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Abstract 

Background  Traditional epidemiological models tend to oversimplify the transmission dynamics of Mycobacte-
rium tuberculosis (M.tb) to replicate observed tuberculosis (TB) epidemic patterns. This has led to growing interest 
in advanced methodologies like agent-based modelling (ABM), which can more accurately represent the complex 
heterogeneity of TB transmission.

Objectives  To better understand the use of agent-based models (ABMs) in this context, we conducted a systematic 
review with two main objectives: (1) to examine how ABMs have been employed to model the intricate heterogene-
ity of M.tb transmission, and (2) to identify the challenges and opportunities associated with implementing ABMs 
for M.tb.

Search methods  We conducted a systematic search following PRISMA guidelines across four databases (MEDLINE, 
EMBASE, Global Health, and Scopus), limiting our review to peer-reviewed articles published in English up to Decem-
ber 2022. Data were extracted by two investigators using a standardized extraction tool. Prospero registration: 
CRD42022380580.

Selection criteria  Our review included peer-reviewed articles in English that implement agent-based, individual-
based, or microsimulation models of M.tb transmission. Models focusing solely on in-vitro or within-host dynamics 
were excluded. Data extraction targeted the methodological, epidemiological, and computational characteristics 
of ABMs used for TB transmission. A risk of bias assessment was not conducted as the review synthesized modelling 
studies without pooling epidemiological data.

Results  Our search initially identified 5,077 studies, from which we ultimately included 26 in our final review 
after exclusions. These studies varied in population settings, time horizons, and model complexity. While many incor-
porated population heterogeneity and household structures, some lacked essential features like spatial structures 
or economic evaluations. Only eight studies provided publicly accessible code, highlighting the need for improved 
transparency.

Authors’ conclusions  ABMs are a versatile approach for representing complex disease dynamics, particularly in cases 
like TB, where they address heterogeneous mixing and household transmission often overlooked by traditional 
models. However, their advanced capabilities come with challenges, including those arising from their stochastic 
nature, such as parameter tuning and high computational expense. To improve transparency and reproducibility, 
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open-source code sharing, and standardised reporting are recommended to enhance ABM reliability in studying 
epidemiologically complex diseases like TB.
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Introduction
Tuberculosis (TB), caused by the bacterium Mycobac-
terium tuberculosis (M.tb), remains a significant global 
health concern, ranking among the top causes of mor-
tality worldwide [1]. While compartmental models have 
often been used to guide TB control strategies, they may 
not fully capture the complexity and heterogeneity of TB 
transmission dynamics [2]. In recent years, agent-based 
modelling (ABM) has become an increasingly popu-
lar approach for modelling infectious diseases due to its 
capacity to capture the complexity of human interactions 
and behaviours that contribute to disease transmission 
[3]. ABMs allow researchers to simulate individual-level 
behaviours and interactions, providing insights into how 
disease spreads through a population over time. ABMs 
have been used to model a range of infectious diseases, 
including seasonal influenza, malaria, Ebola and [4–7], 
recently COVID-19 [8–11].

TB possesses distinctive attributes that strongly influ-
ence the optimal choice of modelling framework. The 
age-dependent transition rates from latent TB infec-
tion (LTBI) to active disease underline the significance 
of incorporating age-related structures into TB models. 
Moreover, the concentration of M.tb transmission within 
high-risk population clusters accentuates the need to fac-
tor in heterogeneous social mixing within the population 
as part of the framework. This is an important considera-
tion when attempting to identify unobserved transmis-
sion patterns [12].

The substantial impact of various coexisting condi-
tions, notably HIV, on M.tb transmission often neces-
sitates their inclusion within the model’s architecture. 
There may also be considerable interplay between medi-
cal comorbidities, which may be difficult to capture with 
compartmental models. Additionally, acknowledging the 
lifelong persistence of reactivation risk following infec-
tion may necessitate an extended temporal perspective to 
fully capture the disease’s trajectory over many decades 
[13].

Agent-based models (ABMs) excel in explicitly simu-
lating population heterogeneity, encompassing individ-
ual traits, behaviours, contact dynamics, interpersonal 
networks, and location specific transmission, such as 
households [3]. This attribute of ABMs holds particular 
relevance for infectious diseases like TB. By represent-
ing individuals as discrete agents with diverse charac-
teristics and interactions, ABMs can amalgamate these 

features to capture M.tb transmission within house-
holds and across broader community settings.

Leveraging these advanced modelling methodologies 
can permit the identification of pockets of high-risk 
populations and elucidate their roles in transmission 
dynamics. Consequently, the ABM framework can 
facilitate the assessment of targeted interventions and 
inform effective TB control and prevention strategies.

We reviewed evidence on the use of ABMs in model-
ling the transmission of M.tb. We addressed two main 
questions: (1) How have ABMs been utilized to model 
the complex heterogeneity of M.tb transmission? and 
(2) What are the challenges and opportunities in imple-
menting ABMs for M.tb? By addressing these ques-
tions, we aimed to enhance understanding of the role 
ABMs play in modelling M.tb transmission dynamics 
and provide insights for future research in this area.

Methods
Search strategy
Our search, extraction and reporting strategy was 
based on the PRISMA protocol (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses) 
and Cochrane guidelines [14] (see Appendix  1 and 
Appendix  2 for PRISMA checklists). We prospectively 
registered our review protocol with International Pro-
spective Register of Systematic Reviews (PROSPERO, 
registration number: CRD42022380580), available at: 
https://​www.​crd.​york.​ac.​uk/​prosp​ero/​displ​ay_​record.​
php?​Recor​dID=​380580.

We identified publications from four electronic data-
bases (MEDLINE, EMBASE, Global Health, and Sco-
pus) using predesignated search terms. We used ABM 
as our main search term for identifying models that 
simulated populations at the individual level but also 
captured studies with terms including individual-based 
models (IBMs) and microsimulations. The search strat-
egy was designed to identify publications that men-
tioned each of the following three concepts in their 
subject headings, keywords, titles, or abstracts:

1.	 Terms relating to M.tb;
2.	 Terms relating to epidemiology, disease outbreaks or 

transmission, and epidemics;
3.	 Terms identifying ABMs, individual-based or micro-

simulation models.

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=380580
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=380580
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To ensure comprehensive coverage, we combined 
terms from each category using the Boolean OR opera-
tor and linked these groupings with the Boolean AND 
operator to refine searches across titles, keywords, and 
abstracts in selected databases. A detailed explanation 
of our search strategy can be found in Appendix 3.

Study selection
We hierarchically considered full-text articles against 
our inclusion and exclusion criteria to determine eli-
gibility, restricting our review to peer-reviewed arti-
cles published in English up until December 2022. We 
imposed no geographical restrictions on the studies 
included. The abstracts of all retrieved studies were 
reviewed for relevance, specifically selecting those 
that discussed an agent-based, individual-based or 
microsimulation model of M.tb transmission for full-
text evaluation. Models focusing solely on in-vitro or 
within-host dynamics were excluded.

Search results were exported to EndNoteX9 (Clari-
vate Analytics, NY, USA) and duplicates were removed. 
We used 3-stage screening to identify studies for inclu-
sion: Stage 1 (Title review): two reviewers VLB and 
AEH independently screened titles. If a title was clearly 
irrelevant, the article was dropped; if it was selected by 
either reviewer, it progressed to the next stage; Stage 2 
(Abstract review): two reviewers (VLB and AEH) inde-
pendently reviewed abstracts. Studies progressed to the 
next stage of review if both reviewers agreed on inclu-
sion; Stage 3 (Full-text review): two reviewers (VLB 
and AEH) independently assessed the full-text article. 
If there was disagreement, reviewers met to review and 
reach consensus on whether to include or exclude the 
studies. If reviewers still disagreed, a third reviewer 
(JMT) was available to resolve differences, although 
this was not needed.

Data collection and analysis
Data were extracted using a spreadsheet developed, 
tested and approved by two investigators (LB, AH). We 
extracted various characteristics of the agent-based mod-
els (ABMs) used in M.tb TB research. These character-
istics encompassed whether the model represented the 
entire population, the TB burden level (high, moderate, 
or low) as reported by the authors, age representation of 
agents, heterogeneous mixing among individuals, inclu-
sion of LTBI, considered interventions, representation of 
household structure, inclusion of spatial structure, pres-
ence of an economic evaluation, the type of software 
used (whether simulation or self-developed), and the 
availability of the model code.

Assessment of quality
We did not conduct a risk of bias assessment because 
the review focused on synthesizing modelling stud-
ies without pooling epidemiological data, where such 
assessments are typically more relevant.

Results
 Our search strategy identified 5077 studies, and we 
assessed these papers’ general attributes. Prior to the 
review, 3543 records were excluded for duplicate or 
irrelevant themes. 1534 records were reviewed, with 
1435 rejected based on title and abstract screening. 
Sixty-one records progressed to full-text screening, 
with 26 included in our final review (Fig.  1). Table  1 
presents the list of included studies, while Table 2 and 
Appendix  4 provide detailed descriptions of the key 
epidemiological and methodological characteristics of 
the 26 reviewed studies.

Analysis objectives
The overarching purpose of the included studies was 
typically described as being either to capture and 
understand the underlying transmission dynamics [8, 
9], or to evaluate the effectiveness of different TB inter-
ventions. Interventions of interest included directly 
observed therapy short-course, contact tracing, active 
case detection, latent TB infection (LTBI) testing and 
treatment [10–13].

Population and settings
Out of 26 included studies, 11 studies representing 
transmission in high-burden countries [15–25], 12 stud-
ies simulating low-burden countries [26–37], 2 studies 
unclear [38, 39], only 1 study in a moderate setting. The 
26 studies had simulated model population sizes ranging 
between 3,786 people [36] to more than 6 million people 
[22].

To represent the sizes of the target populations, several 
investigators utilised scale factors. A scale factor refers 
to a parameter that relates the modelled population size 
to the real-world population it is intended to represent. 
By adjusting the scale factor, researchers can reduce the 
number of agents or individuals required, striking a bal-
ance between capturing essential dynamics and minimis-
ing computational requirements. For instance, Chang 
et al. used multiple scale factors to model people in each 
of the various groupings, scaling down in the model the 
persons in the mining, peri-mining, and labour-sending 
categories by a factor of around 50 [20]. To reduce the 
computational expense, Ragonnet et  al. modelled only 
a fraction of the national population of each simulated 



Page 4 of 11Bui et al. BMC Infectious Diseases         (2024) 24:1394 

country [22], while Goodell et  al. used a scale factor of 
1000 [28].

Natural history of infection and disease
ABMs commonly incorporate health states or compart-
ments to represent stages in the natural history of dis-
ease similar to those found in traditional compartmental 
models, such as the traditional susceptible - exposed 
- infected - recovered (SEIR) model [40]. In an ABM 
employing the SEIR paradigm, agents were categorised 
into one of four states according to their status regard-
ing the pathogen of interest: susceptible (S), exposed 
(E), infectious (I), and recovered (R). Rules that govern 
disease transmission then dictated how the individual 
agents interacted. ABMs often divided the latent period 

between M.tb infection and subsequent TB disease into 
early and late phases to capture the observed declining 
risk of disease with time from infection (23 out of 26) 
[11–14, 16–22, 24, 26–30, 32, 34, 36, 38, 39, 41]. These 
models commonly utilised data derived from the pub-
lished literature or public datasets to set estimates for 
input parameters. While calibration techniques were 
commonly used to estimate free model parameters, only 
one of the included studies reported validating param-
eters that had been tuned using an independent dataset 
[26].

Heterogeneous mixing and household structure
Fifteen out of 26 included studies implemented some 
form of heterogeneous social mixing, although a variety 

Fig. 1  PRISMA 2020 flow diagram for systematic reviews which included searches of databases and registers
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of approaches were used [15, 20–22, 25–27, 32, 35–37]. 
Only 8 out of 26 studies explicitly incorporated house-
hold structure [21, 22, 25, 26, 32, 35, 37, 41]. Two studies 
utilised setting-specific contact data [25, 37], while other 
authors used synthetic population data [13, 39]. Tian 
et  al. used the Barabasi and Albert algorithm to deter-
mine the shape of the contact network [42], while Tuite 
et al. included age-assortative mixing within households 
and communities [32]. The household sizes in the model 
of Kasaie et al. were varied to reflect underlying popula-
tion household size but without specifically taking the 
age structure of the household into account [41]. Cohen 
et  al. used a distance function that could be varied to 
modify network connectivity [15], while Guzzetta et  al. 

used a heuristic contact network to replicate household 
structures [34]. McCreesh et  al. (2018) focused specifi-
cally on household transmission but found that while it 
contributed substantially to TB epidemiology, saturation 
of contacts and the influence of “superspreaders’’ at loca-
tions outside households limited its impact on transmis-
sion overall [21].

Only five of the included studies incorporated a spa-
tial component. Prats et  al. used a spatial approach 
by randomly generating a population based on input 
parameter distributions, which were then distributed 
across a 501 × 501 grid [31]. Zwick et al. allowed agents 
to move between grids in their respective neighbour-
hoods, where contacts were made between agents 

Table 1  Included studies

No Title Year of 
publication

Citation

1 Are survey-based estimates of the burden of drug resistant TB too low? Insight from a simulation study 2008 [15]

2 An agent-based computational model of the spread of tuberculosis 2011 [16]

3 Modeling socio-demography to capture tuberculosis transmission dynamics in a low-burden setting 2011 [17]

4 Evaluating the effectiveness of contact racing on tuberculosis outcomes in Saskatchewan using individual-based mod-
eling

2013 [18]

5 Can Australia eliminate TB? Modelling immigration strategies for reaching MDG targets in a low-transmission setting 2014 [19]

6 Disease control implications of India’s changing multidrug-resistant tuberculosis epidemic 2014 [20]

7 Timing of tuberculosis transmission and the impact of household contact tracing: An agent-based simulation model 2014 [21]

8 A novel tool improves existing estimates of recent tuberculosis transmission in settings of sparse data collection 2015 [22]

9 An agent-based computational model for tuberculosis spreading on age-structured populations 2015 [23]

10 Cost-effectiveness of improvements in diagnosis and treatment accessibility for tuberculosis control in India 2015 [24]

11 Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reacti-
vation disease

2015 [25]

12 Individual-based modeling of tuberculosis in a user-friendly interface: Understanding the epidemiological role of popula-
tion heterogeneity in a city

2016 [26]

13 Comparing drivers and dynamics of tuberculosis in California, Florida, New York, and Texas 2017 [27]

14 Stochastic agent-based modeling of tuberculosis in Canadian Indigenous communities 2017 [28]

15 An explanation for the low proportion of tuberculosis that results from transmission between household and known 
social contacts

2018 [29]

16 Small contribution of gold mines to the ongoing tuberculosis epidemic in South Africa: A modeling-based study 2018 [30]

17 Impact and effectiveness of state-level tuberculosis interventions in California, Florida, New York, and Texas: A model-
based analysis

2019 [31]

18 Outlook for tuberculosis elimination in California: An individual-based stochastic model 2019 [32]

19 Profiling Mycobacterium tuberculosis transmission and the resulting disease burden in the five highest tuberculosis bur-
den countries

2019 [33]

20 A framework for network-based epidemiological modeling of tuberculosis dynamics using synthetic datasets 2020 [34]

21 Modeling the impact of recommendations for primary care-based screening for latent tuberculosis infection in California 2020 [35]

22 Tuberculosis from transmission in clinics in high HIV settings may be far higher than contact data suggest 2020 [36]

23 Modelling the effect of infection prevention and control measures on rate of Mycobacterium tuberculosis transmission 
to clinic attendees in primary health clinics in South Africa

2021 [37]

24 Representing tuberculosis transmission with Complex Contagion: An agent-based simulation modeling approach 2021 [38]

25 Estimating the contribution of transmission in primary healthcare clinics to community-wide TB disease incidence, 
and the impact of infection prevention and control interventions, in KwaZulu-Natal, South Africa

2022 [39]

26 Evaluation of TB elimination strategies in Canadian Inuit populations: Nunavut as a case study 2022 [40]
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within each grid space and its adjoining spaces [36]. 
Meanwhile, Guzzetta et  al. allocated the population 
to a spatial grid based on observed spatial population 
density [26], while the contact matrix of Cohen et  al. 
allowed for the probability of an edge (and so risk of 
transmission) between two individuals to decrease with 
increasing spatial separation.

Comorbidities, such as HIV [37], can also be imple-
mented as characteristics of agents. In the model 
developed by Chang [20], HIV exerted a substantial 
influence by elevating the rate of disease activation 
across all groups, including mine workers. The rela-
tionship between HIV presence and increased latent-
to-active TB risk underscores the need to consider 

HIV comorbidity in understanding TB dynamics. This 
is particularly pertinent when HIV prevalence is high 
within the simulated population and significantly influ-
ences transmission patterns.

Economic evaluation
Among 26 studies, only four conducted economic evalu-
ations. Goodell et  al.‘s study assessed LTBI testing and 
treatment in California, projecting 106,000  TB cases in 
the state by 2065. Pre-elimination could be achieved by 
2065 under certain scenarios, with costs ranging from 
$20B to $48B and incremental cost-effectiveness ratios 
(ICERs) from $657,000 to $3.1  M per QALY [28]. Red-
dy’s study in Malawi and South Africa showed cost-effec-
tive interventions increasing life expectancy by 0.5–1.2 
years, with an incremental ICER of $45 per year of life 
saved (YLS) and $840/YLS and decreased over time [43]. 
Suen’s study revealed that PPM, either alone or combined 
with Xpert diagnostics, was cost-effective, with benefits 
exceeding 1 GDP per capita per quality-adjusted life-year 
gained, surpassing Xpert interventions without PPM 
[18].

Time horizons and time steps
A wide range of time horizons were used by included 
studies, ranging from 2 months [31] to 205 years [32]. 
The step sizes of the models ranged from just under one 
hour [27] to one year [22, 30]. Several papers explicitly 
reported the presence of a burn-in or warm-up period 
[19, 26, 27, 32].

Software/Language
We categorised studies into two groups according to 
the software used: pre-existing simulation software and 
self-developed software. Within the first group, studies 
utilised various dedicated modelling platforms for ABM 
implementation, such as NetLogo [24, 25, 31], AnyLogic 
[24, 32], EMOD [20], and CEPAC-I [31]. In the other 
group, nine authors adopted the alternative approach of 
creating custom ABM platforms using tools that included 
mathematical software like MATLAB® and other gen-
eral-purpose programming languages such as Python, C/
C++, and Java [11, 14, 16, 17, 22, 26, 27, 29, 30, 32, 34, 39, 
41]. Only 8 of these studies made their code repositories 
available for access.

We note that certain technical information or features 
may have been absent from the published materials, par-
ticularly if model code was not provided as open-source 
or explained elsewhere. Additionally, in certain arti-
cles, it was necessary to extract information from the 
“Results” or “Discussion” sections as well as the figure 
captions in order to infer the model’s properties (such as 

Table 2  Characteristics of reviewed studies

a As reported by authors
b AnyLogic, NetLogo, EMOD, DTK)
c MATLAB, C/C++, Python, Go, Julia, etc…

Characteristics N %

TB Burden
  High 11 42%

  Moderate 1 4

  Low 12 46%

  Unclear 2 8%

Heterogeneous mixing
  Yes 15 58%

  No 11 42%

Age explicitly modelled
  Yes 12 46%

  No 14 54%

Household structure represented
  Yes 8 69%

  No 18 31%

Latent TB represented
  Yes 23 88%

  No 3 12%

Spatial structure
  Yes 5 18%

  No 21 82%

Economic evaluation
  Yes 2 8%

  No 24 92%

Software
  Simulation software 12 50%

  Self-developed 9 32%

  Not Declared 5 18%

Code publicly accessible
  Yes 8 29%

  No 18 71%

Total 26 100%
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population size, time horizon, step size, or the number of 
realisations).

While ABMs are a relatively recent addition to TB 
and infectious disease modelling, there are established 
frameworks, like ODD (Overview, Design concepts, and 
Details), that have been created to facilitate the docu-
mentation of models for publication. It’s worth noting 
that only Prats has thus far documented their model fol-
lowing the ODD framework [31].

Number of realisations and model calibration
In the case of stochastic ABMs, a single set of initial 
conditions and input parameters can lead to different 
outcomes, such that multiple realisations are popular 
approach The number of realisations for each parameter 
set used to quantify the uncertainty in the results varied 
in our search from 100x up to 1600x. Guzzetta 2011 used 
a Nelder-Mead gradient descent algorithm to identify the 
best parameter sets [26], while Latin Hypercube Sam-
pling was employed by 2 included studies [35, 41]. For 
the remaining 16 papers, we were unable to retrieve the 
number of realisations used.

Computational cost
A minority of included studies reported the compu-
tational performance of their models. According to 
Renardy et  al., their simulation runs were performed 
using a laptop with an Intel Core i7 processor clocked 
at 3.1 GHz and 16GB of 2133 MHz LPDDR3 RAM [35]. 
They observed that a single simulation over a 2-year 
timeframe on this device required roughly five min-
utes of CPU time to complete. In the ABM of Ragonnet 
et al., a full simulation lasting 205 years was completed in 
roughly three hours using an Intel Xeon E3-12xx v2 CPU 
(3.1 GHz, 8 MB Cache) [22].

Discussion
Our review identified 26 articles that applied various 
agent-based modelling frameworks across many differ-
ent scenarios, settings, and populations, characterised by 
varying sizes, geographical locations, and TB burdens. In 
contrast to the study of Lander et al. [3] which focused on 
the rise of individual-based models (IBMs) of infectious 
diseases, our review focused on the diverse application 
of ABMs to various scenarios, but explicitly for TB trans-
mission. Despite the widely varied capacities of ABMs, 
the primary justification for choosing this approach was 
frequently not explicitly stated by the authors. In those 
that did justify their approach, a key aspect emphasised 
in the majority of analyses was the inclusion of heteroge-
neous mixing. This showcases ABMs’ potential to capture 
the local complexities of disease transmission dynamics 
relevant to TB epidemiology.

Included ABMs often adopted an SEIR framework to 
represent TB disease states, with agents assigned to dif-
ferent states based on their health status with regard to 
TB infection. While some studies divided the period of 
latent infection into early and late phases to capture the 
declining risk of TB disease over time, the flexibility of 
ABMs provides the advantage of being able to assign any 
distribution of sojourn times, such that this dichotomy 
is not essential. Yet, the importance of this advantage is 
uncertain, due to the limited detailed epidemiological 
understanding of TB latency dynamics.

Input parameters to these models were often derived 
from published literature, with data obtained from epi-
demiological datasets. However, only one included study 
validated the calibration algorithm with a separate data-
set (i.e. distinct from the “training” dataset). This suggests 
that while calibration techniques were frequently used 
to identify optimal model parameters, validation using 
independent datasets was less prevalent.

While the potential of ABMs to capture the complexi-
ties of heterogeneous mixing is widely recognized, the 
integration of this crucial aspect remains limited in the 
reviewed studies. This disparity between the acknowl-
edged importance of heterogeneous mixing and its inclu-
sion in a relatively small proportion of studies suggests 
a significant gap in fully leveraging the capabilities of 
ABMs for modelling TB dynamics. The underrepresenta-
tion of heterogeneous mixing in the majority of studies 
raises questions about the extent to which the dynamics 
of real-world interactions and disease transmission are 
accurately represented.

Heterogeneous population mixing encompasses vari-
ous interaction patterns among individuals in a popu-
lation, accounting for differences in social behaviours, 
activity levels and contact patterns, all of which exert a 
substantial influence on disease transmission dynamics. 
In real-world systems, transmission is not distributed 
uniformly across space and time, but rather is clustered 
in specific locations or periods. When spatial heteroge-
neity in transmission is accurately represented, these 
models hold the potential to replicate transmission hot-
spots, and so quantify their importance to TB epidemi-
ology. Furthermore, households are key in transmitting 
infectious diseases like TB [37], as close and prolonged 
contacts within them facilitate disease spread; incorpo-
rating household structure into ABMs enables in-depth 
study of within-household transmission dynamics and its 
overall impact at a population level, encompassing inter-
actions like shared living spaces and close contacts that 
strongly shape disease transmission patterns [44].

Modelling TB in low and high-burden settings pre-
sents distinct challenges. Low-burden settings have lower 
TB incidence but better access to comprehensive data, 
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potentially enabling greater precision in parameter esti-
mation. However, TB transmission in these settings may 
be concentrated within high-risk groups, or, in certain 
cases, it’s so infrequent that it can be excluded altogether. 
In contrast, high-burden settings experience widespread 
transmission throughout the general population, often 
in crowded and high-risk environments, which makes it 
possible to identify broader epidemiological trends, but 
impossible to trace all transmission trees. In addition, 
the local healthcare infrastructures and socioeconomic 
elements vary, influencing the suitability and feasibility 
of intervention strategies. Low-burden contexts might 
concentrate on high-risk groups or specific regions, 
whereas high-burden contexts necessitate interventions 
encompassing the entire population. This divergence 
implies that parameter estimation from low-burden situ-
ations cannot be directly extrapolated to high-burden 
scenarios, although this may vary depending on the 
nature of the specific parameters (e.g. biological, social, 
programmatic).

The appropriateness of integrating economic evalua-
tion within ABMs presents challenges due to their inher-
ent complexity. The choice between ABMs and other 
modelling methods, such as system dynamics, semi-
mechanistic techniques, and compartmental models, 
should be based on factors like the model’s scope and 
purpose, and the modeller’s expertise. Understanding the 
potential and limitations of ABMs in economic evalua-
tion is essential for informed decision-making in disease 
modelling and cost-effectiveness analysis [45].

Calibration involves tuning parameters and rules to 
ensure the implemented model can align with real-
world data, while also quantifying uncertainties in model 
parameter values. In the field of ABMs, achieving a deter-
ministic equilibrium is precluded by their inherent sto-
chastic nature [46]. Instead, ABMs find relative stability 
as agents interact over time, although even convergence 
to a pseudo-equilibrium may remain elusive, or not be 
representative of the historical dynamics of TB epidemi-
ology. Hence, the burn-in period becomes essential for 
allowing emergent patterns to settle and stabilise within 
the system. The extended temporal scope demanded 
by the prolonged natural progression of TB introduces 
uncertainties in both modelling transmission dynam-
ics and calibration. ABMs, therefore, need to capture 
historical dynamics spanning an extensive timeframe, 
encompassing diverse stages of TB infection, individual-
level variations, and treatment outcomes. In this phase, 
the model’s trajectory is significantly influenced by ran-
domness and variations in agent behaviour. The duration 
of the burn-in period is influenced by the complexity and 
stochastic nature of the model, established through sen-
sitivity analyses to ensure results that are dependable and 

significant. In scenarios where the model aims to encap-
sulate the continual evolution of historical dynamics in 
an ever-shifting epidemiological backdrop, conventional 
burn-in periods might not apply. Instead, the focus could 
be on achieving a relatively stable “pseudo-equilibrium” 
offering a captivating insight highlighted in the review. 
Strategies like parallel computing are pivotal in managing 
this protracted timeframe, harmonising model complex-
ity with clarity for practicality and effective communica-
tion of insights.

ABMs offer flexibility with diverse implementation 
tools, as highlighted in this review we observed the use 
of a diverse range of software tools. Simulation software, 
such as NetLogo or AnyLogic, offers user-friendly model 
construction, pre-built features, and visualisation con-
venience. However, they may have limitations in han-
dling intricate analyses and customization. For intricate 
or specialised analyses, employing general programming 
languages like C++, Python, or Java can offer greater 
adaptability and integration with other commonly used 
libraries of these languages. Nonetheless, these languages 
demand higher upfront effort and programming exper-
tise. The tool choice hinges on factors including problem 
complexity, modeller’s training, and project timeline, 
ensuring alignment with objectives and resources.

The efficiency of ABMs’ computational performance 
hinges on variables like agent quantity, interaction rule 
complexity, and hardware-software configurations. This 
diverges from deterministic models, where runtime is 
unaffected by population size. This accounts for indi-
vidual-level variations in disease progression, improv-
ing accuracy in representing the natural history of TB. 
By directly modelling the distribution of sojourn times, 
ABMs can capture the variability and uncertainty in fea-
tures such as the time it takes for latent TB infection to 
progress to active disease, incorporating factors like the 
host’s immune response and exposure levels. This adds 
complexity and realism to the model, making it a valu-
able alternative to the SEIR framework for TB research. 
In adapting compartmental models with stochastic ele-
ments, accurate replication of inherent variability is 
achieved, whether through stochastic differential equa-
tions or agent-based modelling. These simulations mir-
ror empirical patterns and yield probability distributions 
for comparison, requiring careful attention to model 
assumptions, parameterization, and validation for accu-
rate insights.

Defining a scale factor is a feasible and commonly used 
solution for managing computational expenses in ABMs. 
By judiciously adjusting this factor, specific simulation 
aspects can be simplified while preserving core dynam-
ics. This balances computational efficiency and model 
accuracy, enabling the handling of extensive simulations 
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or extended time frames while capturing essential emer-
gent behaviours. In ABMs, establishing reasonable 
population scale factors requires a careful equilibrium 
between model precision and computational viability. 
The appropriateness of such a factor relies on considera-
tions like data availability, research objectives, and detail 
level. While no universal rule exists, scaling factors that 
excessively distort the model’s scale beyond practical 
interactions should be avoided. Unrealistic scaling can 
misrepresent real-world dynamics, compromise effi-
ciency, and skew simulation results.

Code reproducibility in ABM studies is crucial for sci-
entific integrity. Among the 26 studies examined, only 8 
provided publicly available code. Comprehensive model 
documentation, like the ODD protocol, was adhered to 
by only one study. Code reproducibility and transpar-
ency are crucial in ABM for to enable result validation, 
knowledge building, and collaboration. Sharing acces-
sible code and comprehensive model documentation 
is imperative for scientific rigor and robustness, as it 
ensures replicability and verification, ultimately enhanc-
ing research credibility. Moreover, as tuberculosis models 
often inform public health policy, this practice is crucial 
for translating research into actionable policy decisions. 
Additionally, by sharing code and adhering to established 
documentation standards, researchers not only benefit 
their own work but also contribute to the broader devel-
opment and improvement of modelling methodologies. 
This collaborative approach fosters innovation and the 
evolution of modelling techniques and practices.

Moving forward, there are several key areas for 
improvement in using ABMs for studying TB transmis-
sion. These include enhancing data availability and vali-
dation, integrating spatial and social heterogeneities, 
considering economic evaluation, refining calibration 
techniques and uncertainty analysis, improving computa-
tional efficiency, emphasising documentation and trans-
parency of ABMs.

Conclusions
In summary, ABMs offer a versatile and promising 
approach to understanding complex disease trans-
mission, particularly relevant in cases like TB. Their 
capacity to capture heterogeneous mixing, often over-
looked in traditional models, allows a more accurate 
representation of real-world dynamics. In the context 
of TB, this becomes particularly significant, as ABMs 
offer a unique opportunity to model and understand 
the importance of household transmission, which 
plays a pivotal role in the spread of the disease. How-
ever, advanced capabilities in agent-based models 
(ABMs) come with complexity, due to unobserved local 

interactions, parameter tuning, and high computational 
costs for simulating large populations. Improving com-
putational efficiency is promising, but calibrating these 
models remains a significant challenge, primarily due to 
their inherent stochasticity. To enhance transparency 
and reproducibility in ABM, we actively endorse open-
source code sharing and the adoption of standardised 
reporting. This proactive approach should strengthen 
ABMs’ reliability and impact in understanding complex 
disease dynamics like TB.
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