to cyclically permute the terms under the trace to arrive at〈
δ f̂ν(t)δ f̂ν′(t′)

〉
B
=
∫ ∞

−∞
dt1G>(t, t1)ΦA

ν′(t1, t′)G<(t′, t)∂νh(t). (3.196)

The corresponding diffusion coefficient is given by

DB,νν′ =
∫ ∞

−∞
dτ
∫ ∞

−∞
dt1G>(t, t1)ΦA

ν′(t1, t′)G<(t′, t)∂νh(t) (3.197)

=
∫ ∞

−∞
dτA(t, t′)B(t′, t), (3.198)

where the integral over t1 has been grouped inside of A. Performing an equivalent derivation

as in the previous case yields

DB,νν′ =
1

2π

∫ ∞

−∞
dωÃ(T, ω)B̃(T, ω). (3.199)

We can once again find Ã by utilising the Wigner convolution theorem:

Ã(T, ω) =
∫ ∞

−∞
dt1G̃>

(0)(T, ω)Φ̃A
(0),ν′(T, ω). (3.200)
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However, given that B̃ does not contain an integral, we cannot use our Wigner convolution

theorem. We instead revert to the derivation performed in (3.68)-(3.70) to find

B̃(T, ω) = e
1
2i ∂G

ωdh
T G̃<(T, ω)∂νh(T) (3.201)

= G̃<
(0)(T, ω)∂νh(T), (3.202)

Resultantly, we find

DB,νν′ =
1

2π

∫ ∞

−∞
dωG̃>

(0)Φ̃
A
(0),ν′ G̃

<
(0)∂νh. (3.203)

No Integral:

The only term of this form in our expression for
〈

δ f̂ν(t)δ f̂ν′(t′)
〉

is given by

〈
δ fν(t)δ fν(t′)

〉
C = ∂νh(t)G>(t, t′)∂ν′h(t′)G<(t′, t). (3.204)

Once again, we find

DC,νν′ =
∫ ∞

−∞
dτ∂νh(t)G>(t, t′)∂ν′h(t′)G<(t′, t) (3.205)

=
∫ ∞

−∞
dτA(t, t′)B(t′, t) (3.206)

=
1

2π

∫ ∞

−∞
dωÃ(T, ω)B̃(T, ω), (3.207)

A and B each contain no integrals and so we again apply the method of (3.68)-(3.70) to even-

tually find

DC,νν′ =
1

2π

∫ ∞

−∞
dω∂νhG̃>

(0)∂ν′hG̃<
(0). (3.208)
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Full Expression:

Applying the derivations outlined above to each term individually, we find the following total

expression for Dνν′ :

Dνν′ =
1

2π

∫ ∞

−∞
dωTr

{
∂νhG̃>

(0)∂ν′hG̃<
(0) + G̃>

(0)Φ̃
A
(0),ν′ G̃

<
(0)Φ̃

A
(0),ν + G̃R

(0)Φ̃
>
(0),ν′ G̃

<
(0)Φ̃

A
(0),ν

+ G̃>
(0)Φ̃

A
(0),ν′ G̃

R
(0)Φ̃

<
(0),ν + G̃R

(0)Φ̃
>
(0),ν′ G̃

R
(0)Φ̃

<
(0),ν

+ Ψ̃>
(0),νG̃A

(0)Ψ̃
<
(0),ν′ G̃

A
(0) + Ψ̃R

(0),νG̃>
(0)Ψ̃

<
(0),ν′ G̃

A
(0)

+Ψ̃>
(0),νG̃A

(0)Ψ̃
R
(0),ν′ G̃

<
(0) + Ψ̃R

(0),νG̃>
(0)Ψ̃

R
(0),ν′ G̃

<
(0) + G̃>

(0)ζ̃
<
(0),ν′ν + ζ̃>(0),νν′ G̃

<
(0)

+ G̃>
(0)Ψ̃

<
(0),ν′ G̃

A
(0)Φ̃

A
(0),ν + Ψ̃>

(0),νG̃A
(0)Φ̃

A
(0),ν′ G̃

<
(0) + G̃>

(0)Ψ̃
R
(0),ν′ G̃

<
(0)Φ̃

A
(0),ν

+ Ψ̃R
(0),νG̃>

(0)Φ̃
A
(0),ν′ G̃

<
(0) + G̃>

(0)Ψ̃
R
(0),ν′ G̃

R
(0)Φ̃

<
(0),ν + Ψ̃R

(0),νG̃R
(0)Φ̃

>
(0),ν′ G̃

<
(0)

+ ∂νh
[

G̃>
(0)Φ̃

A
(0),ν′ G̃

<
(0) + G̃R

(0)Φ̃
>
(0),ν′ G̃

<
(0) + G̃>

(0)Ψ̃
<
(0),ν′ G̃

A
(0) + G̃>

(0)Ψ̃
R
(0),ν′ G̃

<
(0)

]
+∂ν′h

[
G̃<
(0)Φ̃

A
(0),νG̃>

(0) + G̃R
(0)Φ̃

<
(0),νG̃>

(0) + G̃<
(0)Ψ̃

>
(0),νG̃A

(0) + G̃<
(0)Ψ̃

R
(0),νG̃>

(0)

]}
. (3.209)

3.3.7 Summary

We have derived an equation for the quantum force operator which acts on an arbitrary

classical vibrational coordinate ν as

f̂ν(t) = f(0),ν(t)−∑
ν′

ξνν′vν′ + δ f̂ν(t), (3.210)

where we have explicit expressions for f(0) and ξ while δ f̂ is quantified according to a diffu-

sion coefficient D. The last step is to map this equation onto a classical equation of motion

where the forces are no longer quantum mechanical operators, but physical quantities. Our

governing equation of motion for the vibrational dynamics is then, finally, given by

fν(t) = f(0),ν(t)−∑
ν′

ξνν′vν′ + δ fν(t). (3.211)

Since the stochastic force is now classical, the diffusion coefficient which quantifies it must

be real. This is not an issue for the white-noise diffusion as given by (3.209), but the exact

diffusion which we encounter in chapter 7 is not strictly real and special care must be taken.



Chapter 4

Motion on the Leads Interface

This chapter contains material that has been previously published in the following journal

article:

Current-induced atomic motion, structural instabilities, and negative temperatures on molecule-electrode

interfaces in electronic junctions,

R.J. Preston, V.F. Kershaw, D.S. Kosov, Phys. Rev. B, 101, 155415 (2019)

4.1 Motivation

With a handful of exceptions [95, 100, 127, 147, 176, 177], theoretical approaches to dynam-

ics in molecular junctions largely focus on nuclear motion localized in the central region;

however, the motion at the molecule-electrode interface is at least equally important. Large

amplitude conformational changes such as chemical reactions, switching between different

geometries, localized heating, and electromigration of atoms predominantly occur on the in-

terface in molecular electronic junctions.

Our goal is to apply our theory to the dynamics of nuclear motion on molecule-electrode

interfaces. In doing so, we observe the emergence of negative viscosity coefficients in the

interface region which leads to eventual device breakdown. Additionally, we observe the nat-

ural formation of bi-stable nuclear potentials which leads to stochastic switching behaviour in

the measured electric current, also known as telegraph noise. The telegraph noise is quanti-

fied according to the Fano factor. In bi-stable regimes, we observe strongly super-Poissonian

noise where the Fano factor reaches values larger than 300. The Fano factor can be used in

experimental systems to probe the otherwise difficult to observe nuclear dynamics.

This chapter is organized as follows: Section 4.2 describes the model and relevant theory, the

results of calculations are presented in Section 4.3, and the chapter is summarized in Section

4.4.

83
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4.2 Theory

4.2.1 System Hamiltonian and relevant equations of motion

4.2.1.1 System Hamiltonian

We will consider a commonly realised experimental geometry in which the valence state of

the molecular bridge which allows for electron transport is near to one lead; in our case the

left lead. The single classical degree of freedom present in the model will represent the dis-

placement of the valence state from the left lead whereby a classical dependence will emerge

in our Hamiltonian through the coupling to the left lead. Additionally, a classical dependence

is present in the energy of the valence state itself due to the electric fields produced by the

leads. Our general tunnelling junction Hamiltonian as discussed in Section 2.1 is given by

H(t) = HM + HL + HR + HML + HMR + Hcl . (4.1)

The molecular bridge is modelled by a single molecular orbital with energy ε(x) as

HM = ε(x)a†a, (4.2)

where x is the classical time-dependent coordinate. This x-dependence of the molecular orbital

comes from the voltage drop across the junction

ε(x) = ε0 + E(x− x0) + V0, (4.3)

where

E = (µL − µR)/(LL − LR), (4.4)

is the electric field across the junction and

V0 = µL − LL(µL − µR)/(LL − LR). (4.5)

is the x-independent energy level shift. Here we use LL and LR to denote the positions of

the left and right leads, while µL and µR are the left and right lead chemical potentials.

The equilibrium bond-length is denoted by x0. The applied voltage bias V will be applied

symmetrically such that µL = V/2 and µR = −V/2 in all our calculations.

The tunnelling interaction is

HLM(t) + HRM(t) = ∑
kαi

tkαi(t)a†
kαai + h.c. (4.6)
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where the tunneling amplitudes tkαi(t) are time-dependent tunneling amplitudes. We assume

that the coupling to the right electrode is rigid and the coupling to the left depends on the

bond-length:

tkα(x) =

{
tLs(x), if α = L

tR, if α = R
(4.7)

where the function s(x) is taken in the form of the overlap between two 1s orbitals separated

by distance x as given by

s(x) = e−x(1 + x + x2/3), (4.8)

and tL and tR are two constants. This choice of coordinate dependence mimics the behavior

of a generic isotropic chemical bond [169].

The left and right leads of the molecular junction are macroscopic reservoirs of non-interacting

electrons

HL + HR = ∑
kα

εkαa†
kαakα, (4.9)

where a†
kα creates an electron in the single-particle state k of the α = L/R (left/right) lead with

energy εkα, and akα is the corresponding electron annihilation operator.

Finally, the classical Hamiltonian Hcl is

Hcl(t) =
p2

2m
+ U(x), (4.10)

where p is the classical momentum, m is the mass associated with the classical degree of

freedom, and U(x) is the potential. The classical potential U(x) is taken to be harmonic

U(x) =
1
2

k(x− x0)
2, (4.11)

where x0 is the equilibrium bond-length and k is the spring constant associated with the bond

strength.

4.2.1.2 Simplifications to the Green’s functions and self-energies

The consideration of only a single electronic level in the central region allows us to greatly sim-

plify the form of the main dynamical quantities since the Green’s functions and self-energies

become scalars in this case. The simplifications are generally straight forward and so we

will merely present the simplified form here rather than showing each step explicitly. The
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adiabatic self-energy components in the Wigner space are given by

Σ̃A
(0),α(T) =

i
2

Γα(T), Σ̃R
(0),α(T) = −

i
2

Γα(T), Σ̃<
(0),α(ω, T) = i fα(ω)Γα(T). (4.12)

Meanwhile, the adiabatic self-energy-like terms, Ψ̃(0), Φ̃(0) and ζ̃(0), can be found by noting

that ∂xtkL(x) = tL∂xs(x) as per our definition for the tunnelling amplitude. Then we can say

that

∂xtkL(x) =
∂xs(x)
s(x)

tkL(x). (4.13)

This allows us to express the self-energy-like terms in terms of the self-energies according to

Ψ̃(0),α = Φ̃(0),α =
∂xs(x)
s(x)

Σ̃(0),α, ζ̃(0),α =

(
∂xs(x)
s(x)

)2

Σ̃(0),α, (4.14)

when α = L, while each term goes to zero when α = R. Evaluating (3.28) for the appropriate

choices of A and B readily allow us to obtain the first order corrections to the self-energy

terms due to the motion of the classical coordinate. These are given by

Σ̃(1),α = 0, Ψ̃(1),α = −Φ̃(1),α =
ẋ
2i

(
∂2

xωΨ̃(0),α − 2∂ω ζ̃(0),α

)
. (4.15)

The adiabatic Green’s functions take the familiar form

G̃A/R
(0) =

(
ω− h− Σ̃A/R

(0)

)−1
, G̃</>

(0) = G̃R
(0)Σ̃

</>
(0) G̃A

(0), (4.16)

where the inverse here is now just a multiplicative inverse. The first order corrections to the

Green’s functions can be simplified to

G̃A/R
(1) = 0, G̃<

(1) = −iG̃R
(0)Re

{
G̃<
(0)B

A + G̃R
(0)∂TΣ̃<

(0) + B
RG̃R

(0)∂ωΣ̃<
(0)

}
G̃A
(0). (4.17)

4.2.1.3 Simplifications to the Langevin Coefficients

The Langevin coefficients which dictate the dynamics of the classical coordinate can also be

simplified in the case of a single electronic level. The adiabatic force is given by

f(0)(t) =
iE
2π

∫
dωG̃<

(0) −
1
π

∫
dωIm

{
Ψ̃<

(0)G̃
A
(0) + Ψ̃R

(0)G̃
<
(0)

}
, (4.18)

while the first order force which yields the viscosity coefficient is

f(1)(t) =
iE
2π

∫
dωG̃<

(1) −
1
π

∫
dωIm

{
Ψ̃R

(0)G̃
<
(1) + Ψ̃<

(1)G̃
A
(0)

}
+

1
2π

∫
dωRe

{
∂TΨ̃<

(0)∂ωG̃A
(0) − ∂ωΨ̃<

(0)∂TG̃A
(0)

}
. (4.19)
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Finally, the diffusion coefficient is

D(t) =
1

2π

∫
dω
(
E2G̃>

(0)G̃
<
(0) + G̃>

(0)ζ̃
<
(0) + ζ̃>(0)G̃

<
(0)

+ 2Re
{
E
(

G̃<
(0)Ψ̃

>
(0)G̃

A
(0) + G̃>

(0)Ψ̃
<
(0)G̃

A
(0) + 2G̃>

(0)Ψ̃
R
(0)G̃

<
(0)

)
+ Ψ̃>

(0)G̃
A
(0)Ψ̃

<
(0)G̃

A
(0)

})
. (4.20)

4.2.1.4 Simplifications to the electric current

The adiabatic electric current through the junction is given by

I(0)α (t) =
1
π

∫
dωRe

{
G̃<
(0)Σ̃

A
(0),α + G̃R

(0)Σ̃
<
(0),α

}
, (4.21)

while the first order correction simplifies to

I(1)α (t) =
1
π

∫
dω Re

{
G̃<
(1)Σ̃

A
(0),α

}
+

1
2π

∫
dωIm

{
∂TG̃R

(0)∂ωΣ̃<
(0),α − ∂ωG̃R

(0)∂TΣ̃<
(0),α

}
. (4.22)

4.2.2 Fluctuation-dissipation theorem

As we saw in Section 1.4.1, the temperature of the Brownian particle emerges through the

balance of the excitations due to the stochastic force and the dissipation of energy due to the

viscosity coefficient according to

T =
D
2ξ

. (4.23)

In the absence of a voltage bias over the junction, we expect the temperature of the classical

coordinate to equilibrate to the temperature of the leads. The first test for the model is to

then take our explicit expressions for D and ξ in equilibrium and observe if (4.23) is satisfied,

where T is the temperature of the leads. To do this, we must first simplify our expressions

to be in terms of the base parameters of the model; a tedious but simple process which we

don’t demonstrate explicitly. For the benefit of generality we show the result in the case of an

arbitrary number of classical degrees of freedom, which can be easily simplified to the case of
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a single classical degree of freedom. The first order force is given by

f(1),ν =
1

4π ∑
ν′

vν′

∫
dω
([(

Υ2
L + ΥLΥR

)
∂ω fL +

(
Υ2

R + ΥLΥR
)

∂ω fR
]

∂ν′h∂νh

+
(
Υ2

L + ΥLΥR
) ∂ν′Γ

Γ
∂νh [∂ω fL(ω− h)− fL] +

(
Υ2

R + ΥLΥR
) ∂ν′Γ

Γ
∂νh [∂ω fR(ω− h)− fR]

+
Υ2

Γ
∂νh (∂ν′ΓL fL + ∂ν′ΓR fR) + Υ2(ω− h)∂ν′h

(
∂ω fL

∂νΓL

Γ
+ ∂ω fR

∂νΓR

Γ

)
+

Υ2

2

(
1
Υ

[
∂ω fL

∂νΓL∂ν′ΓL

ΓL
+ ∂ω fR

∂νΓR∂ν′ΓR

ΓR

]
+

∂ν′Γ
Γ

[
1
Υ
− 1

2
Γ
]
[∂νΓL∂ω fL + ∂νΓR∂ω fR]

))
,

(4.24)

where we have defined the quantity

Υα =
Γα

(ω− h)2 + Γ2

4

. (4.25)

An element of the viscosity tensor can then be found according to

ξνν′ = −
f(1),νν′

vν′
, (4.26)

such that we have

ξνν′ = −
1

4π

∫
dω
([(

Υ2
L + ΥLΥR

)
∂ω fL +

(
Υ2

R + ΥLΥR
)

∂ω fR
]

∂ν′h∂νh

+
(
Υ2

L + ΥLΥR
) ∂ν′Γ

Γ
∂νh [∂ω fL(ω− h)− fL] +

(
Υ2

R + ΥLΥR
) ∂ν′Γ

Γ
∂νh [∂ω fR(ω− h)− fR]

+
Υ2

Γ
∂νh (∂ν′ΓL fL + ∂ν′ΓR fR) + Υ2(ω− h)∂ν′h

(
∂ω fL

∂νΓL

Γ
+ ∂ω fR

∂νΓR

Γ

)
+

Υ2

2

(
1
Υ

[
∂ω fL

∂νΓL∂ν′ΓL

ΓL
+ ∂ω fR

∂νΓR∂ν′ΓR

ΓR

]
+

∂ν′Γ
Γ

[
1
Υ
− 1

2
Γ
]
[∂νΓL∂ω fL + ∂νΓR∂ω fR]

))
.

(4.27)

Let’s now consider the equilibrium case, such that we let fL = fR = feq. It then takes the form

ξ
eq
νν′ = −

1
4π

∫
dωΥ2∂ω feq

(
∂ν′h∂νh + (ω− h)

∂ν′Γ
Γ

∂νh + (ω− h)∂ν′h
∂νΓ
Γ

+
1

2Υ

[
∂νΓL∂ν′ΓL

ΓL
+

∂νΓR∂ν′ΓR

ΓR
+

∂ν′Γ∂νΓ
Γ

]
− 1

4
∂ν′Γ∂νΓ

)
. (4.28)
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An element of the non-equilibrium diffusion coefficient is given by

Dνν′ =
1

2π

∫
dω
(
∂νh∂ν′h

[
(1− fL)

(
fLΥ2

L + fRΥLΥR
)
+ (1− fR)

(
fRΥ2

R + fLΥLΥR
)]

+ (ω− h)
Υ2

Γ2 ( fLΓL + fRΓR)×

(∂νh [∂ν′ΓL(1− fL) + ∂ν′ΓR(1− fR)] + ∂ν′h [∂νΓL(1− fL) + ∂νΓR(1− fR)])

− 1
4

Υ2 [∂ν′ΓL(1− fL) + ∂ν′ΓR(1− fR)] [∂νΓL fL + ∂νΓR fR]

+
Υ2

2
1

ΥΓ
(2∂ν′ΓL∂νΓL fL(1− fL) + 2∂ν′ΓR∂νΓR fR(1− fR)

+ [ fR(1− fL)ΓR∂ν′ΓL + fL(1− fR)ΓL∂ν′ΓR]

(
∂νΓL

ΓL
+

∂νΓR

ΓR

))
. (4.29)

In equilibrium, this then simplifies to

Deq
νν′ =

1
2π

∫
dωΥ2 feq(1− feq)

(
∂νh∂ν′h + (ω− h)∂νh

∂ν′Γ
Γ

+ (ω− h)∂ν′h
∂νΓ
Γ

(4.30)

+
1

2Υ

[
∂ν′Γ∂νΓ

Γ
+

∂νΓL∂ν′ΓL

ΓL
+

∂νΓR∂ν′ΓR

ΓR

]
− 1

4
∂ν′Γ∂νΓ

)
. (4.31)

The derivative of the Fermi-Dirac distributions for the leads can be calculated according to

∂ω fα = − 1
Tα

fα(1− fα), (4.32)

where Tα is the temperature of the α lead. We will take TL = TR = Teq such that the system is

in thermal equilibrium. Upon applying the above identity in (4.28), we find that

Deq
νν′

2ξ
eq
νν′

= Teq. (4.33)

Thus, we have shown that in chemical and thermal equilibrium our classical coordinate will

equilibrate to the temperature of the leads, as would be expected from a physical standpoint.

This also applies for any arbitrary element of the diffusion and viscosity tensors.

4.2.2.1 Anti-symmetric viscosity components in equilibrium

Recall from Section 3.3.5 that an arbitrary element of the anti-symmetric component of the

viscosity coefficient can be defined according to

ξa,νν′ =
1
2
(ξνν′ − ξν′ν) . (4.34)
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By using (4.27) we can show that an arbitrary anti-symmetric element is then given by

1
2
(ξνν′ − ξν′ν) =

1
8π

∫
dω ([( fL − fR)− (ω− h)∂ω ( fL − fR)]×((

Υ2
R + ΥLΥR

)
Γ

[∂ν′ΓL∂νh− ∂νΓL∂ν′h]−
(
Υ2

L + ΥLΥR
)

Γ
[∂ν′ΓR∂νh− ∂νΓR∂ν′h]

)

+∂ω ( fL − fR)
1
Γ

[
1
Υ
− 1

2
Γ
]
[∂ν′ΓR∂νΓL − ∂ν′ΓL∂νΓR]

)
. (4.35)

Let’s once again consider the equilibrium case in which we let fL = fR = feq. It is immediately

clear that each term will go to zero and thus, we observe that

ξ̂
eq
a = 0, (4.36)

where 0 is the corresponding matrix of zeroes. Despite this, it has been shown theoreti-

cally that the anti-symmetric viscosity can be non-zero in equilibrium if the Hamiltonian is

complex such as when the spin-orbit coupling is explicitly accounted for [178], or when a

time-dependent driving is present in the leads [179].

4.2.2.2 Positivity of the viscosity coefficient

The diagonal elements of the viscosity tensor are given by (4.27) when ν = ν′. These elements

correspond to a frictional force which directly opposes the motion of the ν degree of freedom.

For pedagogical purposes, let’s for now assume that Γα is a scalar constant such that only

the first line of (4.27) survives; we will denote this by ξh
νν since now only h depends on the

classical coordinate. This can be simplified to the form

ξh
νν =

Γ(∂νh)2

4π

∫
dω

fL
TL
(1− fL)ΓL +

fR
TR
(1− fR)ΓR[

(ω− h)2 + Γ2/4
]2 . (4.37)

This quantity is purely positive since Γ must be positive according to its definition. So we

see that in the single-level case where only the molecular Hamiltonian is dependent on the

classical coordinate, the force due to the viscosity coefficient must be purely dissipative. Al-

lowing Γ to have a classical dependence (motion on the leads interface) then has an important

effect; it allows for the viscosity coefficient to become negative in which there are no longer

any forces acting to dissipate energy away from the classical vibrations.
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4.3 Results

4.3.1 Motion on the leads interface

Each of our calculations utilize a common set of unchanging parameters: the bandwidth for

numerical integration is set to [-5, 5]; left and right lead temperatures are set to be equal

(TL = TR = 300K); the reduced mass associated with the chemical bond is m = 1000; the

molecule is always strongly coupled to the left lead with ΓL = 4 and ΓR = 0.03; and the

equilibrium bond-length is x0 = 5. All numerical values in the text and figures are given in

atomic units.

We note that in a similar approach to previous work [180], we employ a finite bandwidth in

numerical calculations to avoid the logarithmic divergence of the adiabatic force (4.18).

4.3.1.1 Electronic friction, diffusion coefficient, and local effective temperature

We first study how the parameters of the model control the three main ingredients of the

Langevin equation: the diffusion coefficient, viscosity, and adiabatic force. Figure 4.1a shows

the diffusion coefficient D(x) as a function of the bond-length. The amplitude of the ran-

dom force is the square root of the diffusion coefficient. As seen in Figure 4.1a, the diffusion

coefficient has a strong dependence on the bond-length, reaching its maximum at the equilib-

rium bond-length and then decaying to zero as the bond stretches or contracts. As physically

expected, the amplitude of the random force increases as the voltage becomes larger.

The viscosity ξ(x) is shown in Figure 4.1b. At small voltages the viscosity behavior mirrors

the diffusion coefficient’s dependence on the bond-length. This is not surprising if one recalls

the fluctuation-dissipation theorem which relates the ratio of the diffusion coefficient D(x)

and viscosity ξ(x) to the temperature, and temperature should not deviate significantly from

the equilibrium value for small voltages. If the voltage is increased, we start to observe re-

gions of negative viscosity which energize the stretching/contraction of the bond rather than

dampening its oscillations as one may expect from the viscous force.

Figure 4.1c shows viscosity as a function of bond-length computed at V = 0.06 of applied

voltage. Once the level moves away from the resonance position ε0 = 0, the second peak in

the viscosity starts to shift closer to the equilibrium bond-length. The second peak occurs

when the energy of the level intersects the Fermi level of the right lead, such that electrons

are easily able to transition between the lead and the resonance level, while the left lead is

essentially disconnected due to the exponential coupling decay.
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Figure 4.1: (a) Diffusion coefficient D(x) and (b) viscosity ξ(x) as functions of nuclear position
computed for different values of the applied voltage and with resonant energy level set to zero
ε0 = 0; (c) viscosity ξ(x) as a function of bond-length computed for different resonant-level
energies ε0 at voltage V = 0.06.

In analogy to the fluctuation-dissipation theorem [181], it is instructive to define an effective

temperature as

Teff(x) =
D(x)
2ξ(x)

. (4.38)

Figure 4.2 shows that there is a good agreement between the effective local temperature de-

fined using (4.38) and the local kinetic energy computed directly from simulations of the

Langevin equation. Therefore, the effective temperature (4.38) is an intuitively clear physical

quantity which reveals information on the steady-state spatial distribution of kinetic energy

within the junction and is related to current-induced localized heating or cooling effects.

It is clear from Figure 4.3a that in the equilibrium case (zero applied voltage), the fluctuation-

dissipation theorem is satisfied as Teff is independent of x and equals to 300 K, exactly the

temperature of left and right leads. Once the voltage is increased, the current carrying elec-

trons produce significant local heating in the junction leading to the rise of the effective tem-

perature. The coordinate dependence of effective temperature has a small dip at equilibrium

bond-length and then reaches its maximum value if the bond is stretched.

In Figure 4.3d, we observe a region of parameters in our junction in which the effective tem-

perature becomes negative, such that the nucleus has no defined steady-state local kinetic

energy in this region and as such, the kinetic energy of the nucleus will continue to increase

if constrained to this region.

Next, we compute the effective potential as a function of bond-length. By combining the

classical potential and integrating our adiabatic force f(0)(x) computed by (4.18), we obtain

the effective potential [182]

Ueff(x) = U(x)−
∫ x

a
dx′ f(0)(x′). (4.39)

Notice that the lower limit in this integral a is completely arbitrary and serves as a reference
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Figure 4.2: Effective temperature Teff(x) computed via (4.38), and computationally measured
temperature computed from the local kinetic energy as a function of the bond-length, calcu-
lated in the resonance regime. The applied voltage is V = 0.02 and the spring constant is
k = 2.

point for the computed potential energy. We use a = 0 in all our calculations. We observe

in 4.4a and 4.4b the possibility of different potential regimes in which we may observe two

separate stable minima.

These regimes are summarized according to the changing bond spring constant and coupling

in Figure 4.4. There is a narrow region of bistability. Once we move away from this region, one

minimum starts to dominate until the other minimum disappears completely. As the voltage

is increased, the bistable yellow region becomes wider and shifts towards smaller values of

the spring constant.

4.3.2 Current noise

In this section, we show results for the current computed along a given trajectory of the bond-

length time-evolution obtained from the solution of the Langevin equation. To compute a

trajectory x(t), we utilize an m-BAOAB algorithm provided by Sachs et al [183], which enables

a numerical solution of the Langevin equation with a coordinate dependent viscosity and

diffusion coefficient. The trajectory is used to compute Green’s functions, and current with

first order dynamical corrections using the equations presented in Section 4.2. We consider

three representative scenarios with very distinct nuclear dynamics: rigid chemical bonding

(k = 0.136), intermediate chemical bonding (k = 0.131), and soft chemical bonding (k = 0.127).

In the case of a rigid chemical bond, the bond-length oscillates around a single minima; this is
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Figure 4.3: (a) Effective temperature Teff(x) as a function of bond-length computed in the
resonance regime ε0 = 0 at various values of the applied voltage. (b) Effective temperature
Teff(x) as a function of bond-length computed at applied voltage V = 0.02 for different values
of the resonant-level energies. Contour plots of effective temperature Teff(x) as a function of
voltage and bond-length for (c) low voltages and (d) high voltages; the white region represents
negative effective temperatures.
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Figure 4.4: Effective potential for (a) varying spring constants (V = 0), and (b) for varying
bias voltages (k = 0.12).
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Figure 4.5: (a) Different effective potential regimes for varying k and ΓL, computed at V = 0
and color coded according to (b), (c), (d). Dashed lines show the boundaries of the bistable
yellow region for V = 0.2.
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reflected in the time dependence of current shown in Figure 4.6a, 4.6b. Both the electric current

with dynamical corrections IL(t) = I(0)L (t) + I(1)L (t) and the first order correction I(1)L (t) itself

oscillate around single average values. Once the chemical bond becomes softer (k = 0.131), the

length of the chemical bond switches between two states, spending roughly equal time in each.

This behavior of the bond-length results into telegraphic switching of the current between two

values as shown in Figure 4.6c, 4.6d. The first order dynamical correction is more noticeable in

the more conducting state. For a soft molecule-lead chemical bond, k = 0.127, the bond-length

experiences switching but has a preference for a specific value, as does the current.

4.3.2.1 Quantifying the current noise

The temporal correlations between stochastic fluctuations of the electric current (current noise)

have become a very important experimental and theoretical tool in studying transport prop-

erties of molecular junctions. Noise spectroscopy enables the study of the special features of a

single-molecule junction, which are not accessible by standard current-voltage measurements.

The experimental noise measurements provide significantly new information on fundamen-

tal mechanisms of electron transport in molecular junctions, such as atomistic details of the

local environment and metal-molecule interfaces[71, 184], coupling between electronic and

vibrational degrees of freedom[60, 88, 185, 186], identifications of the individual conduction

transport channel[61, 187–189], and mechanical stability of the junction[66].

Current noise is formally defined as

Sα(τ) = lim
T→+∞

1
T

∫ T

0
dt〈
[
δ Îα(t), δ Îα(t + τ)

]
+
〉, (4.40)

where δ Î(t) describes the instantaneous deviation of the electric current at time t from its

average value and [..., ...]+ is the anti-commutator. Eq.(4.40) involves two averages: 〈...〉 is the

quantum expectation value over electronic degrees of freedom and limT→+∞
1
T

∫ T
0 dt... is the

time average over the classical motion of the nuclei. The time average is equivalent to the

ensemble average over many realizations of geometries of the molecular junction. The current

noise power spectrum is the Fourier transformation of (4.40)

Sα(ω) =
∫ +∞

−∞
dτeiωτSα(τ). (4.41)

The electric current noise provides valuable information about the system and originates from

multiple factors: (a) the quantum nature of electrons, discreteness of charge, Pauli exclusion

principle, shot noise, and the finite temperature of electrons; (b) various types of quantum

correlations between current-carrying electrons, which are not present in our model; (c) and

finally, the "mechanical" noise due to current-induced changes to the molecular junction ge-
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Figure 4.6: Current with dynamical corrections IL(t) = I(0)L (t) + I(1)L (t) and first order correc-
tion I(1)L (t) to the current as functions of time computed at V = 0.01 for different values of the
spring constant (a,b) k = 0.136 (c,d) k = 0.131 (e,f) k = 0.127. The red dashed line denotes the
current mean over the displayed time interval.
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ometry. Generally the total noise is not simply the addition of (a), (b), and (c) contributions;

there is a cross interference between different contributions. However, within our approach

the distinctly different time-scales of fast electronic and slow nuclear motion enables the sep-

aration of the mechanical noise contribution [190]. The characteristic time scale of shot noise

decay is 1/Γ, whereas the noise due to nuclear motion appears on much longer times. Hence

the noise induced by geometrical fluctuations dominates the noise power spectrum at low

frequencies, and can exceed the shot noise contribution by orders of magnitude [190].

In what follows we focus on the "mechanical" noise as

Sα(τ) = 2 lim
T→+∞

1
T

∫ T

0
dtδIα(t)δIα(t + τ), (4.42)

where the current fluctuation at time t is

δIα(t) = Iα(t)− lim
T→+∞

1
T

∫ T

0
dtIα(t). (4.43)

The Fano factor is

Fα =
Sα(ω = 0)

2Iα
. (4.44)

The variance and mean of a Poisson process is equal, therefore the Fano factor can be used

to characterize electron transport as either a sub-Poissonian (F < 1), Poissonian (F = 1), or

super-Poissonian (F > 1) process. Indeed, super-Poissonian or sub-Poissonian noise is caused

by a host of very interesting and often hidden physical effects.

Figures 4.7a and 4.7b show Fano factors computed as a functions of the applied voltage V and

spring constant k. The presence of telegraphic switching between two minima in a bi-stable

adiabatic potential results in the gigantic enhancement of the Fano factor, indicating that the

electron transport is a super-Poissonian process. The behavior of the Fano factor depends on

a number of factors relating to the microscopic details of the Langevin dynamics in a locally

heated adiabatic potential.

This behavior of the Fano factor can be rationalized based on the following observations. The

only negative contributions to the integral over time in the current noise (4.42) are on the

boundaries when the current crosses the mean. For the bi-stable case, this generally occurs

only when the current switches between stable states. It is an intuitive notion to then conclude

that larger switch rates will have an effect on decreasing the Fano factor (however having no

switches at all will minimize it).

The size of the positive contribution to the current noise is dependent on two factors: firstly,

the size of the fluctuations around the mean which correspond to the difference in current

values between two configurations; and secondly, the ratio of time spent in each minimum.



§4.3 Results 99

0.115 0.12 0.125 0.13 0.135

0

200

400

(a)

0 0.01 0.02 0.03 0.04

0

100

200

300

400

(b)

0.115 0.12 0.125 0.13 0.135

0

2

4

6

10
-4

(c)

0.12 0.125 0.13 0.135
0

5

10

103

Left Minimum

Right Minimum

(d)

Figure 4.7: (a) Fano factors as functions of the spring constant k. (b) Fano factors as functions
of voltage V. Here k = 0.13 yields two minima with approximately equal depth, while k =
0.125 yields a deeper left minimum. (c) Average switch rate between minima in a bi-stable
regime, varying k. (d) Average waiting times in a bi-stable regime for V = 0.05. The vertical
dashed line denotes the k value for which the two minima have equal depth. All calculations
are performed for ε0 = 0.
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Figure 4.8: Fano factor computed as a function of the spring constant; V = 0.05 and ε0 = 0.
The background of the figure is color-coded in accordance to the different regimes of effective
potential shown in Figure 4.5 (b,c,d).
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An increase to the applied voltage results in a larger fluctuation around the mean and as such,

one would expect this to have an effect on increasing the Fano factor. However, this effect is

counteracted by an increase to the mean current, which stays in the denominator of the Fano

factor (4.44). Additionally, the noise should be maximized when the mean current is directly

in between our two current states; this occurs when the nucleus spends approximately equal

time in each minimum. Therefore, the two key parameters to control the Fano factor are the

average switch rate (a single switch being a transition from one minimum to the other) shown

in Figure 4.7c, as well as the average waiting time (the average amount of time spent waiting

in a minima before switching out) shown in Figure 4.7d. To maximize the Fano factor, one

wants to keep the switch rate between conformations as small as possible but at the same the

waiting times in both conformations should be comparable. For example, let us consider the

case of V = 0.05. As the voltage increases, the difference in effective temperatures between

the left and right minima increases as well, such that the left is substantially hotter, which will

decrease the time spent waiting in the left minimum. In addition, the large applied voltage

will physically deform the adiabatic potential in a manner akin to Figure 4.4b, decreasing the

depth of the left minimum relative to the right. These factors each act to decrease the left

minimum waiting time relative to the right (see Figure 4.7d). To compensate for this, the Fano

factor peaks shifts towards smaller values of k, which act to deepen the left minimum, thus

having the opposing effect of increasing the left minimum waiting time.

In Figure 4.8, we observe the Fano factor as the adiabatic potential transitions over the three

possible regimes in our system as the spring constant k is altered. The Fano factor demon-

strates a strong dependency on instabilities within the system, undergoing a large peak as

the bi-stable regime is entered, before decreasing back to sub-Poissonian values in the mono-

stable regimes. The peak is shifted towards lower k values for the reasons outlined regarding

Figure 4.7c. The peak decreases slowly into the blue mono-stable regime because the stable

minimum is very close to the left lead, which yields a small mean current in this region. As

such our Fano factor according to (4.44) is still large despite the adiabatic potential only being

mono-stable.

4.4 Summary

In this section, we studied current-induced atomic motion on molecule-electrode interfaces in

molecular electronic junctions. Structural changes on the interfaces are described in terms of a

Langevin equation, which is obtained from the quantum mechanical first principles in which

we extract the slow nuclear dynamics from Wigner space Green’s functions. The calculations

of Green’s functions and consequently all molecular junction observables include dynami-

cal velocity-dependent corrections to include non-adiabatic effects of nuclear motion into the



§4.4 Summary 101

calculation of electronic properties. We illustrate the theory by computing the transport prop-

erties of a model molecular junction: a single position-dependent resonant energy level which

is coupled to the leads via a flexible (changing in time due to current flow) bond-length. The

Langevin equation for the bond-length is integrated numerically and then the Green’s func-

tions, electric current, and current noise are computed along the stochastic trajectory. We

observe that even if the initial classical potential is harmonic, the effective potential may de-

velop bi-stability depending upon the parameters of the model. We mapped the shapes of the

effective potential in the parameter space of the model. The different regimes for bistability

depend critically on the interplay between the softness of the linking electrode-molecule bond

and the coupling to the corresponding electrode.

We introduce the concept of an effective local temperature using fluctuation-dissipation theo-

rem ideas, which provides a useful insight on localized current-induced heating in molecular

electronic junctions. We observe a region of parameters in our junction where the effective

temperature becomes negative, which means the kinetic energy of nuclei will continue to

increase if constrained to this region. The structural instabilities and localized heating on

molecule-electrode interfaces are quantified in terms of the current noise and Fano Factor.

These demonstrated the influence of the calculated effective temperatures and adiabatic po-

tentials on the nuclear dynamics, in which super-Poissonian Fano factors on the order of≈ 400

were observed.
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Chapter 5

Dynamics Under a Time-Dependent

AC Driving

This chapter contains material that has been previously published in the following journal

article:

Cooling molecular electronic junctions by AC current,

R.J. Preston, T.D. Honeychurch, D.S. Kosov, J. Chem. Phys., 153, 121102 (2020)

5.1 Motivation

The lifetime of molecular devices is notoriously small [41, 191, 192]. The record lifetime

achieved in a recent breakthrough experiment is still only 2.7 seconds [193], which is obvi-

ously much shorter than what is expected for feasible post-silicon technology. The significant

operational voltage bias of a few volts required in molecular junctions along with large electric

current densities destroy the molecular device’s structural integrity through chemical bond

rupture, large scale molecular geometry alteration or electromigration of the lead interfacial

atoms.

A practical solution to the sensitivity of structural stability in molecular junctions remains

elusive. Subsequently, in this chapter we propose a new strategy to decrease the Joule heating

in molecular junctions: the application of a sinusoidal voltage over the large DC voltage bias

which acts to reduce the effective vibrational temperature of the molecular junction. The

inclusion of an AC driving requires additions to our theory, which will be covered in Section

5.2. In Section 5.3 we analyse the results produced by the theory, in which an AC driving is

observed to produce selective heating/cooling to the classical degrees of freedom. The chapter

is then summarised in Section 5.5.

103
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5.2 Theory

5.2.1 System Hamiltonian

We consider a single-electronic state in the central region coupled to the leads which are each

under the influence of a sinusoidal time-dependent driving. As usual, we begin with our

general tunnelling Hamiltonian:

H = HM + HML + HMR + HL + HR + Hcl . (5.1)

The classical dependence of the system emerges solely through the molecular Hamiltonian as

given by

HM = h(x)a†a, (5.2)

where h(x) is the energy of a single molecular orbital and x is the classical coordinate. The

classical coordinate here can be interpreted as the position of the molecular orbital in the

junction where x = 0 is equidistant to the left and right leads. We assume in our calculations

that the molecular orbital depends linearly on x

h(x) = ε0 + λx, (5.3)

where λ is the coupling strength between the electronic and nuclear degrees of freedom. The

molecular Hamiltonian in tandem with the classical Hamiltonian as given by

Hcl =
p2

2m
+ U(x), (5.4)

provides a complete description of the nuclear geometry. The classical potential is taken in

the harmonic oscillator form

U(x) =
1
2

kx2, (5.5)

where k is the spring constant associated with the chemical bonding to the leads. Both leads

are modelled as macroscopic reservoirs of noninteracting electrons

HL + HR = ∑
kα=L,R

εkα(t)a†
kαakα. (5.6)

The leads energy levels have a sinusoidal dependence on time due to an external AC driving

with frequency ζ and amplitude ∆α

εkα(t) = εkα + ∆α cos(ζt). (5.7)
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Additionally, the leads are also held at different static chemical potentials µα at all times, the

difference between them corresponds to the applied DC voltage bias V = µL − µR. Both

sinusoidal AC and static DC voltages are applied symmetrically in our calculations: ∆L =

−∆R and µL = −µR.

The coupling between the central region and the left and right leads are given by the tunnelling

interaction

HML + HMR = ∑
kα=L,R

(tkαa†
kαd + h.c.), (5.8)

where tkα is the tunnelling amplitude between the leads single-particle states and the molec-

ular orbital. In contrast to Section 4, tkα is treated as a constant independent of the nuclear

geometry.

5.2.2 System time-scales

Our model exploits two separate small parameters related to the separation of time-scales

within the system. These are
Ω
Γ
� 1,

ζ

Γ
� 1, (5.9)

where the first is our usual assumption that the nuclear motion is slow relative to electron

tunnelling. Similarly, the second relation characterises the slow time-dependent driving of

the leads relative to the time-scale associated with electronic tunnelling. Our perturbative

expansions are then taken to the first order in either of the above small parameters. For

example, this means a term proportional to Ωζ
Γ2 would be treated as second order and is thus

neglected.

5.2.3 Calculating the time-dependent self-energies

The presence of a time-dependence in the leads necessitates special care upon calculating

explicit expressions for the leads self-energies. The leads self-energies follow the standard

definition

Σα,ij(t, t′) = ∑
k

tikα(t)G0,kαkα(t, t′)tkαj(t′), (5.10)

where we recall that the free-field Green’s functions for the leads are given by (2.157)-(2.159).

For the benefit of the reader, these are

GA
kαk′α(t, t′) = iθ(t′ − t)e−i

∫ t
t′ dt1εkα(t1)δkαk′α, (5.11)
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GR
kαk′α(t, t′) = −iθ(t− t′)e−i

∫ t
t′ dt1εkα(t1)δkαk′α, (5.12)

G<
kαk′α(t, t′) = ie−i

∫ t
t′ dt1εkα(t1) fkαδkαk′α. (5.13)

Due to the absence of any classical dependence on the leads interface in this section, we note

that Σ̃ = Σ̃(0). Let’s consider the integrals in the above exponentials. By substituting in (5.7)

for εkα, we obtain

∫ t

t′
dt1εkα(t1) = εkα(t− t′) +

∆α

ζ

[
sin(ζt)− sin(ζt′)

]
(5.14)

= εkα(t− t′) +
2∆α

ζ
cos(ζ(t + t′)/2) sin(ζ(t− t′)/2), (5.15)

where we have used the fact that sin(x)− sin(y) = 2 sin( x−y
2 ) cos( x+y

2 ). The free-field Green’s

functions then become

GA
kαk′α(τ, T) = iθ(−τ)e−iεkατδkαk′α︸ ︷︷ ︸

standard GF for time-independent leads GA
kαk′α(τ)

e−i 2∆α
ζ cos(ζT) sin(ζτ/2), (5.16)

GR
kαk′α(τ, T) = −iθ(τ)e−iεkατδkαk′α︸ ︷︷ ︸

GR
kαk′α(τ)

e−i 2∆α
ζ cos(ζT) sin(ζτ/2) (5.17)

G<
kαk′α(τ, T) = i fkαe−iεkατδkαk′α︸ ︷︷ ︸

G<
kαk′α(τ)

e−i 2∆α
ζ cos(ζT) sin(ζτ/2), (5.18)

where we have made use of the central and relative times

T =
1
2
(t + t′), τ = t− t′. (5.19)

Thus, we see that our time-dependent free-field Green’s functions for the leads can be ex-

pressed by the time-independent Green’s functions under the influence of some phase factor

determined by the driving. Making use of the Jacobi-Anger expansion as given by

eiz cos θ =
∞

∑
n=−∞

in Jn(z)einθ , (5.20)

where Jn is a Bessel function of the first kind, we find that

e−i 2∆α
ζ cos(ζT) sin(ζτ/2) = ei 2∆α

ζ cos(ζT) cos(ζτ/2+π/2) =
∞

∑
n=−∞

in Jn

(
2∆α

ζ
cos(ζT)

)
ein(ζτ/2+π/2)

=
∞

∑
n=−∞

(−1)n Jn

(
2∆α cos(ζT)

ζ

)
e

i
2 nζτ. (5.21)
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Finally, all components of the leads GFs are written as

Gkαk′α(τ, T) = Gkαk′α(τ)
∞

∑
n=−∞

(−1)n Jn

(
2∆α cos(ζT)

ζ

)
e

i
2 nζτ. (5.22)

These free-field Green’s functions are then substituted into the general expressions for the

self-energies to give

Σα,ij(t, t′) = ∑
k

t∗kαiGkαkα(t, t′)tkαj = Σα,ij(τ)︸ ︷︷ ︸
self-energy of static leads

∞

∑
n=−∞

(−1)n Jn

(
2∆α cos(ζT)

ζ

)
e

i
2 nζτ,

(5.23)

while the corresponding self-energy in the Wigner space takes the form

Σ̃α,ij(ω, T) =
∫ ∞

−∞
dτeiωτΣα,ij(τ) =

∞

∑
n=−∞

Σ̃α,ij(ω + nζ/2)︸ ︷︷ ︸
self-energy of static leads

(−1)n Jn

(
2∆α cos(ζT)

ζ

)
. (5.24)

Now, we apply the wide-band approximation and utilise the following Bessel function prop-

erties [194]:
∞

∑
k=−∞

Jn±k(z) = 1,
∞

∑
k=−∞

(−1)k Jn±k(z) = (−1)n, (5.25)

allowing us to simplify the self-energy components, now expressed as matrices, to

Σ̃<
α (ω, T) = iΓα

∞

∑
n=−∞

fα(ω + nζ/2)(−1)n Jn

(
2∆α cos(ζT)

ζ

)
, (5.26)

Σ̃>
α (ω, T) = −iΓα + Σ̃<

α (ω, T), (5.27)

Σ̃A
α = − i

2
Γα, Σ̃R

α =
i
2

Γα. (5.28)

For future use within the Kadanoff-Baym equations, we compute time and energy derivatives

of the lesser lead self-energy in Wigner space. Considering the derivative with respect to the

central time,

∂TΣ̃<
α (ω, T) = iΓα

∞

∑
n=−∞

fα(ω + nζ/2)(−1)n∂T

(
Jn

(
2∆α cos(ζT)

ζ

))
, (5.29)

where only the Bessel functions are dependent on the central time. Using the following

property of a Bessel function [194],

Jn−1(x)− Jn+1(x) = 2
dJn(x)

dx
, (5.30)
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we find that

∂T

(
Jn

(
2∆α cos(ζT)

ζ

))
= ∆α sin (ζT)

(
Jn+1

(
2∆α cos(ζT)

ζ

)
− Jn−1

(
2∆α cos(ζT)

ζ

))
.

(5.31)

Substituting this back into our self-energy and making use of the fact that the summation is

infinite, we find that

∂TΣ̃<
α (ω, T) = ∂TΣ̃>

α (ω, T) = iΓα∆α sin (ζαT)
∞

∑
n=−∞

(−)n fα(ω + nζα/2)

×
[

Jn+1

(
2∆α cos(ζαT)

ζα

)
− Jn−1

(
2∆α cos(ζαT)

ζα

)]
. (5.32)

Considering the derivative with respect to omega,

∂ωΣ̃<
α (ω, T) = iΓα

∞

∑
n=−∞

∂ω fα(ω + nζ/2)(−1)n Jn

(
2∆α cos(ζT)

ζ

)
, (5.33)

where

∂ω fα(ω + nζ/2) = ∂ω

(
1

1 + e(ω+ 1
2 ζn−µ)/Tlead

α

)
(5.34)

= − e(ω+ 1
2 ζn−µ)/Tlead

α /Tlead
α(

1 + e(ω+ 1
2 ζn−µ)/Tlead

α

)2 (5.35)

= − ( fα(ω + nζ/2))2 e(ω+ 1
2 ζn−µ)/Tlead

α /Tlead
α , (5.36)

we find that

∂ωΣ̃<
α (ω, T) = ∂ωΣ̃>

α (ω, T) (5.37)

= −i
Γα

Tlead
α

∞

∑
n=−∞

(−)n
(

fα

(
ω +

1
2

nζα

))2

e(ω+ 1
2 nζα−µα)/Tlead

α Jn

(
2∆α cos(ζαT)

ζα

)
.

(5.38)

For clarity, we emphasise here that T is the central time while Tlead
α is the temperature of the

α lead.

5.2.4 Simplifications to the Green’s functions

The adiabatic Green’s functions once again take the familiar form

G̃A/R
(0) =

(
ω− h− Σ̃A/R

(0)

)−1
, G̃</>

(0) = G̃R
(0)Σ̃

</>
(0) G̃A

(0). (5.39)
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Meanwhile, the first order corrections can be simplified significantly as all terms are now

scalars in the single level case. They now take the form

G̃A/R
(1) = 0, G̃<

(1) =
i
2

G̃R
(0)G̃

A
(0)(G̃

A
(0) − G̃R

(0))(∂TΣ̃< + ∂Th∂ωΣ̃<). (5.40)

For convenience, we split G̃<
(1) into a component which is first-order in nuclear motion, and a

component which is first-order in the motion of the leads energies. First, we separate ∂T into

a nuclear motion component, and a leads-energy motion component;

∂T = v∂x + (∂T)x, (5.41)

where the subscript outside brackets denotes the quantity held constant. Note that where a

v∂x term is associated with Ω, (∂T)x is similarly associated with ζ. This allows us to partition

G̃<
(1) into

G̃<
(1) = G̃<

(1),v + G̃<
(1),ε, (5.42)

where

G̃<
(1),v =

i
2

vε′(t)G̃R
(0)G̃

A
(0)(G̃

A
(0) − G̃R

(0))∂ωΣ̃<, (5.43)

and

G̃<
(1),ε =

i
2

G̃R
(0)G̃

A
(0)(G̃

A
(0) − G̃R

(0))∂TΣ̃<. (5.44)

Here we have used the fact that (∂T)xh = 0 and ∂xΣ̃< = 0 for our model.

5.2.5 Langevin coefficients under a time-dependent driving

In the case of a single electronic level in the central region with no classical dependence on

the leads interface, the mean force prior to perturbative expansion is given by

f (t) =
1

2π

∫ ∞

−∞
dωie

1
2i dh

T∂G
ω ∂xhG̃<. (5.45)

The adiabatic is zeroth order in the nuclear motion; however, this does not additionally con-

strain it to zeroth order in the motion of the leads energies. In solving for the adiabatic force,

the higher order nuclear motion terms are neglected while we retain the first order leads

energy terms. As a result, the adiabatic force is given by

f(0)(t) =
i

2π

∫ ∞

−∞
dω
(

∂xhG̃<
(0) + ∂xhG̃<

(1),ε

)
. (5.46)

Here, we have the usual renormalization of the classical potential due to the occupation of the

central electronic level along with an additional correction due to the time-dependent driving

in the leads. Similarly, the first order force (first order here meaning in terms of nuclear



110 Dynamics Under a Time-Dependent AC Driving

motion) is given by

f(1)(t) =
∫ ∞

−∞

dω

2π

(
i∂xhG̃<

v(1) +
v
2

∂2
xh∂ωG̃<

(0)

)
. (5.47)

We note that the last term in (5.47) reduces to zero as∫ ∞

−∞
dω∂ωG< = 0. (5.48)

As usual, the diffusion coefficient is computed as a time-correlation of the force variations

〈δ f (t)δ f (t′)〉 = D(T)δ(t− t′), (5.49)

where the correlation function is found according to

〈δ f (t)δ f (t′)〉 = ∂xh(t)G>(t, t′)∂xh(t′)G<(t′, t). (5.50)

We recall from Section 3.3.6 that (5.50) must now be transformed to the Wigner space where

we can perform a perturbative expansion and truncation. We find that in the Wigner space,

we have

D(t) =
1

2π

∫ ∞

−∞
dωÃ(T, ω)B̃(T, ω), (5.51)

where

Ã = e
1
2i ∂G

ω∂h
T ∂xhG̃>, B̃ = e−

1
2i ∂G

ω∂h
T ∂xhG̃<. (5.52)

As previously, the ∂T terms are split into derivatives with respect to nuclear motion, and

derivatives with respect to the motion of the lead-energies. Noting that the central-region

Hamiltonian for this model is independent of the leads, the latter terms do not contribute. We

enact the adiabatic nucleus assumption, truncating D after the zeroth order in nuclear motion

which yields

D(t) = [∂xh(t)]2
∫ ∞

−∞

dω

2π

(
G̃>
(0)G̃

<
(0) + G̃>

(1),εG̃<
(0) + G̃>

(0)G̃
<
(1),ε

)
. (5.53)

The diffusion coefficient consists of two contributions: the first term is again the standard

expression as used in DC current junctions, while the remaining terms are new and arise

from the dynamical corrections to the lesser and greater Green’s functions computed using

sinusoidally oscillating self-energies.
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Figure 5.1: Electronic viscosity (a) and diffusion coefficient (b) computed as functions of the
AC driving frequency and the molecular orbital energy. Parameters used in calculations:
λ2/k = 0.002Γ, V = 2Γ/3, ∆ = Γ/3. Ω and ε0 are given in terms of Γ.

5.3 Results

5.3.1 Nonequilibrium viscosity and noise produced by AC driven electrons

Figure 5.1 shows the viscosity and diffusion coefficient (averaged over a period of oscillation

and also statistically averaged with respect to possible values of x). The viscosity and diffusion

coefficients are shown as a ratio to the corresponding DC (static) values for a given average

voltage, the DC calculations are performed using (5.47) and (5.53) and setting the amplitude

of sinusoidal voltage modulation ∆ = 0 [143]. The leads temperature is set to 0.02Γ in all

our calculations. In the centre of the resonance region, application of the AC driving acts to

decrease the diffusion coefficient while slightly increasing the viscosity. In our previous work

[143] (and in agreement with Subotnik et al. results [148]), peaks in the friction occur when

the molecular orbital energy aligns with either the left or right chemical potentials, since the

electrons can deposit any amount of energy taken from the nuclear degrees of freedom to

the leads via inelastic scattering to the available empty states above the chemical potential.

This is in contrast to the diffusion which has contributions from all lead states in the resonant

region. Applying this analysis to our system, we observe that the viscosity increase in the

resonant region is a result of the lead chemical potentials being allowed to shift closer to the

resonant level and inducing increased interaction between the nucleus and the high-energy

electrons in the leads. However, the AC voltage has minimal effect on increasing the diffusion

near the resonance. The growth of the viscosity relative to the diffusion coefficient results in

an optimal transport regime in which the molecular junction is cooled relative to the static

case. As we shift our resonant level to the edges of the resonant region, we observe a notable

decrease to the viscosity upon application of the AC leads, relative to the DC case. In the static
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regime, the viscosity is maximised here due to the alignment between the resonant level and

the leads, which is broken upon application of an AC voltage. Resultantly, the AC driving

acts to increase the junction temperature in this region.

5.4 Effective temperature

Using ξ and D we define an effective temperature of the molecular junction via analogy with

the equilibrium fluctuation-dissipation theorem as given by D
2ξ for one-dimensional motion.

There are two options in defining the effective temperature for a given frequency; we can

calculate the instantaneous effective temperature for each given time in a period of AC leads

oscillation and then average over the period, given by

Tinst
AC =

Ω
2π

∫ 2π/Ω

0
dt

D(t)
2ξ(t)

, (5.54)

or alternately, we can first take D and ξ to be time-averaged quantities over a period of AC

oscillation, then calculate the effective temperature as

Tave
AC =

∫ 2π/Ω
0 dtD(t)

2
∫ 2π/Ω

0 dtξ(t)
. (5.55)

In Figure 5.2, we compare these options with average temperature data obtained from kinetic

energy calculated via numerical Langevin simulations for the same parameters. In the interest

of computational efficiency, λ2/k = Γ/6, where all other parameters coincide with other

results presented in this study. We observe Tave
AC to be a far more accurate measure of the

average nuclear temperature within the system for these parameters. Given that ξ and D are

each proportional to λ2, decreasing λ2/k (in line with the presented results in this paper) will

only further improve the accuracy of the average calculation, since the molecule will react

more slowly to temperature variations due to the AC leads oscillations. As such, we choose

to use Tave
AC as our measure for the effective temperature.

Figure 5.3 shows the ratio TAC/TDC computed for various transport regimes. The AC temper-

ature is compared to the static DC temperature TDC computed again as the ratio between the

diffusion and friction coefficients, but now obtained using NEGF calculations for static leads

[143]. Both temperatures are again statistically averaged over x and over a period of AC driv-

ing. As we have already deduced from the behaviour of the viscosity and diffusion coefficient,

cooling is observed in the central resonance transport regime, while heating is observed at the

edges of resonant transport. The effect of cooling is more significant for slow AC driving (Fig-

ure 5.3a) and is amplified if the amplitude of voltage driving is increased (Figure 5.3b). Figure
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Figure 5.2: Comparison of methods of effective temperature calculation with Langevin-
simulated nuclear temperature results for the same parameters. Parameters used in calcu-
lations: λ2/k = Γ/6, Ω = Γ/15, V = 2Γ/3 and ∆ = Γ/3. ε0 is given in terms of Γ.

5.3c shows the case of a large static bias voltage, which also enables the consideration of large

AC voltage amplitudes; as one observes, it enables a reduction to the effective temperature by

as much as 80% for the chosen parameters, while the corresponding decrease to the average

current is less than 20% for the same ε0.

Figure 5.4 demonstrates the role of the chemical bond spring constant k and the coupling

strength between the electronic population and the nuclear motion. These parameters are

interconnected. The term λx in (5.3) results in the shift of the molecular orbital energy due

to deviations away from the equilibrium nuclear position. λ describes the magnitude of this

shift whilst k governs the range of variation in the x coordinate. Therefore, λ2/k is an energy

related quantity which encapsulates both effects. As shown in figure 5.4, the cooling effects

are observed in the resonance regime when λ2/k < 0.2Γ. This means that this cooling phe-

nomenon can be observed for systems with rigid chemical bonds, or weak electron-nuclear

coupling. In any other case, the deviations in the energy level due to nuclear motion may be

large enough such that the level leaves this cooling region.

The temperature change per se for a given average voltage may not be a complete measure of

heating/cooling, since the AC driving may simply produce a smaller current (averaged over

the period of oscillation) relative to the corresponding DC voltage, resulting in less power

dissipated over the molecule. It is illuminating for us to then consider the heating/cooling

effects upon application of an AC driving, relative to the DC case at a given average current

(but now a different average voltage). As such, the static lead electric current JDC is computed

using the Landauer formula for static leads, and JAC is the exact electric current (averaged
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Figure 5.3: Ratio of AC and DC molecular temperatures computed as functions of molecular
orbital energy. (a) shows the results for different AC driving frequencies with ∆ = Γ/3
and V = 2Γ/3 (b) shows the results for different amplitudes of AC voltage oscillations with
Ω = Γ/15 and V = 2Γ/3. (c) shows the temperatures ratio, currents ratio, and cooling ratio
defined by Eq.(5.56) for a higher DC voltage V = 5Γ/3 and ∆ = 5Γ/6. λ2/k = 0.002Γ and ε0
is given in terms of Γ.
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Figure 5.4: Ratio of AC and DC molecular temperatures as function of λ2/k and ε0. Parame-
ters used in calculations: Ω = Γ/15, V = 2Γ/3 and ∆ = Γ/3. Both λ2/k and ε0 are given in
terms of Γ.

over a period of oscillation) computed using Jauho, Meir, and Wingreen NEGF theory for AC

driven quantum transport [195]. Then we introduce the following quantity called the "cooling

ratio"

η =
TAC(J)
TDC(J)

, (5.56)

which provides a measure of the heating/cooling observed upon application of an AC driving,

for a given average current; η < 1 means that the AC driving yields a lower temperature

while allowing for the same average current. Figure 5.3c shows that the application of an AC

driving allows for in excess of 40% cooling of the molecular junction, while maintaining the

same average current as in the DC case.

5.5 Summary

We have demonstrated that the application of an AC driving in the leads’ voltage can result

in a significant reduction to the power dissipation in a molecular junction, relative to the case

of a large static voltage. The lifetime of a chemical bond is τlife ∼ eEb/kT, where Eb is the

energetic barrier for bond dissociation. One observes that the lifetime depends exponentially

on the effective temperature T; therefore, even a moderate temperature reduction produces a

colossal extension of the device lifetime. The observed effect is quite robust and does not

require special fine-tailoring of the model parameters. Moreover, using a master equation de-

rived in the time-averaged Born-Markov approximation and assuming that the driving period
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must be shorter than characteristic electron tunneling time 1/Γ, Peskin et al. demonstrated

that the harmonically driven leads may reduce the vibrational temperature of the molecular

junction [196] . The approach of Reference [196] is complementary in all respects to what we

consider in this paper regarding transport and AC driving regimes. They additionally treated

the nuclear vibrations on a quantum level, in which heating or cooling effects can be more

pronounced due to the resonance structure of vibrations. This serves as a strong indication

that the proposed effect is very robust, ubiquitous, and may be applicable for various trans-

port scenarios. Although the cooling was the main focus of our paper, it has not escaped our

notice that depending upon the parameters, the sinusoidal driving of the leads may result

in significant heating of the molecular junction. However, this may also allow for enhanced

device functionality as this parameter-controlled heating may be utilized for current-induced

selective bond breaking, and energy efficient single-molecule catalysis of chemical reactions.



Chapter 6

First-passage time theory of activated

rate chemical processes

This chapter contains material that has been previously published in the following journal

article:

First-passage time theory of activated rate chemical processes in electronic molecular junctions,

R.J. Preston, M.F. Gelin, D.S. Kosov, J. Chem. Phys., 154, 114108 (2021)

6.1 Motivation

Molecular junctions provide an exciting opportunity to explore and produce new chemical

reactions by providing a device which traps a single molecule in a confined space of a few

nanometers where the electric field and current are applied locally and selectively [74, 197,

198]. In this chapter, we shift the focus to the calculation of chemical reaction rates in molec-

ular junctions.

The adequate and well established theories have been developed for reaction rate calculations

in gas and condensed phases [181, 199–205]. However, the development of similar theories for

molecules in an electronic junction environment is no simple task and as such, the scope of

theoretical work is still very limited. Three types of approaches have been proposed to model

current-induced dissociation. The first is based on the rate equation approach where a single

harmonic vibration is pumped beyond the dissociation threshold limit [94, 206]. The second

is a numerically exact scheme, which uses the hierarchical quantum master equation method

in conjunction with a discrete variable representation for the nuclear degrees of freedom to

numerically study current-induced dissociation [207]. The third uses Keldysh nonequilibrium

Green’s functions to obtain a Fokker-Planck equation for the reaction coordinate which is used

to compute average escape times and the accompanying reaction rates [172, 182]. The further

development of this approach is the subject of this paper. The method has proven successful

117
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in a range of circumstances [141, 143–146, 149–152, 172, 176, 177].

The method further lends itself to the study of current-induced chemical reaction rates [172,

182]. The use of Langevin dynamics to compute reaction rates was first explored by Kramers

in his seminal 1940 paper [208], in which the mean first-escape time of a particle trapped

in an arbitrary potential well subject to Langevin forces was approximated. The next sig-

nificant step was made in the 1990s, when Kramers’ theory was extended to account for

position-dependent friction and generalized Langevin equations describing finite-memory

(non-Markovian) fluctuation-dissipation processes [209–212]. The effect of a velocity-dependent

friction on Kramers’ rates was investigated in Reference [213]. However, these studies were

limited to the regime of thermodynamic equilibrium. Beyond this regime, the fluctuation-

dissipation theorem no longer holds, allowing for the emergence of localized heating effects

in analogy to Landauer’s proposed blowtorch effect [214, 215], in which specific configura-

tions of the reaction coordinate may experience heightened temperatures, which may have a

significant effect on the evolution of the system. Such systems are not limited to the realms

of molecular electronics; the most common examples include numerous molecular motors,

ratchets, and heat engines [216–218] as well as various confined nanosystems [219–223], no-

tably of biological significance [224, 225]. Several explicit simulations of Landauer’s blowtorch

effects in double-well potentials have also been performed recently [226–228].

One of the aims of this chapter is to further shed light on this topic. A comprehensive under-

standing of the effects of localized heating on the stability of molecular geometries is required

to ensure the productive development of specific functionalities of molecular-scale electronic

systems. In this chapter, we relax the requirement of thermodynamic equilibrium, allowing

for the self-consistent study of the mean first-passage times in model molecular electronic

junctions in both the underdamped and overdamped regimes. This is calculated through a

Fokker-Planck equation, which arises due to our Langevin description of the reaction coor-

dinate within the junction. The work presented here is a continuation of two papers [172,

182], however Reference [182] considered the problem employing the fluctuation-dissipation

theorem and Reference [172] focused on the underdamped case only.

The chapter is structured as follows. In Section 6.2, we demonstrate our calculations for the

mean first-passage time in the limiting regimes. This involves the calculation of the current-

induced forces in the system, from which a Fokker-Planck description then yields an equation

for the mean first-passage times. This is then applied to a simple model of the blowtorch

effect in Section 6.3.1. In Section 6.3.2, we calculate the reaction rates for a single-level junction

model, in which current-induced forces are calculated self-consistently within the model. This

is then further applied to a model two-level molecule within the junction in Section 6.3.3.
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6.2 Theory

Thus far, we have used the Langevin equation to calculate non-deterministic trajectories of

the classical coordinate in time. However, the study of reaction rates requires a more general

approach whereby the state of the classical coordinate a certain time is described by a proba-

bility distribution. The time evolution of the phase-space probability density is described by a

specific form of the Fokker-Planck equation generally known as the Klein-Kramers equation

and is given by

∂tρ(x, p, t) =
(
− p

m
∂x + U′(x)∂p + ξ(x)

[
∂p

p
m

+ ∂2
pT(x)

])
ρ(x, p, t). (6.1)

Here, ρ(x, p, t) is the probability density to find the classical coordinate at position x with

momentum p at time t. The Langevin and Fokker-Planck descriptions contain exactly the same

information; a Langevin trajectory is merely a specific outcome of the probability distribution

solved for via the Fokker-Planck equation [229]. This then explains the appearance of our now

all too familiar Langevin coefficients in (6.1), where we have used T to denote the effective

temperature and U to denote the effective potential according to their usual definitions. A

note on the notation: we will use ∂x to denote a derivative acting on all terms to the right,

whereas the conventional notation ∂A
∂x acts only on the arbitrary term A. In the interest of

brevity, we re-express (6.1) as

∂tρ(x, p, t) =
(

Λ + ξ(x)
[
∂p

p
m

+ ∂2
pT(x)

])
ρ(x, p, t), (6.2)

where we have introduced the component Λ such that

Λ = ∂p
∂H
∂x
− ∂x

∂H
∂p

= −∂x
p
m

+ ∂pU′(x). (6.3)

Λ describes the time evolution of the probability density in the absence of an external envi-

ronment. We have defined the classical Hamiltonian as

H(x, p) =
p2

2m
+ U(x). (6.4)

Our goal is to solve (6.2) for the probability density, from which we can then calculate relevant

observables such as the mean first-passage time. However, analytical solutions are generally

difficult to obtain; we must then resort to the consideration of two limiting cases. We will

separately consider the overdamped and underdamped cases, which concern the strength

of the interactions with the environment as governed by ξ and T. The overdamped case

emerges when environmental interactions are strong such that Λ is dominated by the second

term in (6.2). In contrast, the underdamped case considers when the second term is weak

in comparison to Λ. The consideration of these regimes gives us the foothold we require to
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approach the problem of solving for the mean first-passage time.

6.2.1 Overdamped limit

The system is considered overdamped when ξ/m is large; this parameter defines the timescale

of thermal relaxation of the classical coordinate. In this case, any inertial effects can be rea-

sonably neglected and our governing Langevin equation can be expressed as

dx
dt

=
1

ξ(x)

(
−dU

dx
+ δ f (t)

)
. (6.5)

Here we have taken the full Langevin equation and set d2x
dt2 = 0; expressed in the case of a

single degree of freedom for clarity. This amounts to assuming that the velocity distribution

equilibrates instantaneously to the equilibrium distribution [120]. Following this logic, from

(6.5) one can then derive the overdamped form of the Klein-Kramers equation which describes

the time evolution of the probability density of the classical coordinate - now independent of

the velocity:

∂tρ(x, t) = ∂x
1

ξ(x)
[
U′(x) + ∂xT(x)

]
ρ(x, t). (6.6)

This is commonly known as the Smoluchowski equation, after it was first applied by the

physicist in the description of Brownian motion. The form of (6.6) was derived by Van Kampen

in Reference [230], who circumvents the Ito-Stratonovich dilemma which arises upon the

consideration of a multiplicative noise [231]. The probability distribution as described by

this equation is the foundation for our calculations in the overdamped limit.

6.2.1.1 Stationary solution in the overdamped limit

We can reinterpret (6.6) as a continuity equation according to

∂tρ(x, t) = ∂xS(x, t), (6.7)

where S must be interpreted as a probability current, defined as

S(x, t) =
1

ξ(x)
[
U′(x) + ∂xT(x)

]
ρ(x, t). (6.8)

We require that the probability distribution must maintain its normalisation in time according

to ∫ xright

xleft

dxρ(x, t) = constant, (6.9)
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where xleft and xright are the boundaries for our system. This implies that S(xleft, t) = S(xright, t),

since there is no source term in (6.7). When applying the natural boundaries of xleft = −∞

and xright = ∞, probability cannot flow out of the system, since the system encompasses the

whole universe! Thus, we must have that S(−∞, t) = S(∞, t) = 0 [229]. In the stationary case

when ∂tρ = 0, this then leads to

∂xS(x) = 0, (6.10)∫ x

−∞
dx′S(x′) = 0, (6.11)

S(x)− S(−∞) = 0, (6.12)

∴ S(x) = 0. (6.13)

As is perhaps self-evident, the probability current is zero for all x when in the stationary state.

Our stationary probability distribution ρst can then be calculated from

S(x) = 0, (6.14)

1
ξ(x)

[
U′(x) + ∂xT(x)

]
ρst(x) = 0. (6.15)

Note that this is equivalent to integrating (6.6) over x when ∂tρ = 0, and setting the integration

constant to zero. The process to find an expression for ρst is now straight-forward: begin by

writing the above in the form of a separable differential equation,

−U′(x) + T′(x)
T(x)

=
1

ρst(x)
dρst

dx
. (6.16)

Apply a definite integral over x to both sides to obtain

−
∫ x′

a
dx

U′(x) + T′(x)
T(x)

=
∫ x′

a
dx

1
ρst(x)

dρst

dx
, (6.17)

−
∫ x′

a
dx

U′(x)
T(x)

− ln
(

T(x′)
T(a)

)
= ln

(
ρst(x′)
ρst(a)

)
. (6.18)

Here, a is an arbitrary constant which has no bearing on the final result. Consequently, we

find that

ρst(x′) = ρst(a)
T(a)
T(x′)

e−
∫ x′

a dx U′(x)
T(x) . (6.19)

By applying our normalisation condition, we find that ρst(a) is given by

ρst(a) =
1

T(a)
∫ ∞
−∞ dx′ 1

T(x′) e−
∫ x′

a dx U′(x)
T(x)

. (6.20)
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Our final result for the stationary distribution in the overdamped limit is then calculated

according to [230]

ρst(x′) =
1

ZT(x′)
e−
∫ x′

a dx U′(x)
T(x) , (6.21)

where the partition function, Z, is defined as

Z =
1∫ ∞

−∞ dx′ 1
T(x′) e−

∫ x′
a dx U′(x)

T(x)

. (6.22)

6.2.1.2 Alternate form of the Smoluchowski equation

Now that we have knowledge of the stationary distribution, we can re-express (6.6) in a form

more tenable for our first-passage time calculations; it is given by

∂tρ(x, t) = ∂x
T(x)
ξ(x)

ρst(x)∂xρ−1
st (x)ρ(x, t). (6.23)

This is demonstrated as follows; firstly

(
U′(x) + ∂xT(x)

)
=
(
U′(x) + ∂xT(x)

)
ρst(x)ρ−1

st (x). (6.24)

It is straight forward to show that

∂xρst(x) = − 1
T(x)

(
T′(x) + U′(x)

)
ρst(x), (6.25)

which can be used to find

(
U′(x) + ∂xT(x)

)
ρst(x)ρ−1

st (x) = T(x)ρst(x)∂xρ−1
st (x). (6.26)

Substituting (6.26) back into (6.6) yields our result in (6.23).

6.2.1.3 Calculation of the mean first-passage times

Equation (6.23) describes the evolution of the probability density for an arbitrary classical po-

tential, where the interaction with the environment determines the inhomogeneous Langevin

coefficients. In this section, we calculate an explicit expression for the mean first-passage time

of the classical coordinate through some boundary, xB. The choice of xB is again unrestricted;

however, in our treatment we will always consider xB to correspond to a maximum in the

potential, thereby naturally separating the reactant and product states. This is shown dia-

grammatically in Figure 6.1, where any x > xB (corresponding to the dashed line) becomes
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Figure 6.1: The reaction potential, where a barrier at xB separates the product state from the
reactant state.

irrelevant to the calculations. Now, the task is to use (6.23) to find an expression for the mean

first-passage time. We begin by applying suitable initial and boundary conditions. We choose

the classical coordinate to have value x0 at time t0, so that the initial condition is given by

ρ(x, t0) = δ(x− x0), (6.27)

where x0 < xB. Additionally, we define an absorbing boundary condition such that the

probability density exactly at the barrier is set to zero:

ρ(xb, t) = 0. (6.28)

This ensures that once the reaction coordinate has crossed xB, it is unable to re-enter the

reactant region. At the initial time t0, the probability of finding the classical coordinate within

our potential is 1. The proportion of paths that are still within our potential after time t given

some initial condition x0 is given by

P(t, x0) =
∫ xb

−∞
dxρ(x, t). (6.29)

The proportion of paths which crossed xB in the time period t→ t + dt is given by

P(t, x0)− P(t + dt, x0) = J(t, x0)dt, (6.30)
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where we have defined the distribution of first-passage times (as a function of time) J(t, x0) as

J(t, x0) = −
dP(t, x0)

dt
. (6.31)

J(t, x0) tells us how quickly the proportion of paths inside the potential is changing at any

given time t. The mean first-passage time is then given by

τ(x0) =
∫ ∞

t0

dtJ(t, x0)t. (6.32)

Now we need to find a useable form to be able to calculate this quantity. Let’s begin by

integrating it by parts and use the fact that
∫

dtJ(t, x0) = −P(t, x0):

τ(x0) = [−P(t, x0)t]∞t0
+
∫ ∞

t0

dtP(t, x0) (6.33)

= t0 +
∫ ∞

t0

dtP(t, x0) (6.34)

=
∫ ∞

0
dtP(t, x0), (6.35)

where we have let t0 = 0 for simplicity and used the fact that P(∞, x0) = 0, since all paths

must eventually escape. Now, recall that our overdamped equation for the probability density

is given by

∂tρ(x, t) = ∂x
T(x)
ξ(x)

ρst(x)∂xρ−1
st (x)ρ(x, t) (6.36)

= Lρ(x, t), (6.37)

where the time evolution is determined by the operator L. The general solution to the above

can be found as

ρ(x, t) = etLδ(x− x0), (6.38)

where we have again applied the initial condition. Note that the ordering is important here

since L acts on the δ-function. Thus, τ becomes

τ(x0) =
∫ ∞

0
dtP(t, x0) (6.39)

=
∫ ∞

0
dt
∫ xb

0−∞
dxρ(x, t) (6.40)

=
∫ ∞

0
dt
∫ xb

−∞
dxetLδ(x− x0). (6.41)

Since ρ must always be real, it must also be self-adjoint. The adjoint of an operator is defined

according to (Aψ, φ) = (ψ, A†φ), where (, ) denotes a complex inner product. The adjoint of
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ρ is then found by

(ρ(x, t)ψ, φ) =
(

etLδ(x− x0)ψ, φ
)

(6.42)

=
(

δ(x− x0)ψ, etL†
φ
)

(6.43)

=
(

ψ, δ(x− x0)etL†
φ
)

(6.44)

=
(

ψ, ρ†(x, t)φ
)

. (6.45)

As a result, (6.41) becomes

τ(x0) =
∫ ∞

0
dt
∫ xb

−∞
dxδ(x− x0)etL†

1 (6.46)

τ(x) =
∫ ∞

0
dtetL†

1. (6.47)

We can find a differential equation for the mean first-passage time by applying L on the left

of both sides, yielding

L†τ(x) =
∫ ∞

0
dtL†etL†

1 (6.48)

=
∫ ∞

0
dt

∂
(

etL†
)

∂t
1 (6.49)

= [etL†
1]∞0 (6.50)

= −1, (6.51)

where the upper limit vanishes due to the absorbing boundary condition. We must now

calculate the form of L†. We have

(L f (x), g(x)) =
(

f (x),L†g(x)
)

, (6.52)∫ b

a
dxL f ∗(x)g(x) =

∫ b

a
dx f ∗(x)L†g(x). (6.53)

The strategy to find L† is to integrate the LHS above by parts (given that L is a differential

operator) until we arrive at the RHS. Starting with the LHS:

∫ ∞

−∞
dxL f ∗(x)g(x) =

∫ ∞

−∞
dx
(

∂x
T(x)
ξ(x)

ρst(x)∂xρ−1
st (x) f (x)

)∗
g(x), (6.54)

where this choice of integration limits removes unwanted terms after integrating by parts.

Here, the derivatives act to the right only on the terms inside the parentheses. Note also that

the Langevin terms and probability densities must be purely real. Begin integrating by parts
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to find ∫ ∞

−∞
dxL f ∗(x)g(x) = −

∫ ∞

−∞
dx
(

T(x)
ξ(x)

ρst(x)∂xρ−1
st (x) f ∗(x)

)
∂xg(x) (6.55)

= −
∫ ∞

−∞
dx
(

∂xρ−1
st (x) f ∗(x)

)
ρst(x)

T(x)
ξ(x)

∂xg(x) (6.56)

=
∫ ∞

−∞
dxρ−1

st (x) f ∗(x)∂xρst(x)
T(x)
ξ(x)

∂xg(x) (6.57)

=
∫ ∞

−∞
dx f ∗(x)ρ−1

st (x)∂xρst(x)
T(x)
ξ(x)

∂xg(x) (6.58)

=
∫ ∞

−∞
dx f ∗(x)L†g(x). (6.59)

We have used the fact that ρst(∞) = ρst(−∞) = 0. Thus, the adjoint of L is found to be

L† = ρ−1
st (x)∂xρst(x)

T(x)
ξ(x)

∂x, (6.60)

and the differential equation for the mean first-passage time is

ρ−1
st (x)∂xρst(x)

T(x)
ξ(x)

∂xτ(x) = −1, (6.61)

with the boundary condition τ(xb) = 0. Finally, the mean first-passage time can be solved for

via the following:

∂xρst(x)
T(x)
ξ(x)

∂xτ(x) = −ρst(x), (6.62)

ρst(x′)
T(x′)
ξ(x′)

∂x′τ(x′) = −
∫ x′

−∞
dxρst(x), (6.63)

∂x′τ(x′) = − ξ(x′)
T(x′)ρst(x′)

∫ x′

−∞
dxρst(x), (6.64)

τ(x0) =
∫ xb

x0

dx′
ξ(x′)

T(x′)ρst(x′)

∫ x′

−∞
dxρst(x). (6.65)

This is our final equation for the mean first-passage time through a barrier at xb, given a

starting position of x0.

6.2.2 Underdamped limit

6.2.2.1 Energy-diffusion form of the Fokker-Planck equation

In the underdamped regime the classical oscillations are approximately harmonic and the en-

ergy is approximately conserved over time-scales associated with classical oscillations. It is

then convenient for us to re-express the Fokker-Planck equation for the phase space probabil-
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ity density to be in terms of the probability density of the energy of the classical coordinate.

The probability density for the energy can be found by

ρ(E, t) =
∫

dxdpδ(H(x, p)− E)ρ(x, p, t). (6.66)

The δ-function chooses only the phase space coordinates which yield H(x, p) = E. It is clear

that ρ(E, t) is normalised since∫
dEρ(E, t) =

∫
dE
∫

dxdpδ(H(x, p)− E)ρ(x, p, t) (6.67)

=
∫

dxdpρ(x, p, t)
∫

dEδ(H(x, p)− E) (6.68)

=
∫

dxdpρ(x, p, t) = 1. (6.69)

Let’s now define the operator

Ω(E) =
∫

dxdpδ(H(x, p)− E). (6.70)

By applying Ω(E) to the left of each side of (6.2) we obtain

Ω(E)∂tρ(x, p, t) = Ω(E)
(

Λ + ξ(x)
[
∂p

p
m

+ ∂2
pT(x)

])
ρ(x, p, t). (6.71)

We expect that the Ω(E)Λρ(x, p, t) term should go to zero since it corresponds to the case of

no interactions with the environment; thus the energy distribution should be constant in time.

Indeed, we can show this rigorously via

Ω(E)∂tρ0(x, p, t) = Ω(E)Λρ0(x, p, t), (6.72)

∂tρ0(E, t) =
∫

dxdpδ(H(x, p)− E)Λρ0(x, p, t) (6.73)

=
∫

dxdpδ(H(x, p)− E)
[

∂H
∂x

∂p −
∂H
∂p

∂x

]
ρ0(x, p, t) (6.74)

=
∫

dxdpδ(H(x, p)− E)
[
U′(x)∂p −

p
m

∂x

]
ρ0(x, p, t) (6.75)

=
∫

dxdpδ(H(x, p)− E)
[
U′(x)

p
m

∂H −
p
m

U′(x)∂H

]
ρ0(x, p, t) (6.76)

= 0, (6.77)

where ρ0 is the probability density in the unperturbed case. As a result, we are left with

Ω(E)∂tρ(x, p, t) = Ω(E)ξ(x)
[
∂p

p
m

+ ∂2
pT(x)

]
ρ(x, p, t). (6.78)
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Let’s consider each of the two bracketed terms individually. The first term is given by

A(1) = Ω(E)ξ(x)∂p
p
m

ρ(x, p, t) (6.79)

=
∫

dxξ(x)
∫

dpδ(H(x, p)− E)
[

1
m

ρ(x, p, t) +
p
m

∂pρ(x, p, t)
]

. (6.80)

We make the assumption that the phase-space probability density can be expressed as a func-

tion of the Hamiltonian H, such that

ρ(x, p, t) = φ(H, t). (6.81)

The function φ is determined by enforcing that it leads to the correct energy distribution:

ρ(E, t) =
∫

dxdpδ(H(x, p)− E)ρ(x, p, t) =
∫

dxdpδ(H(x, p)− E)φ(H, t) (6.82)

= φ(E, t)
∫

dxdpδ(H(x, p)− E) (6.83)

= φ(E, t)Ω(E). (6.84)

Let’s now take (6.80) and replace ρ(x, p, t) by φ(H, t) while utilizing the fact that ∂p = p
m ∂H:

A(1) =
∫

dxξ(x)
∫

dpδ(H(x, p)− E)
[

1
m

φ(H, t) +
( p

m

)2
∂Hφ(H, t)

]
. (6.85)

The δ-function allows us to consider H = E under the integral. We will then make use of the

following δ-function identity:

∫
dp f (p)δ(p2 − a2) =

f (a)
2a

, a > 0. (6.86)
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In order to use the identity, we will introduce the arbitrary variable q = p√
2m

; we then need to

change the integration variable to q. With some manipulation, we find

A(1) =
1
m

∫
dxξ(x)

∫
dpδ

(
p2

2m
− (E−U(x))

) [
φ(E, t) +

p2

m
∂Eφ(E, t)

]
(6.87)

=
1
m

∫
dxξ(x)

∫
dpδ

([
p√
2m

]2

−
√

E−U(x)
2
)[

φ(E, t) +
p2

m
∂Eφ(E, t)

]
(6.88)

=

√
2m
m

∫
dxξ(x)

∫
dqδ

(
q2 −

√
E−U(x)

2) [
φ(E, t) + 2q2∂Eφ(E, t)

]
(6.89)

=

√
2m

2m
φ(E, t)

∫
dx

ξ(x)√
E−U(x)

+

√
2m
m

∂Eφ(E, t)
∫

dx
ξ(x)(E−U(x))√

E−U(x)
(6.90)

=
1
2

√
2
m

φ(E, t)
∫

dx
ξ(x)√

E−U(x)
+

√
2
m

∂Eφ(E, t)
∫

dxξ(x)
√

E−U(x) (6.91)

= ∂E

{√
2
m

φ(E, t)
∫

dxξ(x)
√

E−U(x)

}
(6.92)

= ∂E {µ(E)φ(E, t)} . (6.93)

An equivalent method of simplification can be applied to the second term in (6.78). The main

steps are as follows:

A(2) = Ω(E)ξ(x)∂2
pT(x)ρ(x, p, t), (6.94)

=
∫

dxdpδ(H(x, p)− E)ξ(x)T(x)∂2
pφ(H, t) (6.95)

=
∫

dxdpδ(H(x, p)− E)ξ(x)T(x)∂p
p
m

∂Eφ(E, t) (6.96)

=
∫

dxdpδ(H(x, p)− E)ξ(x)T(x)
[

1
m

∂E +
( p

m

)2
∂2

E

]
φ(E, t) (6.97)

=
∫

dxξ(x)T(x)
∫

dpδ(H(x, p)− E)
[

1
m

∂E +
( p

m

)2
∂2

E

]
φ(E, t) (6.98)

=
1
m

∂Eφ(E, t)
∫

dxξ(x)T(x)
∫

dpδ(H(x, p)− E)

+
1
m

∫
dxξ(x)T(x)

∫
dpδ(H(x, p)− E)

p2

m
∂2

Eφ(E, t) (6.99)

=

√
2m

2m
∂Eφ(E, t)

∫
dx

ξ(x)T(x)√
E−U(x)

+

√
2m
m

∂2
E {φ(E, t)}

∫
dxξ(x)T(x)

√
E−U(x) (6.100)

= ∂E

{√
2
m

∫
dxξ(x)T(x)

√
E−U(x)∂Eφ(E, t)

}
(6.101)

= ∂E {ν(E)∂Eφ(E, t)} . (6.102)
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Putting all the components back together, our Fokker-Planck equation in the energy-diffusion

form is given by

∂tρ(E, t) = ∂E (µ(E) + ν(E)∂E) φ(E, t) (6.103)

= ∂E (µ(E) + ν(E)∂E)Ω−1(E)ρ(E, t), (6.104)

where we have defined

µ(E) =

√
2
m

∫
dxξ(x)

√
E−U(x), ν(E) =

√
2
m

∫
dxξ(x)T(x)

√
E−U(x). (6.105)

We can additionally find a more useful form for Ω(E). To do so, we again utilise (6.86) to

obtain

Ω(E) =
∫

dxdpδ(H(x, p)− E) (6.106)

=
∫

dxdpδ

([
p√
2m

]2

−
√

E−U(x)
2
)

(6.107)

=
√

2m
∫

dxdqδ

(
q2 −

√
E−U(x)

2)
(6.108)

=

√
m
2

∫
dx

1√
E−U(x)

. (6.109)

6.2.2.2 Stationary solution to the energy-diffusion equation

The energy-diffusion equation given in (6.104) has a form very reminiscent of the overdamped

diffusion equation in (6.6). As such, many of the same techniques used in the overdamped

case are also applicable here and we will gloss over the intimate details where appropriate.

Repeating the logic from Section 6.2.1.1, the probability current (now in terms of energy) must

go to zero at E = ∞ to retain the normalisation of the probability distribution. So,

S(E, t) = (µ(E) + ν(E)∂E)Ω−1(E)ρ(E, t), (6.110)

S(∞, t) = 0. (6.111)

This implies that in the stationary case, S(E) = 0 for all E, and the equation for the stationary

distribution satisfies

0 = µ(E)Ω−1(E)ρst(E) + ν(E)∂EΩ−1(E)ρst(E). (6.112)

This is a separable first-order differential equation for Ω−1(E)ρst(E) which can be solved to

give

ρst(E) = Ω−1(a)ρst(a)Ω(E)e−
∫ E

a dE′ µ(E′)
ν(E′) , (6.113)



§6.2 Theory 131

where a is arbitrary. Enforcing ρst to be normalised then yields

ρst(a) =
Ω(a)∫ ∞

0 dEΩ(E)e−
∫ E

a dE′ µ(E′)
ν(E′)

. (6.114)

The resultant stationary solution then takes the form

ρst(E) = Z−1Ω(E)e−
∫ E

a dE′ µ(E′)
ν(E′) , (6.115)

where the partition function, Z, is given by

Z =
∫ ∞

0
dEΩ(E)e−

∫ E
a dE′ µ(E′)

ν(E′) . (6.116)

6.2.2.3 Alternate form of the Energy-Diffusion equation

Similar to the overdamped case, knowledge of the stationary distribution allows us to re-

express the energy-diffusion equation in a more tenable form via

∂tρ(E, t) = ∂ED(E)ρst(E)∂Eρ−1
st (E)ρ(E, t), (6.117)

where we have introduced the energy diffusion according to D(E) = ν(E)
Ω(E) . This is verified by

substituting (6.115) into (6.117) and re-deriving (6.104):

∂tρ(E, t) = ∂E
ν(E)
Ω(E)

Z−1Ω(E)e−
∫ E

a dE′ µ(E′)
ν(E′)

[
∂E

{
ρ−1

st

}
ρ(E, t) + ρ−1

st ∂Eρ(E, t)
]

(6.118)

= ∂Eν(E)Z−1e−
∫ E

a dE′ µ(E′)
ν(E′)
[ (

Z∂E

{
Ω−1(E)

}
e
∫ E

a dE′ µ(E′)
ν(E′) + ZΩ−1(E)

µ(E)
ν(E)

e
∫ E

a dE′ µ(E′)
ν(E′)

)
ρ(E, t)

+ ZΩ−1(E)e
∫ E

0 dE′ µ(E′)
ν(E′) ∂Eρ(E, t)

]
(6.119)

= ∂Eν(E)
[(

∂E

{
Ω−1(E)

}
+ Ω−1(E)

µ(E)
ν(E)

)
ρ(E, t) + Ω−1(E)∂Eρ(E, t)

]
(6.120)

= ∂E

(
Ω−1(E)µ(E)ρ(E, t) + ν(E)∂E

{
Ω−1(E)

}
ρ(E, t) + ν(E)Ω−1(E)∂Eρ(E, t)

)
(6.121)

= ∂E

(
Ω−1(E)µ(E)ρ(E, t) + ν(E)∂EΩ−1(E)ρ(E, t)

)
(6.122)

= ∂E (µ(E) + ν(E)∂E)Ω−1(E)ρ(E, t). (6.123)

Thus, it is satisfied.
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6.2.2.4 Calculation of the mean first-passage times

Noting the equivalence between our governing equations in the overdamped case in (6.23)

and the underdamped case in (6.117), the derivations for the mean first-passage time are also

equivalent, requiring only a change in variables and some alternate boundary conditions.

Rather than repeat the derivation of Section 6.2.1.3, we simply present the result in the under-

damped regime:

τ(E0) =
∫ Eb

E0

dE′
1

D(E′)ρst(E′)

∫ E′

0
dEρst(E). (6.124)

We use E0 to denote the initial energy of the classical coordinate which we will generally take

to be at the minimum of the reaction potential. Eb then denotes the energy of the barrier

between reactants and products.

6.3 Results

6.3.1 The blowtorch effect

In this section we investigate Landauer’s proposed blowtorch effect [215], in which a non-

equilibrium system allows for coordinate-dependent variations to the dissipative forces acting

on a particle which then has an effect on the properties of the steady-state distribution. Lan-

dauer’s blowtorch effect plays a critical role in chemical reactions in molecular electronic

junctions, therefore we first discuss its general features which will be relevant for our subse-

quent discussion. For pedagogical purposes, we will treat the coordinate-dependent diffusion

and viscosity coefficients as inputs in this section in the hopes to gain a better understanding

of the blowtorch effect before proceeding to the following sections in which we calculate the

Langevin coefficients using our usual methods. For consistency with Kramers’ seminal paper

[208] on chemical reaction rates, our analysis is formulated in terms of the mean first escape

time from the left minimum of a bistable potential, which we model according to a quartic of

the form

U(x) = −ax2 + bx4, (6.125)

where x is our reaction coordinate. The constants a and b are adjustable parameters which

determine the width and depth of the minimum. In all tests in this section, we set a = 0.04

and b = 0.008, such that Ub = 0.05. In addition, the particle always begins its trajectory with

zero velocity at the minimum of the reaction potential. To begin with, the viscosity ξ0 and

diffusion coefficients D0 are set to a constant value over the range of x, yielding a constant

temperature as determined by the fluctuation-dissipation theorem.
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Figure 6.2: An adjustable temperature spike is introduced which heats a chosen part of our
reaction coordinate potential.

In order to introduce an inhomogeneity into the temperature, a Gaussian spike is applied to

the diffusion coefficient locally at position x0,

D(x) = D0 + Dpeak(x), (6.126)

where

Dpeak(x) = Dme−
(x−x0)

2

σ2 , (6.127)

with adjustable width σ and magnitude Dm parameters. The effective temperature profile is

given by (4.38), the effective temperature at the peak is then given by

Tmax = T0(1 +
Dm

D0
), (6.128)

where

T0 =
D0

2ξ0
. (6.129)

This represents Laundauer’s so-called "blowtorch" which heats a small segment of the reaction

coordinate, as shown diagramatically in Figure 6.2. Here, the intention is to study the effect of

shifting the temperature spike along the reaction coordinate on the mean first-passage time τ.

We analyse the overdamped and underdamped regimes separately for the same parameters

except for the mass m of the Brownian particle, which is chosen to satisfy the desired regime.

In Figure 6.3, we observe the behaviour of the mean first-passage time as the position of the

temperature peak is shifted along the reaction coordinate (shown in blue), while the reaction
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Figure 6.3: The calculated mean first-passage time τ as a function of the temperature peak’s
position along the reaction coordinate, for the (a) overdamped and (b) underdamped regime
(m = 1000a.u). The black line denotes τ in the absence of an applied blowtorch. Parameters:
D0 = 0.01, ξ0 = 1, σ = 0.05.

potential is shown as a reference in orange. In the underdamped regime, we observe τ to

be minimized when the heating is applied to the bottom of the potential. This enables the

molecule to heat up quickly at low energies, and repeatedly attain more energy as it passes

through this region in a near-harmonic manner.

The overdamped regime differs, in that τ is minimized when the heating is applied approx-

imately halfway up the potential, around the point of steepest ascent. In the overdamped

regime, the escaping particle will very quickly equilibrate to any given temperature fluctua-

tion to which it is exposed. As such, the heated region causes a flattening of the probability

distribution in that region, nullifying the dependence of the distribution on the reaction coor-

dinate. This causes an effective reduction to the height of the energy barrier Ub as elucidated

by Landauer [214, 215]; a phenomenon which is maximized when the heating is applied in

the region of steepest ascent. We note the counter-intuitive observation that if the heating is

applied to the bottom of the potential in the overdamped case, this causes only a small reduc-

tion to τ. This is because the particle will quickly lose the obtained energy as it returns to the

cooler regions when it attempts to escape.

It is insightful for us to also study the effect of the strength of interaction of a Brownian particle

with the environment, while maintaining a homogeneous temperature. This entails that any

changes in the diffusion coefficient as a function of x will be counteracted by a corresponding

changes in the viscosity coefficient at the same x, enforcing a homogeneous temperature as per

the fluctuation-dissipation theorem. Here, we perform a similar analysis as above, such that

we have a moveable peak of increased interaction (simultaneously locally increased diffusion

and viscosity) while the temperature is homogeneous. The results of this are displayed in

Figure 6.4.
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Figure 6.4: The calculated mean first-passage time as a function of the interaction peak’s
position along the reaction coordinate, for the (a) overdamped and (b) underdamped regime
(me = 1000a.u). The black line denotes τ in the absence of an applied blowtorch. Parameters:
D0 = 0.01, ξ0 = 1, σ = 0.05.

In the underdamped regime, we observe that the largest reduction to τ occurs when the

interaction peak is placed at the minimum. The decrease in τ agrees with the homogeneous-

case solution, with the distinction that reaction coordinates at higher energies in the potential

have diminishing contributions to the decreasing τ. In the overdamped regime, it is seen that

the interaction peak results in an increase to τ as also predicted in the homogeneous case.

However, we observe that this is dominated by the increased interaction strength near to the

maximum of the potential, while changing the interaction strength in the rest of the potential

has negligible effect. This demonstrates that τ has little regard for the interaction strength in

the overdamped regime, except in the region approaching the maximum.

This general analysis arms us with the required physical intution before proceeding to the next

section, in which we first observe how a Landauer blowtorch emerges naturally from a simple

molecular junction model, then demonstrate the effect on hypothetical chemical reaction rates.

6.3.2 Application to a molecule with a single current-carrying molecular orbital

In this section, we analyze the calculated mean first-passage time τ for our model of a molecu-

lar junction. Contrary to Section 6.3.1, the viscosity and diffusion coefficients will be computed

using nonequilibrium Green’s functions according to eqs. (3.146) and (3.209). We consider the

case of a single electronic level coupled to the left and right leads under some applied bias

voltage. The molecular Hamiltonian is given by

HM = (h0 + λx)a†a, (6.130)
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where subscript a† and a† denote the creation and annihilation operators for an electron on

the molecular orbital. Here, the dependency of HM on the reaction coordinate acts to shift

the electronic level, as scaled by the tuneable parameter λ. The left and right lead are each at

room temperature (0.001au) and are symmetrically coupled to the central electronic state such

that our level-width function is given by ΓL = ΓR = 0.03.

In the interest of consistency, we again utilize the same quartic to describe our classical nuclear

potential for the reaction coordinate, which is now acted on by an additional adiabatic force

term computed using nonequilibrium Green’s functions according to equation 3.145. This

has the effect of shifting and shallowing/deepening the reaction potential depending on the

parameters chosen. We also allow for the manual shift of the external potential along the

reaction coordinate according to some parameter xa:

U(x) = −a(x− xa)
2 + b(x− xa)

4. (6.131)

This means that when xa = 0, the potential minimum (ignoring the effects of the adiabatic

force) occurs at x = 0, while a positive xa shifts the input potential to the right. Any bias

voltage is applied symmetrically, such that µL = −µR = V/2, where µL and µR are the

chemical potentials of the left and right leads.

We study the effect of applying a gate voltage to the system, as modelled by a shift in the h0

value. This allows for a degree of controllability of the reaction rates for a given system. Fig-

ures 6.5a and 6.5b demonstrate the resultant viscosity coefficient and temperature respectively,

as a function of the reaction coordinate. Application of a gate voltage acts to shift the curve

along the reaction coordinate. This analysis is performed for a non-zero bias voltage such

that the temperature is now inhomogeneous in addition to the viscosity. In the underdamped

regime shown in Figure 6.5d, τ is minimized when the viscosity and temperature peaks are

shifted near to the minimum of the reaction potential (note however, that the minimum in τ

does not occur exactly when the peaks are shifted to the minimum of the potential due to

the slight asymmetry of the reaction potential). In contrast, the overdamped regime displays

highly non-trivial behaviour, arising as a result of the interplay between the strength of the

viscosity and the temperature. In our analysis of the overdamped regime in the previous

section, we noted that the dependence of τ on the temperature is dominated by the region

of steepest ascent up towards the maximum. Here, we again observe this behaviour as the

large peak in Figure 6.5c corresponds to when the dip in the temperature occurs in this region

(when the temperature peak has been shifted to the right). A corresponding but smaller peak

also occurs due to a shift to the left in the temperature such that the low temperature aligns

with the steep region of the potential. The difference in peak sizes arises as a result of the

inhomogeneous viscosity, which per the previous section, we know is important in the region
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Figure 6.5: The effect of an applied gate voltage to (a) the viscosity coefficient and (b) the effec-
tive temperature. The mean first-passage time τ in the (c) overdamped and (d) underdamped
regime is plotted against the peak coordinate of the viscosity and temperature (as determined
by the applied gate voltage) for different λ. The coordinates of the minimum and maximum
of the reaction potential are denoted by the vertical black lines in (c) and (d).
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near the maximum of the reaction potential. The large peak in τ occurs when the temperature

is low in the steep region, while the viscosity is high towards the maximum. The small peak

has a low viscosity near the maximum, explaining its comparatively smaller magnitude.

6.3.3 Model of a two-level molecule

In this section, we expand the model to consider a two-level system. In our model, the

molecular energy levels are taken to correspond to the bonding and anti-bonding states of a

free H+
2 molecule [169]. As such, the molecular Hamiltonian now reads

HM(t) = ∑
ij

hij(q(t))a†
i aj, (6.132)

where a†
i and aj are now in the molecular orbital basis. The electronic Hamiltonian elements

are represented in the form of a 2× 2 matrix according to

h =

(
Hb(q) 0

0 Ha(q)

)
, (6.133)

where we use Hb(q) and Ha(q) to denote the bonding and anti-bonding molecular orbitals, re-

spectively, while q is the bond-length. The values for Hb(q) and Ha(q) are calculated according

to molecular orbital theory [169] and are given by

Hb(q) =
HAA + HAB

1 + SAB
, (6.134)

and

Ha(q) =
HAA − HAB

1− SAB
, (6.135)

where HAA and HAB are the Hamiltonian elements in the atomic basis and SAB is the overlap

integral between atomic 1s Slater orbitals. The constituent components are then given by

HAA = −1
2
+ e−2q

(
1 +

1
q

)
− 1

q
, (6.136)

HAB = −SAB(q)
2
− e−q(1 + q), (6.137)

and

SAB = e−q(1 + q + q2/3). (6.138)
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Figure 6.6: The adiabatic potential as a function of the bond-length presented for (a) varying
bias voltages and (b) varying the magnitude of leads coupling to Ha. Parameters: V = 0,
Γaa/Γbb = 1, unless otherwise specified. Γbb = 0.03 in all calculations.
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Figure 6.7: The effect of varying the bias voltage is shown for the (a) viscosity coefficient and
(b) the effective temperature, as a function of the bond length. Insets: Shows the same quantity
at V = 0.02 for Γaa/Γbb = 0 (dashed) and Γaa/Γbb = 0.5 (solid). Parameters; Γaa/Γbb = 1 in the
main plots. Γbb = 0.03 in all calculations.
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Figure 6.8: The mean first-passage time τ as a function of the bias voltage, varying the cou-
pling to Ha in the (a) overdamped and (b) underdamped cases.

In the interest of simplicity, each of the molecular orbitals is symmetrically coupled to the left

and right leads; as controlled by the parameter Γ which now takes the form of a matrix as per

Γα =

(
Γα,bb Γα,ba

Γα,ab Γα,aa

)
(6.139)

for the α lead, where the off-diagonal components can be defined according to,

Γα,ba = Γα,ab =
√

Γα,aaΓα,bb. (6.140)

In each test, we have µL = −0.7 and µR = µL − V, while the lead temperatures are again set

to room temperature.

The external potential now represents the classical nuclear repulsion, which in atomic units is

given by

U(q) =
1
q

. (6.141)

Inclusion of the electronic forces allows us to generate modified electronic potentials for varied

parameters in order to assess the molecular stability. Examples of these potentials are shown

in Figure 6.6; where in (a) an applied bias voltage is shown to decrease the energy required

for bond rupture, while (b) shows the effect of the additional electronic level which when

occupied, acts to increase the bond stability.

Along with the shape of the effective potential, the bond stability is also determined by the

electronic viscosity and effective temperature, which are demonstrated in Figure 6.7. In the

viscosity coefficient, each curve shows a peak at small q, which approximately corresponds to

when Ha crosses the fermi-level of the left lead. Likewise, the peaks at large q are a result of

Hb crossing the fermi-level of the right, then left, leads (these split peaks merge together when
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V = 0). The inset plot demonstrates the effect of allowing an additional transport channel

through the excited state which not only introduces the peak at small q, but also increases

the magnitude of the viscous forces overall. The effective temperature is equal to the leads

temperature for V = 0, while non-zero voltages yield a complex array of localized heating

and cooling effects, which arise as the energy levels shift in and out of the resonance region

as the bond-length is increased.

These competing effects culminate in our calculation of the mean first-passage time, which is

demonstrated in Figure 6.8 as a function of the bias voltage, for different coupling values to

the excited electronic state. In both limiting regimes, an increase to the bias voltage acts to

destabilize the bond and decrease τ, both due to the increased effective temperatures and the

weakening of the bond due to the current-induced forces. In the overdamped regime, allowing

the leads to be coupled to an additional level in the central region has a stabilizing effect for all

voltages tested, increasing the average amount of time for bond rupture. The underdamped

case shows similar behavior for very low voltages; however, at higher voltages the availability

of the additional transport channel through the excited state increases the current-induced

forces such that the energy required for a bond-rupture is found more easily, decreasing τ.

6.4 Summary

In this section, we have demonstrated that the rates of chemical reactions for molecules in

electronic junctions depend on three crucial ingredients; the potential energy surface which

defines the energy required for a configuration change or bond rupture, the rate of the energy

removal from vibrational to electronic degrees of freedom given by the electronic viscosity co-

efficient, and lastly, the effective temperature dynamically established in the molecule. While

the magnitude of these quantities is of high importance, the local distribution of the viscosity

and effective temperature along the potential energy surface (Landauer’s blowtorch effect)

also proves to be critical.

The addition of localized heating and cooling effects as a result of inhomogeneity with re-

spect to the molecular configuration has been shown to induce significant variations in the

mean first-passage time, as calculated according to a Fokker-Planck description. This has

been demonstrated for a single-level molecular junction model, as well as a two-level model

inspired by H+
2 molecular orbitals with the bond length considered as the reaction coordi-

nate. This interplay between the amount of energy required for bond rupture and the energy

supplied due to tunneling electrons has been shown to be strongly dependent on the choice

of experimentally tuneable parameters for the system. This enables the possibility of a high

degree of controllability for molecular junction systems, with promises of controlled initiation
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of chemical reactions or conversely, enforcing the stability of specific configurations within the

system.



Chapter 7

Ehrenfest dynamics

This chapter contains material that has been previously published in the following journal

article:

Emergence of negative viscosities and colored noise under current-driven Ehrenfest molecular dynamics,

R.J. Preston, T.D. Honeychurch, D.S. Kosov, arXiv preprint, arXiv:2204.08278

7.1 Motivation

In this chapter, we extend the quasi-classical formalism by utilising a numerically exact

method to calculate the forces acting on our classical coordinates without resorting to the

assumption of a time-scale separation within the system. This is commonly known as the

Ehrenfest approach to classical dynamics and it has garnered significant interest in the mod-

elling of nuclear motion in nanoscale systems [100, 132–140]. This approach treats the electron-

nuclear interaction on a mean-field level; it therefore does not provide a full description of the

inelastic scattering between electrons and nuclei and cannot fully capture the effects of joule

heating within the system [133, 134, 154–156]. Efforts have been made to remedy these caveats

via perturbative corrections to the electron-nuclear correlations with some success [155, 156].

However, in this study we seek only to utilise Ehrenfest dynamics as a basis for comparison

for predictions made by the perturbative Langevin approach which we have applied thus far.

One such predicted phenomenon which we encountered in Section 4 is the notion of a nega-

tive dissipation; under a Langevin approach, this implies that the viscosity coefficient becomes

negative [132, 140, 143, 146, 152, 165, 166]. In this regime, energy is applied to rather than

dissipated from the classical coordinate until it reaches unsustainable temperatures for the

device. Negative dissipations have also been predicted using purely quantum mechanical

methods in which a population inversion in the quantized phonons leads to ever-increasing

temperatures [89, 232–237]. The physicality of such theoretical results have often been called

into question, thought to arise as an artifact of assumptions applied in the theory rather than

143
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a demonstration of real behaviour [83]. The application of Ehrenfest dynamics allows us to

avoid assuming a time-scale separation in the system. In doing so, we once again observe

the emergence of negative dissipations and validate the results of the perturbative Langevin

approximation, depending on the parameter range applied. We note, however, that implicit in

the assumption of classical vibrations is an assumption of time-scale separation between the

massive, slow-moving classical particle and the surrounding quantum environment. How-

ever, one can conceive of regimes in which a classical description for vibrations is valid even

in the absence of a time-scale separation; for example, in the case of very high vibrational

temperatures. The approach introduced in this chapter allows us to probe these regimes.

The Ehrenfest approach additionally allows for the exploration of the autocorrelations in the

stochastic force. In general, the stochastic force is correlated at different times dependent on

the electronic structure of the system considered; this corresponds to coloured noise [120, 162,

238]. The correlations are additionally dependent on the non-adiabatic motion of the classical

coordinate. However, it is often computationally infeasible to account for coloured noise and

it becomes necessary to employ a white-noise approximation. Under this approximation, the

coloured-noise diffusion is replaced by a Markovian, white-noise equivalent which attempts

to produce the same dynamical behaviour [142–144, 149, 152, 172]. We apply our method

to investigate the effects of a time-scale separation on the diffusion coefficient along with

assessing the validity of the white-noise approximation to the diffusion under a variety of

regimes.

In Section 7.2 we introduce the theory which describes the classical dynamics. This involves

the introduction of the Ehrenfest force along with its corresponding perturbative Langevin

approximation, both expressed in terms of non-equilibrium Green’s functions. We also dis-

cuss our iterative method for evaluating the Ehrenfest force through time. In Section 7.3.1, we

demonstrate the accuracy of the perturbative approximation for a simple system consisting of

a single classical degree of freedom, while in Section 7.3.2 we then apply Ehrenfest dynam-

ics to a system with two classical degrees of freedom. Finally, in Section 7.3.3 we utilise our

method to evaluate the diffusion coefficient and the suitability of the white-noise approxima-

tion for the stochastic force over a range of parameters.
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7.2 Theory

7.2.1 The Ehrenfest force

Under the influence of a quantum environment, a system of vibrational degrees of freedom

in the classical limit is calculated in its most general form according to

f(t) = −∇U(x)− 〈∇H(x)〉+ δf(t). (7.1)

The main object of this chapter is the Ehrenfest force, defined as

Fehr(t) = −〈∇H(x)〉. (7.2)

For our Hamiltonian where we neglect any motion on the leads interface, the Ehrenfest force

can be represented in terms of the lesser component of exact non-equilibrium Green’s func-

tions as

Fehr
ν (t) = iTr

{
∂νh(t)G<(t, t)

}
, (7.3)

where h contains the elements of the molecular Hamiltonian. A Langevin description is found

by applying a time-scale separation to the Ehrenfest force, where following the steps detailed

in Section 3.3, we find for an arbitrary classical degree of freedom ν,

Fehr
ν (t) = iTr

{ ∫ dω

2π
∂νh(t)

(
G̃<
(0)(t, ω) + G̃<

(1)(t, ω) + ...
)}

(7.4)

= Fν,(0) + Fν,(1)︸ ︷︷ ︸
retained in Langevin approach

+Fν,(2) + .... (7.5)

Retaining only the zeroth and first order contributions to the Ehrenfest force yields the deter-

ministic forces present in the Langevin description, namely the adiabatic force and frictional

force.

Ehrenfest dynamics is the process of evolving the vibrational degrees of freedom according

to only the Ehrenfest force while neglecting the contribution due to the stochastic force δf(t)

in (7.1). As discussed, the Ehrenfest force alone is ill-equipped to capture the entirety of the

dynamics of the system. However, Ehrenfest dynamics simulations allow for a direct insight

into the importance of the higher order forces present in (7.5) which are ordinarily neglected

in the Langevin approach.
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7.2.2 Time-stepping approach to the evolution of the Green’s function

Clearly, if we are able to calculate G<(t, t) at each time, then (7.3) allows us to readily calcu-

late the Ehrenfest force without need to resort to a perturbative approach involving time-scale

separation. In this section, we introduce our algorithm for iteratively evolving G<(t, t) for-

wards in time. In approaching these calculations, we borrow the main defined quantities from

reference [195]. The lesser and greater Green’s function in the time domain are given by the

Keldysh equation,

G</>(t, t′) =
∫

dt1

∫
dt2GR(t, t1)Σ</>(t1, t2)GA(t2, t′). (7.6)

For the sake of clarity, in this section we will use (...) to denote a functional dependence,

whereas [...] will denote a term in the equation. Now we will take (7.6) and express the Σ</>

term according to the inverse Wigner transform of (3.58). In the lesser case, we find

G<(t, t′) = i ∑
α

∫
dt1

∫
dt2GR(t, t1)

∫ dω

2π
e−iω[t1−t2] fα(ω)ΓαGA(t2, t′) (7.7)

= i ∑
α

∫
dt1

∫
dt2GR(t, t1)

∫ dω

2π
e−iω[t1−t2] fα(ω)ΓαGA(t2, t)eiω[t−t]eiω[t′−t′] (7.8)

= i ∑
α

∫ dω

2π
fα(ω)eiω[t′−t]

∫
dt1eiω[t−t1]GR(t, t1)Γα

∫
dt2e−iω[t′−t2]GA(t2, t′) (7.9)

= i ∑
α

∫ dω

2π
e−iωτ fα(ω)A(ω, t)Γα A†(ω, t′). (7.10)

An equivalent derivation can be applied in the greater case to find

G>(t, t′) = −i ∑
α

∫ dω

2π
e−iωτ[1− fα(ω)]A(ω, t)Γα A†(ω, t′). (7.11)

Here we have defined the quantity,

A(ω, t) =
∫

dt1eiω[t−t1]GR(t, t1). (7.12)

The evolution of GR is found via the Kadanoff-Baym equation in the time domain:

(
i

∂

∂t
− h(t)

)
GR(t, t′) = δ(t− t′) +

∫
dt1ΣR(t, t1)GR(t1, t′). (7.13)

By utilising the fact that

ΣR(t, t′) = − i
2

Γδ(t− t′), (7.14)

we can solve for the general solution of (7.13) as

GR(t, t′) = −iΘ(t− t′)T̂exp
{
− i

∫ t

t′
dt1h(t1)−

1
2

Γ[t− t′]
}

. (7.15)
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Here, T̂ is the time-ordering operator and Θ is the Heaviside step function. By substituting

(7.15) into (7.12), we arrive at

A(ω, t) = −i
∫ t

−∞
dt1T̂exp

{
iω[t− t1]− i

∫ t

t1

dt2h(t2)−
1
2

Γ[t− t1]
}

. (7.16)

This is the quantity which we will iteratively evolve forwards in time, from which we can then

extract G< via (7.10). We begin by applying a step ∆t forwards in time to (7.16)),

A(ω, t + ∆t) = −i
∫ t+∆t

−∞
dt1T̂exp

{
iω[t + ∆t− t1]− i

∫ t+∆t

t1

dt2h(t2)−
1
2

Γ[t + ∆t− t1]
}

(7.17)

= −i
∫ t

−∞
dt1T̂exp

{
iω[t + ∆t− t1]− i

∫ t+∆t

t1

dt2h(t2)−
1
2

Γ[t + ∆t− t1]
}

(7.18)

− i
∫ t+∆t

t
dt1T̂exp

{
iω[t + ∆t− t1]− i

∫ t+∆t

t1

dt2h(t2)−
1
2

Γ[t + ∆t− t1]
}

(7.19)

= AA(ω, t + ∆t) + AB(ω, t + ∆t). (7.20)

Here we have split A into AA which reflects how the history before t informs the system at

t + ∆t, and AB which contains the effects of the system from t to t + ∆t. AA can be further

simplified by partitioning the inner integral as follows:

AA(ω, t + ∆t) = −i
∫ t

−∞
dt1T̂exp

{
iω∆t− i

∫ t+∆t

t
dt2h(t2)−

1
2

Γ∆t
}

(7.21)

× T̂exp
{

iω[t− t1]− i
∫ t

t1

dt3h(t3)−
1
2

Γ[t− t1]
}

(7.22)

= T̂exp
{

iω∆t− i
∫ t+∆t

t
dt2h(t2)−

1
2

Γ∆t
}

A(ω, t). (7.23)

We will make the assumption that for a sufficiently small ∆t, h(t) can be approximated as

being piecewise constant. Thus, at some time-step tn, we assume that for tn < t < tn+1,

we have h(t) = h(tn). This entails that our time step size should be sufficiently small in

the computational implementation when calculating classical trajectories. This enables us to

directly calculate the integrals over h(t) appearing in (7.23) and (7.19) along with removing

the time-ordering operators. We thus re-express AA(ω, t + ∆t) and AB(ω, t + ∆t) according to

AA(ω, t + ∆t) = exp
{

i∆t
(

ω− h(t) +
i
2

Γ
)}

A(ω, t), (7.24)

and

AB(ω, t + ∆t) = −i
∫ ∆t

0
dt2exp

{
it2

(
ω− h(t) +

i
2

Γ
)}

, (7.25)

= −i
(

eΛ∆t − I
)

Λ−1, (7.26)
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where I is the identity matrix and for cleanliness, we have used Λ = i
(

ω − h(t) + i
2 Γ
)

. Here

we have used the matrix exponential identity:

∫ T

0
dteXt =

(
eXT − I

)
X−1. (7.27)

Now we have everything we need to be able to perform an Ehrenfest simulation of the classical

dynamics. The algorithm functions as follows. First, we assume an adiabatic initial condition

such that (7.12) at the initial time is given by

A(ω, t) = G̃R
(0)(T, ω), (7.28)

for which we already have an explicit expression for. The initial force can then be computed

according to (7.10) and (7.3) given the chosen initial conditions for the classical coordinate.

The calculated Ehrenfest force feeds into an external algorithm which updates the nuclear

dynamics to the next time step, at which point we use (7.24) and (7.26) to non-adiabatically

compute A at the next time step. From here the process repeats, yielding a wholly non-

adiabatic, classical trajectory in time.

7.3 Results

7.3.1 Single classical degree of freedom

With our time-stepping algorithm at our disposal, we can simulate classical vibrations using

Ehrenfest dynamics. For the purposes of our simulations, we entirely disregard the stochastic

force and instead focus solely on the deterministic forces. When we refer to the perturbative

method of simulation, this means we are evolving the classical coordinate according to the

deterministic forces present in the Langevin equation; namely, the adiabatic and frictional

forces along with any external potentials.

It must be emphasized that the demonstrated dynamics are not physical since we do not

include the stochastic force and so we cannot hope to have a full description of heating effects.

However, it is not intended to be; the goal of this study is to identify the applicable regimes

of the Langevin method via comparison with Ehrenfest dynamics.

First, we present results for a two-level system with a single classical degree of freedom. The

matrix elements of the molecular Hamiltonian take the form

HM =

(
−λx η

η λx

)
, (7.29)
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Figure 7.1: The viscosity coefficient as a function of the classical coordinate.

where the classical coordinate x has the effect of linearly shifting the two atomic orbitals and

η dictates the overlap. We choose the left lead to be coupled to the first state and the right

lead to be coupled to the second state which gives our Γ matrices the following form:

ΓL =

(
γ 0

0 0

)
, ΓR =

(
0 0

0 γ

)
. (7.30)

We choose to model the classical potential for any degree of freedom according to a harmonic

potential as given by

U(x) = ∑
ν

1
2

kν(ν− ν0)
2, (7.31)

where kν is the spring constant for the ν degree of freedom, and ν0 is a parameter which shifts

the potential along the ν coordinate. In this section, the common parameters are λ = η = 0.1,

γ = 0.05, k = 1, x0 = −0.22 and µL = −µR = 0.12, where µα is the chemical potential of the α

lead. In contrast to the single-level case, this model allows us to observe negative viscosities.

An example of this is shown in Figure 7.1 where the coordinate dependent viscosity coefficient

(now a scalar function in the case of a single classical degree of freedom) becomes negative in

a small region around x ≈ −0.2.

By utilising our time-stepping algorithm to evolve G< in time as presented in the previous

section, we can calculate the Ehrenfest force as a function of time from which we can then

computationally simulate the dynamics of the classical coordinate. In Figure 7.2, we calcu-

late a classical Ehrenfest trajectory and record Fehr at each time step. We also record the

corresponding forces which the classical coordinate would experience under the perturbative

truncation of Fehr after the first order. We note that the methods clearly differ in the transient
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Figure 7.2: Trajectory in time of Fehr(t) (Ehrenfest) and F(0)(t) + F(1)(t) (perturbative). Ω/Γ ≈
0.32.
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Figure 7.3: Comparison of the first order force against the sum of all higher order forces. (a)
Ω/Γ ≈ 0.14, (b) Ω/Γ ≈ 3.2.

regime depending on the chosen initial conditions, before each settles into periodicity as the

coordinate oscillates in time. The cause of the differences between the calculated Ehrenfest

and perturbative forces are made clearer in Figure 7.3, where a direct comparison has been

made of the magnitude of the first order force relative to the sum of all higher order forces

(F(2) + F(3) + ...) for different values of Ω/Γ. This is achieved by varying the effective mass of

the classical coordinate while keeping all other parameters constant. We can then estimate Ω

by assuming that the oscillations are approximately harmonic. We observe that when Ω/Γ is

small in (a), the higher order forces have only a small relative contribution. In (b) however,

Ω/Γ is no longer small and thus our perturbative assumption is no longer satisfied, meaning

the higher order forces have become increasingly relevant.

Calculation of the time-dependent forces allows us to then simulate the phase-space trajectory

of the classical coordinate as a function of time. Figure 7.4 shows time dependent trajectories

of the classical coordinate x for three different values of the small parameter Ω/Γ. We also

calculate the instantaneous power of the classical coordinate at each time step according to

(Fehr − F(0)) ·
p
m , which includes only the effects of the excitational and dissipative forces. The

classical coordinate is intentionally confined to the region of negative viscosity shown in Fig-

ure 7.1 via our choice of U(x) such that under the perturbative assumption, the instantaneous

power will be positive at all time-steps. We observe that when Ω/Γ � 1 as in (a); rendering
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the perturbative approximation as valid, the instantaneous power is overwhelmingly positive

in agreeance with the perturbative approximation. This entails that the oscillations will in-

crease until reaching regions of positive viscosity, whereby they will form a limit cycle. This is

further illustrated in Figure 7.6 via long trajectories for the same parameters, where the ampli-

tude of oscillations increases in both the Ehrenfest and perturbative approaches. This result

demonstrates that even in the absence of time-scale separation, negative viscosities emerge

and dictate the behaviour of the system. However, we observe the resultant trajectories from

the two methods to diverge from each other over longer time-scales, demonstrating the im-

portance of the higher order forces even for these parameters where we expect they can be

reasonably neglected. We note that Ehrenfest dynamics has been used to observe the effects

of negative viscosities in different regimes in the literature [132, 136, 140, 237]. In Figure 7.4

(b) and (c) where Ω/Γ > 1 and our perturbative assumption is no longer adequate, we ob-

serve that the instantaneous power is more often negative wherein the electronic environment

is taking energy away from the classical coordinate. This means that the higher order terms

(2nd order and above) in our perturbative expansion for Fehr have become more relevant and

the dissipative nature of these forces are overwhelming the negative viscosity produced by

F(1). These results are summarised in Figure 7.5 in which the average power input to the

classical coordinate over a period of oscillation is calculated and classified as negative (blue)

or positive (red). We observe that the average power input to the classical coordinate is pos-

itive far beyond when the perturbative assumption is valid. We anticipate that this cut-off

between positive and negative average power input is highly dependent on the model and pa-

rameters at hand. However, this demonstrates that while negative viscosities will still emerge

under a numerically exact approach, it can be dominated by dissipative higher order forces

for large values of Ω/Γ. These results suggest that the inclusion of the higher order forces

which emerge through Ehrenfest dynamics acts to further subdue classical vibrations within

the system.

7.3.2 Two classical degrees of freedom

The algorithm for calculating Fehr can be readily extended to account for many classical de-

grees of freedom. In this section, we consider another 2-level model consisting now of two

classical degrees of freedom; a stretching component and an angular component. The stretch-

ing coordinate q modulates the hopping amplitude between electronic sites in the central

region, while the angular coordinate θ accounts for the shift in electric levels due to the elec-

tric field produced by the applied voltage bias. Thus, the molecular Hamiltonian now takes

the form

HM =

(
hL(θ) η(q)

η(q) hR(θ)

)
. (7.32)
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Figure 7.4: Samples of Ehrenfest trajectories of the classical coordinate against time for (a)
Ω/Γ ≈ 0.14, (b) Ω/Γ ≈ 2.2, (c) Ω/Γ ≈ 3.2. Colour shows the instantaneous power of the
classical coordinate.
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Figure 7.5: Regimes of negative (blue) or positive (red) average power input to the classical
coordinate over a period of oscillation. The green points refer to the corresponding plots in
Figure 7.4.
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Figure 7.6: Comparison of long trajectories of the classical coordinate in time using the Ehren-
fest approach and the truncated perturbative approach. The viscosity coefficient is negative
between the red dashed lines and positive outside. Ω/Γ ≈ 0.14.

The hopping amplitude is given by

η(q) = ηe−q
(

1 + q + q2/3
)

. (7.33)

This is a generic 1s-orbital overlap scaled by some constant η [169]. Meanwhile, the atomic

levels are given by

hL/R(θ) = ±Eq0 cos(θ), (7.34)

where q0 is the constant bond-length parameter which appears in our classical potential for q,

while E is the linear approximation to the electric field across the junction as determined by

E =
µL − µR

L
, (7.35)

and L is the junction length. For all results in this section, we set η = 0.1, q0 = 2, θ0 = 0,

L = 4, kq = 0.1, kθ = 0.05, and µL = −µR = 0.1. All other components of the full Hamiltonian

take the same form as in section 7.3.1.

In Figure 7.7, we calculate an Ehrenfest trajectory and record the Ehrenfest and perturbative

forces on each degree of freedom separately. Given that we have more than one classical

degree of freedom, this also includes the so-called non-equilibrium anti-symmetric forces in

which the motion of θ induces a force on q and vice versa; the net anti-symmetric force being

perpendicular to the motion of the classical coordinate. Figure 7.8 performs a direct com-

parison between the time dependent trajectories calculated via the Ehrenfest force and the

perturbative approximation. To do so, we first calculate a classical Ehrenfest trajectory of

our two coordinates. From this trajectory at some point in time after the unusual transient

behaviour in Fehr has subsided, we extract the initial conditions for a comparative trajectory
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Figure 7.7: The force trajectories in time for the Ehrenfest force (blue) and perturbative force
(black) acting on (a) q and (b) θ. Ωq/Γ ≈ 0.32, Ωθ/Γ ≈ 0.22.

where the forces are calculated according to the perturbative approximation. In Figure 7.8

(a), the trajectories are compared for large effective masses for each coordinate such that the

perturbative assumption should be satisfied. We observe only small differences between the

trajectories resulting from the different methods in this case. Contrarily, Figure 7.8 (b) demon-

strates for small effective masses that the trajectories deviate away from each other almost

instantly and undergo largely different oscillatory behaviour. This is because the perturbative

assumption is no longer valid since Ω/Γ is not sufficiently small.

7.3.3 Evaluating the diffusion coefficient

The stochastic force term which we have thus far avoided in the calculation of dynamics in

this chapter is a stochastic Gaussian process entirely defined by the following [162]:

〈δ f (t)〉 = 0, 〈δ f (t)δ f (t′)〉 = D(t, t′), (7.36)

where D(t, t′) is the exact diffusion coefficient. We will consider a system consisting of a single

electronic level coupled to a single classical degree of freedom. Our molecular Hamiltonian is

given by

HM = h0 + λx, (7.37)
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Figure 7.8: Short classical trajectories in the coordinate-space comparing the Ehrenfest method
and perturbative method. Green(red) points denote the start(end) of the trajectory. The vector
field shows ∇U(x) + F(0). (a) Ωq/Γ ≈ 0.32, Ωθ/Γ ≈ 0.22, and a trajectory length of 600, and
(b) Ωq/Γ = 1, Ωθ/Γ ≈ 0.7, and a trajectory length of 200.

where x represents any generic classical degree of freedom. We will let h0 = 0 and our Γα

become scalar inputs in the single level case. As illustrated in Section 3.3, the exact diffusion

coefficient in (7.36) for our model (in the absence of motion on the leads interface) can then

be expressed in terms of nonequilibrium Green’s functions according to

D(t, t′) = λ2G>(t, t′)G<(t′, t). (7.38)

Since D(t, t′) represents the correlations in a classical force, we require it to be a purely real

quantity. This further implies that we should have D(t, t′) = D(t′, t). This, however, is not

strictly the case since the derivations leading to (7.38) treat δ f as a quantum object. To rem-

edy this, upon mapping the quantum force, δ f̂ , onto the classical stochastic force, δ f , which

appears in our Langevin equation, we must symmetrize (7.38) in time by considering only the

real component:

Re
{

D(t, t′)
}
=

1
2
(

D(t, t′) + D∗(t, t′)
)

, (7.39)

=
1
2
(

D(t, t′) + D(t′, t)
)

. (7.40)

Thus, we treat this real component as our classical diffusion coefficient. In doing so, our

expression for D(t, t′) is now in correspondence with reference [162] as per

D(t, t′) = Re
{

λ2G>(t, t′)G<(t′, t)
}

. (7.41)

Note that we have previously not had to consider this symmetrization procedure since we em-

ployed the white-noise approximation which immediately enforces that D(t, t′) = D(t′, t) = 0

when t 6= t′.



156 Ehrenfest dynamics

D(t, t′) accounts for the effects of the random fluctuations about the mean-field of the elec-

tronic environment on the classical degrees of freedom along with accounting for the feedback

of the classical coordinate on the electronic environment due to its motion. However, gener-

ally a time-scale separation within the system is utilised in order to produce a perturbative

solution to D(t, t′) in which the feedback due to the motion of the classical coordinate is not

included; in other words, the classical coordinate evolves adiabatically. In order to easily

identify the different time-scales within the system, we first transform (7.41) into the Wigner

domain as follows. We have

D(t, t′) = λ2 (G>(t, t′)G<(t′, t) + G<(t, t′)G>(t′, t)
)

. (7.42)

Direct application of the Wigner transform then yields

D̃(ω, T) = λ2
∫

dτeiωτ
(
G>(t, t′)G<(t′, t) + G<(t, t′)G>(t′, t)

)
. (7.43)

We will apply an equivalent process to each of the two terms; for brevity, we only show

the first explicitly. We replace G< in the time domain by the corresponding inverse Wigner

transform of G̃< and simplify to find

λ2
∫

dτeiωτG>(t, t′)G<(t′, t) =
λ2

2π

∫
dτeiωτG>(t, t′)

∫
dω′e−iω′(−τ)G̃<(ω′, T) (7.44)

=
λ2

2π

∫
dω′

∫
dτei(ω+ω′)τG>(t, t′)G̃<(ω′, T) (7.45)

=
λ2

2π

∫
dω′G̃>(ω + ω′, T)G̃<(ω′, T), (7.46)

where we have used the definition of the Wigner transform. Applying the same process for

the second term then yields the diffusion coefficient in the Wigner domain as

D̃(ω, T) =
λ2

2π

∫
dω′

(
G̃>(ω + ω′, T)G̃<(ω′, T) + G̃<(ω + ω′, T)G̃>(ω′, T)

)
. (7.47)

Now, the adiabatic diffusion is found by taking G̃</> to be our adiabatic Green’s functions.

The subsequent application of the inverse Wigner transform then yields the adiabatic diffusion

in the time domain as

D(0)(τ, T) = λ2
∫ dω

2π
e−iωτ

∫ dω′

2π

(
G̃>
(0)(ω + ω′, T)G̃<

(0)(ω
′, T) + G̃<

(0)(ω + ω′, T)G̃>
(0)(ω

′, T)
)

.

(7.48)

The adiabatic diffusion will serve as a base of comparison with the exact diffusion in order

to analyse the effects of a time-scale separation within the system. We additionally analyse

the validity of the white-noise approximation for different parameters. The white-noise ap-

proximation is a method of coarse-graining the diffusion coefficient which allows for a simpler

mathematical and computational treatment. This is done by assuming that the non-Markovian
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exact diffusion coefficient can instead be replaced by a Markovian equivalent according to

D(t, t′) ≡ Dw(T)δ(t− t′), (7.49)

where we have introduced the white-noise diffusion coefficient Dw. Thus, the aim is to ac-

curately reproduce the effects of the stochastic force under the assumption that it is entirely

uncorrelated in time. In order to replicate the correct dynamics using this approximation, we

observed in Section 3.3.6.1 that Dw must then take the form

Dw(t f ) =
∫ t f

−t f

dτD(t f , τ), (7.50)

where to avoid ambiguity, t f denotes a specific point along the trajectory. (7.50) is just the

Wigner transform of D(t, t′) when ω = 0 such that Dw is independent of ω; hence the name

"white-noise" diffusion. Thus, the white-noise diffusion coefficient contains information about

the correlations in the stochastic force but applies that information in a Markovian manner.

A time-scale separation can be applied to the white-noise diffusion in a similar way as previ-

ously, where the adiabatic white-noise diffusion is given by

Dw
(0)(t f ) =

∫ t f

−t f

dτD(0)(t f , τ). (7.51)

The adiabatic white-noise diffusion is the most commonly used approximation to the diffusion

coefficient [142, 143, 152]. The white-noise approximation is valid when correlations in the

exact diffusion coefficient decay over time-scales in which the effects of other forces present

in the system (in our case, the Ehrenfest and the classical forces) are negligible. In order to

quantify its validity, we introduce the correlation time defined according to

tcorr(t f ) =

∫ t f
−t f

dτD(t f , τ)

D(t f , τ = 0)
. (7.52)

This is a measure of the persistence of correlations in the stochastic force, independent of

their strength. The numerator of (7.52) is our expression for the white-noise diffusion while

the denominator is the variance in the stochastic force at time t f . With all quantities now

defined, we can begin to discuss the results.

We once again apply the time-stepping algorithm presented in Section 7.2.2 to find classical

Ehrenfest trajectories in time for our classical coordinate. In doing so, we store A(ω, t) at

each time-step. The two-time lesser and greater Green’s functions can then be computed

according to (7.10) and (7.11) by inputting A(ω, t) at different points in the stored trajectory

and numerically integrating over ω for each possible value of τ. We then calculate the exact

diffusion coefficient as a function of τ according to (7.38), where D(τ = 0) corresponds to

the variance in the stochastic force at the end point of the trajectory and D(τ > 0) is the
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Figure 7.9: Exact diffusion coefficient as a function of τ for where time t occurs at: (a)/(b)
x = 0, (c)/(d) a turning point. Left: V = 0, Right: V = 0.2. Dashed line is the corresponding
D(0)(t, t′) for the same parameters.
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correlation in the stochastic force between the times t and t− τ. To clarify the method, the

stochastic force is not included in the simulation. We instead calculate the trajectory using

Ehrenfest dynamics as a means to assess the behaviour of the exact diffusion coefficient. The

common parameters in this section are λ = 0.1, k = 1 and x0 = 0.

In Figure 7.9 (a)-(d) we observe the exact diffusion as in (7.38) for different values of our

small parameter (solid line) plotted against the corresponding adiabatic diffusion as per (7.48)

(dashed line). Here, time t corresponds to the end point of the trajectory where in (a)/(b) the

trajectory is ended at a point when x = 0, while in (c)/(d) the trajectory is ended at a turning

point. The left plots are calculated in equilibrium while the right plots are calculated at a

non-zero voltage. The differences between the solid and dashed lines give an indication of the

effects of the feedback on the electronic environment due to the motion of the classical coor-

dinate. As expected, this feedback becomes especially important when the small parameter

becomes larger, such that the perturbative truncation of (7.38) is no longer satisfied. However,

we observe that an increase to the voltage nullifies the effects of the feedback. This is justified

by the knowledge that the electronic tunnelling time-scale is faster at higher voltages [239],

meaning that the electronic environment can more readily equilibrate to any changes in the

classical geometry. Thus, the time-scale separation becomes increasingly justifiable further

from equilibrium, even despite Ω/Γ being large. We also find that the correlations in the

stochastic force are dissipated over shorter time-scales when Ω/Γ is smaller such that D(τ)

approaches a shape more reminiscent of a delta function. Finally, we note that the time-scale

separation appears less satisfactory at the turning points of the trajectory. The acceleration

of the classical coordinate is largest around the turning points and we posit that acceleration

dependent terms become important here, which are otherwise unaccounted for under the

assumption of adiabatic motion.

The effectiveness of the time-scale separation for different ending positions along the trajectory

is quantified in Figure 7.10, in which we have calculated Dw/Dw
(0) for different end positions

along a period of the trajectory when Ω/Γ = 1. For these parameters, the time-scale separation

is ineffective as Dw is over twice as large as Dw
(0) at a minimum. We observe the adiabatic

assumption to be at its weakest in the vicinity of the turning points.

In Figure 7.11(a), we use tcorr/T as a measure of the suitability of the white-noise approxima-

tion, where T is the period of oscillations in the classical coordinate. Here, tcorr contains any

information about the electronic forces acting on the coordinate, while T contains information

on the classical force. We observe that an increase to Ω/Γ results in a corresponding increase

to tcorr/T, implying that the white-noise approximation is more valid at smaller Ω/Γ where

the time-scale separation is more well-defined. However, we note that the validity decreases

upon increasing the voltage which would ordinarily serve to further increase the time-scale

separation. For this system, a larger voltage results in more persistent correlations in the



160 Ehrenfest dynamics

Figure 7.10: An example trajectory of the classical coordinate. Colour scale shows the calcu-
lated Dw/Dw

(0) at that point in the trajectory. Parameters: Ω/Γ = 1, V = 0.

0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

(a)

-0.2 -0.1 0 0.1 0.2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

Figure 7.11: The ratio of the correlation time to the period of classical oscillation, (a) as a
function of Ω/Γ for equilibrium and non-equilibrium cases, trajectory length = 300, (b) for
shifted values of h0. The dashed blue lines show the edges of the voltage window. Parameters:
Ω/Γ = 1.

stochastic force which emerges in the numerator of (7.52), while the change in the denomina-

tor is comparatively irrelevant.

This counter-intuitive result also indirectly emerges in Figure 7.11(b) where we observe the

white-noise approximation to become more applicable outside of the voltage window and

away from the chemical potentials of the leads. In this region, electrons tunnel more slowly

through the central region. We do not yet have a convincing explanation for this.

7.4 Summary

In this chapter, we have introduced a novel time-stepping algorithm for evaluating the exact

lesser Green’s function at equal times, which allows us to simulate the trajectory of multiple

classical coordinates simultaneously via an Ehrenfest approach. We use this to benchmark

the commonly used Langevin approach which necessitates the use of a time-scale separation
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between classical and electronic coordinates within the system. We observe that despite our

avoidance of a time-scale separation within our system, we observe negative dissipations

(positive power input to the classical coordinate) as predicted by the Langevin approach. We

also note that these negative dissipations can be overwhelmed by positive dissipations due to

higher order forces unaccounted for in the Langevin approach. We also apply our method

to the calculation of the diffusion coefficient in which we observe the effect of the feedback

of the classical coordinate onto the electronic environment and its behaviour under a time-

scale separation. Additionally, we assess the validity of the white-noise approximation for the

diffusion coefficient for a range of parameters and find that it is most applicable under a clear

time-scale separation within the system and is better applied outside of the voltage window.
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Chapter 8

Conclusion

This thesis was a theoretical exploration into the current-induced forces experienced by nu-

clei in molecular electronic junctions. In Chapters 2 and 3, using the framework of non-

equilibrium Green’s functions we were able to cast the equations of motion for a set of

classically-described vibrational degrees of freedom in terms of a Langevin equation, from

which we self-consistently derived the forces acting on the classical degrees of freedom. The

main ingredients of our Langevin description are the adiabatic force, which quantifies the

renormalisation of the vibrational potential due to the coupling to the leads and occupation of

electronic states in the central region, along with the viscosity coefficient and diffusion coeffi-

cient which together describe heating effects. Each was derived for the case of many classical

degrees of freedom, allowing for motion in both the central region and on the leads interface.

Motion on the leads interface was the focus of Chapter 4. We found that for the case of a

single electronic level on the molecular bridge with only a central region dependence on the

classical coordinate, the viscosity coefficient must be purely positive. Allowing for motion on

the leads interface then enables the viscosity coefficient to become negative at high voltages

which may quickly lead to device breakdown. Additionally, we observed the formation of

bistable potentials as dependent on the strength of the electronic coupling between the central

region and leads, as well as the stiffness of the classical potential. We used the mechanical

current noise, an experimental observable, as a means of quantifying the classical dynamics

under an applied voltage, summarised in terms of a Fano factor. We found strongly super-

Poissonian noise (F ≈ 400) in the bistable regime.

Chapter 5 saw us expand the theory to allow for a slow, sinusoidal, time-dependent driving in

the leads energy levels. This involved the calculation of additional corrections to the Langevin

coefficients due to the motion of the leads energy levels. We found the AC case to produce

considerable heating or cooling over the DC case, dependent on the parameter regime consid-

ered. Increasing the cooling involves increasing the viscosity coefficient, which is maximised

when the central electronic level is in resonance with the fermi-energy of the lead. Whether

the AC case produces additional heating or cooling depends on the energy of the electronic
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level on the molecular bridge relative to the fermi-energy. We observed the application of an

AC driving to produce in excess of 50 percent cooling relative to the DC case while producing

the same average current, which would result in a monumental increase to device lifetimes.

Device lifetimes were analysed in detail in Chapter 6, in terms of reaction rates. Here, we

utilised a Fokker-Planck description for the phase space probability density of our classical

vibration. We considered two limiting cases; the overdamped case, in which the probability

density was described by the Smoluchowski equation, and the underdamped case where we

instead utilised an energy-diffusion equation. This allowed us to derive analytical expressions

for the mean first passage time in both regimes. We found that the ingredients governing the

reaction rate were the size of the energy barrier as determined by the adiabatic force, as well

as the inhomogeneous effective temperature over the reaction potential which is calculated

via the viscosity and diffusion coefficients. The natural emergence of localised heating in

the junction leads to an effect reminiscent of Landauer’s blowtorch effect in which there is

an effective lowering of the energy barrier due to localised heating. We considered a H+
2

molecule in the central region where the chemical bond length acted as the vibrational degree

of freedom and subsequently calculated the device lifetimes in both limiting regimes.

The Langevin approach to dynamics relies upon assuming a clear separation of time-scales

in the system, along with assuming that the stochastic force can be reasonably estimated as

being delta-correlated. We benchmarked these assumptions in detail in Chapter 7, where we

introduced a novel algorithm for calculating the lesser Green’s function exactly, avoiding the

need for a time-scale separation. This allowed us to rephrase the classical dynamics in terms

of an Ehrenfest force. We found that negative viscosities are robust, emerging even when

using Ehrenfest dynamics. This validates the result in contradiction with claims that negative

viscosities are an unphysical artifact of applying a time-scale separation. We calculated the

coloured noise over trajectories and observed the effects of the feedback of the non-adiabatic

motion of the classical vibrations onto the electronic environment. We found that the white-

noise approximation is in general, a valid approximation to make when there is a clear time-

scale separation within the system. We did, however, find that its validity is decreased when

the electronic level of the molecular bridge is in the resonance region.
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