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Abstract
Precision agriculture is a highly efficient farming practice in which precision irrigation

(PI) targets the optimal use of water. For implementing PI, an irrigation decision

support system (IDSS) is required, which needs information from rainfall forecasts

and soil moisture (SM). Although the spatial accuracy of official rain forecasts inferred

from climate models (CMs) has been improving, the temporal accuracy is not good

enough for PI scheduling. In the case of SM measurement, we may need to rely on

satellites as deploying large-scale in-situ sensors is not feasible. Existing satellites

require an overall improvement in spatial and depth aspects for PI. The advent of

deep learning (DL) offers new opportunities for considerably improving rain and

SM information. However, existing DL approaches require further development and

adaptation in the spatio-temporal context for rain forecasts and satellite SM data.

Therefore, the development of such DL models is pursued in this thesis.

In the first phase of this thesis, to improve CM’s rainfall forecasting accuracy,

a hybrid climate learning model (HCLM) was developed. Conventionally, from

multiple CM forecasts, the one closest in time to the prediction target is assumed to be

the best. However, the preliminary analysis conducted in this thesis revealed that the

latest is not always the best forecast. Hence, the multiple CM forecasts are input to the

HCLM for time-series refinement. The HCLM has a novel probabilistic network layer

(considering the stochastic nature of rain forecasts) and a new sequential analysis

layer (correlating the forecasts with corresponding CM observation data), making

it a unique and highly suitable DL model for rain forecast refinement. The HCLM

refined CM forecast highly accurately across six major climate zones in Australia.

Apart from rainfall, as SM information is required in PI decisions, improving SM

was considered next. Downscaling, high-resolution spatially distributed SM data from

satellites using existing methods generates empty spaces (spectral information loss)

due to data corruptions, leading to the loss of farm SM information. Literature studies

revealed that the SM data changes are spatio-temporal, and downscaled image pixels

have bi-directional associations. Motivated by these factors, in the second phase of

this thesis, a new DL downscaling method was developed which, unlike existing

approaches, simultaneously associates bi-directionally the spectra-spatio-temporal



sequences for better downscaling. This considerably reduced information loss in the

proposed downscaling compared to the state-of-the-art methods.

But, the downscaled satellite image can only reveal spatially distributed SM and not

the moisture information across deeper soil layers. This depth information is directly

measurable using large-scale root-zone soil moisture (RZSM) sensor deployment,

but this is not economical, therefore, we need to explore in-direct means of RZSM

estimation. For in-direct RZSM estimation, the auxiliary RZSM data (like weather,

soil, and plant characteristics) associations within a location and multiple sensor sites

with the target need to be found. Conventional transformer neural networks (TNN),

the most suitable DL model for such sequential associations, cannot incorporate such

simultaneous multi-associations. Hence in the third phase of this thesis, a new TNN

model is developed called the hybrid TNN model, which can perform this action.

From the analysis conducted in this thesis, the proposed model showed better RZSM

estimation than other popular recent related works.

Finally, the models developed in phases one, two, and three of this thesis are

integrated into an IDSS to provide refined rainfall forecast and SM information for

irrigation scheduling. This integrated system considerably enhanced irrigation water

and cost savings compared to existing state-of-the-art related works in literature.
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Chapter 1

Introduction

1.1 Background and Motivation

Precision agriculture (PA) is a new agriculture practice that uses technology to gather,

combine, process, and analyze temporal, spatial, and individual data to support

management decisions for improved resource use according to farm requirements [4]-

[6]. Among the resources, water is highly critical, as irrigation accounts for 70%

of total freshwater withdrawals on average [7] and will further increase if improved

practices are not adopted since irrigated land will further increase by 17% by 2050

[8], [9]. The PA approach, which targets the optimal usage of this crucial resource, is

called precision irrigation (PI) [10] - [14].

The PI approach applies water to the plant to a selected location at the right time in

small measured quantities to provide optimal growing conditions [15]. For practical

application in any selected location, a PI system needs an irrigation decision support

system (IDSS) to “know” when to irrigate, and how much water to apply [15], [16].

The IDSS deduces this information by analyzing and evaluating the farm rainfall and

soil moisture (SM) data since, apart from irrigation, plants can also receive water from

rain or use the water stored in the soil as moisture to meet their requirements [17]

- [21].

Meteorological forecasts can provide information on the amount of future rain-

fall that may fall on a farm. Currently, official meteorological forecasts in most

countries (including Australia) are produced using climate models (CMs) [22], [23].

Although the spatial prediction precision has improved significantly over the last
1
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decade, providing more regional forecasts for local farms, the temporal accuracy of

CM forecasts needs further refinement to reduce IDSS irrigation schedule overlaps

with rainfall [24]. Therefore, we should explore new methods to enhance the temporal

forecasting accuracy of the CM to improve IDSS irrigation scheduling.

Next, to measure SM, in-situ sensors can be used, which can provide information

at high temporal frequency but not the distributed farm SM details leading to a

general dependency on satellites for this information [25]. However, existing SM

satellite missions do not provide the spatial and depth resolutions required for PI

application [26], [27]. Therefore, better spatial and depth resolution SM information

has to be derived for plant water need assessments by IDSS.

For better temporal, spatial, and depth information extraction from real data sources

(such as CMs, satellites, and in-situ sensors), compared to conventional approaches,

deep learning (DL) methods have shown higher performance when a large amount

of data is available [28] - [30]. Currently, a deluge of open-source data is available

from CMs, satellites, and in-situ sensors, therefore, DL methods look very suitable to

improve spatio-temporal information on rainfall and SM for the proposed application.

To summarise, this thesis will explore novel DL-based solutions for better informa-

tion extraction of four key elements (a) rainfall forecast, (b) spatial SM distribution:

surface soil moisture (SSM), (c) depth SM distribution: root zone soil moisture

(RZSM), and (d) PI decisions.

1.2 Research Problems

This thesis focuses on improving the decisions taken for PI through better information

extraction using novel DL methods. The research problems investigated include the

development of a model for refining CM rainfall forecasts, a downscaling model for

obtaining high spatial resolution daily satellite SSM, methods for estimating RZSM at

required depths for target locations, and improving irrigation decisions using rainfall

and SM information. These research problems are detailed as follows.

1.2.1 Rainfall Forecast Refining: To Enhance Temporal Forecasts Accuracy

The Bureau of Meteorology (BOM), Australia progressed from Predictive Ocean

Atmosphere Model for Australia (POAMA) CM to the Australian Community Climate
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Earth-System Simulator (ACCESS) CM, resulting in better spatial accuracy [24]. The

current BOM model, ACCESS, produces multiple time-series rainfall forecasts for

a target day. The latest rainfall forecast is assumed to be the best as it is closest in

time to the actual event. However, the preliminary analysis conducted in this thesis

revealed that the BOM’s latest forecast is not always the best. In most cases, better

rain forecasts were available in preceding time instants. Hence, finding the best

forecast from multiple CM forecasts can enhance the accuracy of CM forecasts. A

DL-based approach to refine CM forecasts is proposed, as existing studies reveal a

comparative higher ability in DL methods to improve similar CM outputs [31], [24].

Since the target problem is time series, a sequential DL model will be suitable

for refining the CM forecasts. However, existing state-of-the-art sequential DL

models need to be made adaptable to the features of rainfall forecast data [18], [11]

by incorporating additional layers for (a) capturing underlying minute functional

relationships with related climate variables, such as temperature [32], (b) untangling

the random forecasting structures [33], and (c) finding hidden forecasting patterns [34]

essential for forecast refinement. Hence, a sequential DL-based climate learning

model that integrates these essential data processing layers to refine the BOM’s

rainfall forecasts is proposed.

1.2.2 Surface Soil Moisture (SSM): To Obtain High-Resolution SM Spatial
Distribution With Reduced Information Loss

The best daily SSM resolution provided by existing satellite missions is 9 km [25].

This spatial resolution is significantly low for agriculture applications [35]. Hence,

we should downscale this SSM to a higher resolution. However, existing methods that

target higher SSM spatial resolution, result in numerous empty spaces (loss of spectral

information) in the downscaled image due to satellite data corruptions in selected

days [36], [37]. Existing literature illustrates the changes in SSM have bi-directional

spatio-temporal associations [38], [39]. Therefore, along with bi-directional spatial

data analysis, incorporating an additional SSM image (2D) analysis over time (1D)

bi-directionally and using this to predict the missing image pieces can help reduce

the spectral information losses in downscaled output. But, this requires simultaneous
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bi-directional examination of the spectral sequence in the spatial (2D) and time (1D)

domains. Unfortunately, existing downscaling models do not support this mode of

analysis due to their structural limitations and the complex bi-directional 3D (2D

plus 1D) data associations [40] - [43]. This thesis addresses these research problems

by developing a DL model with the desired bi-directional 3D analysis structure for

obtaining high-resolution SSM with reduced information loss.

1.2.3 Root Zone Soil Moisture (RZSM): To Determine SM Depth Distribution

Downscaled satellite SM provides information on SSM (0-5 cm). For knowledge of

SM depth distribution (> 5 cm), RZSM information is needed [44]. Direct RZSM

measurement through large-scale in-situ sensor deployment at the subsurface will

disturb the soil properties and is not economical [45]. Hence, in-direct RZSM esti-

mation methods are required. The literature illustrates that RZSM at a location is

related to changing weather, soil, and plant characteristics [46]. Therefore these char-

acteristics can provide auxiliary information on the RZSM changes. These auxiliary

RZSM variables can be associated with available sensor data, and relationships can

be extrapolated to non-sensor locations to get the spatially distributed RZSM. Com-

pared to existing methods, DL is most suitable for such data associations as they are

autotuned to extract such relative relationships from such diverse big data [29], [30].

Among DL models, sequential models are apt for finding these relationships as all

these variables are time-series sequences [47]- [56]. However, for in-direct RZSM

estimation, the data associations within a location and multiple sensor sites with the

target need to be found. Existing state-of-the-art DL models do not incorporate such

simultaneous multi-associations [47] - [56]. Hence, in this thesis, such a DL model

is developed, which combines ground and satellite-based information for in-direct

RZSM estimation.

1.2.4 Irrigation Decision Support System (IDSS): To Determine When and
How Much Irrigation Required

Existing scholarly literature highlight the importance of integrating rainfall forecasts

and SM information into the IDSS to enhance the accuracy of its decisions on
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when and how much water to apply [17]. Due to inaccuracy in existing rainfall

forecasting and SM measurement systems, current PI-based IDSS results in inaccurate

irrigation scheduling [17], [50], [51]. Furthermore, existing IDSS shows RZSM error

accumulation problems due to faulty SM inputs [52], [53] and over-irrigation issues

due to overlaps with rainfall [17], [54], [55]. To address these problems, the DL-based

forecast and SSM/RZSM models developed in this thesis are integrated to provide

irrigation decision support.

1.3 Original Contributions

To address the research problems outlined in Section 1.2., the following original

contributions to the literature are presented in this thesis:

1. Chapter 3: A new DL model that can learn from the past CM forecasts and refine

them for accurate rainfall prediction is proposed. The model uses multiple CM

forecasts and corresponding observations as inputs for rainfall prediction.

2. Chapter 4: A novel three-dimensional DL model is proposed for bi-directional

spectral sequence analysis in both space-time domains simultaneously. The

proposed model uses optical, thermal, and microwave remote sensed data as

inputs for downscaling.

3. Chapter 5: A DL-based methodology is designed to combine satellite and

ground-based data for daily in-direct RZSM estimation without requiring the

large-scale installation of sensing stations.

4. Chapter 6: A DL-based IDSS is proposed for PI. The proposed model provides

decision support for irrigation of each plant or selected area by processing

improved rainfall and SM information obtained using original contributions 1-3.

1.4 Significance

The original contribution 1 in Section 1.3 is the first CM’s multiple forecast refinement

model in the literature. It significantly outperformed previous rainfall prediction works
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in literature over ten locations across six major climate zones in Australia, offering a

better data-driven solution for climate model forecast refining.

Original contribution 2 in Section 1.3 is the first approach that bi-directionally

associates the spectra-spatial-temporal relationships for SSM downscaling. It reduced

the information loss in the downscaled surface soil moisture map compared to existing

state-of-the-art downscaling models by 36.6667% on three globally used datasets for

SSM downscaling validation.

Original contribution 3 in Section 1.3 provides a new method for in-direct RZSM

estimation using ground and satellite data. It reduced RZSM prediction error com-

pared to widely used DL models in similar applications by 21.341% for three test

locations in Australia.

Finally, original contribution 4 in Section 1.3 provides a new integrated IDSS

model which utilizes DL-processed rain and SM data rather than unrefined informa-

tion. It showed 15.632% water and 15.125% cost-saving than competing relevant

models from the literature on the selected sites. Overall, this thesis fills signifi-

cant gaps in the rainfall, SM, and PI literature by developing novel DL models that

outperform existing state-of-the-art models in related applications.

1.5 Document Organization

The structure of this thesis is as follows. Chapter 2 reviews related literature, with a

focus on research in the areas of weather forecasting, downscaling models for SSM,

relevant models for RZSM estimation, and problems in existing decision support

systems in PI. The gaps in existing works are identified and lead to the four research

chapters.

Chapters 3-6 are the research chapters that address the problems outlined in Section

1.2 by achieving the objectives outlined in Section 1.3. The following figure provides

an overview of the structure of the research chapters and the relationships between

them. As Fig. 1.1 illustrates, Chapter 2 provides the details of related works. Later, the

existing state-of-the-art models from the literature relevant to each research problem,

are compared for performance evaluation with the proposed models in Chapters 3-6.

Chapter 3 presents a DL-based climate learning model for refining rainfall forecasts.
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Figure 1.1: Illustration of the thesis organization.

The model uses CM forecasts and observations as inputs. Chapter 4, demonstrates a

downscaling model for producing high-resolution daily SSM. Two new DL models

have been designed and concatenated to form a downscaling model that can reveal

the daily SSM distribution more clearly with an increased number of multi-spectral

pixels. The spectrum of each pixel in the downscaled image will reveal the amount of

SSM at a higher resolution spatially. Remote sensed high-resolution auxiliary SM

indices (from MODIS satellite) are used as inputs to produce fine-scale SSM. Chapter

5 proposes a fine-scale distributed RZSM estimation model. The model works on a

DL-based scheme to produce high-resolution RZSM by using downscaled SSM from

Chapter 4 along with ground-based data. Using the rainfall forecasts from Chapter 3

and RZSM from Chapter 5 as inputs, a decision support system for PI is developed in

Chapter 6. A conclusion is drawn in Chapter 7 based on the problems from Chapter

2 and solutions found from the research in Chapters 4-6. Possible future research

directions are also discussed in Chapter 7.



Chapter 2

Background

This chapter reviews existing irrigation decision support systems (IDSSs) for precision

irrigation (PI) and identifies their limitations and scope for improvement. Furthermore,

this chapter examines existing novel models and methods for the estimation/prediction

of rainfall, surface soil moisture (SSM), and root zone soil moisture (RZSM), which

are identified as relevant for improving the irrigation decisions for PI.

2.1 Irrigation Decision Support System

PI is an agricultural approach that enables the application of water in small measured

quantities to plants in any selected location at the correct time to provide optimal

growing conditions by controlling an automatic irrigation system using an IDSS [16],

[74]. The IDSS used in PI can be mainly classified as [50], [17] (1) soil water balance

(SWB)-based models, (2) soil moisture (SM) based models, (3) plant parameters

(PP)-based models, and (4) process-based models. Each of these models is detailed

further.

The SWB IDSS model is based on the theoretical representation of a limited portion

of the water cycle, the soil–plant–atmosphere interface [50]. The literature illustrates

it to be a highly powerful IDSS tool under rain-fed irrigation schemes [76], [77], [19].

However, the SWB model’s irrigation scheduling performance drops when the error

of estimated daily RZSM accumulates [52], [53]. To overcome this SWB issue, an

accurate estimation of SM in the plant root zone is essential.

In the case of the SM-based IDSS models, it compares monitored SM to the
8
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threshold moisture depletion tolerance to trigger irrigation [17]. It mainly focuses on

determining when irrigation should be applied to maintain moisture in the plant root

zone within an appropriate range to benefit plant growth, yield, and quality [79].

Next, the PP-based IDSS models focus on the relationship between plant water

stress and soil water deficit [17]. It uses the plant-water-status-based indices to trigger

irrigation [17], [78]. In conclusion, both the SM-based and PP-based models require

soil water retention information. Although direct sensor measurements eliminate

estimation errors, they require extensive installation of sensing systems (high cost) in

the field [45]. Therefore spatially distributed accurate information without large-scale

deployment of sensors is required for both SM-based and PP-based IDSS models.

Finally, the process-based models are based on the theoretical study of plants’

growth processes and consider the effects of the soil-plant-atmosphere system in a

holistic manner [51]. They simulate soil-plant-atmosphere dynamics (not direct mea-

surements like SM-/PP-based models) to decide on irrigation requirements. However,

some field-based calibrations are needed for practical implementation [81], [82]. For

real-time irrigation scheduling, without linking to accurate weather forecasts, process-

based models derived errored timing and quantity of irrigation. This error happens

especially when a high rainfall event occurs soon after irrigation [17], [54], [55],

indicating a need to input accurate rainfall forecasts to reduce water loss.

To summarise, IDSS models predict plant water requirements generally as a

function of moisture and rain input information. Hence, the inaccuracies in these

input measurements result in faulty irrigation scheduling [83], [84]. Therefore,

accurate information extraction from these inputs is essential for PI.

2.2 Rainfall Forecast

For agricultural fields exposed to rainfall, irrigation decisions should be based on

rainfall information [94]. For such agriculture farms, irrigation decisions taken by

existing IDSS models resulted in water losses due to overlap with rain [17], [54], [55].

As rainfall has a highly random disposition, irrigation schedules should supplement

rain to reduce water loss. More accurate rainfall forecasting will result in less

irrigation water loss. Currently, there are two main ways to forecast rainfall: (a)
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climate models (CMs) and (b) DL approaches [95]. CMs simulate atmospheric

operation, and DL approaches are based on the theories of various DL algorithms

[95], [96]. In this section, existing CMs and DL models for rainfall forecasting are

critically analyzed.

2.2.1 Climate Models

CMs are the primary tool available for investigating the response of the climate

system to various kinds of atmospheric forcing (a dynamic process that forces the

air to rise) for making rainfall predictions [98]. Atmospheric weather and ocean

circulation form the backbone of CMs [99]. These phenomenons are governed by

the fundamental laws of physics that describe the conservation of mass, energy, and

momentum [95], [98].

Figure 2.1: Ferrel’s conceptual climate model illustrates the three-cell general circulation diagram,
representing air circulations along the three axes (the poles and equator). The air circulation direction
is evaluated with reference to the vectors N, M, P, and O, representing latitude, longitude, height, and
depth [87].

Historically, climate modeling begins with conceptual models. These conceptual

models explained the prevailing winds over the globe and captured the fundamental

energy-transport function of the climate system. Among the many conceptual models,
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an important model is Ferrel’s model for gross atmospheric circulation [87], as the

atmospheric circulation concepts have not changed much from Ferrel’s model. Fig.

2.1 illustrates Ferrel’s model, which predicts climate based on the three-dimensional

atmospheric circulation moments.

In the 19th century, mathematical models followed conceptual modeling [100],

[22], [101]. Since the 1950s, the principal tools of climate science have been computer

simulation models of the global general circulation. Fig. 2.2 illustrates the general

circulation model (GCM). The GCM model produces weather forecasts based on the

general circulation of a planetary atmosphere or ocean [23].

Figure 2.2: The general circulation model (GCM) is an atmospheric circulation computer simulation
model [23]. The GCM computer model divides the planet into a three-dimensional grid, apply the
basic equations, and evaluates the results for climate predictions. The horizontal grid represents the
latitude and longitude, while the vertical grid height. Each cell (representing a particular latitude,
longitude, and height) in the GCM evaluates the atmospheric changes (shown by the square illustrating
the physical process in a model).
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From the 1980s to the present, comprehensive coupled models of the entire climate

system has dominated the field. Initially, coupled models were created at individual

laboratories. However, the increase in component models led to an increasing number

of mix-and-match models. In response to the rise in such models, in 2002, the Na-

tional Center for Atmospheric Research (NCAR), National Oceanic and Atmospheric

Administration (NOAA), National Aeronautics and Space Administration (NASA),

and the Department of Defense constituencies group developed an Earth System Mod-

eling (ESM) framework [88]. Fig. 2.3 illustrates the ESM, which couples additional

information from the biogeochemical cycle systems to the GCM system for better

predictions [24].

Figure 2.3: Schematic representation of the earth system model (ESM) [88]. The ESM couple the
GCM to the biogeochemical cycle systems for more advanced weather predictions.

Currently, in Australia, an ESM model called the Australian Community Climate

Earth-System Simulator (ACCESS) is used for weather forecasting by the Bureau of

Meteorology (BOM). The GCM model called Predictive Ocean Atmosphere Model

for Australia (POAMA) preceded ACCESS. ACCESS includes additional information

from the biogeochemical cycle for weather forecasting, unlike POAMA, resulting

in more regional forecast details (Fig. 2.4). BOM provides multiple forecasts using

its CMs for the target day by updating its predictions over a period leading to the

actual day. Usually, the latest forecast is believed to be the best, as it has the shortest
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lead time to the actual rainfall event [24]. Table 2.1 shows the monthly average

performance of these multiple BOM forecasts, it can be observed that Forecast 7

(latest forecast) predictions were most accurate only for three months out of twelve in

2017. Hence, if the best forecast can be refined from multiple, it can further enhance

the accuracy of CM’s rain predictions.

Figure 2.4: The rainfall forecasts of BOM Australia’s previous model, the POAMA (GCM), and the
current model ACCESS (ESM) [57]. Compared to POAMA, ACCESS has improved spatial resolution
due to the addition of biogeochemical cycle information, resulting in forecasts with more regional
detail.

Table 2.1: Comparison of BOM Climate Model Seven Day Forecasts using RMSE in 2017 [1]. F1 is
the oldest forecast, and F7 is the latest forecast.

Month: January February March April May June July August September October November December
F1 10.485 27.955 12.086 13.916 1.575 1.040 0.862 6.334 0.398 3.171 2.313 2.316
F2 9.886 26.601 12.149 14.358 1.580 1.662 0.659 2.460 0.560 3.558 3.602 2.448
F3 8.693 25.544 11.174 11.252 1.554 0.604 0.509 2.239 1.093 4.039 2.132 2.437
F4 8.752 25.026 9.097 14.913 1.391 0.976 0.705 2.400 0.916 3.312 2.493 2.375
F5 8.369 24.992 8.710 15.864 1.563 0.706 0.723 0.514 0.456 3.128 2.753 2.454
F6 7.184 24.266 7.921 12.776 1.500 1.071 0.691 2.198 0.772 4.872 2.410 2.431
F7 6.887 25.388 7.796 11.368 1.855 0.610 0.420 2.236 1.100 4.522 2.500 2.381

Currently, the final forecast summary is usually provided by an expert using the

CM, requiring long-term experience and subjective judgment, possibly causing the

fluctuating accuracy of the CM’s latest rainfall forecast [102]. As rainfall forecasts is

the numerical relationship with the changing values of atmospheric and environmental

parameters [95], [98], DL models can be applied to refine them since they can learn

and execute complex analytical tasks better than existing conventional methods

[103]. The details of existing DL-based models that can decode similar climate

characteristics are thoroughly examined in the next section.
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2.2.2 Deep Learning Models

Artificial neural networks (ANN) are traditional DL models with simple structures

and shallow layers [104]. An ANN has a collection of connected units called artificial

neurons, which mimics the neurons in a biological brain. Each connection, like

the synapses in a biological brain, can transmit a signal to other neurons. And

each connection is assigned a weight, which controls the strength of the signal

transmitted. The ANN will randomize weight values before learning initially begins.

The connection weights are adjusted by the ANN during training through back-

propagation of errors to help reconcile the differences between the actual and predicted

outcomes.

In the case of rainfall forecasting, studies have shown that ANN rainfall predictions

have higher accuracy than the main prediction (final) from the CMs like GCM [104].

Previously, since the final forecast was assumed to be the best, this model was

sufficient. However, as illustrated in Table 2.1, the final forecast is not the most

accurate. ANNs might not be sufficient to decode the best forecast because they

tend to fall into local minimum [105] and over-fitting [106] problems. Local minima

problems can lead to the model choosing suboptimal points, while over-fitting can

lead to the model over-fitting on training data, thus choosing a forecast that is not ideal.

These issues in ANNs can be resolved using deep neural networks (DNNs) [107],

which are multi-processing layered structures with outstanding learning capability

[108]. DNNs have become the most effective DL models and have shown stronger

learning ability compared with traditional ANN in both spatial and sequential learning

classifications/prediction problems [109], [110].

Figure 2.5: Single-layer perceptron network for binary classification. The output y is activated to 1 if
the sum of the products of the weights (w1, w2, w3) and the inputs (x1, x2, x3) are above the threshold,
otherwise deactivated.

DNNs can be classified as feedforward and recurrent neural networks [111]. In
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feedforward neural networks, the inputs are directly passed to the outputs through a

series of connection weights. The simplest traditional feedforward neural network

is a single-layer perceptron (SLP) network. It implements a learning rule for binary

classification using a set of inputs and an artificial neuron, illustrated in Fig. 2.5. It

consists of a single layer of output nodes. The inputs are fed directly to the outputs

via a series of weights. The sum of the products of the weights and the inputs is

calculated in each node, and if the value is above the threshold, the output is activated

as one; otherwise, it is deactivated to zero.

Figure 2.6: Multi-layer perceptron network [201]. In this network, perceptrons are organized into an
input layer, a hidden layer, and an output layer. Depending on the type of activation function, it can
perform as a classifier or regressor.

The multi-layer perceptron (MLP) network is a deeper version of the SLP network

[201]. Fig. 2.6 illustrates an MLP network. It contains many perceptrons that are

organized into layers. An MLP should have at least three layers of perceptrons: an

input layer, a hidden layer, and an output layer. An MLP with more than two hidden

layers is classified as a DNN. Also, MLP is a fully connected network, i.e., all the

neurons in one layer are connected to the neurons in the next layer. While the SLP can

only perform binary classification like heavy and light rainfall (as rainfall is non-linear

and not linearly separable [195]), an MLP is free to either perform classification or

regression, depending upon its activation function.

Convolutional neural network (CNN) are regularized versions of MLP [112], [113],

[114]. Typical ways of regularization are penalizing parameters during training (such

as weight decay) or trimming connectivity (such as dropout). CNNs regularize by the

use of a convolution layer (not present in MLP) before the fully connected layer. This

layer performs a mathematical operation called convolution in place of general weight
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matrix multiplication in MLP. Here it takes advantage of the hierarchical pattern

in data and assembles patterns of increasing complexity using smaller and simpler

patterns embossed in their filters (convolution kernels).

Figure 2.7: Convolutional neural network for rainfall prediction [114]. The Conv layers perform
convolution operations on inputs, Pool layers reduce dimensionality through max pooling, and the
fully connected layer implements the hyperbolic tangent activation function for rainfall prediction.

The literature illustrates that CNN exhibited better performance compared to the

widely used feed-forward neural network, the Multilayer perceptron (MLP), and

BOM’s CM (ACCESS-S1) to predict rainfall [112], [113], [114]. Fig. 2.7 illustrates

the CNN model for rainfall prediction. In this model, the convolutional layers

convolve the input and pass its result to the pooling layer. Pooling layers reduce the

dimensions of data by combining the outputs of neuron clusters at one layer into

a single neuron in the next layer. This pooling layer uses the maximum value of

each local cluster (max pooling). Finally, the fully connected layer connects every

neuron in the previous layer to every neuron in the output layer. This final layer is the

same as the traditional MLP. In this work, the CNN model analyzed the changes in

various climate parameters and objectively extracted features to predict rainfall [18].

However, rainfall data is a time series sequence, and a dynamic neural network with

memory units (recurrent neural network models) exhibited improvement in predicting

rainfall compared with feedforward models [33], [199]. This indicates that sequential

models such as recurrent neural networks might be better for predicting the best

rainfall forecast as they are time series sequences with similar features as actual

rainfall.

Fig. 2.8 illustrates a recurrent neural network (RNN). Unlike feedforward networks,
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Figure 2.8: Structure of recurrent neural network [150]. The inputs at previous time instants (Xt) are
provided as feedback for subsequent sequence predictions.

Figure 2.9: Comparison between an RNN, LSTM, and GRU cell [115]. The LSTM introduced gate
control units (three gates: σ ) to overcome the gradient disappearance/explosion problems in the RNN
structure. GRU cell reduced the number of gate control units from 3 to 2 in the LSTM to reduce
training time.

RNNs have a feedback loop [150]. Due to this feature, they can correlate contextual

information effectively, which is suitable for modeling sequence data. They also

fine-tuned the weights of the network based on the error obtained in the previous

training iteration. However, the RNN structure is prone to gradient disappearance or

gradient explosion problems when the sequence distance is long.

To overcome the problems caused by RNN in long-distance memory, the long

short term memory (LSTM) neural network was proposed [115]. As can be observed

from Fig. 2.9 LSTM introduces a gate mechanism to the RNN structure for updating

information. While the LSTM gate mechanism helped address the problems in

RNN, it made the overall structure complex, resulting in high training times. The

gated recurrent unit (GRU), reduced the number of gate control units from 3 to

2 in the original LSTM [115]. Fig. 2.9 illustrates that GRU has less number of

gates compared to LSTM. The reduced gate makes GRU faster compared to LSTM,



18 CHAPTER 2. BACKGROUND

however, it is less accurate on a larger dataset (such as meteorological data) compared

to LSTM [11], [115]. Therefore, for more accurate rainfall predictions, the use of

LSTM might be more appropriate.

More recent works have identified hybrid-sequential DNNs as candidates that can

better decode many complex rainfall characteristics compared to recurrent-DNNs

[11], [119]. Hybrid structures can incorporate diverse analyses in a single model for

advanced feature extraction for classifications/predictions due to the concatenation

of multiple model features. As climate forecasts are quite complex and patterns

are difficult to find, more advanced analysis using hybrid-recurrent DNNs might be

required to find the optimum forecast from CM. However, a major drawback in these

models is that they focus on location-specific predictions, rather than predictions

of entire precipitation fields, limiting their operational utility and usefulness across

different spatial and temporal scales [11], [119]. Furthermore, the forecasts issued

by these models show higher uncertainty with increasing lead times, which could

be due to not including small-scale weather patterns, critical for improving forecast

value [120].

Overall, DL methods look promising for the rainfall domain and hybrid-sequential

DNN models seems the best fit to achieve this goal.

2.3 Surface Soil Moisture

When overwatering occurs, part of the rainfall/irrigation water percolates below the

root zone of the plants, and some flows away over the soil surface as run-off [59], [60].

Only the remaining part stored in the soil as moisture can be used by the plants [123].

Hence, the estimation of the water stored in soil is critical for improving agricultural

irrigation efficiency. However, the direct measurement of spatially distributed SM

using in-situ sensors is expensive. Satellites can measure the surface soil moisture

(SSM) distribution information, but existing satellite missions have poor resolu-

tion [25], [65], [67], making them not suitable for irrigation applications. Hence,

downscaling of satellite SSM is essential for use in irrigation applications.
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2.3.1 Satellite SSM

In this section, the literature on existing satellite SM missions and downscaling meth-

ods for the current best-resolution satellite are thoroughly examined. Many global

SSM products, based on remote sensing earth observations have been developed

and have achieved much technical progress over the years [130]. Most of these

SSM products are derived from microwave observations due to the direct connection

between electromagnetic radiation and SSM. The popular shorter wavelength SM

missions are Advanced Microwave Scanning Radiometer for the Earth-observing

system (AMSR-E) [131], Advanced Scatterometer (ASCAT) [132], and Advanced

Microwave Scanning Radiometer-2 (AMSR2) [133]. The AMSR-E sensor is a ra-

diometer operating onboard the Aqua satellite since 2002 and was the first satellite

sensor to incorporate SM as a standard product [131]. The ASCAT sensor is a C-band

scatterometer operating onboard the Metop satellite since 2006 and uses the Vienna

University of Technology (TUWIEN) change detection algorithm for SSM retrieval

by scatterometer data [132]. The AMSR2 is onboard the GCOM-W1 satellite [133]

and is a passive sensor that measures SM through C-band. Global SM products from

these missions are of low spatial resolution (approximately 25–40 km), which greatly

limits their use in regional agriculture.

In 2009, the European Space Agency (ESA) launched the first dedicated SM mis-

sion, the Soil Moisture and Ocean Salinity (SMOS) Earth Explorer [134]. Following

suit, the National Aeronautics and Space Administration (NASA) launched the Soil

Moisture Active Passive (SMAP) mission in 2015 [163]. Both SMOS and SMAP op-

erate in L-band (higher wavelength) and can provide better-resolution SSM products

than shorter wavelength missions. Currently, SMAP provides the best resolution daily

SSM product (9 km) [135]. However, this resolution is not sufficient for irrigation

applications [35], [64]. Existing research indicates that at least a resolution of 1 km is

required for agriculture applications [35], [64]. Since SMAP provides the best resolu-

tion products, further downscaling of SMAP will result in better resolution products

than the other satellite missions. SMAP and existing downscaling approaches for

SMAP are reviewed further.
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2.3.2 SMAP and SSM Downscaling

(a) Satellite (b) 9-km soil moisture

Figure 2.10: Illustration of Soil Moisture Active Passive (SMAP) mission’s (a) satellite, and (b)
Backus–Gilbert (BG) algorithm-based 9-km (best available resolution) soil moisture product.

Fig. 2.10 (a) illustrates the SMAP satellite. It is one of the latest L-band missions,

launched on January 31, 2015, and aims to generate a global SSM map at multiple

resolutions with an L-band radar (active) and radiometer (passive) [163]. It is operated

in a near-polar orbit with the ascending and descending overpass times of 6:00 PM and

6:00 AM at local time. The satellite was designed to provide SM products with three

main spatial resolutions: 36 km passive [164], 9 km active-passive [165], and 3 km

active (radar). However, a radar failure on July 7, 2015, limited the generation of active

and active-passive SM data. After the SMAP radar failure, SMAP adopted Sentinel-1

(the first Copernicus program satellite) instead of using radar data [26]. Sentinel-

1 was used as a replacement due to its ability to provide both the co-polarization

and cross-polarization measurements needed for producing active-passive SMAP

products [26], [165]. Currently, SMAP can provide daily 9 km active-passive products

using the Sentinel-1 data in the Backus-Gilbert (BG) algorithm [166], Fig. 2.10 (b)

illustrates this SMAP product. However for regional agricultural applications 9-km

resolution is not sufficient [35], [64]. Hence downscaling of the 9 km SMAP product

is required.

Sentinel-1 has a narrow swath resulting in a temporal resolution of 6-12 days [36].

This drawback can be addressed by using the higher temporal resolution Moderate
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Resolution Imaging Spectroradiometer (MODIS) data instead of Sentinel-1 data in

downscaling algorithms [37]. MODIS is a key instrument aboard the Terra and Aqua

satellites. Potential auxiliary SM information is derived by exploiting the absorptive

and reflective characteristics of the canopy and bare soil in the visible to shortwave

spectral bands. Based on the negative correlations between water and the red to

shortwave infrared (SWIR) band reflectance, numerous soil moisture indices (SMIs)

were proposed for SM mapping and drought status monitoring [40].

Figure 2.11: Scatter plot illustrating that NDVI has a positive correlation with soil moisture [140].

Normalized Difference Vegetation Index (NDVI) is the most typically used SMI

[140]. It describes the difference between visible and near-infrared reflectance of

vegetation cover. Existing literature shows that NDVI has a positive correlation with

SM (Fig. 2.11). Another commonly used vegetation-based SMI is the Enhanced

Vegetation Index (EVI) [141]. It is a vegetation index designed to enhance the

vegetation signal with improved sensitivity in high biomass regions. Existing studies

indicate that EVI has a positive correlation with SM (Fig. 2.12). Similarly, SWIR-

NIR-based indices such as Temperature-Vegetation Dryness Index (TVDI) shows a

negative correlation with SM (Fig. 2.13) [142]. Many such indices are available in

the literature. Table 2.2 provides a list of existing SMIs which can be used for SMAP

downscaling [40].
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Figure 2.12: Time series comparison of SMAP VOD-vegetation optical depth (green dots), MODIS
EVI (blue triangles), SMAP soil moisture (red dots), and GPM-global precipitation measurement
(black vertical bars) [141] . The EVI is in phase with precipitation and soil moisture, and the VOD the
peak comes after the end of the rainy season.

Next, existing SMAP downscaling models are examined. They can be broadly clas-

sified as spatial and sequential downscaling models [126], [143]. Spatial downscaling

models only consider spectra-spatial relationships to produce SM maps [37], [126],

[143]. Hence the daily downscaled SMAP SSM maps produced by these models

resulted in empty spaces (Fig. 2.14) when MODIS data got corrupted for the selected

date.

In the case of sequential downscaling models, they leverage spectral context from

adjacent SMAP and MODIS slices either over time (within a feature spectrum) or

space (between feature spectra) [144], [145], [146]. But if we can leverage inter-slice

spectral sequence context simultaneously over time and space, it may further improve

downscaling as the SSM changes are both time and space-dependent [38], [39],

[43], [64]. However, existing downscaling models do not incorporate such spectral

analyses (both spatial and sequential) simultaneously due to complexity and structural

limitations [146]- [166]. Therefore, if a structure that can incorporate all these

analyses (spatial/sequential) without significantly increasing the model complexity

can be designed, it will substantially reduce the gaps and increase the accuracy of
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Figure 2.13: Temperature-Vegetation Dryness Index (TVDI) and soil moisture scatterplots show
distinguishable negative correlations during (a) April 2009 and (b) June 2009 [142].

pixels in downscaled SMAP product.

2.4 Root Zone Soil Moisture

The soil can be classified into surface and root zone layers (Fig. 2.15). However,

based on the plant type the root depths differs (Fig. 2.16) [75]. The SSM only

provides information on the water content in the top few centimeters of the soil [124],

and this information is not sufficient for irrigation decisions for deep-rooted plants.

Hence RZSM estimation is required. RZSM represents the percentage of available
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Table 2.2: Candidate MODIS Soil Moisture Indices (SMIs) for SMAP Downscaling [177]

SMIs Formula Symbol
NDVI (Rb2−Rb1)/(Rb2 +Rb1) Rb1: Red band; Rb2: NIR1 band.
EVI 2.5(Rb2−Rb1)/(Rb2−6Rb1−7.5Rb3 +1) Rb3: Blue band.

ANIR αb2 αb2: Angle formed at the vertex of NIR by R–NIR–SWIR1 reflectances.
NDWI (Rb2−Rb5)/(Rb2 +Rb5) Rb5: NIR2 band.

DDI (
√

(R2
b1)+(R2

b2) )/(1+NDVI) -
GVMI ((Rb2 +0.1)− (Rb5 +0.02))/((Rb2 +0.1)− (Rb5 +0.02)) -

PDI ((Rb1 +MRb2)/
√

M2 +1 M: Slope of the soil line.
MPDI ((Rb1 +MRb2)− fv(Rv,b1 +MRv,b2)/(1− fv)

√
M2 +1 fv: Vegetation fraction; Rv,b1 and Rv,b2: Vegetation reflectance in NIR band and Red band.

MPDI1
√

PDI2 +PV I2 PVI: Perpendicular vegetation index.
MSI Rb6/Rb2 Rb6: SWIR1 band.

MSPSI ((Rb6−Rb1)+M(Rb6 +Rb1)/
√

M2 +1 -
NDII6 (Rb2−Rb6)/(Rb2 +Rb6) -
NDII7 (Rb2−Rb7)/(Rb2 +Rb7) Rb7: SWIR2 band.
NDTI (Rb6−Rb7)/(Rb6 +Rb7) -
NMDI (Rb2− (Rb6−Rb7))/(Rb2 +(Rb6 +Rb7)) -
SANI βb6(Rb6−Rb2)/(Rb6 +Rb2) βb6: Angle formed at vertex SWIR1 by NIR–SWIR1–SWIR2 reflectances.
SASI βb6(Rb2−Rb6) -
SPSI (Rb6 +MRb2)/(

√
M2 +1 ) -

SRWI Rb2/Rb5 -
VSDI 1− (Rb6 +Rb1−2Rb3) -
VSWI NDV I/Tc Tc: Surface radiometric temperature.

MSAVI (2Rb2 +1−
√

(2Rb2 +1)2−8(Rb2−Rb1) )/2 -
SIMI 0.707

√
(Rb6)2 +(Rb7)2 -

SW 1− (1−βEV I)△T/((1−EV I)△Tmax +EV I△Te β : Waterstressparameter;△T,△Tmax,△Te: All MODIS surface temperature data.
DDI

√
(Rb1)2 +(Rb2)2 /(NDV I +1) -

TWI log10(α/tanβ ) -
TVDI (Ts−T − smin)/(a+bNDV I−Tsmin) Ts: Surface temperature; a & b are parameters of the dry edge modelled as a linear fit to data.

Figure 2.14: Information loss (gaps) in downscaled SMAP SM at Little Washita, Oklahoma due to
corrupted MODIS data on day-of-the-year 193, 2016 [2].

water content in the top 1 m of the soil profile [159], [236]. From existing literature,

RZSM estimation methods can be broadly classified as traditional and data-based

methods [67]. In the further sub-sections, these methods are critically analyzed.
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Figure 2.15: The surface and root zone soil layers.

Figure 2.16: Plants with different root depths [75]. The small root plant extends only to the surface
soil layer. The medium and deep root plants grow to the root zone soil layer.

2.4.1 Traditional Methods

In-situ devices offer direct measurement of SM in the root zone [160]. However,

installing sensors to measure RZSM at a large spatial scale would be time-consuming

and expensive [45]. Also, installing RZSM sensors at the subsurface is likely to

disturb the soil properties [161], [162]. Moreover, in-situ SM data are generally

representative of the SM condition in the measured sites or homogeneous to the

surrounding environment, their validation is limited to available sites and may suffer

from the representativeness error [168].

Model-based SM is usually representative of hundreds of square kilometers and is

not limited by representativeness error [25], [169]. Also, RZSM estimated through
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land surface models (LSMs) or global hydrological models (GHMs) on a regional or

global scale require site-specific initial conditions (e.g. land surface temperature) to

be assimilated into these models to obtain synthesized estimates of regional RZSM

[170], [171]. As SSM and RZSM are correlated to each other, SSM observations from

satellite sensors are assimilated into these models to improve the RZSM estimation

[173], [174]. Also, it is becoming relatively common practice to extract RZSM from

SSM since SSM is relatively easier to obtain than RZSM [172].

Satellite measurements are not constrained by data limitations as in model-based

or in-situ-based approaches [25]. However, current SM missions only offer the best

resolution of 9 km daily measurements [163]. Also, the present sensors onboard

these satellites can only detect 0-5 cm beneath the soil surface [25]. So one pixel

of the satellite SM represents the 0-5 cm depth measurements of a 9 km × 9 km

area. This 9 km × 9 km is too coarse a resolution to represent a farm. Before further

deeper SM measurements can be obtained, the pixel resolution needs to be improved

(downscaling) for farm RZSM derivation. Once SSM of the required resolution is

obtained, RZSM needs to be derived.

2.4.2 Data-driven Methods

Data-driven methods to estimate RZSM include time series analysis (TSA) and ma-

chine learning (ML) techniques [67], [186], [187]. These methods aim to extract

knowledge by first evaluating data patterns and then further take actions that are dic-

tated by the data. In the context of RZSM estimation, data-driven methods implicitly

incorporate and evaluate all the interacting features (precipitation, temperature, soil,

and plant characteristics [46], [261]) that control the RZSM state. TSA methods,

such as the application of an exponential filter [175], [176], a cumulative distribution

function [72], [177], or transfer-functions [70] primarily utilize SSM data to derive

a functional relation with RZSM. However, calibration of functional parameters is

necessary when applied to a different study area (each time) in TSA methods to obtain

high accuracy.

ML algorithms build mathematical models based on training sets and covariates to

extract information from data [178]. Furthermore, they are tuned to handle diverse
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and large volumes of data sets, which may be relevant for large-scale studies or opera-

tional water management applications like PI. In many hydrological research domains,

ML techniques have showcased high performance for prediction [179], [180], [181],

sensitivity or optimization of model parameters [182], [183], and uncertainty estima-

tion [184], [185]. However, the application of ML in soil hydrology has only started to

gain attention in the past 20 years. For instance, only simple ML techniques have been

so far applied to estimate model-derived SM, like ANNs [186] or satellite-derived

SSM using support vector machines [187]. These works indicate the ability of ML

models to both upscale or downscale SM obtained from satellite data [188], [189].

Research works that analysed ML models ability for forecasting SM using values at

discrete soil depths [190], [191] at regional scales indicate their high performance.

Interestingly, SSM has also been estimated from in-situ measurements of RZSM

using ML for satellite SSM validation [192]. This work illustrates both the possibility

of RZSM derivability from SSM as well as the capability of ML models for RZSM

computations.

A comparison study showed that ML may provide a useful alternative to process-

based models using limited input data for SM estimation [193]. DL is a sub-field of

ML, that has shown exceptional performance in many hydrological applications and

has exhibited higher accuracy compared to traditional ML models [43], [43], [61].

However, the application of DL in the RZSM field is still in the early stages compared

to the SSM field [61]. Existing RZSM estimation research employs mainly traditional

ANN models for RZSM estimation [19], [128], [244]. ANNs might not be sufficient to

estimate the distributed spatial RZSM as they tend to fall into the local minimum [105]

and over-fitting [106] problems. DNNs have a stronger learning ability compared

to conventional DL models such as ANNs and can overcome the limitations in

traditional ANNs [56], [245], [246]. Furthermore, DNNs can learn deep links among

data, which has proved effective in dealing with SSM classification and prediction

problems [248], [249]. Since SSM and RZSM are correlated and literature has

illustrated the applicability of SSM estimation models for RZSM, DNN might be

better suited for RZSM prediction compared to traditional ANNs. Overall DNN looks

like a promising avenue for RZSM estimation.
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2.5 Conclusion

This literature review first provides a systematic analysis of existing IDSS for PI,

identifying their limitations in producing optimum water scheduling due to inaccurate

rainfall and SM input information. Consequently, next, existing methods for the

prediction/estimation of rainfall and SM were investigated.

Existing literature illustrates that current official rainfall forecasting methods are

not accurate enough for PI application. Therefore, a significant research gap remains

in developing a robust model for refining official rain forecasts for more accurate

predictions for PI. Analysis of existing related works revealed DL methods to be

suitable for such data refinement applications when big data is available. However,

existing DL methods need to be made adaptable for rainfall data as they are highly

stochastic.

From rainfall literature, next, the focus turns to methods for obtaining informa-

tion on SM to improve PI decisions. For distributed SM information we turn to

satellites. However, current SM missions can only provide the daily SM at a 9 km

resolution. This resolution is not sufficient for PI applications. Hence, SM satellite

data downscaling is required. Existing SM downscaling works suffer from spatially

distributed spectral information loss, a gap that needs to be addressed for improved

IDSS decisions.

Also, existing satellites can only detect SSM (SM at 0-5 cm depth) and do not

provide RZSM (SM at > 5 cm depth) details required for PI. Direct measurement

using large-scale RZSM sensor deployment is not feasible. Hence, RZSM needs to

be derived indirectly for distributed depth measurements. Sequential DNN looks like

a promising avenue to investigate for this information extraction.

In conclusion, this thesis will address these four significant research gaps, provid-

ing a broad range of models designed for improving decisions for PI through better

rain forecasting and spatial/depth estimation of SM.



Chapter 3

Consensus Forecast of Rainfall using Hybrid
Climate Learning Model (HCLM)

This chapter contains materials published in the IEEE Internet of Things Journal:

[1] Neethu Madhukumar, Eric Wang, Yi-Fan Zhang, and Wei Xiang, “Consen-

sus Forecast of Rainfall Using Hybrid Climate Learning Model,” IEEE Internet of

Things Journal, vol. 8, pp. 7270-7278, May 2021 (Impact Factor: 10.238, h-index:

144, Journal rank (Computing systems): 1).

3.1 Introduction

A reliable model for predicting weather events can provide useful information for

irrigation planning and management [194] [121]. A good weather prediction model

should seamlessly link together diverse atmospheric changes to provide improved

weather predictions. Most countries around the world use climate models (CMs),

such as the general circulation model or, the earth system model, to officially forecast

weather patterns [22], [23], [24]. These models are built upon differential equations

based on the laws of physics, fluid motion, and chemistry, which are applied to the

input data. On that account, forecasts can be considered as the numerical relationship

between various atmospheric and environmental changes that result in the occurrence

of climate events.

The data inputted to the CM are obtained from the earth-observing satellites,

the weather radars, and various climate sensors [195] [196]. These data then get
29
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Figure 3.1: Illustration of the HCLM structure. Multiple forecasts from the CM are input to the
probabilistic MLP (PMLP) network, which conducts a conditional probability evaluation of the
forecasts for finding the best of the N forecasts. The output of PMLP is input to HD-LSTM along with
input data observations over the forecast period. HD-LSTM analyse the PMLP forecast and the input
data observed over the selected forecast period to predict rainfall.

processed using various scientific tools for climate impact, adaptation analysis, and

weather forecasting thereby providing a higher representation of the input data. Over

the years weather forecasting by the CM has greatly improved with the arrival of

new technologies, integration of better theory, and increased computational power.

Nevertheless, there is still a gap in finding the best forecast from multiple forecasts

produced by the CM. The discovery of hidden weather patterns and relationships

from the CM could significantly improve its performance. Deep learning techniques

can capture underlying subtle functional relationships, unearth intricate structures

from big climate data, and find the hidden patterns from complex CM forecast data.

These features of climate and deep learning models make them ideal to form a

teacher-student network for knowledge distillation from the CM to the deep learning

model [197].

Neural networks have been used for predicting various weather attributes [122],

[34]. Comparative analysis has indicated a higher performance accuracy for the neural
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network models than prominent data mining techniques for rainfall predictions [195].

A deep neural network (DNN) is a multi-layer neural network with outstanding learn-

ing ability [11]. The success of deep learning models is due to its deep architectures.

DNN-based approaches have become the most effective techniques for rainfall pre-

diction due to its ability to progressively build higher-level representation from the

weather data.

The DNN-based rainfall prediction approaches that utilise feedforward neural

networks provide only a static network, that lack memory capacity [196] [198].

They do not consider temporal relationships. Comparative analysis has shown that

a dynamic neural network with memory units exhibited improvement in predicting

the rainfall than static feedforward neural networks [199] [33]. So from all the above

works, it can be concluded that both the CM and the DNN-based approaches for

rainfall predictions have been successful in forecasting certain rainfall features but

fails to completely emulate the actual rainfall pattern. Henceforth, a new prediction

method that utilises both the CM and the DNN for the more accurate prognosis of

rainfall events is proposed in this chapter.

The discovery of the best forecast pattern is difficult and consequently has not

been investigated to improve the performance of climate models. Learning the best

forecast pattern from the CM, and determining its relationship with other weather

changes will improve the rainfall event prediction. I propose a hybrid climate learning

model (HCLM) that learns from the CM using deep learning. The HCLM shown in

Fig. 3.1 is designed using a probabilistic multi-layer perceptron (PMLP) and a hybrid

deep long short-term memory (HD-LSTM) network for reprocessing the multiple

forecasts produced by the CM for improved next-day rainfall prediction.

PMLP is used to rank and select the best forecast, and HD-LSTM finds the corre-

lation between the PMLP-selected forecast and the corresponding data observations

for predicting the next-day rainfall. The PMLP network evaluates the probability of

each forecast and selects one forecast with the highest probability. The output from

PMLP along with weather changes observed over the forecast period is analysed by

the HD-LSTM to produce the next-day rainfall forecast. The rainfall forecasts and

the observation data from ten sites from different weather zones across Australia are
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selected to evaluate the performance of the HCLM.

To summarise in this chapter a new HD-LSTM network is proposed for learning

the relationship between the best forecasts from the CM and the corresponding

data observations for producing the next-day rainfall forecast. The PMLP network

analyses, compares and ranks multiple forecasts for different rainfall patterns and the

hybrid learning model utilizes both the CM and the DNN to refine multiple forecasts

from the CM.

The remainder of this chapter is organised as follows. Section 3.2 describes the

proposed HCLM model. Section 3.3 gives the experimental results. Concluding

remarks are drawn in Section 3.4.

3.2 Hybrid Climate Learning Model

In HCLM the PMLP learns the pattern of the best forecast from the CM over multiple

data sub-samples and selects the best forecast from the evaluation data. The PMLP

output is fed to HD-LSTM as part of knowledge distillation. The use of the PMLP

output label for data selection reduces the LSTM search space for sequential data

analysis.
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Figure 3.2: Illustration of the PMLP structure. All forecasts and actual rainfall (red box) pass from the
input layer to the hidden layer, which generates error signals for a given set of input forecasts. Errors
are used by the nodes to update the values for each connection weight. A weighted sum of the inputs
goes to the Softmax layer, which provides a probabilistic estimate to the Argmax layer. The Argmax
layer outputs the label of the best forecast, which is used to select the corresponding observation data
for the best forecast.
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3.2.1 PMLP

In the PMLP structure illustrated in Fig. 3.2, N input forecasts are passed to the

input layer of the PMLP. The N forecasts produced for the rainfall event by the

CM are denoted by Fn(t) for n ∈ {1,2, ...,N} at t ∈ {1,2, ...,T} and are passed on

to the input layer of the PMLP for further refinement. Opast(t) is the past rainfall

observations. The pattern of each forecast changes over different time blocks, so the

PMLP learns the relationship between Fn(t) and Opast(t) for multiple Tsub data blocks.

Table 3.1 lists the monthly Root Mean Square Error (RMSE) of the 7-day forecasts

obtained from the Australian Bureau of Meteorology (BOM) for the Burdekin region

in Queensland [200]. The dataset was prepared by the BOM’s evidence-targeted

automation team for the science to services program. In Table 3.1, Forecast 1 is the

first forecast produced 7 days before the event, while Forecast 7 is the last forecast

produced one day before the event. Forecast 7 is thought to be the best forecast as it

has the shortest lead time to the actual rainfall event [24]. However, my analysis of

the monthly forecast data (from 2015-2017 using [200]) shown in Table 3.1 indicated

that this is not always true. For example, Forecast 7 predicted 6.4 mm of rain, and

Forecast 1 predicted 0.9 mm of rain for 18-10-2017, but the actual rain was 0.6 mm.

So to forecast rain on 18-10-2017, information from Forecast 1 is more useful.

Table 3.1 illustrates that for each period there exists a forecast which is more

reliable than the other forecasts. So the rest of the forecasts can be dismissed for

that period. Hence it is proposed to rank each forecast based on the patterns of each

forecast and rainfall observations for multiple Tsub data blocks for selecting the best

forecast. A probabilistic selection of any feature over different data blocks performs

better than many benchmark methods [201] [202]. Therefore such a selection is

adopted. For the data set used in this chapter, Tsub = 21 days is chosen using the

random search algorithm [204].

The PMLP analyses all Fn(t) for the rainfall patterns over multiple Tsub data

blocks. After training, the PMLP for similar rainfall patterns and similar forecast

inter-relationship selects one from Fn(t) as its output, which it predicts to be the best

forecast. Error signals for each hidden layer node are determined for the given inputs.

The errors are used by the nodes to update the values for each connection weight.
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For the PMLP, let W m
lv denotes the values of the weights from the vth neuron of layer

(m− 1) to lth neuron of layer m, and W be the collection of W m
lv , ∀ l,v,m. So for

the given set of inputs, the outputs can be represented as Sn(Fn(t);W ), a function of

inputs and weights. The PMLP softmax layer estimates the conditional probability of

all forecasts. Using [201] this can be expressed as

Pj(t) = P(Fj(t)|Fn(t);W ) for j ∈ {1,2, ...,N},∀ j ̸= n

=
eS j(Fn(t);W )

eS1(Fn(t);W )+ eS2(Fn(t);W )+ ...+ eSN(Fn(t);W )
, (3.1)

where P(Fj(t)|Fn(t);W ) is the conditional probability of forecast j for the given set

of inputs Fn(t) and the given set of weights W . The PMLP ranks and selects the best

forecast using (1) over Tsub blocks. Let F ′(t) be the PMLP selected forecast, then

F ′(t) = Fn(t), if Pn(t)> Pj(t), (3.2)

where j ∈ {1,2, ...,N} ∀ j ̸= n. Using (3.2) the best forecast F ′(t), is selected from

Fn(t). The PMLP output F ′(t) is given as input to the HD-LSTM for temporal analysis

with the temperature and rainfall observations during the forecast time. For the

Table 3.1: Monthly RMSE of 7 Days Forecasts of BOM Australia in 2017. Forecast i Produced (8− i)
Days before the Event.

Month January February March April May June July August September October November December
Forecast 1 10.485 27.955 12.086 13.916 1.575 1.040 0.862 6.334 0.398 3.171 2.313 2.316
Forecast 2 9.886 26.601 12.149 14.358 1.580 1.662 0.659 2.460 0.560 3.558 3.602 2.448
Forecast 3 8.693 25.544 11.174 11.252 1.554 0.604 0.509 2.239 1.093 4.039 2.132 2.437
Forecast 4 8.752 25.026 9.097 14.913 1.391 0.976 0.705 2.400 0.916 3.312 2.493 2.375
Forecast 5 8.369 24.992 8.710 15.864 1.563 0.706 0.723 0.514 0.456 3.128 2.753 2.454
Forecast 6 7.184 24.266 7.921 12.776 1.500 1.071 0.691 2.198 0.772 4.872 2.410 2.431
Forecast 7 6.887 25.388 7.796 11.368 1.855 0.610 0.420 2.236 1.100 4.522 2.500 2.381

given rainfall events, the temporal changes in observation data at the forecast period

t− z, where z is the forecast lead time, affect its decisions. The PMLP argmax layer

provides the label of the best forecast for matching with the index of the data set to

select the observation data. The HD-LSTM analyses the relationship of the selected

forecast with the observations. The HD-LSTM is detailed below.

3.2.2 HD-LSTM

In the HD-LSTM structure illustrated in Fig. 3.3, the output of PMLP is given

to the HD-LSTM for further analysis. The HD-LSTM learns the relationship be-
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Figure 3.3: Illustration of the HD-LSTM structure. The learning process is implemented in three steps:
(1) DNN disentangles data observations through weight distribution; (2) Supervised learning uses
PMLP forecast and observation data with real rainfall as the prediction target; (3) Input state transition
by the network through hk(t) from Eq. (7), and the network predicts output using Eq. (8).

tween the PMLP output and the observation data to predict the next-day rainfall.

For the CM used, the data observations are the maximum temperature Tmax(t), the

minimum temperature Tmin(t), the past rainfall Opast(t), and the average hourly

temperature Tavgh
(t). For ease of derivation, x(t) is denoted as the input data for

the HD-LSTM and U types of data are denoted by xu(t). Here for derivation,

[Tmax(t),Tmin(t),Opast(t),Tavgh
(t)] = [x1(t),x2(t),x3(t),x4(t)] is used. For simplify-

ing derivation, first derive for one type of observation, denoted by x(t).

For the selected forecast F ′(t) by the PMLP, the HD-LSTM applies a fully-

connected DNN at its input to select the data observations over the best forecast

period. This data is passed on to the K LSTM layers. The network then analyses

the temporal correlation between the forecast and changes in the observation data.

To make the comparison further easier for the HD-LSTM hidden layers a summary

of the changes in the (i−1) hidden states are provided to the ith hidden state. This

implementation aids the network to look back at the summary of historical changes

with current changes. The HD-LSTM within the HCLM progressively builds up a

higher-level representation of input weather data. From [203], the equation of the
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LSTM can be expressed as

h(t) = H
(

Wxhx(t)+Whhh(t−1)+bh(t)
)
, (3.3)

where the input sequence is x(t), the hidden vector is h(t), Wxh denotes the input-

hidden weight matrix, Whh denotes the hidden to hidden weight matrix, bh(t) is the

hidden bias function, and H is the hidden layer function.

A fully-connected DNN at the input of the HD-LSTM implements a selection

window. It selects the data observations x, which are the same as data observations

over the best forecast period of z. The DNN matches the selected forecast label to the

index of the observation dataset. This assists the network to establish relationships

between the temporal changes in the PMLP forecast and observations. This is highly

necessary for establishing the puzzling forecast relationships with other climatic

changes x(t) over the forecast period z. The DNN disentangling data observations

through weight distribution for the selected forecast. So for the proposed network,

Wxhx(t) in (3.3) becomes Wxhx(t)

Wxhx(t) =
b

∑
z=a

Wh,zx(t− z), (3.4)

where a≤ z≤ b defines the size of the selection window that ranges between 0 to 7, t

corresponds to the time of the actual event and z corresponds to the forecast time of

F ′(t). It is the window that the network looks back to learn the temporal correlation

with F ′(t). Wh,z is the input weight from the deep input transcription layer over the

range z. The Wxhx(t) and F ′(t) are analysed by the HD-LSTM to learn what changes

in x(t) over forecast interval led to the best forecast prediction.

For learning the relationship of the current dynamic changes with the past CM data,

an approximator between (i−1) hidden states and ith hidden state is implemented in

the HD-LSTM. This provides a useful summary of the past to the present hidden states

along with current input. Thus enabling the HD-LSTM to establish the relationship

between the two. This is implemented using a vanilla neural network. Hence for the

HD-LSTM used in this chapter h(t) in (3.3) can be expressed as

h(t) = ψh

[
Wiψi−1

[
...
[
ψ1[Whhh(t−1)+Wxhx(t)+

WF ′hF ′(t)]
]]]

+bh(t), (3.5)
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where F ′(t) is obtained from the PMLP, WF ′h denote the PMLP output to the HD-

LSTM hidden weight matrix, Wxhx(t) is obtained using (6.1), ψh is the non-linear

function obtained using the vanilla neural network, Wi is the weight to the vanilla

neural network between (i−1) hidden states and ith hidden state. For k ∈ {1,2, ...,K}
layers, the hidden vector sequence h(t) in (4.2) becomes hk(t). This can be expressed

as

hk(t) = ψh

[
Wiψi−1

[
...
[
ψ1[Whkhkhk(t−1)+

Wxhkx(t)+WF ′hkF ′(t)]
]]]

+bk
h(t). (3.6)

Substituting for u types of data observations to (4.3), then

hk(t) = ψh

[
Wiψi−1

[
...
[
ψ1[Whkhkhk(t−1)+(Wx1h

x1(t)+ ...+Wxuhxu(t))+WF ′hkF ′(t)]
]]]

+bk
h(t).

(3.7)

The network computes all the K hidden states. Once the value of hk(t) at k = K is

obtained, the network output y(t) can be calculated as

y(t) =WhNyh(t)N +by(t), (3.8)

where by(t) is the output bias function. The process of building this structure is

discussed in the following section.

3.2.3 HCLM Implementation

The HCLM was developed using Python 3.5 with TensorFlow as the backhand. A

detailed explanation of the main steps illustrated in Fig. 3.4 for developing the HCLM

is given below:

3.2.3.1 Data Pre-processing and Feature Extraction

The PMLP inputs are the multiple rainfall forecasts and past rainfall observations.

They are inputted to the PMLP for selecting the best forecast F ′(t) from Fn(t). The

training set for the PMLP can be denoted as Q = {Fn(t), t = 1,2, ...,T} for T number

of training data. The PMLP output F ′(t) and xu(t), the U types of observation data
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Figure 3.4: The process of establishing HCLM is done in seven steps: (1) Preprocessing & feature
extraction; (2) PMLP structure selection & parameter tuning; (3) PMLP model optimisation; (4)
Forecast selection using PMLP; (5) The PMLP is concatenated with the HD-LSTM for temporal
analysis of forecasts with observations over forecast interval; (6) HD-LSTM model optimisation is
done using step 2 & 3, and (7) Rainfall prediction is obtained.

are passed to the HD-LSTM. The training set for the HD-LSTM can be denoted as

R = {(xu(t),F ′(t)), t = 1, ...,T} for T number of data.

3.2.3.2 Structure Selection and Parameter Tuning

Parameter tuning is tedious and costly as the network goes through numerous itera-

tions according to the performance of different sets of hyper-parameters. The random

search method exhibits the same performance as many common hyper-parameter

optimization methods with lower computation cost [204]. Hence I have chosen the

random search method. The key hyper-parameters optimized are the length of the

input sequence and the number of nodes in the hidden layer. A dropout of 20% is

used to prevent over-fitting.
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Figure 3.5: Illustration of the HCLM working mechanism. (1) The forecast having the least error with
the weighted sum of the past 21 days is chosen as the best forecast by PMLP; (2) DNN removes all
Tmax(t), Tmin(t), and Tavgh(t) data from the list of 21 sequence that does not match with the observations
corresponding to PMLP selection and retains Opast(t) for the remaining values; and (3) HD-LSTM
analyse the DNN input sequence and selects the one with minimal error with PMLP output. For the
final selected combination of Tmax(t), Tmin(t), Tavgh(t), Opast(t), and PMLP best forecast the LSTM
predicts the rainfall.

3.2.3.3 PMLP Model Optimisation

Once tuning is completed, optimal parameters are obtained. Next, the model under-

goes training to find the best forecasts for the given inputs. PMLP learns through the

backpropagation of errors by searching the data set containing all forecasts to find the

best forecasts that enhance the performance. This provides the network with efficient

learning updates with high-quality gradients.

3.2.3.4 Real-time Prediction

Once training is completed the PMLP will predict F ′(t); the best forecast by analyzing

the given set of multiple forecasts Fn(t). The PMLP uses Eq. (3.2) for selecting the
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best forecast as its output.

3.2.3.5 Model Concatenation

F ′(t) is the best forecast obtained using the PMLP. For U types of weather data

changes observed over the forecast period, the observations xu(t) undergo temporal

analysis with the best of forecasts F ′(t). For this purpose, the PMLP output is

concatenated to the HD-LSTM.

3.2.3.6 HD-LSTM Model Optimisation

Steps two and three are applied to the HD-LSTM for model optimization. For rainfall

events generally, it is thought that recent weather data is more important for prediction.

However, older data can help the model in recognising general trends and movements.

So the selection of sequence length is done for the rainfall data.

3.2.3.7 Rainfall Event Prediction

For the given data observations xu(t) and F ′(t) the best forecast selected by the PMLP,

the HD-LSTM predicts the rainfall for the next day.

Fig. 3.5 illustrates how the PMLP selects the best forecast, and HD-LSTM

correlates with the observations after completing the above seven steps of establishing

the HCLM. The difference between the seven forecasts and the weighted sum of the

past 21 days’ PMLP inputs is calculated. The one with the least error is selected as

the best forecast. For the selected forecast, the corresponding Tmax(t), Tmin(t), and

Tavgh(t) values are taken. From the list of 21 Tmax(t), Tmin(t), and Tavgh(t) values,

those that do not match with the output time observations selected by the PMLP are

removed by the DNN. The Opast(t) values corresponding to the DNN retained Tmax(t),

Tmin(t), and Tavgh(t) are taken for further examination. Next the remaining values of

Tmax(t), Tmin(t), Tavgh(t), and Opast(t) are passed on to the LSTM for analysis. For

the given sequence, the LSTM looks for a row with the minimum difference between

Opast(t) and the PMLP selected rainfall forecast, which is chosen as the output. The

values of the selected row are weighted to scale the data to predict the rainfall for the

target day. Hence to summarise, the HCLM model uses a PMLP network to select the
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best forecast. The best forecast produced by the PMLP is compared with the other

observed weather changes over the forecast period by the HD-LSTM to predict the

next-day rainfall. The HCLM is tested in Section IV.
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Figure 3.6: Pearson correlation values between the BOM-Best, LSTM, 1DD-CNN, DBM-GRU &
HCLM predicted rainfalls. The HCLM, LSTM, 1DD-CNN [18], DBM-GRU [11] & BOM-Best exhibit
average correlation of 0.81, 0.72, 0.61, 0.70, and 0.48, respectively.

3.3 Experimental Results

To evaluate the HCLM, I test it on the dataset from the BOM of Australia [200].

According to the BOM, there exist six major climate zones, namely the equatorial,

the tropical, the subtropical, the desert, the grassland, and the temperate zones. I

compare HCLM model with the best BOM forecasts produced using the climate

model [24], the LSTM which is the most widely used neural network for time series

data analysis [33] [32] and two recent related work 1DD-CNN [18], DBN-GRU [11].

For real data analysis, ten stations that span across six climate zones are considered

for model training and preliminary verification by all the models (123,640 data points).

For testing, I used rainfall data from June 2017 to May 2018. For training the HCLM,

LSTM, 1DD-CNN, and DBN-GRU, I used data from May 2015 to May 2017. I used

seven forecasts for the daily rainfall and the observation data, i.e., Opast(t), Tmax(t),

Tmin(t), and Tavgh(t). HCLM, LSTM, 1DD-CNN, and DBN-GRU use this data to

predict the next-day rainfall. Daily rainfall forecasts from the CM are produced over

a 24-hour period back to back, where the last forecast is available only one day before

the event. Therefore, this study aims at only the next-day prediction.
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The 1DD-CNN [18] is used for comparison as it uses observational data from

the BOM as input for rainfall prediction. The simulation results in [18] indicate a

higher performance than BOM’s forecasts. Therefore this provides a fair comparison

to my approach. While [11] uses a hybrid gated recurrent unit (DBN-GRU) model

to analyze time series meteorological data. This comparison is done since LSTM

and GRU introduce additional gating components that handle vanishing gradients

problems in traditional RNNs for time series data analysis. A comparison will help

understand which of the two can better analyze time-series weather data. Hence I find

these works very important for comparison.

3.3.1 Statistical Analysis

The accuracy of daily weather prediction for 12 months is compared using the Pearson

correlation coefficient. The closer the value is to the +1, the better the forecasts. The

bar graph in Fig. 3.6 illustrates the Pearson correlation coefficient values obtained for

10 stations over one year. The graph illustrates a higher temporal correlation of the

HCLM than [18], [11], the LSTM, and the BOM. There is a significant improvement

in the fitting of time series fluctuations of the HCLM predicted rainfall. For the

average temporal correlation for 10 stations for one year calculated using the Pearson

correlation, the HCLM exhibits an average correlation of 0.81, LSTM exhibits an

average correlation of 0.72, [18] exhibits an average correlation of 0.61, [11] exhibits

an average correlation of 0.70 and the BOM exhibits an average correlation of 0.48.

Table 3.2: Rainfall Prediction Error Comparison

SE 0.67 0.58 0.64 0.52 0.47
Location BOM LSTM 1DD-CNN[18] DBN-GRU[11] HCLM
Darwin 8.64 7.56 8.20 6.89 6.15

Coober Pedy 1.42 1.26 1.30 0.96 0.85
Kutipo 3.86 2.40 2.82 2.22 1.79

Burdekin 5.09 4.92 5.28 4.28 3.64
Roma 3.93 2.94 3.21 2.55 1.80

Tamworth 3.55 2.73 2.96 2.62 2.20
Murrurundi Gap 3.49 2.57 2.94 2.50 2.09

Kyabram 3.00 2.25 2.39 2.15 1.56
Cape Wessel 6.48 4.83 5.51 4.46 3.41
Cape Sorell 6.77 4.00 5.05 3.62 2.63

Average 4.62 3.55 4.00 3.23 2.61
Note: SE stands for standard error. The data reported in this table are for

the 10 stations during 2017-2018.
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Figure 3.7: Rainfall forecast results of 4 stations that experienced the highest rainfall events between
June 2017 to May 2018. Graphically compared HCLM with LSTM, 1DD-CNN [18], DBN-GRU [11],
and BOM-Best.

In weather predictions, forecasting extreme rainfall events is a major challenge.

Fig. 3.7 shows the extreme rainfall events for four locations located in high rainfall

zones between June 2017 to May 2018. The comparison results show that the HCLM

can outperform the BOM, the LSTM, [18], and [11]. Quantitative measurements are

considered for synthesizing the effectiveness of the performances over 12 months for

10 stations. Here RMSE is used to calculate the accuracy of the HCLM. The closer

the RMSE values are to zero, the better the forecasts. Fig. 3.8 shows the RMSE

for rainfall predictions for 10 locations. The RMSE curves show that the proposed

HCLM has a lesser error in predicting the rainfall amount in comparison to the BOM

and the deep learning models. Table 3.2 gives the quantitative RMSE values for the

10 stations. It can be seen from this table that the average RMSE of the HCLM is

the smallest among all approaches, indicating that the HCLM has higher rainfall
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prediction accuracy. The rainy and non-rainy days occurrence prediction accuracy test

Figure 3.8: Comparison of the root mean square error for 10 locations across all major climate zones
in Australia for 12 months (source: BOM).

was carried out for the 10 locations. Table 3.3 shows the prediction results. The results

show that there is a notable improvement in the prediction accuracy of the HCLM

in comparison with the BOM, the LSTM, the 1DD-CNN [18], and DBN-GRU [11].

There is an improvement of 18.65% for the HCLM over the best of BOM seven

days forecasts. Also the HCLM is 8.64% more accurate than the LSTM. With the

1DD-CNN [18] there is an improvement of 10.57%. And to the DBN-GRU model

in [11], there is an improvement of 7.10%. Hence from the results, it is apparent that

the HCLM model is highly accurate in predicting the chance of occurrence of rainy

days in comparison to the BOM, LSTM, 1DD-CNN, and DBN-GRU.

3.3.2 Ablation Studies of HCLM

In this section, the individual input and model components of the propose HCLM are

assessed using seven forecasting approaches: 1) PMLP: performance of the PMLP

module with the seven forecasts as input; 2) HD-LSTM+(All): HD-LSTM with all

the forecasts and observations as input; 3) HD-LSTM+(Forecast 7+Obs): HD-LSTM

with the last forecast and all observations as input; 4) HD-LSTM-(Opast): HD-LSTM
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Table 3.3: Comparison of Probability of Rainfall Occurrence

SE 0.029 0.020 0.021 0.018 0.021
Location BOM LSTM 1DD-CNN[18] DBN-GRU[11] HCLM
Darwin 71.51% 74.25% 80.00% 78.63% 90.68%

Coober Pedy 86.84% 81.91% 89.31% 83.54% 97.26%
Kutipo 80.68% 84.18% 80.79% 85.93% 90.57%

Burdekin 78.15% 83.95% 79.34% 81.29% 89.23%
Roma 85.20% 91.23% 85.21% 90.14% 92.33%

Tamworth 69.31% 80.34% 77.15% 82.33% 84.65%
Murrurundi Gap 70.68% 81.23% 79.82% 80.95% 86.57%

Kyabram 68.76% 79.29% 76.87% 79.67% 83.81%
Cape Wessel 66.30% 77.83% 74.56% 78.31% 80.43%
Cape Sorell 56.16% 66.98% 64.10% 68.01% 73.92%

Average 73.36% 80.12% 78.72% 80.88% 87.04%
Note: SE stands for standard error. The data reported in this table are for the 10 stations during
2017-2018.

Table 3.4: Comparison of Ablation Studies

Approach HCLM PMLP HD-LSTM+(All) HD-LSTM+(Forecast 7+Obs) HD-LSTM-(OPast) HD-LSTM-(Tmax) HD-LSTM-(Tmin) HD-LSTM-(Tavgh)
RMSE 2.61 4.97 3.49 7.93 6.38 6.17 5.82 3.51

SE 0.47 0.43 0.62 0.89 0.71 0.76 0.63 0.48

without Opast(t) as input; 5) HD-LSTM-(Tmax): HD-LSTM without Tmax(t) as input;

6) HD-LSTM-(Tmin): HD-LSTM without Tmin(t) as input and 7) HD-LSTM-(Tavgh):

HD-LSTM without Tavgh(t) as input. Approaches 4 to 7 use all the BOM predictions.

Table 3.4 shows the ablation study comparison with the HCLM.

The higher RMSE of PMLP than HCLM suggests that PMLP alone does not

achieve the same performance as that of HCLM. Approach 2 shows that the HD-

LSTM module has a smaller RMSE than PMLP, signifying that linking changes in

observation data with the CM forecasts is essential. However, the higher RMSE of

Approach 2 than HCLM suggests that rather than more training data, better training

data will improve network learning. So the use of PMLP to select the best forecast

may have boosted the performance of the HCLM. The higher RMSE of approach 3

denotes that the final forecast alone cannot improve the performance of HD-LSTM.

Approaches 4 to 7 remove the observation data one by one from HD-LSTM, so as

to identify the removal of which observations has the most effect. Table 3.4 shows

that the removal of Opast(t) has the most effect on HD-LSTM, probably because

there was a learning gap with the HD-LSTM unable to relate the past rainfall trends

with the forecast. The removal of Tavgh(t) seems to have the least effect. This could

be because the model was able to learn the average hourly temperature trends from
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Tmax(t) and Tmin(t) data. Also, approaches 4 to 7 do not outperform HCLM, further

indicating that directly inputting all forecasts does not enhance model learning. This

must be the case since the forecast errors add up and misguide the model. So these

results demonstrate that the PMLP and HD-LSTM work collaboratively to enhance

the performance of the HCLM.

3.4 Conclusion

In this chapter, a hybrid climate learning model (HCLM) is developed. The HCLM

builds its future rainfall predictions on the multiple forecasts produced by the climate

model (CM) for the rainfall events. The HCLM is designed using a PMLP network

and an HD-LSTM network. The PMLP selects the best forecast from the multiple

CM forecasts, and the HD-LSTM finds the relationship of the PMLP-selected forecast

with the temperature and rainfall observations during the forecast time. The proposed

model’s performance evaluation was conducted in 10 different locations across six

major climate zones in Australia. For average yearly rain prediction results in all

the locations analyzed, the HCLM predicted rainfall is more similar to the actual

rain than the CM and state-of-the-art related works. The potentiality of the model

predictions has been also established in terms of ablation studies, RMSE, and Pearson

correlation. Hence it can be concluded that there is a significant improvement by the

HCLM to predict the rainfall over the climate and deep learning comparison models.

The proposed model addresses the first research problem of refining climate model

forecasts (presented in Section 1.2.1) and leads to the first original contributions

presented in Section 1.3. The high performance of the rainfall prediction model in this

chapter leads to the investigation of the second research problem, improved methods

for high-resolution SSM (the spatially distributed moisture distribution) information

with less spectral information loss in the next chapter of this thesis.



Chapter 4

3D Bi-directional LSTM for Satellite Soil
Moisture Downscaling

This chapter contains materials which has been accepted (with minor revisions) for

publication in IEEE Transactions on Geoscience and Remote Sensing:

[2] Neethu Madhukumar, Eric Wang, Clinton Fookes, and Wei Xiang,“Three-

dimensional Bi-directional LSTM for Satellite Soil Moisture Downscaling,” IEEE

Transactions on Geoscience and Remote Sensing, Accepted for publication on 22

Nov. 2022 (Impact Factor: 8.125, h-index: 113, Journal rank (Remote sensing): 3).

4.1 Introduction

Surface soil moisture (SSM) is a prime factor that controls plant water requirements

[205]. Microwave remote sensing is widely acknowledged as the most promising

technique to measure the spatial distribution of water content in the soil over time.

This is due to its direct relationship with the soil dielectric constant, its ability to

penetrate clouds, its reduced sensitivity to vegetation, and surface roughness [206].

Microwave observations from various missions are used in global SSM mapping [25].

However, global SSM products from these missions are of low spatial resolution

(approximately 25–40 km), which greatly limits their use in regional agricultural

applications. The Soil Moisture Active Passive (SMAP) satellite was launched

to provide high-resolution SSM, but due to its radar failure, it can only provide

global daily soil moisture products at a 9-km resolution [26], [27]. However, for
47
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PI application this resolution is very low [64]. In an agricultural setting, the SSM

map resolutions greater than 1-km cannot cover small and micro-farms. They are too

coarse to inform on-farm irrigation and other management practices. As there remain

significant challenges associated with the spatial resolution of satellite SSM, further

downscaling to at least 1-km is required for localized applications [64].

According to literature, for a spatial resolution of ≤ 1-km, SSM changes at any

target region are influenced by the SSM changes in the neighboring regions [64], [43].

Furthermore, as SSM is part of the hydrological cycle, its spatial distribution is

influenced by the changes in the hydrological cycle over time [38], [39]. To sum up,

for a spatial resolution of ≤ 1-km, the information from both the spatial and time axis

is relevant for SSM downscaling. From a broader deep learning (DL) perspective,

such spatial-temporal factors have been addressed by the combination of spatial and

sequence learning models. A classical example of combining these two aspects of

DL is video and motion prediction [207], which has striking similarities to many of

the dynamic geoscience (GS) and remote sensing (RS) problems. Satellite images are

time-evolving multi-dimensional data structures. Because of this fact, studies have

begun to apply combined spatial and sequential (convolutional–recurrent) approaches

to many similar geoscientific problems such as SSM downscaling [208], [209].

There is a renewed interest in blending the spatial (two-dimensional) and time

(one-dimensional) aspects of DL for GS and RS applications [61]. By blending the

spatio-temporal aspects, a three-dimensional (3D) structure is produced. Machine

learning (ML)-based SSM downscaling schemes typically build on hand-crafted

features and build a linking model to link SSM and input features [40]. The linking

model applies the learned relationship between the SM and the input features at

coarse to fine scales. This can be better achieved using DL-based models, which

have achieved great results in the RS and GS fields [210], [1]. Therefore, rather

than amending classical ML models, DL models that can automatically extract 3D

features are ideal for building a 3D linking model for SSM downscaling. Among

various DL models, convolutional neural network-long short-term memory network

(CNN-LSTM) based DL models are highly popular for spatio-temporal analysis of

RS images [211], [212].
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A general approach while using the CNN-LSTM network combination is to use

the CNN for feature extraction and the LSTM for sequence analysis. The traditional

LSTM performs forward sequence analysis, while the bi-directional LSTM (Bi-

LSTM) performs forward and reverse sequence analyses [43]. At any given time for

an RS image sequence, all three domains must be simultaneously analyzed to obtain

a full picture of the RS spectra relationships [42]. The RS image sequence analysis in

the time domain is performed for all preceding time RS images for daily predictions.

This approach is logical for time-series data as future time values beyond the present

are unavailable. However, when considering the spatial domain, all neighboring pixels

correlate with the target pixel. As such, in the spatial domain, sequence analysis

should be performed for both the before and after pixels from the target pixel in

an RS image. This bi-directional analysis should be performed for both the spatial

sequence within a feature and the spectral sequence between features since they

both have correlations with the prediction target. Hence, for RS image sequence

relationship analysis, each point in the time domain (1D) should be further analyzed

in a bi-directional manner in the 2D spatial domain (within and between spectra).

In the case of downscaling, it establishes an association between the coarse-

resolution parameter and high-resolution auxiliary data [282]. If the spectra-spatio-

temporal (3D) bi-directional associations can be included, it will enhance the down-

scaling output. Such a downscaling method is currently unavailable [41]. Compared

to existing downscaling methods, deep learning approaches look most apt for imple-

menting such a downscaling approach as they are auto-tuned to extract relationships

from diverse and large volumes of data, such as RS [61], [41], [283]. However, the

required type of downscaling relationships cannot be obtained using existing deep

learning sequential models [43], [284]. They only perform forward and/or backward

analysis of the subsequent sequences before the target time and do not simultaneously

perform another bi-directional analysis of the 2D spatial domain over the different

spectral inputs in each time instant. To overcome the limitations of achieving a 3D

bi-directional SM downscaling method, a three-dimensional (3D) Bi-LSTM model is

proposed.

For predicting SM, soil moisture indices (SMIs) obtained from optical and thermal



50 CHAPTER 4. 3D BI-DIRECTIONAL LSTM FOR SATELLITE SOIL MOISTURE DOWNSCALING

remotely sensed MODIS observations are provided as input to the proposed model.

In Fig. 4.1, to predict image 15, along with the preceding time images, in each time

instant a bi-directional sequence analysis is performed for the 2D spatial domain

within an image frame as well as between image frames. Since SM data is correlated in

the time domain, the bi-directional analysis from previous time instants is considered

as well. As such, a three-dimensional (two-dimensional spatial domain plus one-

dimensional time domain) bi-directional (spatial pixel neighbors in the horizontal

and vertical spatial axis in the RS image) LSTM for spatial-temporal SM prediction

is proposed. Furthermore, in existing CNN-LSTM models, a spectral correlation

that can offer important distinctive information is not fully exploited. This is critical

for SM downscaling approaches that use multi-spectral MODIS data for obtaining

fine-resolution auxiliary SM information. To address this problem, a covariance-

adaptive CNN-based feature extraction method is proposed. The use of covariance

helps exploit the correlation among differing SMIs and the SM for the target region,

thus allowing for a more discriminative feature extraction process. The CNN kernel is

made adaptive to the covariance matrix (CM) evaluated for the SM and SMIs. After

feature extraction, time-series prediction is followed.

Fig. 4.2 illustrates the proposed satellite soil moisture downscaling methodology.

First, with SM and SMIs as inputs, feature extraction is achieved using a covariance-

adaptive CNN. Next, the proposed 3D-Bi-LSTM performs a bi-directional spectra-

spatio-temporal relationship analysis. The proposed model is trained and validated on

coarse-scale satellite data. After establishing the relationship between SM and SMIs,

the model is given fine-scale input SMIs to produce 1-km SM outputs. To summarise

in this chapter a new covariance adaptive CNN model for explicit region-specific

MODIS SMI extraction for SMAP SSM downscaling is proposed. Next, a novel

three-dimensional bi-directional LSTM (3D-Bi-LSTM) model is proposed for SSM

downscaling using the covariance adaptive CNN model selected SMIs and SMAP

SSM.

The rest of this chapter is organized as follows. Section 4.2 elaborates on the study

area and dataset. Section 4.3 details the proposed three-dimensional bi-directional

LSTM for satellite soil moisture downscaling. Section 4.4 presents the results and
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Figure 4.1: Illustration of three-dimensional RS image sequence analysis. In the time domain, the
preceding time RS images (represented by grey blocks with a green-solid border) aid in the target
image (represented by a single green block) prediction. The RS images in subsequent time instants
from today (represented by white blocks with a green dashed border) are unavailable. For the 2D
spatial domain, the target pixel represents the current pixel to be predicted in the target RS image.
The red and yellow arrows inside the big green block represent the bi-directional 2D spatial domain
sequence analysis for each input image at a given time. The pixel neighbors in the horizontal and
vertical axes (represented by green blocks within the big green block) undergo the bi-directional
analysis to predict the target pixel (represented by a yellow block with a black-solid border in the big
green block). Similar bi-directional 2D spatial domain sequence analyses are conducted for all other
images at a given time (represented by big grey blocks with a green-solid border) for the target pixel in
the target image prediction.

discussions. Concluding remarks are drawn in Section 4.5.

4.2 Study Area and Dataset

The SMAP satellite provides daily soil moisture data at a 9-km resolution. The prod-

uct name is SMAP Enhanced L3 Radiometer Global Daily 9-km EASE-Grid SSM

V001 (SMAP L3-SM-P-E). To downscale soil moisture to a finer resolution, auxiliary

information from MODIS observations is used. This approach is widely adopted in

the SMOS and AMSR-E downscaling schemes. In this chapter, 27 indices are used

as auxiliary soil moisture information. The 27 indices are NDVI, EVI, ANIR, NDWI,

DDI, GVMI, PDI, MPDI, MPDI1, MSI, MSPSI, NDII6, NDII7, NDTI, NMDI, SANI,

SASI, SPSI, SRWI, VSDI, VSWI, MSAVI, SIMI, LST, DDI, SW, and TVDI [40], [35].

Collectively they are referred to as SMIs in this chapter, which includes drought in-

dices (DI) and vegetation indices (VI). Aqua MODIS and Tera MODIS are used in
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relationship between SSM and SMIs at 9-km and applies the learned relationship to the 1-km SMIs in
an effort to predict 1-km SSM.

tandem with satellite local equatorial crossing times of the SMAP ascending and de-

scending observations. As such, the Aqua MODIS is combined with ascending SMAP

observations and Tera MODIS with SMAP descending observations for downscal-

ing. The downscaled soil moisture is validated using ground in-situ observation data

from the SMAP/IN-SITU CORE VALIDATION V001 [226], SOILSCAPE [227],

SMAPVEX-16 [228], and SMAPVEX-19 [229] datasets. These datasets can be

accessed from NASA earthdata (https://search.earthdata.nasa.gov/search). To assess

the transferability of the proposed 3D-Bi-LSTM model, the study area is divided into

geographically distinct locations, namely the Terra d’Oro, Carman, Petersham, Fort

Cobb, Little Washita, Duero basin, and Walnut Gulch. The study sites and the SM

dataset within each site are detailed further.

4.2.1 Terra d’Oro, California, United States

4.2.1.1 Site Characteristics

The 400 acres of Terra d’Oro vineyards centered at 38°30’36.0”N, 120°48’ 00.0”W

are located in the Amador County in California. The region’s climate is classified as a

tropical climate, with warmer, drier weather in summer and cooler, wetter weather in
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winter. For over three decades, Terra d’Oro’s focused on zinfandel grapes cultivation.

The vines are rooted in shallow topsoil above rocky granite hardpan on a series of

gentle slopes between 1,300 and 1,600 feet in elevation.

4.2.1.2 SoilSCAPE Dataset

The soil moisture sensing controller and optimal estimator (SoilSCAPE) project

provides in-situ measurements of soil moisture for the validation of spaceborne and

airborne products. Terra d’Oro provides data captured by 27 SoilSCAPE sensor nodes

between 2013-04-06 to 2015-10-26. From 2016-01-13 Terra d’Oro provides data from

24 SoilSCAPE sensor nodes. The dataset for 2016-01-14 file collections provides

Terra d’Oro data from locations 38°30’36.0”N 120°48’00.0”W and 38°30’00.0”N

120°48’00.0”W, which are 2.9 km apart from each other.

4.2.2 Carman, Manitoba, Canada

4.2.2.1 Site Characteristics

The site is located Southwest of Winnipeg in the Carman-Elm Creek area. Clay and

fine loamy soils account for approximately 76.5% of the study area. The region

experiences a humid temperate climate. Soybeans, wheat, and canola account’s

approximately 70% of the crops grown in the study area.

4.2.2.2 SMAPVEX16 Dataset

The SMAPVEX16 is a temporary ground sensor data-based SMAP validation station,

installed in May and removed in Jul-Aug. This data set contains data collected at 9 real-

time in-situ soil monitoring for agricultural (RISMA) stations and 50 temporary soil

stations. The proposed network covered the region bounded by latitude 49.756438°

N to 49.384164° N, and longitude 97.756385° W to 98.098416° W.

4.2.3 Petersham, Massachusetts, United States

4.2.3.1 Site Characteristics

Petersham is a town in Worcester County, Massachusetts, United States. Paxton soil

is found in this region. The climate is classified as a warm summer temperate climate.
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Petersham mainly has a considerable amount of conservation land, including river

reservations and forests.

4.2.3.2 SMAPVEX19 Dataset

The data consists of ground-based soil moisture measurements recorded by twenty-

five temporary stations located in Petersham during the SMAPVEX19-21 campaign.

The stations were installed across an area of 30-km by 40-km in May 2019 and

operated through the middle of November 2019. The proposed network covered the

region bounded by latitude 42.34° N to 42.69° N, and longitude 71.95° W to 72.29°

W.

4.2.4 SMAP Core Validation sites

4.2.4.1 Site Characteristics

Due to the high spatial heterogeneity inherent in soil moisture, the point-scale mea-

surements cannot be directly compared to the SMAP data. SMAP partnered with

in-situ networks that have sufficiently dense soil moisture sensors to be reliably

aggregated to a larger spatial scale. These sites are called core validation sites. In

this chapter, the core validation sites studied are from the Contiguous United States

(CONUS) and Duero basin. The locations within CONUS have diverse climates,

ranging from cold to temperate climate types. The Duero basin climate is classified

as temperate.

4.2.4.2 SMAP/IN-SITU CORE VALIDATION Dataset

Carman, Walnut Gulch, Fort Cobb, and Little Washita are distributed over CONUS

and each of them contains multiple pixels matching the SMAP footprint. The major

land cover type of Carman is croplands, Walnut Gulch is shrubs, Fort Cobb and Little

Washita is grassland. REMEDHUS in-situ stations are located within an area of

1300-Km2 (41.1°–41.5° N; 5.2°–5.6° W) in a central semiarid sector of the Duero

basin. REMEDHUS network has 20 in-situ stations with major land cover types

classified as croplands. The elevation of stations ranges between 700 and 900 m, with

gentle slopes.
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4.3 3D Bi-Directional LSTM for Satellite Soil Moisture Downscal-

ing

The coarse-scale time-evolving two-dimensional SSM and SMIs are used to produce

fine-scale SSM. Fig. 4.3 illustrates the proposed method for downscaling satellite SM.

First, the MODIS bands are stacked together. Next, the SMIs are calculated using

formulas from [40], [35]. The SMIs of 1-km × 1-km and 500-m × 500-m obtained

from MODIS are aggregated and reprojected to the SMAP daily SSM resolution of

9-km × 9-km. The 9-km × 9-km SMIs and SSM are then stacked together, and the

covariance matrix (CM) is calculated for the SSM and SMIs. This CM is used to adap-

tively update the CNN kernel weights for feature extraction. A two-layer CNN with

an adaptive Gaussian kernel is adopted for FE. The important features for SSM pre-

diction within the target region are extracted by the proposed CNN. Each 2D feature

extracted is converted to a single 1D sequence using transposed ordering to enhance

the spatial/spectral correlation within a time instant, and for t ∈ {T0,T1, ...,TN} time

instants, ‘TN’ number of 1D sequences are stacked for improving the spatial/spectral

correlation between multiple time instants. The proposed 3D-bi-directional LSTM

analyzes the data for SSM prediction and the model is calibrated using feedback

errors (difference between the predicted and the actual). After this process, the down-

scaling model is established and 1-km × 1-km SMIs are given as input to produce

1-km × 1-km SSM. The proposed CNN-based feature extraction strategy and the

3D-Bi-LSTM analysis for spatio-temporal SSM prediction are detailed below.
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Figure 4.3: Method for achieving the bi-directional spectra-spatio-temporal downscaling. The downscaling is established in 8 steps: (1) SMIs are calculated
using formulas on MODIS bands and the 1-km × 1-km (and/or 500-m × 500-m) SMIs are aggregated and reprojected to SMAP daily SM resolution (9-km
× 9-km singles raster grid resolution); (2) 9-km × 9-km SMIs and SM are stacked together, the covariance matrix is calculated for the SM and SMIs, and
the CNN kernel weights are updated according to the covariance matrix; (3) the CNN is established for feature extraction; (4) important features for SM
prediction within the target region are extracted; (5) 2D features are converted to a 1D sequence using transposed ordering for enhancing spatial correlation
within a time instant; (6) For t ∈ {T0,T1, ...,TN}, TN 1D sequences are stacked for analysis; (7) 3D-bi-directional LSTM analysis for SM downscaling; and
(8) model calibration using feedback errors. After the above 8 steps, the proposed downscaling is established and 1-km × 1-km SMIs are given as input to
produce 1-km × 1-km SM.
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4.3.1 Covariance Adaptive CNN Feature Extraction

The SMIs derived from MODIS are aggregated to the same spatial resolution as

SMAP SSM. Let Γl
MN be the lth SMI raster cell value at a coarse resolution and Γl ′

pq

be the SMI raster cell values at a fine resolution within Γl
MN . For training the model,

all Γl ′
pq are aggregated to the resolution of Γl

MN . This can be expressed as,

Γ
l
mn =

P

∑
p=1

Q

∑
q=1

αpq

β
∗Γ

l ′
pq ∀m > p and n > q, (4.1)

where there are m × n raster grids of Γl
mn for m ∈ {1,2, ...,M}, n ∈ {1,2, ...,N}

in the target area. Each Γl
mn grid consists of p × q cells of rows and columns for

p ∈ {1,2, ...,P} and q ∈ {1,2, ...,Q}. Furthermore, αpq is the total area covered by

raster cell Γl ′
pq, and β is the total area covered by the target coarse-resolution raster

cell Γl
mn. The target region has M rows and N columns of SMAP raster cells. Let Γ

be the SMI derived for the target region with M × N rows and columns of SMAP

raster cells. Using the values from (6.1), the matrix Γl can be expressed as,

Γ
l =


Γl

11 Γl
12 ... Γl

1N

... ... ... ...

Γl
M1 Γl

M2 ... Γl
MN

 , (4.2)

where l ∈ {1,2, ...,27} and Γl denotes the lth SMI. That is, Γ1 is the first SMI, Γ2 is

the second SMI, and so on. The new cell values of Γl calculated are re-projected over

the target area using functions in the geopandas open-source library [224]. Denote by

ϒ the SSM matrix at coarse resolution, which can be expressed as,

ϒ =


ϒ11 ϒ12 ... ϒ1N

... ... ... ...

ϒM1 ϒM2 ... ϒMN

 , (4.3)

where each ϒmn represents a 9-km × 9-km region. To derive an adaptive kernel

for the changes in SSM with respect to SMI, a covariance matrix is first calculated.

Covariance gives the joint variability of the two random variables ϒ and Γ. The
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covariance is calculated using each cell values in (4.2) and (4.3) as,

Cl
mn =

1
(mn−1)

M

∑
m=1

N

∑
n=1

ϒmnΓ
l
mn−

1
(mn−1)

M

∑
m=1

N

∑
n=1

ϒmn ×
1

(mn−1)

M

∑
m=1

N

∑
n=1

Γ
l
mm ∀ l ∈ {1,2, ...,27}, (4.4)

where Cl
mn checks the variance of Γl values for each l with respect to ϒ values above

and below. This analysis is conducted as soil moisture distribution occurs both

upstream and downstream geographically. Cl
mn represents the m-th row and n-th

column of the covariance matrix Cl. Matrix C is updated l times for l number of

SMIs, denoted by Cl. The l denotes to which SMI the covariance matrix belongs, i.e.,

C1 SSM covariance with respect to the first SMI, C2 SSM covariance with respect to

the second SMI, and so on. Let Cl be the covariance matrix derived from SSM and

the lth SMI. It follows from (4.4) that the covariance matrix can be expressed as,

Cl =


Cl

11 Cl
12 ... Cl

1N

... ... ... ...

Cl
M1 Cl

M2 ... Cl
MN

 ∀ l ∈ {1,2, ...,27}. (4.5)

The diagonal elements of the matrix are the covariance between ϒ and Γl in the same

spatial area. The non-diagonal elements represent the variance in SSM with respect

to the SMI over the total target area. The covariance matrix Cl is a good measure to

track changes in the dependent variable ϒ with respect to the independent variables Γl.

So if the convolutional kernel is adaptive to Cl, this will result in satisfactory feature

extraction. For any lth SMI the convolutional kernel can be expressed as,

Kmn ∝ Cl
mn∀ l ∈ {1,2, ...,27}. (4.6)

Eq. (4.6) can be satisfied using a Gaussian kernel [225]. The Gaussian kernel can be

built adaptive to the values in (4.5) as,

Kmn =
M

∑
m=1

N

∑
n=1

1

(2π)
mn
2 |Cl

mn|
1
2

e−1/2(Γl
mn−µ)T (Cl

mn)
−1(Γl

mn−µ), (4.7)

where µ denotes the mean of Γl
mn. The kernel matrix K is constructed using Kmn.
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Figure 4.4: A re-ordering strategy for the 2D RS spatial data in each time instant. Each frame represents
a 2D spatial image sequence of a feature and ε represents the cells in each image frame.

The CNN feature extraction using K on the lth SMI can be expressed as,

ξ
l = K ∗Γ

l, (4.8)

where ∗ indicates the convolution operation.

Let ξ l be the CNN output for l ∈ {1,2, ...,27} SMIs denoted by Γl, and then ξ l

for the lth SMI can be expressed as,

ξ
l =


ξ l

11 ξ l
12 ... ξ l

1N

... ... ... ...

ξ l
M1 ξ l

M2 ... ξ l
MN

 . (4.9)

The CNN output ξ l for l ∈ {1,2, ...,27} at t ∈ {T0,T1, ...,TN} is subject to a further

spatio-temporal analysis by the proposed 3D-Bi-LSTM. The 3D-Bi-LSTM analysis

of the CNN output is detailed below.

4.3.2 Transposed 3D-Bi-LSTM Time Series Prediction

The input to 3D-Bi-LSTM is ξ l(t), and ϒ(t) is the prediction target during training.

For time-series analysis both ξ l(t) and ϒ(t) should be transformed from 3D to 2D
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Figure 4.5: Three-dimensional bi-directional LSTM soil moisture prediction structure. The middle
green cell with a solid border represents the predicted SSM cell at present time t = TN , where
t ∈ {T0,T1, ...,TN}, while the middle green cells with a dashed border are the predicted SSM in the
previous time instants. The input cells that are at locations before the middle green cell with a solid
border undergo the forward prediction analysis, whereas the pixel points after the middle green cell
with a solid border undergo the backward prediction analysis for SSM prediction. The bi-directional
analysis over time instants T0 to TN−1 along with the bi-directional analysis of the cells at t = TN to
predict the middle green cell with a solid border, i.e., the SSM value at TN .

sequence by transposing both ξ l(t) and ϒ(t). However, when all the SMIs are

transposed and arranged, a single time instant itself will have a long sequence. For

t ∈{T0,T1, ...,TN} the sequence will be very long and many of the important sequences

may be subject to the vanishing gradient problem. Hence the 3D to 2D conversion is

performed through transposed ordering to enhance the spatial and spectral correlation

within a time instant so that important information is not lost. This is illustrated in Fig.

4.4. For t ∈ {T0,T1, ...,TN}, there are a total of TN 2D sequences. Fig. 4.5 illustrates

the proposed 3D-bi-directional satellite SSM prediction structure.
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The conventional way to transform the CNN output is,

ξ
l(t) = {ξ l

11(T0), ...,ξ
l
MN(T0),ξ

l
11(T1), ...,

ξ
l
MN(TN−1),ξ l

11(TN), ...,ξ
l
MN(TN)}. (4.10)

To analyze the spatial correlations within and between the time instants as in Fig. 4.5,

ξ (t) in (4.10) changes to,

ξ̂
l(t) = {ξ l

11(T0), ...,ξ
l
MN(T0),ξ

l
MN(T1), ...,

ξ
l
MN(TN−1),ξ l

MN(TN), ...,ξ
l
11(TN)}. (4.11)

The LSTM can only obtain the previous information in the sequence data. Differ-

ent from conventional LSTM, Bi-LSTM adds an additional layer of reverse LSTM

and simultaneously synthesizes the forward and reverse information of the before

pixel points. The reverse layer LSTM is calculated in a similar manner to its forward

counterpart, except that the direction is reversed to obtain the subsequent time in-

formation. The Bi-LSTM forward hidden vector
−→
h (t) and backward hidden vector

←−
h (t) are calculated as,

6 7 8 9542 31

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
t

(c) 3D-Bi-LSTM: SM prediction structure
Figure 4.6: Prediction structure for predicting cell 5 in a raster of 9 cells using the 3D-Bi-LSTM. The
raster grid is predicted using not just the preceding grid cells (cells 1 to 4) information but future grid
cells after cell 5 (cells 6 to 9) which are next in the spatial location from the preceding target cell
location along with multiple time instants from both directions.



62 CHAPTER 4. 3D BI-DIRECTIONAL LSTM FOR SATELLITE SOIL MOISTURE DOWNSCALING

−→
h (t) = H

(
W

ξ
−→
h

ξ (t)+W−→
h
−→
h

−→
h (t−1)

)
, (4.12)

←−
h (t) = H

(
W

ξ
←−
h

ξ (t)+W←−
h
←−
h

←−
h (t +1)

)
,

where h(t) denotes the hidden vector, Wξ h is the input-hidden weight matrix, W−→
h
−→
h

symbolize the forward hidden-hidden weight matrix, W←−
h
←−
h

represent the reverse

hidden-hidden weight matrix, and H is the hidden layer function. For the proposed

3D-Bi-LSTM, the backward hidden vector
←−
h (t) in (12) changes to,

ˆ←−
h (t) = H

(
W

ξ̂ l←−h
ˆξ l(t)+W←−

h
←−
h

←−
h (t +1)

)
(4.13)

∀ l ∈ {1,2, ...,27},

where ˆξ (t) is given by (4.11). For the proposed 3D-Bi-LSTM,
−→
h (t−1) and

←−
h (t+1)

are rearranged as shown in Fig. 4.6. The output of the proposed Bi-LSTM for SSM

prediction can be expressed as,

ˆΓ(t) = G
(

W−→
h Γ̂

−→
h (t)+W←̂−

h Γ̂

ˆ←−
h (t)+b

Γ̂
(t)

)
, (4.14)

where Γ̂(t) is the predicted output, b
Γ̂

is the output bias function, G is the output

transfer function,
−−→
h(t) is the forward hidden vector, and

←−−
h(t) is the backward hidden

vector.

Once training is completed and the model is validated, the input at fine resolution

(1-km) is fed to the proposed downscaling model to yield output at fine resolution

(1-km). The downscaled SSM is validated using ground sensor data. The proposed

model is tested in Section IV.

4.4 Results and Discussions

To evaluate the proposed 3D-Bi-LSTM, test is conducted on the SMAP/IN-SITU

CORE VALIDATION V001 [226], SOILSCAPE [227], SMAPVEX-16 [228], and

SMAPVEX-19 [229] datasets. The downscaling results were compared with five

state-of-the-art related works the DENSE [40], AVCM-SAW [41], Long term LSTM

(L-LSTM) [43], WT-PCA [42], and random forest (RF). The simulation
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(a) 3D-Bi-LSTM (b) DENSE (c) AVCM-SAW

(d) L-LSTM (e) WT-PCA (f) RF

Figure 4.7: Comparison of downscaled soil moisture maps produced by: (a) 3D-Bi-LSTM, (b) DENSE, (c) AVCM-SAW, (d) L-LSTM, (e) WT-PCA, and
(f) RF at Remedhus, Spain on DOY of 193, 2016.
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results of DENSE and AVCM-SAW validate the use of ML/DL sequential models

for downscaling SSM to a finer resolution using the knowledge learned at the coarse

resolution, but both DENSE and AVCM-SAW do not provide any comparisons with

other ML- or DL-based models. Similarly, WT-PCA uses the wavelet transform,

which is a traditional signal processing technique, and the principal component

analysis is a traditional ML technique for downscaling SMAP soil moisture. The

proposed framework uses CNN and Bi-LSTM for spatio-temporal data analysis

for SMAP downscaling. The comparison will provide a benchmark for accuracy

comparisons with traditional approaches. Furthermore, to ensure a fair comparison,

the same SMIs are provided as input to all competing models.

4.4.1 Visual Inspection of Downscaled Results

To present the downscaling effect, the results for the image acquired from the proposed

3D-Bi-LSTM, DENSE [40], AVCM-SAW [41], L-LSTM [43], WT-PCA [42] and RF

(random forest) are illustrated in Fig. 4.7-4.9. Fig. 4.7 shows the comparison for a

very hot and humid day with 30.50 C temperature and 41.62% humidity (day-of-the-

year (DOY) of 193, 2016) at Remedhus, Spain, while Fig. 4.8 illustrates the cold and

dry day with 70 C temperature and 18% humidity (DOY of 39, 2016) at Fort Cobb,

Oklahoma. Over different climate conditions (Fig. 4.7-4.8), the spectral variability is

better represented with less distortion by the proposed 3D-Bi-LSTM than all other

models. It is clear that the proposed model is able to better capture the seasonal soil

moisture variability than DENSE, AVCM-SAW, L-LSTM, and WT-PCA. Fig. 4.9

illustrates the satellite coverage for a different location (Little Washita, Oklahoma)

for the same DOY 193, 2016. Fig. 4.7 and Fig. 4.9 illustrate that more accurate

downscaling which is robust to the image contamination introduced by clouds is

possible using 3D-Bi-LSTM compared to other methods, which could be due to the

inclusion of the third axis (time-axis) information on past SSM and SMI values for

SSM prediction. The performance of WT-PCA is not as strong in comparison to the

other methods. This could be due to the previously discussed inherent defects of

using PCA for FE.
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(a) 3D-Bi-LSTM (b) DENSE (c) AVCM-SAW

(d) L-LSTM (e) WT-PCA (f) RF

Figure 4.8: Comparison of downscaled soil moisture maps produced by: (a) 3D-Bi-LSTM, (b) DENSE, (c) AVCM-SAW, (d) L-LSTM, (e) WT-PCA, and
(f) RF at Fort Cobb, Oklahoma on DOY of 39, 2016.
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Figure 4.9: Comparison of downscaled soil moisture maps produced by: (a) 3D-Bi-LSTM, (b) DENSE, (c) AVCM-SAW, (d) L-LSTM, (e) WT-PCA, and
(f) RF at Little Washita, Oklahoma on DOY of 193, 2016.
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(a) Remedhus (b) Fort Cobb
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Figure 4.10: Land cover maps of: (a) Remedhus, Spain (b) Fort Cobb, Oklahoma, and (c) Little
Washita, Oklahoma.

The spatial variation of SSM is dramatic for the selected locations. As can be

visually observed from Fig. 4.7-4.9, L-LSTM and DENSE are not able to capture

the spatial variation well, which may be because both methods only implement time-

series prediction and the analysis over the spatial domain is not included in the final

prediction. In contrast, time-series prediction has reduced the number of blank values

in comparison to WT-PCA for L-LSTM and DENSE. Hence, the results emphasize

the importance of considering the spatial-time correlations of all SMI spectra and

SSM during the downscaling process. The proposed 3D-Bi-LSTM is more robust

to contamination introduced by clouds than DENSE, AVCM-SAW, L-LSTM, and

WT-PCA.

Fig. 4.10 illustrates the land cover maps corresponding to the downscaled SSM

maps. The visual comparison of Fig. 4.7-4.9 and Fig. 4.10 show that land cover

types such as built-ups are represented by lower intensity moisture spectrum and land

cover types like permanent water bodies are represented by higher intensity moisture

spectrum. The moisture changes for different land cover types are further analyzed in

Fig. 4.11. In Fig. 4.11 the average SSM values at different land covers are plotted.
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Figure 4.11: Average SSM values at different land covers by 3D-Bi-LSTM in: (a) Remedhus, Spain
(b) Fort Cobb, Oklahoma, and (c) Little Washita, Oklahoma.

By comparing Fig. 4.11 (a) and Fig. 4.11 (c) with Fig. 4.11 (b) we can observe that

except for the croplands, other land cover types reflect the dry season lower moisture

values. Croplands normally receive irrigation for proper crop cultivation. This must



4.4. RESULTS AND DISCUSSIONS 69

(a) Remedhus (b) Fort Cobb (c) Little Washita

Figure 4.12: Upscaled soil moisture maps at: (a) Remedhus, Spain (b) Fort Cobb, Oklahoma, and (c)
Little Washita, Oklahoma.

be the reason that in Fig. 4.11, the croplands have not experienced a fall in soil

moisture.

The upscaled SSM maps are illustrated in Fig. 4.12. To analyze the accuracy

of similarity of spatial patterns with the 3D-Bi-LSTM downscaled SSM maps, the

percentage accuracy in pixel matching is done with the upscaled maps. Fig. 4.13

illustrates the pixel matching percentage accuracy graphs. The average pixel matching

accuracy at different land covers in each location is plotted. The average pixel

matching accuracy of 3D-Bi-LSTM from the three locations for different land covers

illustrate a 0.96 percent accuracy for land cover type built-up, 0.95 percent accuracy

for land cover type cropland, 0.92 percent accuracy for land cover type vegetation,

0.94 percent accuracy for land cover type forest, 0.97 percent accuracy for land cover

type vegetation shrubs and 0.93 percent accuracy for land cover type vegetation water

bodies. Fig. 4.13 clearly illustrates a higher prediction accuracy for 3D-Bi-LSTM

across different land cover types in comparison to all other competing models. Hence

to summarise the 3D-Bi-LSTM is able to capture the variations in soil moisture well

for different land cover types. Furthermore, for each land cover type, the proposed

3D-Bi-LSTM illustrates a higher prediction accuracy in comparison to all competing

models.

4.4.2 Validation Results

The downscaled SSM is first validated with the area average of the entire target

region for the Soilscape network dataset. Fig. 4.14 shows the scatter plots for the

downscaled SSM using (a) proposed 3D-Bi-LSTM, (b) DENSE, (c) AVCM-SAW,
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Figure 4.13: Pixel matching percentage accuracy between the 3D-Bi-LSTM downscaled and upscaled
soil moisture maps at different land covers in: (a) Remedhus, Spain (b) Fort Cobb, Oklahoma, and (c)
Little Washita, Oklahoma.

(d) L-LSTM, (e) WT-PCA, and (f) RF against the in-situ SSM measurements on

the Soilscape network dataset. As can be observed from these scatter plots, the

SSM values downscaled by the proposed 3D-Bi-LSTM agree well with their in-situ
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Figure 4.14: Scatter plots of downscaled area average SSM values against in-situ values of the
SOILSCAPE dataset using: (a) 3D-Bi-LSTM, (b) DENSE [40], (c) AVCM-SAW [41], (d) L-LSTM
[43], (e) WT-PCA [42], and (f) RF.

counterparts when compared to those downscaled by AVCM-SAW, RF, WT-PCA,

DENSE, and L-LSTM. For the general performance, it seems evident that the 3D-Bi-

LSTM downscaled SSM accurately captures the temporal variations of SSM over the

Soilscape network dataset in the target region and maintains a reliable accuracy in

most circumstances when compared to the other baseline methods. We can observe a

generally higher correlation between the predicted and field-measured SSM values

for 3D-Bi-LSTM than all the other comparison approaches. The accuracy of the

daily SSM prediction is graphically compared using average error graphs. Fig. 4.15

graphically compares the average daily downscaling prediction errors achieved by

3D-Bi-LSTM as opposed to DENSE, AVCM-SAW, L-LSTM, WT-PCA, and RF.

These results indicate a higher overall prediction accuracy for 3D-Bi-LSTM.

Quantitative measurements are considered to further demonstrate the effectiveness

of the proposed 3D-Bi-LSTM on the target datasets. The correlation coefficient (R),

root-mean-squared error (RMSE), unbiased RMSE (ubRMSE), and bias are calculated

as the statistical metrics to analyze the reliability of downscaled results. The RMSE
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Figure 4.15: Time series comparison of the average error between the in-situ SSM and the SSM
predicted by 3D-Bi-LSTM, DENSE, AVCM-SAW, L-LSTM, WT-PCA [19] and RF on: (a) the in-situ
core validation set (Remedhus), (b) Soilscape, (c) SMAPVEX16, and (d) SMAPVEX19 datasets.

Table 4.1: Comparison of the Average Prediction Accuracy of Each Model

SMAP/IN-SITU CORE VALIDATION Dataset [35]
3D-Bi-LSTM DENSE AVCM-SAW L-LSTM WT-PCA RF

RMSE 0.041 0.092 0.072 0.063 0.099 0.075
SOILSCAPE Dataset [36]

3D-Bi-LSTM DENSE AVCM-SAW L-LSTM WT-PCA RF
RMSE 0.026 0.059 0.040 0.035 0.073 0.043

SMAPVEX16 Dataset [37]
3D-Bi-LSTM DENSE AVCM-SAW L-LSTM WT-PCA RF

RMSE 0.016 0.054 0.044 0.031 0.063 0.047
SMAPVEX19-21 Dataset [38]

3D-Bi-LSTM DENSE AVCM-SAW L-LSTM WT-PCA RF
RMSE 0.034 0.084 0.061 0.042 0.092 0.064

Avg 0.029 0.072 0.054 .047 0.082 0.057
SD 0.002 0.003 0.002 0.002 0.004 0.002

Note: SD is the standard deviation.

evaluation is conducted for all six models. Table 4.1 provides the RMSE results

for all six comparison models on all four datasets. Fig. 4.16 provides the bias and
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Figure 4.16: Bias and unbiased RMSE values between: (a) 3D-Bi-LSTM, (b) DENSE [40], (c)
AVCM-SAW [41], (d) L-LSTM [43], and (e) WT-PCA [42] and RF.

Table 4.2: Time Complexity Comparison of the Models

Time 3D-Bi-LSTM DENSE AVCM-SAW L-LSTM WT-PCA RF
Train (hr) 70.4 31.5 22.3 47.3 19.8 27.9
Test (s) 1.64 1.57 1.12 1.15 1.41 1.06

unbiased RMSE for the six models over all four datasets. As can be seen from Table

4.1 and Fig. 4.16, the average RMSE, bias, and unbiased RMSE values of the The

3D-Bi-LSTM model is the smallest among all the comparison approaches, indicating

the proposed 3D-Bi-LSTM model has higher SSM prediction accuracy. Table 4.2

provides the training and testing times of the six comparison models. Generally, deep
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(a) Pearson correlation

(b) Standard deviation
Figure 4.17: Comparison of Pearson correlation and standard deviation among the SSM values
predicted by 3D-Bi-LSTM, DENSE [40], AVCM-SAW [41], L-LSTM [43], WT-PCA [42] and RF.

learning models take longer to train than machine learning models. This is reflected

in the table. However, the testing times of all six models are close to each other.

Although the proposed 3D-Bi-LSTM requires a longer training time, it achieves a

better prediction accuracy than the other five competing models. Further comparison

of the models using the Pearson correlation and standard deviation is conducted.

The closer the Pearson correlation is to +1, the better the accuracy. A low standard

deviation indicates that the values tend to be close to the mean (the expected value)

of the dataset, while a high standard deviation indicates that the values are spread out
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over a wider range. Fig. 4.17 gives the Pearson correlation and standard deviation

of all six models on the four datasets. For the average temporal correlation over all

the four datasets calculated using the Pearson correlation, the 3D-Bi-LSTM has the

highest average correlation. Moreover, the lower standard deviation of 3D-Bi-LSTM

in comparison to the competing five models indicates that the 3D-Bi-LSTM predicted

SSM values are consistently closer to the actual SSM values than the L-LSTM,

DENSE, AVCM-SAW, WT-PCA, and RF.

4.4.3 Explanatory Methods to Interpret 3D-Bi-LSTM

4.4.3.1 Ablation Studies of 3D-Bi-LSTM

In this section, the individual input and model components of the proposed 3D-

Bi-LSTM are assessed. The 3D-Bi-LSTM was tested first by removing a set of

inputs. The theoretical SSM prediction is mainly dependent on the drought index,

and vegetation index. To test this, the DI and VI are removed, and check their effects

on the proposed 3D-Bi-LSTM model outputs. In addition, the comparison model

AVCM-SAW uses only LST and NDVI from the SMIs in Table 4.3. To check their

effects LST and NDVI were removed from the set of inputs. Next, to validate the

performance of individual components of the network model, the CNN module for

feature selection is removed and directly feeds all the SMIs to 3D-Bi-LSTM.

Table 4.3: Comparison of Ablation Studies

Approach 1 2 3 4 5 6 7
3D-Bi-LSTM 3D-Bi-LSTM-DI 3D-Bi-LSTM-VI 3D-Bi-LSTM-(NDVI+LST) 3D-Bi-LSTM-(DI+NDVI) 3D-Bi-LSTM-(VI+LST) 3D-Bi-LSTM-FE

RMSE 0.029 0.040 0.037 0.033 0.038 0.043 0.057
SD 0.002 0.002 0.002 0.002 0.002 0.002 0.003

Note: SD is the standard deviation.

For testing individual inputs and modules of proposed 3D-Bi-LSTM, seven pre-

diction approaches in Table 4.3 are used: 1) 3D-Bi-LSTM: performance of the

3D-Bi-LSTM model with all the inputs; 2) 3D-Bi-LSTM-DI: performance of 3D-Bi-

LSTM without DI; 3) 3D-Bi-LSTM-VI: performance of 3D-Bi-LSTM without VI; 4)

3D-Bi-LSTM-(NDVI+LST): performance of 3D-Bi-LSTM without NDVI and LST;

5) 3D-Bi-LSTM-(DI+NDVI): performance of 3D-Bi-LSTM without DI and NDVI;

6) 3D-Bi-LSTM-(VI+LST): performance of 3D-Bi-LSTM without VI and LST; 7)

3D-Bi-LSTM-FE: performance of 3D-Bi-LSTM without feature selection.
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Approach 4 removes NDVI and LST from the set of inputs. This analysis is

conducted because it is suggested in AVCM [41] that NDVI and LST have a strong

relationship with SSM. The higher RMSE achieved by 3D-Bi-LSTM-(NDVI+LST)

over the 3D-Bi-LSTM with all the inputs suggests that the use of LST and NDVI as

SMIs does enhance the performance of SSM prediction. In approach 6, all drought

indices including LST are removed and only one VI (NDVI) is removed. In approach

5, all vegetation indices are removed and only one drought index (LST) is removed.

Approach 6 has a higher RMSE than approach 5, while approach 2 has a higher

RMSE than approach 3. The results of approaches 2, 3, 5, 6 imply that the drought

indices play a significant role in SSM prediction.

In approach 7, area-specific feature extraction based on the correlation between

SMI and SSM is removed. The higher RMSE achieved by approach 7 than approach

1 suggests that feature extraction based on the spectral correlation within a spatial

area enhances the performance of 3D-Bi-LSTM. So these results demonstrate that the

NDVI and LST are important for SSM prediction and feature extraction through the

covariance-adaptive CNN enhances the performance of the proposed 3D-Bi-LSTM

model.

4.4.3.2 Transferability Assessment of 3D-Bi-LSTM

Table 4.4: Overview of the Eight Test Sites

Dataset REMEDHUS Carman Walnut Gulch Little Washita Fort Cobb Soilscape SMAPVEX16 SMAPVEX19
Land cover Croplands Croplands Shrub open Grasslands Grasslands Croplands Croplands Forest

Climate Temperate Cold Arid Temperate Temperate Tropical Temperate Temperate
Location Spain Canada USA (Arizona) USA (Oklahoma) USA (Oklahoma) USA (California) Canada USA (New York)

The model’s transferability is evaluated on data from eight geographically distinct

locations. Table 4.4 gives an overview of these eight locations. Twelve distinct groups

of the training and testing datasets from the NASA earthdata (https://search.earth-

data.nasa.gov/search) by skipping one location (eight cases) and two locations (four

cases) in training. The test cases for skipping one location in training are: Case-

1) SoilScape removed from training, and used for testing transferability; Case-2)

SMAPVEX16 removed from training, and used for testing transferability; Case-3)

REMEDHUS removed from training and used for testing transferability; Case-4)
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Table 4.5: Model Transferability Assessment using RMSE

Model \Test sites Soilscape SMAPVEX16 REMEDHUS Carman Walnut Gulch Little Washita Fort Cobb SMAPVEX19
3D-Bi-LSTM 0.0263 0.0341 0.0114 0.0417 0.0568 0.0453 0.0477 0.0339

Skipping one location
Case name Soilscape SMAPVEX16 REMEDHUS Carman Walnut Gulch Little Washita Fort Cobb SMAPVEX19

3D-Bi-LSTM-(Soilscape) 0.0314 0.0361 0.0163 0.0470 0.0604 0.0482 0.0496 0.0374

3D-Bi-LSTM-(SMAPVEX16) 0.0286 0.0379 0.0144 0.0512 0.0590 0.0504 0.0529 0.0407

3D-Bi-LSTM-(REMEDHUS) 0.0268 0.0345 0.0197 0.0561 0.0580 0.0554 0.0540 0.0376

3D-Bi-LSTM-(Carman) 0.0296 0.0372 0.0179 0.0657 0.0632 0.0505 0.0562 0.0403

3D-Bi-LSTM-(Walnut Gulch) 0.0271 0.0364 0.0134 0.0429 0.0975 0.0470 0.0493 0.0357

3D-Bi-LSTM-(Little Washita) 0.0298 0.0352 0.0154 0.0450 0.0594 0.0630 0.0575 0.0352

3D-Bi-LSTM-(Fort Cobb) 0.0268 0.0350 0.0185 0.0455 0.0580 0.0602 0.0673 0.0374

3D-Bi-LSTM-(SMAPVEX19) 0.0280 0.0368 0.0169 0.0442 0.0613 0.0461 0.0505 0.0551

Max. percentage performance drop 19.39%19.39%19.39% 11.14%11.14%11.14% 72.81%72.81%72.81% 57.55%57.55%57.55% 71.66%71.66%71.66% 39.07%39.07%39.07% 41.09%41.09%41.09% 62.54%62.54%62.54%

Location overall model transferability rank 222 111 888 555 777 333 444 666

Skipping one location
Overall model transferability Good: 81.3% Moderate: 15.6% Poor: 3.1%

Skipping two locations
Case name Soilscape SMAPVEX16 REMEDHUS Carman Walnut Gulch Little Washita Fort Cobb SMAPVEX19

3D-Bi-LSTM-(REMEDHUS+Soilsacpe) 0.0322 0.0366 0.0208 0.0565 0.0617 0.0570 0.0558 0.0391

3D-Bi-LSTM-(SMAPVEX16+ Carman) 0.0298 0.0407 0.0186 0.0687 0.0641 0.0519 0.0566 0.0415

3D-Bi-LSTM-(Little Washita+ Fort Cobb) 0.0305 0.0357 0.0187 0.0462 0.0602 0.0719 0.0763 0.0377

3D-Bi-LSTM-(Walnut Gulch+SMAPVEX19) 0.0287 0.0376 0.0170 0.0445 0.0987 0.0479 0.0518 0.0572

Max. percentage performance drop 22.43%22.43%22.43% 19.35%19.35%19.35% 82.46%82.46%82.46% 64.75%64.75%64.75% 73.76%73.76%73.76% 58.71%58.71%58.71% 59.96%59.96%59.96% 68.73%68.73%68.73%

Location overall model transferability rank 222 111 888 555 777 333 444 666

Skipping two locations
Overall model transferability Good: 68.7% Moderate: 21.9% Poor: 9.4%

Note: The circled RMSE values are the maximum value for each site, and the corresponding maximum
percentage performance drop is in bold font in the table. Also, the 3D-Bi-LSTM’s transferability for eight
locations is ranked based on the overall transferability test outcome. To categorize transferability as good (green),
moderate (yellow), and poor (red), the increase in the root-mean-square error (RMSE) in the range of 0% to
100% is divided into three equal ranges. Transferability is said to be good, moderate, and poor if the RMSE
increase from the actual 3D-Bi-LSTM is < 33.33%, between ≥ 33.33% and < 66.67%, and ≥ 66.67%. The
3D-Bi-LSTM’s overall transferability for skipping one/two locations is illustrated at the bottom of the table.

Carman removed from training, and used for testing transferability; Case-5) Walnut

Gulch removed from training, and used for testing transferability; Case-6) Little

Washita removed from training and used for testing transferability; Case-7) Fort Cobb

removed from training, and used for testing transferability; Case-8) SMAPVEX19
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removed from training, and used for testing transferability. For skipping two locations

in training, the test cases are classified as: Case-1) REMEDHUS and SoilScape

removed from training, and used for testing transferability; Case-2) SMAPVEX16

and Carman removed from training and used for testing transferability; Case-3) Little

Washita and Fort Cobb removed from training, and used for testing transferability;

Case-4) Walnut Gulch and SMAPVEX19 removed from training and used for testing

transferability. In each of the above cases, 20% of training data from each location

dataset is held back from the training for testing transferability in time.

For the transferability assessment by skipping one location from training in Table

4.5, generally, 3D-Bi-LSTM shows good transferability on the 20% of training

locations data which is unused for training from fully unskipped locations (green

cells). In the fully skipped one training location, the 3D-Bi-LSTM mainly shows

moderate transferability (yellow cells). The highest transferability from single skipped

location cases is observed for SMAPVEX16 and Soilscape sites. Table 4.4 shows

that SMAPVEX16 and Soilscape have similarities with the other sites. The lowest

transferability in REMEDHUS and Walnut Gulch for the 3D-Bi-LSTM is noted

among the one skipped location cases. Table 4.4 illustrates that REMEDHUS and

Walnut Gulch are very distinct from the rest of the sites. Hence the skipping of the

REMEDHUS and Walnut Gulch site resulted in poor predictions by the model at these

locations. For the skipping of one location, the proposed model shows 81.3% good

transferability, 15.6% moderate transferability, and 3.1% poor transferability. Table

4.5 also displays the transferability assessment of the proposed model by skipping two

locations for testing transferability. For skipping two locations, the skipping of Little

Washita and Fort Cobb showed an interesting observation. Skipping them together

resulted in a significant performance drop than skipping them individually (≈ 20%).

Table 4.5 reveals that Little Washita and Fort Cobb are quite similar sites. Hence the

model might have transferred learning from Little Washita or Fort Cobb when only

one of these two locations was skipped from training. Although REMEDHUS and

Walnut Gulch are still the worst cases under the two locations skipped category, their

performance decreased by only 9.65% and 2.1% respectively. This is because both

the sites are quite distinct, and removing other sites does not have much effect on
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the predictions at these locations. For the overall transferability tests conducted, the

proposed model shows 68.7% good transferability, 21.9% moderate transferability,

and 9.4% poor transferability. For the overall transferability tests conducted, the

model’s transferability for the site SMAPVEX16 is ranked 1st, Soilscape is ranked

2nd, Little Washita is ranked 3rd, Fort Cobb is ranked 4th, Carman is ranked 5th,

SMAOVEX19 is ranked 6th, Walnut Gulch is ranked 7th, and REMEDHUS is ranked

8th.

4.4.3.3 Feature Importance

The feature importance study is conducted using SHAP (SHapley Additive exPla-

nations) [235]. The interpretation of deep learning models is arduous due to their

complex “black box” architecture. However, the shapley additive explanations are

highly robust in interpreting deep neural networks. SHAP values calculate the im-

portance of a feature by comparing what a model predicts with and without this

feature. Since the increasing order in which a model sees each feature can affect

its predictions, feature importance analysis is done in every possible order, so that

the features are fairly compared. The SHAP summary plots in Fig. 4.18 are used to

interpret the importance of each feature. The y-axis indicates the variable name in the

increasing order of importance from top to bottom. The color represents the feature

value (red high, blue low). All features are continuous and are vertically sorted by

their average impact on the predictions.

Fig. 4.18 indicates the impact of each input feature on the model output. From

Fig. 4.18 it is clear that LST is the most prominent feature, with low values of LST

associated with high SSM predictions. This interpretation is compatible with the

scientific knowledge that LST and SSM have a negative correlation [230]. Addition-

ally, in Fig. 4.18 NDVI and EVI show a positive correlation with SSM. And NDVI

shows a higher correlation with soil moisture than EVI. This result matches existing

studies that NDVI shows a higher positive correlation with SSM than EVI [123]. As

indicated in Fig. 4.18, both LST and NDVI play significant contributions to the model

output. Furthermore, Fig. 4.18 illustrates that the high value of NDTI is associated

with low values of SSM. This outcome is too in tandem with existing research that
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Figure 4.18: SHAP summary plots for the proposed 3D-Bi-LSTM network.

high tillage on soils increases undesirable changes in soil structure, and lowers water

infiltration and moisture-holding capacity [231]. The MSI, on the other hand, shows a

mixed pattern. This result aligns with existing research-based experimental evaluation

studies, which indicate that the MSI values showed a mixed correlation with the mea-

sured soil moisture [232]. GVMI is shown as a lesser important feature. This model

calculation might be because GVMI is suitable for retrieving vegetation water content

when the LAI is equal to or greater than 2 [233]. Moreover, GVMI high values are

associated both with high and low SSM predictions. This prediction could be because

soil moisture retrievals through GVMI are related to vegetation water content, and

vegetation water content is crop-specific [234]. Hence, the type of relationship it has

with soil moisture may vary based on the vegetation types in the target area. It is

interesting to note that the proposed 3D-Bi-LSTM model has been able to understand

these real-world relationships between the input features and soil moisture through

the spatio-temporal changes of different spectra. And SHAP has managed to very

clearly illustrate how such changes in inputs affect the model output.
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4.5 Conclusion

In this chapter, a 3D bi-directional LSTM (3D-Bi-LSTM) model for surface soil mois-

ture (SSM) downscaling was proposed for spatially distributed SM information. The

daily MODIS and SMAP satellite data are used as input to the model. The proposed

3D-Bi-LSTM model predicts fine-scale (1-km) SSM based on the satellite SSM and

SMIs acquired at a coarse scale. A downscaling framework was designed using a

covariance-adaptive CNN and the 3D-Bi-LSTM model. The covariance-adaptive

CNN is used for adaptive spatial feature extraction for selected locations from each

daily SMIs. The 3D-Bi-LSTM performs spatio-temporal spectral sequence analysis

for SSM prediction. The evaluation was conducted on four open-source SSM datasets.

Results showed that the proposed 3D-Bi-LSTM model is capable of predicting SSM

closer to the ground SSM measurements and has less spectral information loss than

the other state-of-the-art ML/DL SSM downscaling models tested. The efficacy of the

proposed model in predicting SSM was further validated in terms of ablation studies,

transferability assessment, feature studies, Pearson correlation, standard deviation,

RMSE, and unbiased RMSE. Hence it can be concluded that there is a significant

improvement achieved by the proposed 3D-Bi-LSTM model to downscale SSM in

comparison to recent state-of-the-art ML/DL downscaling models in the literature.

In conclusion, this chapter addresses the second research problem of SSM down-

scaling that was presented in Section 1.2 and provides the second original contribution

listed in Section 1.3. In the next chapter, I derive RZSM for SM depth distribution in-

formation, another critical input required for taking decisions for precision irrigation.



Chapter 5

Hybrid Transformer Network for Root Zone
Soil Moisture Estimation for Decision Support
in Precision Irrigation

This chapter contains materials included in the following manuscript, which has been

submitted to Agricultural Water Management Journal:

[3] Neethu Madhukumar, Eric Wang, and Wei Xiang,“Hybrid Transformer Network

for Root Zone Soil Moisture Estimation for Decision Support in Precision Irrigation”,

Agricultural Water Management, under review (Impact Factor: 6.611, h-index: 65,

Journal rank (Agronomy & crop science): 7).

5.1 Introduction

The Root zone soil moisture (RZSM) is an indicator of the vegetation drought stress

and the crop water demand, which are valuable information for precision irrigation

(PI) [67]. In-situ sensors installed at root zone-specific depths can provide direct field

RZSM measurements. However, the vast installation of sensors across the field at

the subsurface for RZSM measurements is not economically viable. Current satellite

missions can provide kilometers of distributed horizontal spatial details, but only

centimeters of vertical (depth) SM information [25], [238]. This vertical resolution

can only provide knowledge of the surface soil moisture (SSM) layer, not the RZSM

layer.
82
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The limitations in direct RZSM measurements are predominantly addressed by

indirect estimation through analytical methods using theoretical or empirical models

to obtain fine-scale RZSM [239], [240], [241]. These analytical methods use the

relationship between environmental variables, such as precipitation, temperature,

soil, and plant characteristics (PTSPc) which determines the RZSM state for indirect

estimations [46]. However, these methods require a target location-based optimization

to improve the model’s RZSM simulation accuracy [242]. Adoption of data-based

methods can help remove these location-based optimization constraints as they are

adaptive to data [243], [72], [73]. Among data-based methods, deep learning (DL)

is becoming increasingly popular due to its deep architectures, which can extract

accurate information from big environmental data [29], [30].

The application of DL in the RZSM field is still in the early stages [19], [244],

[128]. However, RZSM is SSM diffused to lower soil layers [67], [65]. Therefore,

the more advanced DL-based techniques for detailed SSM information such as

performing downscaling (increasing spatial/temporal details) by correlating the SSM

with auxiliary SSM information available at target location [43], [37], [35], [250]

can be applied to RZSM. The environmental variables controlling the RZSM state

can provide auxiliary information to these DL models when the RZSM source (in-

situ/satellite) information is limited or unavailable. The literature illustrates that a

sequential DL model will be apt for performing such correlation analysis [262], [47].

The transformer neural network (TNN) is the state-of-the-art DL model to process

sequential data [49]. It is a new cognitive model eschewing recurrence implemen-

tations in the previous benchmark sequential DL models, such as Long short-term

memory (LSTM) [287] and Gated recurrent unit (GRU) [286]. LSTM and GRU

receive the input information indirectly as a set of hidden states passed on through

multiple cells via series processing. While TNN can pay attention to every single

input directly through parallel processing and attention mechanism to draw global

dependencies between input and output. The attention mechanism enhances critical

parts of the input while diminishing others so that the network can devote more focus

to the essential information [251]. The indirect RZSM estimation requires data from

multiple sensor locations to be perceived simultaneously to draw critical information
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from target prediction. Hence I find TNN more suitable for RZSM estimation.

Furthermore, the LSTM and GRU-based RZSM works mainly focus on estimating

RZSM using meteorological variables alone [56], [47]. However, other environmental

variables also affect the RZSM state and should be considered for estimation. Unlike

LSTM and GRU, more variables will enhance TNN learning due to parallel processing

and attention mechanism. Also, existing RZSM works aim at future predictions of a

target location where ground truth is available [56], [47]. However, the main problem

in the RZSM domain is the limited information on depth at locations without ground

truth due to the shortcomings of direct measurement by in-situ and satellite devices.

Such measurement constraints were addressed in the SSM domain using auxiliary

variables correlations with the prediction target [43], [37], [35], [250]. This correlation

approach is extrapolatable to the RZSM domain due to its similarities with the SSM.

In order to extrapolate the correlations from sensor location RZSM and auxiliary data

for prediction at a site without direct measurement, I introduce a hybrid TNN model.

The proposed model uses auxiliary RZSM variables identified in the literature for

RZSM estimation: SSM, soil type, surrounding RZSM, target distance, plant type,

RZSM depth, root type, plant daily water requirement, humidity, temperature, rainfall,

soil salinity, and soil temperature [67], [46], [65], [47], [56].

In the proposed model first, as a high-level input abstraction, sensor locations

with similar satellite SSM values as the target are selected for further analysis. To

distinguish the SSM information from different test locations for similarity assessment,

I use the downscaled 1 km SM from Chapter 4 [2]. Next, a dynamic-MLP (D-MLP)

finds the prominent PTSPc predictor variables from chosen sensor locations by

determining the relative importance of these variables as a function of the neural

network synaptic weights. The network assigns higher weights if the variables

contribute more to the predictions. The selected sensor RZSM and auxiliary variables

from the sensor and target locations are input to the attention layer of the proposed

hybrid TNN model for further processing.

The attention block first analyses the relative relationship between the auxiliary

variables at sensor and target locations. Next, the model performs a similar relation-

ship analysis between sensor location auxiliary variables and RZSM. To achieve these
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proposed dual relative relationship analyses I concatenate an additional attention

block to the basic TNN architecture. Inside the additional block, I implement a

new multi-cross attention mechanism, which simultaneously analyses cross-relative

relationships between features from multiple sensor sites with the target. Unlike the

conventional attention block, which transforms the output using its inputs, this block

transforms the input using the inputs from the other concatenated block. Such an

arrangement helps correlate the similarities of RZSM-related environmental changes

between target and selected sensor locations. Based on these relationships, prob-

abilities were generated by the proposed hybrid TNN using the Bayes theorem in

an additional layer implemented as a preceding layer to the traditional TNN output

layer for each selected sensor RZSM. Finally, the probabilistic weighted sum of the

selected RZSM sensors provides the required indirect estimates. A probabilistic

weight assignment can reduce the uncertainties in multi-source ensembling [265]

and can enhance the proposed model prediction accuracy as it combines multi-sensor

data.

The proposed hybrid TNN model is compared to two recent related works using

LSTM and GRU [56], [47] for performance evaluation. These evaluations and

comparisons will provide new insights for improvements in the RZSM estimation.

The remaining chapter is organized as follows: the study area and proposed model

are elaborated in Section 5.2 and Section 5.3 respectively. The simulation results are

shown in Section 5.4. Finally, a conclusion is drawn in Section 5.5.

5.2 Study Area and Dataset

To demonstrate the advantage of the proposed model I require a dataset having

multiple RZSM sensing station readings installed over a vast spatially distributed

area having similarities in the soil-plant-atmosphere domain. Hence I use the City

of Melbourne Soil Sensor Readings (CoMSSR [252]) dataset. This dataset can help

demonstrate the advantage of the proposed model. The CoMSSR dataset contains

historical readings for RZSM sensors and related auxiliary RZSM variables within

parks across the city of Melbourne. The units and readings from 78 soil sensors

installed locations are included within the CoMSSR dataset.
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(a) Alexandra Garden, Melbourne (b) Batman Park, Melbourne (c) Fawkner Park, Melbourne

Figure 5.1: The layout of the three test sites: (a) Alexandra Garden (5.2 hectares) is located at
37.82037°S 144.971938°E with clay loam soil. It has an avenue of oak trees around the garden; (b)
Batman Park (1.47 hectares) is located at 37.821766°S 144.956348°E with medium to heavily textured
clay plus some sand. The park consists of sparse maturing eucalyptus trees with no understorey or
saplings, and (c) Fawkner Park (41 hectares) is located at 37.838434°S 144.981016°E with sandy loam
soil. The park has elm, oak, and fig trees.

Next, the Soil Sensor Locations (SSL) dataset can be used to get the locations

(latitude and longitude) where soil sensors have been deployed across the city. The

CoMSSR dataset is joined to the SSL dataset [255] using the site-id column. The

SSL dataset information can be further used to link with the soil type by area maps

(STBAM) dataset to get the soil type information [256]. The CoMSSR, SSL, and

STBAM datasets can be accessed from the city of Melbourne-open data portal

(https://data.melbourne.vic.gov.au/).

The latitude and longitude information from the SSL dataset can be used to obtain

the weather data from the nearest weather station accessible through the Bureau

of Meteorology (BOM), Australia (http://www.bom.gov.au/). The weather station

number from BOM can be used to join with the BOM forecast dataset [200]. The

latitude and longitude information from the SSL dataset is further used to generate the

fine-resolution SSM for the 78 sensor locations. The fine resolution SM is generated

using the 9 km Soil Moisture Active Passive (SMAP) and 1 km Moderate Resolution

Imaging Spectroradiometer (MODIS) satellite data, which can be accessed from

NASA earthdata (https://search.earthdata.nasa.gov/search). The sensor locations can

be mainly classified as dry and wet regions. The Alexandra Gardens and Batman Park

are wet regions as they are located near the Yarra River. Fawkner Park represents

the case of a dry location far from any water bodies. Furthermore, these three test

locations have the most widely available soil types in the world [257] and will be

tested for wet and dry seasons to illustrate the model generalization. Hence my model

is tested at these three locations illustrated in Fig. 5.1 to assess its performance using
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all these datasets. The proposed model is elaborated further.

5.3 Methodology

TNN is the state-of-the-art DL model for analyzing sequences. However, for in-

direct RZSM estimation, the data associations within a location and multiple sensor

sites with the target need to be found. Conventional TNN does not incorporate

such simultaneous multi-associations, hence to suit the in-direct RZSM estimation

application, we develop a new TNN model called the hybrid TNN model. First, sensor

locations with similar downscaled 1-km satellite SM as the target are selected. Next,

a dynamic multilayer perceptron (D-MLP) network layer selects the highly correlated

auxiliary RZSM information using ground SM and downscaled 1-km satellite SM.

D-MLP output is provided to a dual attention module along with the sensor RZSM.

The dual attention module finds the required multi-associations using sensor and

target region data. Finally, the Bayesian layer averages multi-location RZSM using

the conditional probability generated based on relative relationships for getting the

target location RZSM estimate. The proposed TNN is optimized using the random

search method, which exhibits the same performance as many common optimization

methods but with lower computation costs [204]. Table 5.1 illustrates the optimized

architecture of the proposed hybrid TNN. With the chosen model configuration, the

optimization results suggest a learning rate of 0.075 for good model performance.

The proposed hybrid TNN-based RZSM estimation is detailed below.

5.3.1 SSM Similarity Assessment

Satellite imagery is made up of pixels and it represents the relative reflected light

energy recorded for that part of the image. Each pixel represents a square area on

an image and is a measure of the sensor’s ability to resolve ground objects. The

reflected energy from a light spectrum will be the same for objects that are similar

in composition. Currently, satellites can only provide SSM information. Since SSM

and RZSM are correlated, a similarity assessment of satellite pixels can help identify

similar pixel-valued sensor sites with the target location without a sensor to further

derive RZSM information.
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A minimum of 1 km resolution is required to distinguish the SM pixels from the

sensor sites in the CoMSSR dataset [252]. Currently, SMAP provides the highest

resolution global daily SM of 9 km. Since this resolution is not sufficient for the

PI application, I downscale the 9 km SMAP SM to 1 km using the 3D-Bi-LSTM

model [2] from my previous work in Chapter 4. If the SMAP can be downscaled

to > 1 km (the minimum requirement), the overall RZSM estimation accuracy can

further increase. However, the resolution of open-source MODIS data (essential for

SMAP downscaling) limits further enhancement of the resolution [157], [158]. The

comparison results (illustrated in the previous Chapter) with existing state-of-the-art

downscaling methods show that the model developed in Chapter 4 is currently best

for SMAP downscaling. Therefore, this model is adopted for downscaling in the

current study.

Based on the downscaled SSM similarity the sensor locations are selected. The

target location 1 km downscaled SSM is evaluated for similarity with all the sensor

location’s 1 km SSM (as all sensor locations may not be equally important for target

prediction). The literature illustrates that the removal of irrelevant inputs results in

higher predictive accuracy [201], [202]. Also, as the input data grows, the number of

training instances needed grows exponentially, so in practical situations, it is necessary

to reduce the input data using dimensionality reduction techniques [253]. Existing

literature illustrates an MLP-based relative contribution technique most suitable for

this task [253], [254]. For the proposed work, this technique recommends a selection

of ≥ fifty-percent similarity. Hence, to identify the relevant pixels that can contribute

to the target prediction and reduce the complexity of analysis, I select pixels with at

least fifty-percent similarity to the target. Next, the selected features are passed on to

hybrid TNN for further analysis.

5.3.2 RZSM Estimation

Fig. 5.2 illustrates the proposed RZSM estimation using the hybrid TNN model.

The D-MLP network forms the first processing layer of the proposed neural network.

In the D-MLP the number of neurons is dynamically set at each cycle based on

the similarity assessment in the current iteration. This design helps to analyze all
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locations with high similarity scores for any selected time rather than limiting the

analysis to a fixed number of sites. Also, for locations with similar similarity scores,

the closer in the range locations are given higher weights. This weight allocation is

because closer regions to the target will have more similar environmental conditions.

Hence the D-MLP hidden layer weights are further tuned based on the range value

from the target location.

The calculation of whether a sensor is close or far in the distance (d) is performed

using the longitude and latitude of the target point and g ∈ {1,2,3, ...,G} selected

sensor locations. The closest regions will have similar hydrological cycles compared

to the farther located sensors. Hence the D-MLP assigns more weight to the decisions

made from the information from closer sensor locations ( Wp >Wq ∀ dp < dq if p ̸=
q).

Table 5.1: Hybrid Transformer Neural Network Architecture

Architecture
Model Components Parameter Name Parameter Value

MLP Number of hidden layers Five
Number of neurons in the hidden layer Twenty-eight

Activation function ReLU
Transformer Head size Two-hundred-fifty-six

Number of heads Four
Number of blocks Four

Note: The model parameters are obtained using the random search optimisation.

Once the D-MLP weights are optimized, I auxiliary RZSM information f i
g ∈

{ f 1
g , f 2

g , ..., f I
g} from the g selected similar locations are passed on to the D-MLP for

finding the prominent auxiliary RZSM information features. The D-MLP determines

the relative prominence [258] of the predictor variables as,

Vi j =
K

∑
k=1

Wik •Wk j, (5.1)

where Vi j is the relative importance of any input variable f i
g with respect to j ∈

{1,2, ...,J} output neuron (for J number of output neurons), K is the number of

neurons in the hidden layer, Wik is the synaptic connection weight between the input

neuron i and the hidden neuron k, and Wk j is the synaptic weight between the hidden

neuron k and the output neuron j. The D-MLP outputs the I/2 top-ranked features

from the relevant list of I total predictor variables from selected sensor locations
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Figure 5.2: Root zone soil moisture estimation using the hybrid transformer neural network (hybrid
TNN). The hybrid TNN has three modules: (1) Prominent feature selection module: from similar
SSM sensor locations, the D-MLP (violet box) selects prominent predictor variables from auxiliary
RZSM variables. The selected feature name is used to select the same feature from the target (white
box); (2) Attention module: the selected variables undergo position encoding to track the order of the
selected variable sequence. The position-encoded selected features from target and sensor sites are
provided to the multi-head attention module (brown box). The module finds the relative relationship
between the selected sensor and target location data. The multi-head environmental inter-similarity
attention module (light blue box) finds the relative relationship between the multi-location RZSM and
prominent predictor variables from sensor sites; (3) Bayesian ensemble module: performs a Bayesian
average of multi-sensor RZSM using the conditional probability (green box) generated based on the
attention module output to estimate target RZSM.

to the attention module for RZSM prediction. Using the attention module outputs

proposed model performs a Bayesian average of selected sensor location moisture

data to predict the target RZSM.

To calculate the probability values to perform the Bayesian average of the RZSM

from selected sensors, first, the cross attention layer of the hybrid TNN evaluates the

percentage similarity of features at the target location and selected sensor locations.

Let f s
g ∈ { f 1

g , f 2
g , ..., f S

g } be the D-MLP selected prominent features, where S = I/2 is
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the number of chosen features. The f s
g is encoded as cs

g through position encoding

[259]. At a gth location, the SM can be expressed as a function of s ∈ {1,2, ...,S}
prominent auxiliary RZSM variables cs

g,

yg(t) = zPg

( S

∑
s=1

cs
g(t)

)
∀ t ∈ {1,2,3, ...,T}, (5.2)

where zPg is the mapping function for the given hybrid TNN predictor neuron Pg. Eq.

(5.2) gives the RZSM at a gth sensor location. However, I aim to find the RZSM at

location h ̸= g without a sensor. Hence I estimate yh(t) through Bayesian ensemble of

RZSM from g sensor locations. To estimate this, the relative relationship between the

independent variable cs
g(t) at each gth location and cs

h(t) at target location ‘h’needs

to be derived. The proposed hybrid TNN’s inter-similarity attention layer queries

how related the encoded feature cs
h at the target location is to the same features at G

locations. The relative relationship between cs
h and {cs

1, ...,c
s
G} is {rh→1, ...,rh→G}.

For any location u ∈ g, this can be expressed as,

rs
h→u(t) =

e
min(cs

h(t),c
s
u(t))

max(cs
h(t),c

s
u(t))

∑
G
g=1 e

min(cs
h(t),c

s
g(t))

max(cs
h(t),c

s
g(t))

∀ s ∈ {1, ...,S}, (5.3)

t ∈ {1, ...,T}.

The relative relationship in Eq. (5.3) is used to get the transformed input features

from g locations ‘ ˜cs
g(t)’ as,

˜cs
g(t) =

G

∑
g=1

rs
h→g(t)c

s
g(t)∀ s ∈ {1, ...,S}, t ∈ {1, ...,T}. (5.4)

Transforming the RZSM at g locations in Eq. (5.2) using the transformed auxiliary

RZSM variables in Eq. (5.4) as,

ˆyg(t) = f pg( ˜cs
g(t))∀ Pg,s ∈ {1, ...,S}, t ∈ {1, ...,T}, (5.5)

where ˆyg(t) is the predicted RZSM. The objective of each hybrid TNN predictor

neuron, denoted as Pg, is to find out the relationship between ˜cs
g(t) and ˆyg(t). To

ensemble the relative SM at g locations for getting the SM at the target location, the
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Bayesian average is used. The ensemble SM prediction, given the data ˜cs
g(t), is

yen(t) =
G

∑
g=1

p(ŷ|Pg, c̃s
g)(t)p(Pg|c̃s

g)(t)yg(t)∀ t ∈ {1,2,3, ...,T}, (5.6)

where yen(t) represent the RZSM at the location h ̸= g for t ∈ {1, ...,T} time instants.

yg(t) is the actual RZSM measured by the sensors at g locations. p(ŷ|Pg, c̃s
g) is the SM

PDF based on Pg alone, estimated from training data, and p(Pg|c̃s
g) is the posterior

probability of predictor Pg being correct for the given training data, ˜cs
g(t).

5.4 Results and Discussion

In this section, simulations are performed to evaluate the effectiveness and potentiali-

ties of the proposed hybrid TNN for RZSM at three different test sites in Melbourne,

(1) Alexandra Gardens, (2) Batman Park, and (3) Fawkner Park. Comparisons are

conducted with the hybrid GRU [47] and LSTM-Technique [56]. The simulation

of RZSM prediction is implemented using Python 3.7.6. The NumPy and pandas

libraries are used for data preprocessing and data management. The model is imple-

mented using TensorFlow 2.8.0.

5.4.1 Qualitative Performance Evaluation

To demonstrate the effectiveness of the hybrid TNN, I compare the predicted and

actual values at different soil depths over the three test locations. Figs. 5.3 (a)-(c)

illustrate the comparison curve between hybrid GRU [47], LSTM-Technique [56] and

the hybrid TNN predicted value, and the observed value of soil water content over

eight soil layers. The time series predictions in Figs. 5.3 (a)-(c) by hybrid TNN from

June 2020 to February 2021 for each test site show good temporal consistency. This

result suggests that compared to the other two models, the hybrid TNN estimated

RZSM mostly maintains the temporal changing features of the actual RZSM over the

eight soil layers across the three test sites. Also, the hybrid TNN predicted RZSM

closely following the actual RZSM than hybrid GRU [47], and LSTM-Technique [56],

indicates the proposed model to be the more reliable sequential model.

Further qualitative measurements are considered to synthesize the model’s per-

formance effectiveness over eight months for three stations. Table 5.2 shows the
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(a) Alexandra Garden, Melbourne

(b) Batman Park, Melbourne

(c) Fawkner Park, Melbourne

Figure 5.3: Comparison of the predicted and the actual average soil moisture in the eight layers by
Hybrid GRU [47] (blue dotted line with x marker), LSTM-Technique (red semicolon line) [56], and
Hybrid TNN from June 2020 to February 2021 at: (a) Alexandra Gardens, (b) Batman Park, and (c)
Fawkner Park. The Hybrid TNN prediction (green line) is closest to the actual value (black dashed
line).

performance comparison of the hybrid GRU [47], LSTM-Technique [56], and hy-

brid TNN across eight different soil layers on the RZSM dataset with the three test
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Table 5.2: RZSM prediction accuracy comparison of the proposed Hybrid TNN, Hybrid GRU [47],
and LSTM-Technique [56] at eight soil layers on the RZSM dataset with three locations data.

Root zone depth Model Performance Indices
NSE R2 NMBE

0-10 cm Hybrid GRU 0.6945 0.9633 -0.1502
LSTM-Technique 0.7658 0.9721 -0.0620
Hybrid TNN 0.8527 0.9913 -0.0252

10-20 cm Hybrid GRU 0.7357 0.9783 -0.0873
LSTM-Technique 0.8493 0.9818 -0.0397
Hybrid TNN 0.9012 0.9879 -0.0156

20-30 cm Hybrid GRU 0.6580 0.9368 -0.1490
LSTM-Technique 0.7716 0.9475 -0.0812
Hybrid TNN 0.8963 0.9817 -0.0320

30-40 cm Hybrid GRU 0.5708 0.9679 -0.0926
LSTM-Technique 0.9017 0.9715 -0.0577
Hybrid TNN 0.9486 0.9981 -0.0109

40-50 cm Hybrid GRU 0.7016 0.9528 -0.0532
LSTM-Technique 0.9098 0.9643 -0.0156
Hybrid TNN 0.9627 0.9826 -0.0073

50-60 cm Hybrid GRU 0.7764 0.9283 -0.0299
LSTM-Technique 0.9389 0.9542 -0.0207
Hybrid TNN 0.9950 0.9973 -0.0079

60-70 cm Hybrid GRU 0.6998 0.9017 -0.0229
LSTM-Technique 0.8997 0.9218 -0.0125
Hybrid TNN 0.8967 0.9640 -0.0089

70-80 cm Hybrid GRU 0.7789 0.9463 -0.6512
LSTM-Technique 0.8901 0.9623 -0.4531
Hybrid TNN 0.9121 0.9729 -0.0895

Average Hybrid GRU 0.7020 0.9469 -0.1545
LSTM-Technique 0.8659 0.9594 -0.0928
Hybrid TNN 0.9207 0.9845 -0.0247

Note: The qualitative performance of these models is evaluated using Nash Suttcliff coefficient of efficiency (NSE), determination

coefficient (R2), and normalized mean bias error (NMBE). The NSE is commonly used to assess the performance of hydrological

predictions. NSE values closer to one suggest the prediction model is a better predictor than the mean of the actual values. The R2

values nearer to 1 indicate a highly reliable model for future predictions. NMBE captures the average bias in the RZSM prediction.

Positive NMBE represents that the data from datasets is overestimated.

locations data using Nash Suttcliff coefficient of efficiency (NSE), determination coef-

ficient (R2), and normalized mean bias error (NMBE). The relative RZSM prediction

accuracy improvement of the proposed B-TTN against hybrid GRU and LSTM is

23.7537% and 18.9283%, respectively. Specifically, the proposed hybrid TNN has R2

values closer to 1, indicating a highly reliable prediction model. The negative NMBE

values indicate that all the three models ( [47], [56], and proposed hybrid TNN) do

not overfit the dataset.

Figs. 5.4 (a)-(c) compares the average root mean square error (RMSE) over the

active root zone depths from June 2020 to February 2021 at three test sites. Lower
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(a) Oak Tree, Alexandra Garden

(b) Eucalyptus Tree, Batman Park

(c) Oak Tree, Fawkner Park

Figure 5.4: Comparison of RMSE average over the active root zone depths of target tree by the Hybrid
GRU [47], the LSTM-Technique [56], and the proposed hybrid TNN for: (a) Oak Tree (0-50 cm),
Alexandra Garden, Melbourne, (b) Eucalyptus Tree (0-30 cm), Batman Park, Melbourne, and (c) Oak
Tree (0-50 cm), Fawkner Park, Melbourne from June 2020 to February 2021.

RMSE implies higher prediction accuracy. Fig. 5.4 (a) illustrates the RZSM prediction

error for an oak tree at Alexandra Gardens, Melbourne. The oak tree’s active root

zone lies in the 0-50 cm layer [263]. Fig. 5.4 (b) illustrates the RZSM prediction

error for a eucalyptus tree at Batman Park, Melbourne. Eucalyptus trees have shallow

roots and grow up to 20-30 cm soil depth [263]. Fig. 5.4 (c) illustrates the RZSM

prediction error for an oak tree at Fawkner Park, Melbourne. In Figs. 5.4 (a)-(c), the

lowest prediction error is indicated by the proposed hybrid TNN in all three locations.
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In addition to the RMSE, the vertical error bars in Figs. 5.4 (a)-(c) illustrate the

standard deviation of prediction accuracy by each model. The error bars indicate

a less standard deviation of prediction for the proposed hybrid TNN compared to

hybrid GRU [47], and LSTM-Technique [56].

The lower RMSE of hybrid TNN also indicates its usability in addressing the

performance drop in existing PI decision support systems ( [239]) due to the RZSM

estimation error accumulations than hybrid GRU [47] and LSTM-Technique [56].

5.5 Conclusion

In this chapter, a sequential DNN model, called hybrid-TNN, that can determine

distributed RZSM indirectly using auxiliary information from satellite and ground

data is developed. First, a dynamic MLP (D-MLP) network layer is designed for

selecting the nearby soil moisture (SM) sensor locations data with the target location

data. The selected location data is passed onto the proposed dual attention block and

then to a Bayesian layer to estimate the RZSM. The model presents a way to derive

the target location RZSM in-directly, thereby eliminating the requirement for a denser

cluster of sensor installment. The test results illustrated the proposed model improved

predictions compared to prominent sequential DNN models like GRU and LSTM

by 23.7537% and 18.9283% respectively. Also, the NSE, R2, RMSE, and NMBE

performance analysis indicated better performance by the proposed hybrid TNN in

terms of model performance, reliability, error reduction, and less overfitting. Overall,

the performance of the proposed model indicates that a TNN-based sequential DNN

model is highly suitable for RZSM estimation.

To conclude, the proposed model addresses the third research problem presented

in Section 1.2.3 and leads to the third original contribution presented in Section 1.3.

The high performance of hybrid TNN for RZSM estimation in this chapter leads to

the further exploration of the final research question, ‘can incorporating better RZSM

estimates’ help take better irrigation decisions in the final chapter of this thesis.



Chapter 6

Decision support system for precision
irrigation

In this final chapter, the individual rainfall and SM models developed in chapters 3-5

are integrated to provide decision support in precision irrigation scheduling. Using

this integrated model, the advantage of including more accurate rainfall and SM

information for irrigation scheduling is quantified in terms of the amount of water

and cost savings.

This chapter contains materials included in the following manuscript, which has

been submitted to Agricultural Water Management Journal:

[3] Neethu Madhukumar, Eric Wang, and Wei Xiang,“Hybrid Transformer Network

for Root Zone Soil Moisture Estimation for Decision Support in Precision Irrigation”,

Agricultural Water Management, under review (Impact Factor: 6.611, h-index: 65,

Journal rank (Agronomy & crop science): 7).

6.1 Introduction

Irrigation decision support systems (IDSSs) are integrated solutions combining and

interpreting meteorological, soil moisture (SM), and/or crop water stress (in-directly

indicated by SM) data to help growers make correct irrigation decisions [285]. Litera-

ture reveals faulty IDSS timing and quantity of irrigation decisions under inaccurate

rainfall forecasts and SM data interpretation circumstances [17], [54], [55], [52], [53].

Hence, I developed the rainfall forecast refinement model in Chapter 3 and SM
97
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downscaling/estimation models in Chapters 4-5 for improved irrigation scheduling

through better information extraction. The experimental evaluations in Chapters 3-5

reveal that the models developed in this thesis for rainfall forecast refinement, SM

downscaling, and SM estimation at the plant root zone perform better than existing

state-of-the-art models in each of these applications. Therefore, in this chapter, I

integrate the individual rainfall and SM components developed in Chapters 3-5 to

form an IDSS.

In the proposed IDSS for precision irrigation (IDSS-PI), first using the models

from Chapters 4-5, I provide the information about the level of SM to a central

analysis hub that evaluates whether irrigation is required or not. Irrigation is not

scheduled by the IDSS-PI when SM information indicates that it has met the daily

plant water requirements. When irrigation is scheduled, to optimize irrigation, the

IDSS-PI only provides the remaining plant water requirement, which is unmet through

rainfall. To evaluate the efficiency of the proposed irrigation scheduling, I compare

two recent related works, gated recurrent unit (GRU)-based [47], and long short-term

memory (LSTM)-based [56] irrigations with the IDSS-PI. I find these comparisons

important as GRU and LSTM are two widely adopted sequential DL models in soil-

hydrological applications. This comparison will illustrate if, like other sequential

analysis problems, TNN-based models can exhibit higher performance than GRU [47]

and LSTM [56] for irrigation scheduling.

The remaining chapter is organized as follows: the study area is detailed in Section

6.2, the proposed IDSS-PI model is presented in Section 6.3, and the simulation

results and conclusion are provided in Section 6.4 and Section 6.5 respectively.

6.2 Study Area and Dataset

The irrigation scheduling is performed by the proposed IDSS-PI based on the RZSM

predicted in chapter 5. Hence, the irrigation is scheduled for the same test locations

as in chapter 5.

The first test site is Alexandra Garden, Melbourne. It has an avenue of oak trees

around the garden. The garden has a total area of 5.2 hectares. Clay loam soil type is

found in this area.
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The second test site is Batman Park, Melbourne. It has a total area of 1.47 hectares.

Current vegetation in the park consists of sparse maturing eucalyptus trees with no

understorey or saplings. Medium to heavily textured clay with some sand is found in

this area.

The third test site is Fawkner Park, Melbourne. It is trapezoidal with an area of 41

hectares. The park is edged with elm, oak, and figs. Sandy loam soil type is found in

Fawkner Park.

The proposed IDSS-PI extracts information required for irrigation using the models

from chapters 3-5, hence, all the datasets used in chapters 3-5 are combined. The

details of these datasets and how to combine them are elaborated further.

The City of Melbourne Soil Sensor Readings (CoMSSR [252]) dataset was used

in chapter 5 to estimate RZSM. The CoMSSR dataset contains historical readings

for RZSM sensors and related auxiliary RZSM variables within parks across the city

of Melbourne. The units and readings from 78 soil sensors installed locations are

included within the CoMSSR dataset.

The Soil Sensor Locations (SSL) dataset can be used to get the locations (latitude

and longitude) where soil sensors have been deployed across the city. The CoMSSR

dataset is joined to the SSL dataset [255] using the site-id column.

The SSL dataset information can be further used to link with the soil type by area

maps (STBAM) dataset to get the soil type information [256]. The CoMSSR, SSL,

and STBAM datasets can be accessed from the city of Melbourne-open-data-portal

(MODP) (https://data.melbourne.vic.gov.au/).

The latitude and longitude information from the SSL dataset can be used to obtain

the weather data from the nearest weather station accessible through the Bureau

of Meteorology (BOM), Australia (http://www.bom.gov.au/). The weather station

number from BOM can be used to join with the BOM forecast dataset [200].

The latitude and longitude information from the SSL dataset is further used to

generate the fine-resolution SSM for the 78 sensor locations. The fine resolution

SM is generated using the 9 km Soil Moisture Active Passive (SMAP) and 1 km

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, which can

be accessed from NASA earthdata (https://search.earth data.nasa.gov/search). The
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proposed IDSS-PI is elaborated further.

6.3 Model Design and Overview

Static Information
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Figure 6.1: The framework of the decision support system for precision irrigation (IDSS-PI). The
dynamic information (SMAP, MODIS, and BOM) and static information (CoMSSR, SSL, and STBAM)
are given as input to the proposed IDSS-PI to get irrigation information. First, the IDSS-PI performs
SSM similarity assessment using SMAP and MODIS data for selecting sensor locations for further
analysis. Next, the RZSM estimation module outputs RZSM information using CoMSSR, SSL,
STBAM, and BOM data. Finally, the irrigation decisions module provides the irrigation information
using predicted RZSM and BOM rainfall data.

Fig. 6.1 illustrates the framework of the proposed IDSS for precision irrigation

(IDSS-PI). The dynamic information (SMAP, MODIS, and BOM) and static informa-

tion (CoMSSR, SSL, and STBAM) are given as input to the proposed IDSS-PI to get

RZSM and irrigation information. The proposed IDSS-PI is made of three parts: 1)

the SSM similarity assessment, 2) the RZSM estimation, and 3) the irrigation decision

module.

Fig. 6.2 illustrate the proposed IDSS. The irrigation frequency module in the IDSS

decides whether irrigation is required or not based on the water depletion tolerance

rate (R(t)) for each irrigation type. The R(t) value is calculated using [264] as follows,

R(t) = Pwr(t)−
(

Pwr(t)×DT
100

)
∀ t ∈ {1,2,3, ...,T}, (6.1)
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where Pwr(t) is the daily water requirement of the plant and DT is the soil water

depletion tolerance by the PI system. The Pwr(t) should not drop below R(t) to

maintain water levels above wilting point. The IDSS used for PI knows the irrigation

Hybrid TNN 

RZSM

HCLM

Target location P.I. system/ 

water depletion tolerance rate

Plant daily 

water 

requirement

Monitor 

RZSM change
Irrigation 

req?

No

Yes

Best forecast

BOM data

Multiple forecasts

Observations

Amount of 

irrigation water 

Measure deficient 

water amount

 Assessment of irrigation frequency Assessment of irrigation amount

Figure 6.2: The IDSS with two main parts: (a) Irrigation frequency assessment module (light violet
square with dashed black outline) and (b) Irrigation amount assessment module (light green square
with dashed black outline). The irrigation frequency assessment module examines if irrigation is
required using hybrid TNN predicted RZSM (brown ellipse) and water depletion tolerance (dark blue
rectangle) data. The irrigation amount assessment module subtracts the water available from BOM
rainfall data (dark blue square) and hybrid TNN RZSM from plant water requirement (green cylinder)
data.

requirements in the farm using Eq. (6.1) and uses this information for controlling

an automatic irrigation system for the precise application of water to plants. The

main type of irrigation system used for PI is drip irrigation. Ideally, for drip irrigation

systems, the DT should be in the range of 20 to 25 [264].

The proposed IDSS decides on when irrigation should occur as follows,

∀ yen(t)≤ R(t) : Irrigation required (6.2)

∀ yen(t)> R(t) : Irrigation not required.

If irrigation is required, the amount of water to be given through irrigation is evaluated

next. The amount of water to be provided through irrigation is calculated as

A(t) = Pwr(t)− (yen(t)+W (t)) ∀ t ∈ {1,2,3, ...,T}, (6.3)

where A(t) is the amount of irrigation water, Pwr(t) is the daily water requirement of

the plant, yen(t) is the hybrid TNN estimated RZSM, and W (t) is the estimated water

available from rainfall for the selected day using [1]. The proposed model is tested in

Section 3.
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6.4 Results and Discussion

In this section, simulations are performed to evaluate the effectiveness and potential-

ities of the proposed model for irrigation predictions at three different test sites in

Melbourne, (1) Alexandra Gardens, (2) Batman Park, and (3) Fawkner Park. Com-

(a) Oak Tree, Alexandra Garden, Melbourne

(b) Eucalyptus Tree, Batman Park, Melbourne

(c) Oak Tree, Fawkner Park, Melbourne

Figure 6.3: Comparison of irrigation water balance by Hybrid GRU [47] (blue semicolon line with x
marker), LSTM-Technique [56] (grey dashed line), and (3) IDSS-PI (red line) at (a) Alexandra Garden,
(b) Batman Park, and (c) Fawkner Park. The IDSS-PI line is closer to zero (most optimum irrigation)
than the other two models.

parisons are conducted with the hybrid GRU [47] and LSTM-Technique [56]. The
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simulation of irrigation is implemented using Python 3.7.6. The NumPy and pan-

das libraries are used for data preprocessing and data management. The model is

implemented using TensorFlow 2.8.0.

In this section, the drip irrigation simulation results of the hybrid GRU [47],

LSTM-Technique [56], and proposed IDSS-PI are presented. As discussed before

drip irrigation is a widely adopted irrigation system for PI. The irrigation is simulated

from June 2020 to February 2021 for three test locations. The water balance, water

savings, and cost savings are evaluated for quantitative performance comparisons

between the hybrid GRU [47], LSTM-Technique [56], and proposed IDSS-PI.

Fig. 6.3 illustrates the water balance of the drip irrigation schedules produced

using the three RZSM predictions. Drip irrigation systems are usually designed to

keep root zone moisture close to the optimum level by daily moisture evaluation.

Irrigation will be applied when the root zone water depletes below 20% of the

requirement [264]. The daily water depletion tolerance for the trees on the three

sites is 13.52 mm, 9 mm, and 21.03 mm. The values are calculated by substituting

the daily water requirement of the tree species from literature ( [263], [252]) in Eq.

(6.1). All three models, schedule irrigation to meet the plant water requirement post

subtracting the daily water obtained from rainfall. The Melbourne (Olympic Park),

BOM, Australia weather station data is used to schedule irrigation at Alexandra

Gardens and Batman Park for supplementing rainfall water. The Hawthorn (Scotch

College), BOM, Australia weather station data is used for Fawkner Park irrigation.

Table 6.1: Total comparative water savings by IDSS-PI based irrigation against Hybrid GRU [47] and
LSTM-Technique [56] across all three test locations during 2020-2021 using recycled water.

Saving against: Water saving/tree/year (KL) Water saving/total area/year (KL)
Hybrid GRU 8.24 60,325.04
LSTM-Technique 8.04 58,860.84
Average 8.14 59,592.94

Note: The water cost calculation is based on the 2020/2021 class B and C recycled water tariff rate from Western Waters, Victoria,

Australia. https://www.westernwater.com.au/our-services/recycled-water/class-b-c-recycled-water. The energy cost calculation is based

on the 2020/2021 public unmetered supplies energy tariff rate from CitiPower, Victoria, Australia. https://www.aer.gov.au/networks-

pipelines/determinations-access-arrangements/pricing-proposals-tariffs/citipower-annual-pricing-2020. It is assumed that the pump

capacity is 10 kW, under a constant rate of 65 L/s.

The irrigation water balance by the hybrid GRU [47], LSTM-Technique [56], and

IDSS-PI irrigation scheduling systems is shown in Fig. 6.3 (a)-(c). The plant irrigation



104
CHAPTER 6. DECISION SUPPORT SYSTEM FOR PRECISION AGRICULTURE USING DEEP

LEARNING

Table 6.2: Total comparative cost savings by IDSS-PI based irrigation against Hybrid GRU [47] and
LSTM-Technique [56] across all three test locations during 2020-2021 using recycled water.

Saving against: Cost saving/tree/year (AUD) Cost saving/total area/year (AUD)
Hybrid GRU 2.91 21,304.11
LSTM-Technique 2.69 19,693.49
Average 2.80 20,498.80

Note: The water cost calculation is based on the 2020/2021 class B and C recycled water tariff rate from Western Waters, Victoria,

Australia. https://www.westernwater.com.au/our-services/recycled-water/class-b-c-recycled-water. The energy cost calculation is based

on the 2020/2021 public unmetered supplies energy tariff rate from CitiPower, Victoria, Australia. https://www.aer.gov.au/networks-

pipelines/determinations-access-arrangements/pricing-proposals-tariffs/citipower-annual-pricing-2020. It is assumed that the pump

capacity is 10 kW, under a constant rate of 65 L/s.

water requirement at each test site is closely met by the IDSS-PI compared to the

hybrid GRU and LSTM-Technique. Fig. 6.3 (a)-(c) illustrate that more irrigation

water is wasted by hybrid GRU [47] and LSTM-Technique [56] compared to the

proposed IDSS-PI.

To further quantify the water and cost saved by the proposed IDSS-PI, the irrigation

water amount by the three competing models is compared for the three test locations.

All three test locations use recycled water for irrigation. Table 6.1 shows that the

proposed IDSS-PI conserved 60,325.04 KL and 58,860.84 KL of water compared to

hybrid GRU [47] and LSTM-Technique [56] respectively in total over the three test

locations. Furthermore, Table 6.2 illustrate that the IDSS-PI saved 21,304.11 AUD

compared to hybrid GRU [47] and 19,693.49 AUD compared to LSTM-Technique

[56] in total cost savings over the three test locations for a duration of one year. The

average savings by IDSS-PI is 15.632% water and 15.125% cost compared to the

two comparison models. From the results in this section, it can be concluded that the

proposed IDSS-PI attains a more precise water balance than hybrid GRU [47] and

LSTM-Technique [56], thus reducing water loss and increasing irrigation profitability.

6.5 Conclusion

In this chapter, an IDSS for precision irrigation (IDSS-PI) was developed by inte-

grating the DL models developed in chapters 3-5 into an irrigation decision support

framework. The proposed model scheduled irrigation based on moisture variations in

the plant root zone. Furthermore, irrigation was provided as a supplement to rainfall

to reduce water loss. The experimental results indicate that the integration of the DL
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models from chapters 3-5 into an IDSS improved the irrigation decisions through

better RZSM and rainfall input information. Also, the proposed model demonstrated

higher water and cost savings compared to existing DL-based irrigation scheduling

models. Additionally, the proposed irrigation indicates better water balance and lesser

over-irrigation compared to recent related works in the literature. Overall, this chapter

addresses the fourth research problem discussed in Section 1.2. It also provides the

fourth and final original contribution of this thesis.



Chapter 7

Conclusion

7.1 Summary

This thesis developed a novel deep learning (DL) based irrigation decision support

system (IDSS) for precision irrigation (PI). The proposed IDSS overcame the ir-

rigation scheduling errors shown in the existing models due to inaccurate rainfall,

surface soil moisture (SSM), and root zone soil moisture (RZSM) inputs through

better information extraction methods. Each of the contributions in this thesis is

detailed further.

The first research problem presented in Section 1.2.1 was addressed in Chapter 3.

Conventionally, the final climate model (CM) forecast is assumed to be the best as it

has the least lead time with the prediction target. However, the preliminary analysis

conducted in this thesis revealed that better forecasts for the target day were available

in the preceding times. Therefore, if the multiple CM forecast can be refined, rain

forecasting will further improve. To achieve the required CM forecast refinement,

I developed a new DL model called the hybrid climate learning model (HCLM).

The HCLM contained two parts, the probabilistic Multilayer perceptron (P-MLP)

and the hybrid deep long short-term memory (HD-LSTM). The PMLP learned the

pattern of the best forecast from the CM over multiple data sub-samples and select

the best forecast. The PMLP output was fed to HD-LSTM as part of knowledge

distillation. The use of the PMLP output label for data selection reduced the HD-

LSTM search space for sequential data analysis, which enabled HD-LSTM to decode

better rain predictions by correlating P-MLP output with CMs’ input observations.
106
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The HCLM significantly improved CM’s rain predictions over six major climate

zones in Australia.

Next, the second research problem, presented in Section 1.2.2, was considered. To

solve this research problem a new downscaling method was developed for obtaining

SSM information in Chapter 4. First, a covariance-adaptive convolutional neural

network (CNN) was developed to select the most correlated soil moisture indices

(SMIs) to reduce the data association complexity of the spectra-spatial-temporal (3D)

structure and to create a more discriminative feature extraction process. Next, a

strategy was developed to transpose the 3D spatial and temporal SMI time serials into

a 1D sequence representation to enhance spatial correlation within any given time

instant. Finally, a novel 3D-Bidirectional-LSTM model is developed to adapt to the

3D downscaling structure to predict fine-scale soil moisture maps from coarse inputs.

The proposed model is the first downscaling model that bi-directionally associates the

3D relationship between coarse-resolution SSM and fine-resolution SMIs. This type

of data association considerably reduced the empty spaces (spectral information loss)

in the proposed downscaled images compared to widely used downscaling models.

Downscaled satellite SM provides information on SSM (spatially distributed SM).

For knowledge of SM depth distribution, RZSM information is needed. Direct RZSM

measurement through large-scale in-situ sensor deployment is not economical. Hence,

in-direct RZSM estimation methods are required, this research problem was described

in Section 1.2.3. To solve this research problem an in-direct RZSM estimation

method using a novel hybrid transformer neural network was developed in Chapter

5. The proposed model provided a unique framework for integrating information

on weather, soil, and plant characteristics from ground and satellite sources for

estimation as RZSM changes are controlled by them. First, sensor locations with

similar downscaled SSM as the target was selected. Next, a dynamic multilayer

perceptron (D-MLP) network layer selected the highly correlated auxiliary RZSM

information using ground SM and downscaled SSM. D-MLP output was provided

to a dual attention module along with the sensor RZSM. The dual attention module

found the required multi-associations using sensor and target region data. Finally,

the Bayesian layer averaged multi-location RZSM using the conditional probability
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generated based on relative relationships and obtained the target location RZSM

estimate. My proposed model showed significantly better RZSM estimation compared

to the popular related works.

Finally, in Chapter 6, all the models developed in Chapters 3-5 were integrated

into an IDSS to address research problem 4, presented in Section. 1.2.4. First using

the models from Chapters 4-5, the IDSS checked if the water available in the soil

is below the depletion tolerance of the PI system for precise irrigation assessment.

Next, if water depletion is below the tolerance threshold, irrigation was supplied

after considering the water than can be available from the rain using the model

from Chapter 3, reducing overirrigation. This Chapter illustrated how the models

developed in Chapters 3-6 can be combined to generate improved PI schedules. The

better rainfall, SSM, and RZSM input information helped significantly reduce water

loss and enhanced cost savings compared to state-of-the-art related works.

Overall, this thesis has addressed all the research problems outlined in Section 1.2

by developing innovative models/methods for better rain and SM (SSM/RZSM) infor-

mation extraction to aid in making more precise decisions on irrigation scheduling.

7.2 Recommendations for Future Work

Precision agriculture (PA) is a broad field, while this thesis has addressed the key

research gaps in the most critical PA approach (precision irrigation), there are certainly

still opportunities for future work. Suggested areas for future directions include:

1. Farm implementation trails for the developed IDSS- Conducting trials of the pro-

posed IDSS-based irrigation scheduling in farm settings is a vital and significant

step in moving towards real-world implementation. The proposed system can be

uploaded to a cloud and hooked to an automatic irrigation system on the farm

for doing PI. Apart from the BOM and NASA open-access data, for practical

utilization of the proposed IDSS, the installation of RZSM sensing stations and

information collection on farm soil/crops is required.

2. Application of drones and cameras for RZSM information- The moisture in the

plant root zone is not directly measurable from existing satellites, and large-scale
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in-situ sensor installation is impractical. Therefore, I developed an in-direct

estimation method. However, if we are able to use nearer sources than satellites

like drones and cameras it can provide more spectral details from which RZSM

may be better derivable. Hence, the applicability of these sources needs to be

explored.

3. Investigation of the applicability to precision fertilization- Along with water, the

application of an optimum amount of required nutrients is essential for ensuring

a higher quantity and quality of yield. Similar to SM, vegetation indices are also

related to soil fertilization. Hence, they can be used as auxiliary information and

correlate with multispectral camera/drone images for distributed fertilization

measurement using the SM models developed in this thesis. However, for

pursuing this research path, extensive plant nutrient data acquisition is required.

4. Examine ML techniques to reduce training time- The proposed decision support

system for precision irrigation has demonstrated high accuracy, but its long

training times is a limitation that needs to be addressed. To overcome this

limitation and improve the proposed model, some ML areas which can be

explored are: (1) transfer learning, (2) distributed training, (3) parallel processing

techniques to reduce the current training time. To perform this investigation, the

purchase of advanced computational resources such as cloud computing, GPUs,

or other technologies may be required.

5. Investigate explainable AI techniques- To ensure widespread adoption and suc-

cessful implementation of this system, researchers and practitioners need to

explore ways to further improve the model’s interpretability and explainability.

By developing and incorporating more advanced explainable AI techniques, we

can create a more transparent decision support system for precision irrigation,

instilling trust and increasing the model’s usability in real-world scenarios. How-

ever, there is currently no standardized framework for explainable AI, which

makes it difficult to compare different approaches and results. To address this

issue, researchers and practitioners should work towards developing a set of

shared principles, best practices, and evaluation metrics for explainable AI.
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