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A B S T R A C T

Ecoacoustics has emerged as a pivotal discipline in the conservation and monitoring of ecosystems, offering
insights into species’ behaviour and ecosystem health through soundscape analysis. Central to this is the need
for accurate annotations of environmental audio recordings, which underpin the computational models used in
ecological monitoring. However, due to the increasingly large scale of datasets, annotation using existing tools
and techniques cannot be performed at feasible speeds or with the necessary accuracy required for real-world
application. The LEAVES (Large-scale Ecoacoustics Annotation and Visualisation with Efficient Segmentation)
platform addresses this gap by leveraging unsupervised clustering techniques optimised for the high-throughput
annotation of large-scale ecoacoustics datasets. Our evaluation across six real-world datasets shows that
LEAVES improves annotation efficiency by up to 7.12 times compared to manual annotation while maintaining
79%–90% label similarity to validated data. We expect that our proposed tool will greatly accelerate the
annotation process when generating high-quality labelled datasets, supporting larger-scale studies with broader
community engagement in ecoacoustics research.
1. Introduction

Globally, the urgent need to monitor and preserve native species
grows stronger against the backdrop of deteriorating ecosystems and
escalating rates of species loss due to habitat destruction (Chase et al.,
2020; Powers and Jetz, 2019; Gonçalves-Souza et al., 2020). By captur-
ing the acoustic signatures of diverse ecosystems, ecoacoustics offers
non-invasive insights into biodiversity dynamics and environmental
changes (Gibb et al., 2018; Ross et al., 2023; Farina and Gage, 2017).
Through the analyses of sounds produced by soniferous animals and the
ambient acoustic environment, ecoacoustics can provide insights into
species’ presence, behaviour, and changes in habitat quality, offering a
comprehensive approach to understanding and preserving biodiversity.

Passive Acoustic Monitoring (PAM) complements ecoacoustics by
offering a scalable, non-invasive approach to long-term environmental
monitoring, reducing the need for labour-intensive field surveys and
enabling continuous data collection (Hoefer et al., 2023). It involves
strategically deploying low-cost acoustic sensors to passively record
vocal fauna, human activity, and natural phenomena. Unlike tradi-
tional, laborious manual surveys historically conducted by zoologists
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and ecologists on site, PAM can be automated and scaled (Gibb et al.,
2018; Roe et al., 2021). Although PAM is a powerful framework for
studying terrestrial communities and their habitats, it has limitations.
In particular, the scale of the generated data poses analytical chal-
lenges, as the volume of recordings often exceeds the capacity for
human analysis, creating a need for efficient, automated tools (Joshi
et al., 2017).

With the advent of Big Data and Machine Learning (ML) technolo-
gies, including Deep Learning (DL), significant progress has been made
towards their application in ecoacoustics (Stowell, 2022; Dufourq et al.,
2022; Quinn et al., 2022; Hao et al., 2022; Guerrero et al., 2023).
Integrating ML and DL into ecoacoustics represents a promising frontier
for automating and enhancing the analysis of vast acoustic datasets
generated by PAM systems. However, the transition to these advanced
computational techniques remains hindered by the scarcity of ade-
quately labelled data, which is essential for training the sophisticated
large-scale models that underpin DL technologies (Mcloughlin et al.,
2019; LeBien et al., 2020; Napier et al., 2024b).
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Large-scale ecoacoustics datasets generated from networks like the
Australian Acoustic Observatory (A2O) (Roe et al., 2021) and the U.S.

ortheast Passive Acoustic Sensing Network (NEPAN) (Van Parijs et al.,
2015) pose several unique challenges due to their vast scales, the
ngoing generation of continuous recordings from the natural environ-
ent, and the inherent complexities of natural soundscapes (Sueur and

arina, 2015). Typically, such datasets feature multi-class, multi-species
ocalisations, with high inter-taxa diversity across large communities
r biomes (Pijanowski et al., 2011). Exploring these datasets to under-

stand the multiple layers of acoustic information — such as biophony,
geophony, and anthrophony — requires specialised functionality that
many existing software solutions do not accommodate (Napier et al.,
2024a).

Although automated annotation methods, such as those employed
by advanced ML applications like BirdNET (Kahl et al., 2021), have
made significant strides in processing these datasets, they often ne-
cessitate post-processing to ensure the accuracy of the results (Wood
nd Kahl, 2024). This highlights the indispensable role of human

expertise in the refinement of automated annotations, ensuring high
accuracy and reliability (Kholghi et al., 2018; Ghani et al., 2023). Given
hese challenges, this research introduces the LEAVES (Large-scale

Ecoacoustics Annotation and Visualisation with Efficient Segmentation)
latform (hereafter ‘‘the tool’’) as an efficient and accessible web-based

tool designed to accelerate the annotation of large-scale natural sound-
scape datasets. This tool capitalises on the latest advances in ML and
signal processing to create an efficient and scalable solution for ecoa-
coustic data annotation, incorporating human oversight for improved
accuracy. It operates as a decision support system ensuring that the
final annotations are validated, thus embodying a human-in-the-loop
approach (Mosqueira-Rey et al., 2023).

We aim to provide functionality suitable for users searching for a
ersatile and efficient platform for audio annotation and visualisation
or large dataset pre-filtering and annotation. By focusing on the issues

outlined above, the developed system aims to contribute to the bur-
eoning field of ecoacoustics, providing an innovative solution for use
n the annotation and modelling of ecoacoustics. The key innovations
f this workflow include:

• Ecoacoustics processing using a tailored approach for annotat-
ing large-scale soundscapes efficiently and cost-effectively, ensur-
ing the production of quality labelled sound datasets, including
outputs from intermediary processes if required;

• A modular efficiency-optimised labelling system that employs
unsupervised segmentation techniques for high-throughput pro-
cessing, significantly enhancing data annotation speeds;

• Support for various audio formats and a collection of customisa-
tion and hyper-parameter tuning options, ensuring adaptability to
a range of ecoacoustic research needs;

• 3D embedding visualisations with data-point interaction and real-
time spectrogram and waveform analysis, allowing for in-depth
exploration of complex natural soundscapes;

• Formulation of a new composite score as an internal clustering va-
lidity measure to balance cluster tightness and separation, cluster
dispersion, and cluster compactness.

2. Related works

2.1. Requirements of ecoacoustics annotation workflows

Ecoacoustics research demands robust and adaptable workflows
apable of processing large and varied datasets. Such workflows include
ey components like data collection, handling, pre-processing, visuali-

sation, and annotation, each essential for generating usable ecoacoustic
datasets (Darras et al., 2023; Stowell, 2022), as depicted in Fig. 1.
Large-scale PAM forms the foundation of ecoacoustic studies, involving
the collection of extensive raw audio data from diverse ecological
2

settings. However, the lack of standardised protocols and the variability
in sensor configurations can negatively impact the consistency and
scalability of data collection efforts. Effective unsupervised workflows
must therefore incorporate flexible approaches capable of handling
diverse data sources and configurations to maintain data quality and
comparability across studies.

To this end, efficient data handling is essential for managing PAM
atasets, including storage, archiving, and interoperability to meet
AIR (Findable, Accessible, Interoperable, and Reusable) principles,
hich support data sharing and collaboration in ecoacoustic research

Wilkinson et al., 2016). However, current data handling systems often
ail to fully comply with these principles, which limits data accessibility
nd usability (Villanueva-Rivera and Pijanowski, 2012). Establishing

robust data handling mechanisms that align with FAIR principles is
ssential for supporting large-scale ecoacoustic research and promoting
pen science (Vella et al., 2022).

Pre-processing is a critical step that transforms raw ecoacoustic
data into formats suitable for detailed analysis. This process can in-
clude denoising to enhance signal clarity, signal transformation to ex-
tract meaningful information, and feature extraction to identify salient
characteristics of the acoustic signals (Stowell, 2022). Existing soft-
ware often lacks the adaptability to efficiently pre-process diverse and
complex ecoacoustic signals, which can include overlapping biophony
(biological sounds), geophony (non-biological natural sounds), and
anthrophony (human-made sounds). Effective pre-processing should be
lexible enough to handle these complexities and improve the overall
uality of the data used for further analysis.

Visualisation is indispensable for interpreting complex ecoacoustic
information. Signal representations such as spectrograms and wave-
forms are widely used, aiding both experts and non-experts in identi-
fying patterns and anomalies (Towsey et al., 2014). However, many of
these existing representations are static and lack interactivity, which
limits their effectiveness in engaging users and facilitating deeper
analysis. Recent work has highlighted the need for more dynamic and
interactive visualisation approaches that can make ecoacoustic data
interpretation more intuitive and accessible, particularly for citizen
scientists who may not have specialised training (Darras et al., 2023;
Napier et al., 2024b).

Annotation is a fundamental aspect of ecoacoustic workflows, in-
volving the labelling of data to create meaningful and reliable datasets
for analysis. It can be conducted manually, through citizen science con-
tributions, or with software-assisted approaches. Manual annotation,
while accurate, is time-consuming and resource-intensive, whereas cit-
izen science-based approaches can introduce variability in data quality
due to differences in participant expertise (Cartwright et al., 2017).
oftware-assisted methods aim to reduce the manual workload by

automating parts of the annotation process; however, many current
systems still require significant manual intervention and lack the ad-
vanced automation capabilities needed for efficient, large-scale anal-
sis (Stowell, 2022). An effective annotation system must balance

automation with expert validation, ensuring that data labelling is both
efficient and accurate, thereby supporting the scalability of ecoacoustic
research.

2.2. Existing software

Experts traditionally label sounds manually, but the growing ecoa-
oustic data volume makes manual annotation increasingly unten-
ble (Gan et al., 2021; Stowell and Sueur, 2020). As the field has

evolved, there has been a clear pivot in the ecoacoustic community
towards leveraging software designed for visualising, annotating, and
analysing natural soundscape data. Available software for audio anal-
ysis generally falls into two broad categories: general audio editing
software and bioacoustics- / ecoacoustics-specific software. Applica-
tions like Audacity (Busleiman et al., 2020) offer basic visualisation
with spectrograms and waveforms but lack advanced features like
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Fig. 1. Overview of the general components in a large-scale ecoacoustics annotation workflow.
Table 1
Comparison of audio annotation and visualisation software based on features relevant to ecoacoustic workflows. Ratings: ◦(none or poor), ✧(basic), ★(high quality). Usability
levels: Easy (E) for beginner-friendly tools, Moderate (M) for users with basic software knowledge, and Advanced (A) for users with specialised technical expertise.

Feature Free Tools Paid Tools

LEAVES Audacity Sonic
Visualiser

Praat WaveSurfer Arbimon ecoSound-
web

Sonobat BatEx-
plorer

BatSound SASLab
Pro

Raven
Pro

Kaleidoscope
Pro

Data
handling

★ ★ ✧ ★ ✧ ★ ★ ✧ ✧ ✧ ★ ★ ★

User interface ★ ★ ★ ✧ ✧ ★ ★ ✧ ✧ ✧ ★ ★ ★

Audio
playback

★ ★ ✧ ★ ✧ ✧ ★ ✧ ✧ ✧ ★ ★ ★

Status
updates

★ ◦ ✧ ✧ ◦ ✧ ✧ ★ ★ ★ ★ ✧ ★

Multi-class
annotation

★ ◦ ✧ ✧ ✧ ★ ★ ◦ ◦ ◦ ✧ ★ ★

High-
dimensional
visualisation

★ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ★ ◦ ★

Advanced
segmentation

★ ◦ ◦ ✧ ✧ ✧ ◦ ✧ ✧ ✧ ✧ ✧ ★

User defined
algorithms

★ ◦ ◦ ✧ ◦ ✧ ◦ ◦ ◦ ◦ ◦ ◦ ✧

Flexible
environment
support

★ ✧ ✧ ★ ✧ ✧ ✧ ◦ ◦ ✧ ◦ ✧ ★

Efficiency
optimised
labelling

★ ◦ ◦ ◦ ◦ ✧ ◦ ◦ ◦ ◦ ✧ ✧ ✧

Usability M E M M M E E A A A A M A

Reference This
Study

Busleiman
et al.
(2020)

Cannam
et al.
(2010)

Boersma
and
Weenink
(2001)

Sjölander
and Beskow
(2000)

Aide
et al.
(2013)

Darras
et al.
(2023)

Szewczak
(2010)

BatExplorer
(2020)

Pettersson
(2004)

Specht
(2002)

Charif
et al.
(2010)

WildlifeAcoustics
(2020)
unsupervised segmentation or supervised classification. As a result,
while general audio editors are user-friendly and effective for certain
tasks, they fall short in handling some of the complexities of large-
scale ecoacoustic research, highlighting the need for more specialised
solutions.

In contrast, ecoacoustics-specific software is designed to meet these
specialised needs, offering features like frequency-time representation,
multi-class labelling, and noise reduction. Recent advancements in
machine learning have further expanded the potential for automated
analysis. For instance, Wang et al. (2023) demonstrated a VGGish-based
method for unsupervised classification of biological sound components
and their spatio-temporal variations in subtropical forests, highlighting
the utility of such approaches for detecting and categorising sound
types in complex soundscapes. Despite these advancements and the
wide range of general audio software available, relatively few op-
tions are specifically designed for large-scale ecoacoustic research.
However, one of the stand-out tools in this domain is Kaleidoscope
3

Pro (WildlifeAcoustics, 2020), which is known for its comprehensive
analysis capabilities. It is particularly valued for its ability to perform
detailed acoustic analyses, including some specific bat and bird species
identification through cluster analysis (Nocera et al., 2019; Marchal
et al., 2022). Despite these strengths, however, the software’s cost can
be prohibitive for smaller research groups or individual researchers,
limiting its accessibility. Furthermore, its clustering process requires
users to deeply understand the specific signal characteristics of the
species under study, such as frequency bands, amplitude, call lengths,
and more nuanced parameters involved in cluster analysis (Guerrero
et al., 2023).

Annotation efficiency is another area where many existing software
solutions fall short. Take Raven Pro (Charif et al., 2010) as an ex-
ample; it allows detailed annotations and can support long recordings
(e.g., 2 h) for extensive analysis. However, it requires users to manually
seek vocalisations, which can be highly time-consuming for large-
scale datasets. Although beneficial for small datasets, this granularity
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proves inefficient for large-scale analyses where broader compression
and faster processing times are needed. Moreover, some software tools,
ike Sonobat Szewczak (2010) and BatExplorer (BatExplorer, 2020),

are specialised for analysing sounds of specific animal groups. While
his specialisation allows for detailed analysis for targeted studies, it
everely limits the software’s applicability to broader, more diverse
atural soundscapes. Furthermore, existing approaches often lack the
omprehensiveness needed to capture the full complexity of natural
oundscapes, often limiting their focus to specific taxonomic groups or
eographic regions (Salamon et al., 2016; Lasseck, 2019; LeBien et al.,

2020). This results in models poorly suited for generalisation across
ifferent ecosystems.

Many of these limitations stem from gaps in the core features of
existing tools. As shown in Table 1, a comprehensive ecoacoustics
oftware tool should address several key capabilities. Data handling is
ritical for managing, processing, and organising extensive datasets ef-
iciently, especially when working with varied file formats (Truskinger

et al., 2014). The user interface must be intuitive and accessible to
nsure that researchers can easily navigate and utilise the tool’s func-
ionalities without extensive training. Audio playback capabilities, such
s adjustable speeds, looping, and synchronised spectrogram visualisa-
ions, are essential for sound analysis (Solsona-Berga et al., 2020).

Additionally, status updates help users track the progress of data
rocessing tasks, reducing uncertainty during time-intensive opera-
ions. Multi-class annotation supports the labelling of overlapping

sound sources within a single sample, which is particularly useful
for complex soundscapes (Cartwright et al., 2019). For unpacking
igh-dimensional data, tools that provide high-dimensional visualisa-
ion techniques enable users to identify patterns and clusters effec-

tively (Ishibashi et al., 2020). Advanced segmentation is also assists the
division of recordings into meaningful sound events through automated
or semi-automated methods.

For users needing flexibility, user-defined algorithms allow cus-
tomisation of workflows to suit specific research objectives. Flexible
nvironment support ensures compatibility with different operating

systems and research setups, broadening the tool’s applicability. Fi-
nally, efficiency-optimised labelling minimises the effort required for
nnotations by integrating features like batch labelling and majority

label propagation, which are needed for saving time and effort when
annotating large-scale datasets.

As shown in Table 1, many existing audio annotation and visuali-
sation systems have limitations in such specialised features. The same
pplies to software like Sonic Visualiser (Cannam et al., 2010) and
avesurfer (Sjölander and Beskow, 2000). These general audio editing

tools fall short of providing the specialised functionalities required
for a comprehensive PAM workflow, such as multi-class annotation
and advanced segmentation. Even purchased solutions like SASLab
Pro (Specht, 2002), while excelling in user interface and basic function-
lities, do not offer full support for advanced features like efficiency-
ptimised labelling. This patchwork landscape leaves gaps for users
ho require a comprehensive set of features geared towards large-scale
coacoustics data annotation.

3. Methodology

3.1. Software design and implementation

LEAVES1 is a client-based application with a web-based interface
eveloped with Python 3.8 and JavaScript, designed for exploring and
nnotating large natural soundscape datasets for ecoacoustic research.
he application leverages a combination of frameworks and libraries to
eliver its functionalities effectively. Frameworks such as Flask provide
ack-end support for web development, enabling server deployment

1 https://github.com/thomasnapier/LEAVES.
4

c

flexibility, while Dash is used to build the interactive web-based user
interface. Together, these frameworks ensure a responsive and scalable
platform for data annotation and visualisation.

The application also integrates several specialised libraries to han-
dle data processing, visualisation, and machine learning tasks. Pan-
das (McKinney et al., 2010) and NumPy (Harris et al., 2020) are
employed for data manipulation and numerical computations, respec-
tively. Plotly (Shammamah, 2019) powers the creation of interactive
visualisations, while Matplotlib (Hunter, 2007) is used for plotting and
visualising audio features and clustering results. For audio analysis,
he application utilises librosa (McFee et al., 2015) for feature extrac-

tion, PyDub (Robert et al., 2018) for manipulating audio segments,
and PyGame (Shinners, 2011) for audio playback functionalities, en-
suring an integrated experience for users to listen to and annotate
audio samples. Machine learning and clustering tasks are facilitated by
Scikit-learn (Pedregosa et al., 2011), which provides algorithms for pre-
processing (MinMaxScaler), dimensionality reduction (UMAP (McInnes
et al., 2018)), and clustering (DBSCAN).

The decision to store data locally on the user’s machine ensures
apid data access and supports a cost-effective infrastructure while
aintaining the tool’s flexibility to be deployed on a server if needed.
his local-first approach gives researchers direct control over their data
nd ensures faster processing by handling all computations locally on
he user’s machine. By avoiding the need for server-based processing,
e are able to make LEAVES accessible to users with limited internet
andwidth or budget constraints. This also enables it to be used in
emote field settings or by research groups with limited access to cloud
ervices.

As such, LEAVES addresses challenges faced by existing software
y emphasising real-time feedback, an intuitive user interface, high-
uality audio playback, and efficient status updates. These features
treamline workflows for large datasets, facilitating detailed auditory
nalysis while ensuring accuracy through expert validation. As such,
t functions as a decision support system, relying on a ‘‘human-in-the-
oop’’ approach (Mosqueira-Rey et al., 2023) that ensures robustness

and accessibility for diverse research needs.
LEAVES is also equipped with advanced functionalities tailored

specifically for large-scale ecoacoustics research. Among these is multi-
lass annotation, allowing users to annotate sounds within a single

audio segment across different taxonomic groups and abiotic acoustic
events. Although the identification of specific species is important,
we designed the system to handle a wider range of ecoacoustic data,
including other taxonomic groups such as mammals, amphibians, and
insects, as well as environmental and anthropogenic sounds. Several
automated approaches, such as BirdNET (Kahl et al., 2021), already
pecialise in bird species identification. However, there is a gap in tools
hat address non-avian sounds and mixed soundscapes. By differentiat-
ng biophony, geophony, and anthrophony, we can address the need
or software that can annotate and analyse the full diversity of sounds
resent in ecoacoustic datasets, beyond individual species alone (Barber

et al., 2011; Grinfeder et al., 2022).

3.2. Workflow design

The software enables intuitive uploading, visualisation, and annota-
ion of large-scale ecoacoustic data, using a flexible ingestion module
ompatible with common environmental sound formats, as seen in

Figs. 2(a) and 2(b), which aligns with the data formats common to
large-scale ecoacoustics projects like the A2O (Roe et al., 2021). Batch
processing and optimised algorithms enable LEAVES to efficiently anal-
yse diverse ecoacoustic sounds, supporting high-throughput clustering
nd pattern recognition. These features allow simultaneous analysis
f multiple files, facilitating faster data handling and effective pattern
ecognition across large datasets.

To ensure accurate annotations, it is essential to have clear and
ormalised audio signals. During pre-processing, we apply signal pro-
essing techniques to prepare the data for detailed analysis. Users are

https://github.com/thomasnapier/LEAVES
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Fig. 2. A breakdown of the LEAVES interface. The numbers correspond to the following sections. (a) 1: The media playback controls including going to previous and next sample
as well as skipping to the previous and next cluster. 2: The status label, which is used for showcasing the current sample being annotated as well as displaying other information to
the user. 3: The real-time Mel-spectrogram generated per-sample. 4: The real-time waveform plot generated per sample. 5: The annotation classes. 6: The interactive 3D clustering
scatterplot with point-click capabilities. 7: The data ingestion module. 8: The day/night mode and settings buttons. (b) 1: The save button and download link for exporting a CSV
file with the current annotations. 2: The annotation classes (multiple can be selected per sample). 3: The interactive 3D clustering scatterplot legend. 4: The data-point on-hover
information panel. 5: The 3D embedding controls including zoom, orbit, pan and rotate movement options. 6: The file selection drop-down when the data from multiple days or
sensors are uploaded. 7. The process uploaded data button. 8. The data upload component which allows users to drag and drop or navigate through their system files. (c) The
software configuration modal for changing aspects of the pre-processing, feature extraction, complexity reduction or clustering according to user needs.
then guided to the software configuration interface, where they can
fine-tune various audio processing algorithms, such as noise reduction,
feature extraction modifiers, and complexity reduction adjustments, as
shown in Fig. 2(c). This interface is designed with low entry barriers
for new users while providing advanced customisation options for
experienced researchers. Following this, the software automatically
populates the interactive 3D embedding visualisation, which serves as
the control centre for interacting with the audio data, as showcased in
Fig. 2(b). Users may interact with any point in any cluster to listen
to the associated sample. Alternatively, users may click through a
proportion of samples randomly selected from each cluster to label. In
either case, the audio sample’s associated Mel-spectrogram and wave-
form are generated in real-time. Keyboard shortcuts are also available
5

to streamline navigation and playback, with arrow keys for moving
between samples and the space-bar for starting and stopping playback.
Although a playback cursor is not currently implemented, it is planned
for implementation in future updates as part of ongoing usability
enhancements.

Within the annotation section, illustrated in Fig. 2(b), several cus-
tomisable annotation tags are designed for multi-class labelling. The
design intent behind this is that a user may ‘‘select all that apply’’ for
any given audio sample. Each annotation is saved to a locally generated
Comma-Separated Values (CSV) file, which can be exported anytime.
Once all of the randomly selected samples are annotated by a user, the
majority label is propagated to the remaining cluster. If there are an
equal number of annotations in multiple classes, a custom tie-breaker
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Fig. 3. The processing and algorithm framework of LEAVES. The five main processing steps are described in the corresponding sections of the article.
algorithm determines which annotation propagates to the rest of the
cluster. Finally, when users conclude their annotations or save them
manually, the tool finalises the annotations, associated metadata, and
records the origin of each annotation, distinguishing between manually
provided labels and those inferred by the system, ensuring transparency
and traceability for downstream analysis.

Balancing the need for granular annotations with the necessity for
efficient, high-throughput data processing was a significant challenge.
Our solution was to incorporate an efficiency-optimised annotation
algorithm that enables users to perform batch annotations on a user-
defined proportion of random samples from each cluster. This was
achieved by first developing and refining our clustering approach. The
tool implements a multi-phase random cluster sampling where data
is organised into groups, and subsequent groups are randomly se-
lected, followed by a random selection of members within these groups.
This method increases precision, reduces costs, and minimises non-
response (Baltes and Ralph, 2020). The tool allows users to adjust the
sampling proportion as needed, with a default setting that annotates a
10% sample from each cluster. This feature ensures that researchers can
tailor the sampling strategy to their specific project needs, optimising
the balance between annotation depth and workload.

3.3. Processes and algorithms

The first module of our system manages ecoacoustic data acquisition
and pre-processing to support feature extraction and analysis. It effi-
ciently ingests and normalises diverse ecoacoustics datasets, including
large-scale resources like A2O and NEPAN, as well as bespoke collec-
tions. Thus, the data input mechanism efficiently ingests and normalises
diverse audio recordings, compatible with downstream processes to
meet various ecoacoustic research demands, regardless of regional or
species specificity. As illustrated in Fig. 3, the data input mechanism
is designed to accommodate standard audio formats prevalent in the
ecoacoustics domain, including .WAV, .MP3, and .FLAC. We expect
batches of raw audio data to be uploaded as a series of continuous
recordings, as this is a key characteristic of large-scale ecoacoustics
datasets captured by PAM.

After upload, users can adjust pre-processing, sampling, and feature
extraction settings. By default, the system samples the first 20 min
of audio per hour, as this approach aligns with certain ecoacoustic
practices from a similar region (Linke et al., 2018). However, we made
this a parameter that can be fine-tuned by the user to meet the specific
requirements of their study during the pre-processing configuration
stage. Input signals are divided into adjustable temporal segments,
defaulting to 4.5-s non-overlapping intervals to capture both short
and extended vocalisations efficiently. The optional denoising module
6

includes scalable filters, such as wavelet-based, low-, high-, and band-
pass, which are known for their scalability and widespread usage in
ecoacoustics for enhancing the clarity of the audio data across a range
of applications (Alonso et al., 2017; Brown et al., 2018).

Feature extraction is a critical phase, where Mel-spectrograms with
128 Mel bands are generated for visualisation alongside the computa-
tion of Mel-Frequency Cepstral Coefficients (MFCCs) and their deriva-
tives. This dual approach facilitates easier annotation through visual
cues and harnesses MFCCs’ proven efficacy in encapsulating the intri-
cate details of acoustic signals (Mesaros et al., 2018; Mcloughlin et al.,
2019). The subsequent concatenation into a singular feature vector
and the application of min–max normalisation ensures a uniform scale
across all features, mitigating any disproportionate influence from out-
lier data points. To manage data dimensionality, we implemented Uni-
form Manifold Approximation and Projection (UMAP) (McInnes et al.,
2018), 𝑡-distributed Stochastic Neighbour Embedding (𝑡-SNE) (Van der
Maaten and Hinton, 2008) and Principal Component Analysis (PCA)
(Maćkiewicz and Ratajczak, 1993), which are widely used in scien-
tific and ecoacoustic analysis (Huang et al., 2019). Upon selection of
PCA, cumulative explained variance ratio is used as a determinant for
selecting the optimal number of components. Both 𝑡-SNE and UMAP,
however, are sensitive to hyperparameters, namely perplexity as well as
number of neighbours and minimum distance, respectively, and thus,
we allow users the option to tune them. However, we note that our
default selection is UMAP due to its well-documented mathematical
foundation and improved clustering accuracy (Allaoui et al., 2020).

The tool implements several popular clustering algorithms for un-
supervised segmentation, including 𝑘-means (MacQueen et al., 1967)
and DBSCAN (Schubert et al., 2017). By default, our system has been
designed to leverage the DBSCAN algorithm for its adaptability and re-
silience to noise, which aligns well with the characteristics of ecological
audio data. The segmentation process can be fine-tuned through hyper-
parameter adjustments, including 𝑛-neighbours and 𝑚𝑖𝑛-𝑑 𝑖𝑠𝑡, alongside
exploring various distance metrics.

The visualisation component includes a 3D embedding viewer with
interactive features like zoom, pan, rotate, and orbit, allowing complete
model inspection. The interface highlights clusters during annotation
for focused analysis and supports filtering by cluster attributes. To en-
hance usability, we integrated Mel-spectrogram and waveform displays
with the 3D viewer, enabling intuitive navigation through samples with
media controls for efficient, user-friendly annotation. The random per-
cluster sampling method selects a user-defined subset of samples from
each cluster, with a default of 10%. This strategy ensures representative
annotations in large datasets. After annotating the subset, the majority
label is applied to the entire cluster. In cases of a tie, a tie-breaker
algorithm uses a predefined label hierarchy, allowing users to make
the final selection based on domain knowledge.
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The final CSV file generated is designed for maximum interoper-
ability, following proposed metadata standards for annotations (Roch
et al., 2016; Vella et al., 2022). These standards ensure that the data
an be easily integrated with other tools and databases, promoting data
haring and collaboration. Adhering to the FAIR principles, the meta-
ata includes detailed information about the recording environment,
ncluding the geographic location, recorder name, date and time; the
nnotations, including a 0 or 1 in place representing the absence or
resence of each sound class for each given sample, and the specific x,
and z embedding coordinates of each sample to enable re-upload to

he tool if needed. This approach aligns with the best practices in open
cience, facilitating transparency and reproducibility in ecoacoustic
esearch.

4. Application to a continent-scale study of ecoacoustic monitor-
ng

4.1. Software

The developed software tool integrates the core functionalities de-
scribed in Section 2.1, executes locally, and can accept up to several
weeks of data at once, which can be paused, resumed and even recov-
ered if an upload is interrupted, without losing state. It notably omits
cloud resource management and offers a basic but functional input
interface, only designed and intended to aid in research.

The tool employs a data-locality scheduling approach to optimise
rocessing, with Python and associated libraries, including Librosa,
lotly, and Dash, supporting the workflow framework and processing of
nderlying ecoacoustic samples. With this initial design, we emphasised
fficiency, scalability, and adaptability, setting a foundation for future
nhancements.

4.2. Testing methodology

The testing methodology focused on validating the clustering and
nnotation process through internal and external clustering evalua-
ions. Internal validation assessed cluster quality, while external val-
dation evaluated cluster accuracy with real-world ground truth labels.
dditionally, we conducted a scalability assessment to measure the

time-saving potential of the software-assisted approach.
We selected six sites from the A2O network spanning the eastern

side of Australia, which are currently under close investigation by
cologists (Allen-Ankins et al., 2023). These sites were chosen due

to their ecological significance and the variety of soundscapes they
present, featuring a broad spectrum of species and acoustic signatures
representative of various ecoregions. We systematically extracted the
first 20 min from each 2-h segment in line with the literature (Linke
and Deretic, 2019) and, as advised by domain experts, amounting to 4 h
of data per recorder at each site. Data was then processed through our

orkflow using the tool’s default parameters: segments were split into
.5-s non-overlapping parts without applying denoising techniques.
FCCs were extracted from each slice, with their derivatives excluded.

ubsequently, the data underwent dimensionality reduction via UMAP,
ollowed by two clustering approaches: DBSCAN and 𝑘-means.

It is crucial to note that UMAP, DBSCAN, and 𝑘-means are all
hyperparameter-sensitive algorithms, meaning that the selection of
hese parameters can drastically change the final result. To evaluate
he internal cluster validity, we performed an extensive grid-search
nalysis to find the optimal values for each of these according to the
erformance scores in Table 2. For external validation, we manually
abelled a single cluster from each site, with cluster sizes ranging from
0 to 223 points. During this, we observed that each individual sample

typically included no more than two dominant sound sources at any
ne time. A dominant sound source, in this context, does not imply
xclusivity but indicates the primary sources that are most audible. For
7

nstance, while insect sounds were present in many recordings, they a
were not always the dominant source, particularly when sounds like
birds and rain were also present (Phillips et al., 2018). This observation
ligns with the complexity and richness of ecoacoustic environments

where multiple sound sources coexist.
Furthermore, we implemented a nested labelling approach to ad-

dress the complexity and hierarchical nature of ecoacoustic data. This
approach considers partial matches and nested relationships between
labels, providing a more accurate measure of clustering performance.
For example, if a cluster contains segments labelled as insects + birds
and insects, our nested labelling approach recognises that insects is
a subset and partial match of insects + birds. By acknowledging this
hierarchical relationship between labels, we ensured that even the
intricate and overlapping sound sources were accurately represented
in our analysis.

4.3. Scalability assessment

We conducted a small test using one cluster from each site during
anual labelling, equating to 882 points total. Each 4.5-s sample was
anually labelled, and the time taken for this task was recorded.
o ensure independence between the software-assisted and manual

abelling processes, the individual conducting the manual labelling was
ot informed of the cluster assignments or labels generated during
he process. Instead, they were provided only with a list of sound
iles from the selected clusters, with no reference to the software
utputs. This separation of information minimised the influence of
rior exposure to the data, thereby reducing potential bias in the
anual labelling process. Labelling the entire subset of clusters took

pproximately 166 min, resulting in an average time of 11.3 s per
ample. This duration corresponds to about 2–3 listens per sample, or
 listening ratio of 2.51. We compared the software-assisted labelling
pproach with manual labelling across six A2O datasets by visualising
he cumulative labelling progress over time, with manual labelling time
odelled as a linear progression based on the average time taken.

In contrast, the software-assisted method was predicated on the
remise that only a 10% subset within each cluster required manual
nnotation, although this number could be modified for more fine-
rained annotations. This choice is supported by empirical evidence
nd statistical principles. Recent research on clustering algorithms
ecommends aiming for sample sizes of 𝑁 = 20 to 𝑁 = 30 per expected
ubgroup for satisfactory power, particularly when large subgroup
eparation is anticipated (Dalmaijer et al., 2022). In our study, the
0% sample size typically falls within or exceeds this range, ensuring
ufficient samples for accurate analysis. Furthermore, our empirical
bservations confirm that annotating 10% of the samples in each cluster
as generally sufficient to identify a similar number of unique sound

lasses, supporting the effectiveness of this sample size for achieving
omprehensive coverage of sound diversity.

After this initial manual labelling phase, labels are extrapolated
cross the entirety of each cluster, introducing a non-linear progression

in the cumulative percentage of the labelled dataset. This approach
ecessitated a detailed examination of specific cluster sizes within each
ataset, ranging from clusters containing only 7 points up to large clus-
ers of 1426 samples. Our analytical framework aimed to interpolate
he labelling progression across these variable cluster sizes, synthesising
 smooth, average curve to represent the cumulative percentage of
he dataset labelled over time. This was achieved by simulating 10
uns for each cluster configuration and interpolating the resulting
abelling curves to a set of common time points. The average of these
nterpolated values at each time point were then calculated to yield the
verage curve for each dataset.
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Fig. 4. A comparison of labelling efficiency showing the cumulative percentage of datasets labelled over time. The manual labelling line serves as a baseline, with an average time
required of 11.3 s per 4.5-s sample. In contrast, the software-assisted approaches demonstrates significant efficiency gains, particularly for larger clusters, highlighting its potential
for scalable data annotation.
Table 2
Mathematical formulas and definitions for internal and external clustering evaluation metrics.

Metric Formula Definition Reference

Internal metrics

Silhouette Coefficient 𝑆 = 𝑏 − 𝑎
max(𝑎, 𝑏) Measures how similar an object is to its own

cluster compared to other clusters.
Rousseeuw (1987)

Calinski-Harabasz index 𝐶 𝐻 =
𝐵 𝐶 𝑆 𝑆∕(𝑘 − 1)
𝑊 𝐶 𝑆 𝑆∕(𝑛 − 𝑘)

Evaluates clusters based on the ratio of
between-cluster dispersion to within-cluster
dispersion.

Caliński and Harabasz (1974)

Davies–Bouldin index 𝐷 𝐵 = 1
𝑛

𝑛
∑

𝑖=1
max
𝑖≠𝑗

( 𝜎𝑖 + 𝜎𝑗
𝑑(𝑐𝑖 , 𝑐𝑗 )

)

Assesses the average similarity between each
cluster and its most similar one.

Davies and Bouldin (1979)

Dunn index 𝐷 𝐼 = min
1≤𝑖<𝑗≤𝑛

( 𝛿(𝑐𝑖 , 𝑐𝑗 )
max1≤𝑘≤𝑛 𝛥(𝑐𝑘)

)

Identifies compact and well-separated clusters,
measuring the ratio of the smallest inter-cluster
distance to the largest intra-cluster distance.

Dunn (1974)

Composite Score
𝐶 𝑆 = (𝑁𝑆 )2 + (𝑁𝐶 𝐻 )2 + (1 −𝑁𝐷 𝐵 )2 + (𝑁𝐷 𝐼 )2 ,
where 𝑁𝑚 =

𝑚 − min(𝑚)
max(𝑚) − min(𝑚)

Aggregates normalised and squared metric values
to provide a comprehensive clustering quality
measure. 𝑁𝑚 denotes the normalised value of
metric 𝑚.

External metrics

Adjusted Rand index 𝐴𝑅𝐼 =
𝑅𝐼 − Expected RI

Max RI − Expected RI Measures the similarity between two data
clusterings, adjusted for chance.

Hubert and Arabie (1985)

Normalised Mutual Information 𝑁 𝑀 𝐼 =
2 ⋅ 𝐼(𝑋; 𝑌 )

𝐻(𝑋) +𝐻(𝑌 )
Evaluates the mutual dependence between the
clustering and the ground truth.

Strehl and Ghosh (2002)

Fowlkes-Mallows index 𝐹 𝑀 𝐼 =
√

𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 ⋅

𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 Assesses the similarity between two clusterings

based on precision and recall.
Fowlkes and Mallows (1983)
4.4. Results and evaluation

Our results demonstrate the efficiency of the software-assisted la-
belling approach, particularly after initial manual labelling of each
cluster. Fig. 4 shows a non-linear increase in dataset labelling over time,
contrasting with the linear progression of manual labelling and high-
lighting the accelerated capability of the software-assisted approach.
8

The derived average curves for each dataset revealed a distinct, non-
linear increase in the percentage of the dataset labelled over time,
signifying rapid gains once the initial manual annotations were prop-
agated across the remaining cluster points. This pattern is contrasted
with the linear progression observed in manual labelling, underscor-
ing the accelerated labelling capability of the software. The systems
method’s efficiency gains are particularly evident in datasets with
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Fig. 5. Comparative 3D UMAP scatterplots of ecoacoustic samples from the Duval region, illustrating differences in cluster formation using 𝑘-means (a) and DBSCAN (b). 𝑘-means
splits a large cluster into three distinct sub-clusters that better represent the underlying sound types. In contrast, DBSCAN combines these into a single cluster, which, while
preserving the broader structure, lacks the granularity provided by 𝑘-means. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
larger clusters, where manually labelling a small subset effectively
propagates to larger data groups. The early intersection of the software-
assisted curve with the manual labelling trajectory emphasises the
scalability of the approach, with time savings increasing proportion-
ally to dataset size. For example, at 10% of the dataset labelled,
the software-assisted approach already shows significant time savings
compared to manual labelling.

From these results, we calculated that manual approaches require
approximately 605.8 min to annotate 3205 4.5-s-long samples, whereas
our method takes only 85 min while achieving high internal clustering
accuracy. This represents a significant reduction in time, indicating
that the software-assisted is approximately 7.12 times faster than the
manual method. By grouping sounds holistically—capturing a wide
range of audio classes beyond individual species—the tool provides a
broad ecological overview that streamlines initial data processing. As
such, the quantity of validation required will vary depending on the
study’s objectives, with annotations closer to species-levels necessitat-
ing a higher time investment. However, the algorithms and workflows
integrated into the tool, such as UMAP and clustering approaches
like DBSCAN, are well-suited for such applications. Previous studies,
such as the clustering of neotropical passerines based on vocalisa-
tions (e.g., rough-legged tyrannulet, Phyllomyias burmeisteri), demon-
strate the feasibility of leveraging these techniques for species-level
segmentation (Parra-Hernández et al., 2020).

4.5. Clustering evaluation metrics

Clustering performance without ground truth labels was evaluated
using metrics that quantify clustering quality based on dataset prop-
erties (Liu et al., 2013). Table 2 presents these metrics and a new
composite score, with each metric selected to offer unique insights into
clustering results. Below, we provide our justifications for the selection
of each metric:

• Silhouette Coefficient: This metric gauges how similar an object
is to its own cluster compared to others. The Silhouette Coeffi-
cient’s value ranges from −1 (incorrect clustering) to +1 (highly
dense clustering), with values near zero suggesting overlapping
9

clusters. While it provides a clear measure of cluster tightness and
separation, its preference for convex clusters might not fully rep-
resent the quality of clusters formed by algorithms like DBSCAN,
which can identify arbitrary-shaped clusters.

• Calinski-Harabasz Index: Also known as the Variance Ratio
Criterion, this index measures the ratio of the sum of between-
cluster dispersion to within-cluster dispersion. It is effective in
identifying dense and well-separated clusters, which is ideal for
convex cluster shapes but may not be as informative for clusters
of varying densities and non-spherical shapes.

• Davies–Bouldin Index: This index evaluates the average sim-
ilarity between each cluster and its most similar one, where
lower scores denote better separation. The Davies–Bouldin In-
dex is favoured for its simplicity and computational efficiency.
However, like the Silhouette Coefficient, it relies on Euclidean
distances, which might not suit all types of cluster structures.

• Dunn Index: We specifically selected the Dunn Index for its
capacity to identify sets of compact and well-separated clusters,
irrespective of their shape. This index is particularly useful for
algorithms like DBSCAN that can produce non-convex clusters. It
compares the smallest distance between observations in different
clusters to the largest intra-cluster distance, with higher values
indicating better clustering.

Furthering this, we formulated a new composite score to synthesise
the insights provided by individual internal metrics into a single evalua-
tion measure. The score consists of aggregated insights from individual
clustering metrics to evaluate cluster compactness, separation, and dis-
persion more holistically. Specifically, the Silhouette Coefficient focuses
on within-cluster tightness relative to inter-cluster distances, while the
Dunn Index excels in identifying compact and well-separated clusters
regardless of shape. The Calinski-Harabasz Index measures the variance
ratio, which is ideal for assessing dense and convex clusters, and the
Davies–Bouldin Index evaluates cluster separation based on similarity.

By normalising and squaring the contributions of each metric, the
composite score ensures that no single metric disproportionately in-
fluences the evaluation, providing an overview of clustering quality.
In practice, the composite score aids in identifying clustering results
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Fig. 6. Grid of embedding subplots for six different sites, showing UMAP and DBSCAN 3D scatterplots with ground truth labels overlayed. The legend indicates the ground truth
labels (yellow), with matching ground truth label returned by the 10% labelling software-assisted approach marked (purple). This demonstrates that the 10% labelling correctly
identified the most common sound-class in each cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
that optimise compactness and separation, offering a straightforward
decision-making tool to compare different clustering configurations.
The original sub-indices remain available for detailed analyses when
needed.

On the other hand, assessing clustering performance with ground
truth labels requires metrics that can accurately quantify the alignment
between the predicted clustering and the known labels. These metrics
collectively offer a comprehensive view of the clustering performance,
accommodating different cluster shapes and densities.

• Adjusted Rand Index: This measures the similarity between two
data clusterings, adjusting for chance. It accounts for both True
Positive (TP) and True Negative (TN) decisions, making it robust
for different cluster sizes and numbers. High values indicate
strong agreement with the ground truth. It is particularly useful
in scenarios where the number of clusters in the ground truth may
vary significantly from the clustering result.

• Normalised Mutual Information: This evaluates the mutual de-
pendence between the clustering and the ground truth. It scales
the mutual information score to a range between 0 and 1, facili-
tating comparison across different datasets. High values suggest
that the clustering captures a significant amount of the infor-
mation present in the ground truth. This metric is valuable for
its ability to handle different clustering sizes and is invariant to
permutations of the cluster labels.

• Fowlkes-Mallows Index: This assesses the similarity between
two clusterings based on precision and recall, offering a balanced
measure of clustering quality. It is particularly useful for datasets
where the focus is on the accurate identification of pairs of points
that belong to the same cluster. High values indicate that the
clustering algorithm has a high TP rate and low False Positive (FP)
10
and False Negative (FN) rates. This metric is advantageous when
the interest is in the precise recovery of the cluster structure.
Notably, the FMI can be calculated for both hierarchical and
non-hierarchical clustering results, providing a comprehensive
method for evaluating clustering performance across different
approaches. This is possible because the FMI relies on pairwise
comparisons of data points rather than on the overall structure of
the clustering, making it adaptable to different clustering outputs.

4.6. Clustering performance results

4.6.1. Internal clustering performance
The analysis of the clustering performance of our software tool

utilising both DBSCAN and 𝑘-means algorithms demonstrates a strong
ability to delineate well-separated, distinct clusters across various com-
plex datasets. Fig. 5 focuses on the Duval region, comparing 𝑘-means
(Fig. 5(a)) and DBSCAN (Fig. 5(b)) clustering. This figure illustrates
that large clusters in the embedding are split into spherical-shaped
clusters when clustered using 𝑘-means (highlighted with red arrows
in Fig. 5(a)), whereas DBSCAN does not produce this effect. However,
looking at Table A.4, it is evident that 𝑘-means performs better for
these types of datasets due to the higher composite score it achieves.
In datasets with more defined and spherical cluster distributions, such
as Duval-DryA and Tarcutta-DryA, 𝑘-means performed well, particu-
larly in the Silhouette and Calinski-Harabasz scores. The consistent
performance of 𝑘-means in these scenarios illustrates its effectiveness at
enhancing cluster tightness and overall definition, which are important
for accurate data analysis and annotation.

As seen in Fig. 6, which displays the DBSCAN scatterplots for all six
sites, this assessment, grounded in the application of a comprehensive
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Table 3
External validation results for the selected clusters in each dataset.

Dataset Ground truth labels Software-assisted
propagated label

FMI (Non-
hierarchical)

ARI
(Hierarchical)

NMI
(Hierarchical)

FMI
(Hierarchical)

Total
labels

Incorrect
labels (%)

Tarcutta-
DryA

{birds, birds +
vehicles}

birds 0.8723 1.0000 1.0000 1.0000 30 4 (13.33%)

Undara-DryB {insects + human
speech, insects}

insects 0.8450 1.0000 1.0000 1.0000 198 34 (17.17%)

Wambiana-
WetB

{insects, insects +
misc, insects +
birds}

insects 0.8301 1.0000 1.0000 1.0000 223 40 (17.94%)

Duval-DryA {light rain, light
rain + birds}

light rain 0.9027 1.0000 1.0000 1.0000 98 10 (10.20%)

Mourachan-
WetA

{insects, insects +
birds}

insects 0.7987 1.0000 1.0000 1.0000 212 50 (23.58%)

Rinyirru-
WetB

{birds, birds +
insects}

birds + insects 0.8123 1.0000 1.0000 1.0000 121 26 (21.48%)
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suite of evaluation metrics, shows the tool’s capability to reveal the un-
derlying cluster structures inherent to the data. DBSCAN’s performance
is particularly effective in managing datasets with complex, non-linear
oundaries or varied densities. For example, in the Wambiana-WetB
ataset, DBSCAN achieved the highest composite score, indicating its
ffectiveness in extracting well-separated clusters even in challenging
nvironments.

This is further supported by its consistently high scores across
the Dunn Index, which measures the extent of separation between
the closest clusters. The Mourachan-WetA and Rinyirru-WetB datasets
also demonstrated strong clustering performance under the DBSCAN
method, which scored higher in both the Silhouette Coefficient and
Davies–Bouldin Index, indicative of well-separated and compact clus-
ters. These metrics imply that DBSCAN can identify and enhance the
natural cluster structures without being constrained by the tendency to
form spherical clusters, as is often the case with 𝑘-means.

The findings from this analysis indicate that the software tool is
adaptable to different data characteristics. The tool consistently extracts
meaningful, well-separated clusters in both simple, spherical clusters
and complex, irregularly shaped groupings. As such, the results from
this evaluation show that our tool has the ability to operate across
various scenarios—from highly structured to highly complex datasets
and deliver clear, actionable clustering outcomes.

4.6.2. External clustering performance
The results in Table 3 show that our software-assisted propaga-

tion method achieved high FMI values, indicating a strong agreement
between software-assisted and ground truth labels. For instance, the
FMI for Tarcutta-DryA was 0.8723, and for Duval-DryA, it reached
0.9027, demonstrating the method’s robustness in correctly propagat-
ing labels within clusters. The hierarchical metrics (ARI, NMI, and FMI)
all reached perfect scores (1.0000), reflecting the accuracy of the nested
labelling approach in handling complex and overlapping sound sources.

In addition to the metrics used for evaluating clustering accuracy
e.g., FMI, ARI, and NMI), we quantified the number of incorrect labels

propagated by the software-assisted method. Table 3 shows the total
number of labels, the number of incorrect labels, and the corresponding
percentage for each dataset. Across all datasets, the percentage of
incorrect labels ranged from 10.20% to 23.58%, with an average error
rate of 17.12%. These results demonstrate that the software-assisted ap-
proach not only accelerates the annotation process but also maintains a
reasonable level of accuracy suitable for large-scale ecoacoustic studies.

By manually validating 10% of each cluster and propagating these
abels, we demonstrate that the system can quickly and accurately
nnotate large-scale datasets, maintaining high levels of correctness
nd efficiency, as illustrated in Fig. 6. The high agreement between

manual and propagated labels confirms the practical utility of our
approach in large-scale ecoacoustic data annotation.
11

c

5. Discussion

5.1. Impact and applications

The LEAVES tool is designed as a pre-filtering, high-level clus-
ering platform that provides an efficient workflow for organising
arge-scale ecoacoustic data into coarse label groups, such as ‘‘bird’’,
‘insect’’, ‘‘rain’’, ‘‘vehicles’’. Unlike tools focused on species-specific
r individual-level identification, LEAVES clusters are intended to fa-
ilitate the initial organisation and annotation of vast, unstructured

datasets. This approach leverages clustering for general, ecologically
meaningful categorisations, creating a flexible starting point for ecoa-
coustics research that does not necessitate detailed tuning or exhaustive
labelling at the species level. Such clustering aligns with goals in ecoa-
coustics of assessing broad ecological patterns, which often precedes
detailed taxonomic identification and offers practical efficiencies for
long-term, large-scale data analysis (Gibb et al., 2018; Farina and Gage,
2017).

By providing coarse taxonomic groupings, LEAVES directly sup-
ports ecoacoustic studies focused on soundscape composition and the
ecological impacts of anthropogenic change. Broad categorisation into
groups such as biophony, geophony, and anthrophony facilitates quick
insights into habitat composition, biodiversity patterns, and environ-
mental changes over time, enabling ecologists to examine soundscape
trends without an immediate need for fine-grained, species-specific
data. For instance, studies monitoring the effects of road noise on
wildlife can initially classify sound data by general groups, such as
separating ‘‘bird’’ from ‘‘vehicle’’ clusters, to observe patterns in wildlife
ctivity in response to human-made sounds (Pijanowski et al., 2011;

Merchant et al., 2015). Additionally, clustering can identify seasonal
hifts in biophonic dominance — such as insects versus birds — al-

lowing researchers to filter data more effectively for further study of
particular taxa or seasonal changes (Linke and Deretic, 2019).

The clustering provided by LEAVES offers practical workflow im-
rovements, markedly reducing the time and effort needed for manual
ata annotation in large datasets. This clustering approach allows
esearchers to quickly filter sound classes and focus on relevant sub-
ets, supporting studies that require processing of extensive temporal
nd geographic data. Unlike manual annotation or highly specific
dentification methods, LEAVES’ general clustering enables broad-scale
coacoustic studies to be conducted efficiently, conserving valuable re-
earcher time and extending the scope of ecoacoustic analyses (Stowell

and Sueur, 2020).
Although LEAVES is not presently aimed at achieving species-level

lustering, this general filtering step significantly aids in establishing
atasets that can later be refined through targeted approaches or with
dditional taxonomic features. Potential future developments, such as
ntegrating more detailed acoustic indices or hierarchical clustering,
ay support higher-resolution analysis if species-level distinctions be-

ome necessary. However, LEAVES’ primary contribution lies in its
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Table A.4
Comparison of internal clustering performance metrics for DBSCAN and 𝑘-means methods across various datasets, with a composite score
summarising overall clustering quality. Metrics are categorised into Cluster Distinction (Between-to-Within Dispersion (Calinski-Harabasz) and
Inter-to-Intra Cluster Distance Ratio (Dunn Index)) and Cluster Quality (Silhouette Score and Cluster Separation Score (Davies–Bouldin)). The
best-performing results for each metric and dataset are highlighted.

Dataset Cluster distinction metrics Cluster quality metrics Composite score

Calinski-Harabasz Dunn index Silhouette Davies–Bouldin

DBSCAN Clustering performance

Duval-DryA 665.01 0.322 0.397 0.637 0.1914
Mourachan-WetA 6481.30 0.417 0.733 0.359 2.3707
Rinyirru-WetB 4620.01 0.377 0.654 0.324 1.8819
Tarcutta-DryA 3248.48 0.356 0.586 0.516 0.7494
Undara-DryB 1564.99 0.084 0.475 0.453 0.3609
Wambiana-WetB 10 160.87 0.628 0.745 0.302 4.0000

𝑘-means Clustering performance

Duval-DryA 5778.33 0.0001 0.5613 0.6094 1.0000
Mourachan-WetA 6725.93 0.0000 0.7183 0.3958 0.9289
Rinyirru-WetB 8438.32 0.0000 0.6982 0.4024 0.8654
Tarcutta-DryA 8570.86 0.0000 0.687 0.397 0.8329
Undara-DryB 5839.83 0.0000 0.6300 0.4580 0.2963
Wambiana-WetB 14 222.55 0.0000 0.7774 0.2667 3.0000
ability to triage large ecoacoustic datasets into meaningful clusters,
providing an accessible platform for initial data structuring that enables
more targeted studies to follow.

5.2. User needs and accessibility

While the tool currently offers advanced capabilities suited for ecoa-
coustic experts, ongoing developments aim to make LEAVES accessible
to a wider audience, including non-specialists and citizen scientists.
This expansion acknowledges the increasing role of community sci-
ence and public engagement in ecological monitoring, with non-expert
participation enhancing data coverage and providing valuable local
insights (Gibb et al., 2018).

To bridge the gap for non-expert users, future iterations of LEAVES
ill include user-centred features such as guided workflows, simpli-

fied interface options, and integrated tutorial modules. These features
are designed to reduce the learning curve and facilitate intuitive in-
teractions, enabling non-expert users to contribute meaningfully to
coacoustic studies without requiring deep technical expertise. For

example, LEAVES could enable citizen scientists to label basic sound
ategories (e.g., ‘‘birds’’, ‘‘human speech’’) while leaving more com-
lex annotations for expert review. This tiered annotation approach
everages community involvement while ensuring data quality through
xpert oversight.

5.3. Ongoing and future developments

As ecoacoustic research continues to evolve, it is essential to adapt
and expand the capabilities of LEAVES to meet emerging needs and
challenges. This section outlines several key areas of ongoing and
future developments aimed at enhancing its flexibility, efficiency, and
precision.

• Hierarchical class list structuring: We plan to develop hierar-
chical class list structuring to support multi-level annotation.
This structuring will allow for high-level and low-level annota-
tion at both an ecosystem level (e.g., biophony, geophony, an-
throphony) and at lower classification levels (e.g., birds and mam-
mals rather than ‘biophony’) and individual species. This hierar-
chical approach will facilitate comprehensive soundscape analy-
sis, enabling detailed studies from broad ecosystem assessments
to focused species-specific research.
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• Automated hyperparameter tuning: Future versions of LEAVES
will allow users to automate the hyperparameter tuning process
for sensitive dimension reduction techniques (𝑡-SNE, UMAP) and
unsupervised learning algorithms (DBSCAN, 𝑘-means) using a
grid search approach. This enhancement will aim to optimise clus-
tering outcomes and dimensional reductions based on the specific
characteristics of each dataset, thus improving both the accuracy
and efficiency of the annotation process while unburdening non-
technical users from having to choose optimal parameter settings.

• Additional feature sets: The integration of additional feature
sets, such as acoustic indices, could significantly enhance the
clustering and analysis capabilities of the tool. Acoustic indices,
which quantify various aspects of the soundscape (e.g., diver-
sity, complexity, and intensity), are often used in the literature.
Incorporating these indices could provide more nuanced and
comprehensive insights into the ecological data.

• Cloud integration: Cloud integration will be a key development
that will provide scalable storage solutions, facilitate collabora-
tive work, and enable advanced computational processes without
requiring extensive local computing resources. Cloud capabilities
will ensure adaptability to the evolving demands of ecoacoustic
research and support the growing trend towards collaborative,
distributed research efforts.

• Improved data sharing and cross-verification: To enhance the
reliability of annotated data, we plan to implement features that
allow easy cross-checking of samples within labelled datasets.
This will be particularly useful in collaborative settings where an-
notations may be performed by less experienced users. Integrating
collaboration methods and data-sharing capabilities will foster a
more cohesive and accurate ecoacoustic analysis framework.

• Expansion to R: While LEAVES currently leverages Python for
scalability and performance on large ecoacoustic datasets, we
recognise the importance of R in the ecological research commu-
nity. Popular R packages like warbleR (Araya-Salas and Smith-
Vidaurre, 2017) and Seewave (Sueur et al., 2008) offer valuable
packages for sound analysis. In the future, our goal is to explore
an R-based implementation or an API integration between Python
and R. This dual approach will make LEAVES more accessible to
ecologists while maintaining the performance needed to handle
large datasets efficiently. This extension will align with our goal
of fostering collaboration between disciplines and broadening the
user base.

These planned features will make LEAVES more flexible and useful
or various ecoacoustics analysis use cases.
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6. Conclusion

LEAVES represents a meaningful advancement in ecoacoustic data
management, providing an efficient, high-level clustering framework
that enables rapid pre-filtering and annotation of large-scale sound-
scapes. By grouping data into broad taxonomic categories, LEAVES
enhances the speed and scalability of soundscape analysis, addressing
a critical need in ecoacoustics research for software that can handle
extensive datasets with diverse sound sources. This clustering-based
approach is essential for studies aiming to understand biodiversity pat-
terns and ecological dynamics, offering a robust foundation for initial
data structuring and enabling ecologists to focus on broad soundscape
trends before delving into finer species-specific details.

Although LEAVES significantly improves annotation efficiency, it
emphasises the importance of human expertise to verify the clustered
data, positioning itself as a decision support system that integrates
human oversight to maintain annotation reliability. This human-in-the-
loop framework balances automation with expert validation, ensuring
the production of high-quality data without sacrificing scalability.

This improvement has broad implications for ecological research,
ffering an alternative open-source tool to assist in understanding
iodiversity and ecosystem dynamics. Future directions include fur-
her refinement of specific features, such as customisable class lists,
utomated hyperparameter tuning, and cloud integration, to enhance
ser experience and efficiency. Additionally, the potential for com-
unity contributions, including those from citizen scientists, could

reatly expand the tool’s applicability and data richness. This collab-
rative approach and ongoing developments emphasise the software’s
daptability to evolving research needs.
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See Table A.4.
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