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• New Guinea may emerge as a new 
deforestation frontier, especially in 
lowland regions.

• Our models revealed deforestation pat
terns and linked emissions.

• High deforestation rates affect 
ecosystem services, carbon emissions, 
and biodiversity.

• Proactive planning could address threats 
to design landscapes for people and 
nature.

A R T I C L E  I N F O

Editor: Hongliang Zhang

Keywords:
Carbon
Cellular automata
Deforestation
Indonesia
Land change
Papua New Guinea
Random forests

A B S T R A C T

The island of New Guinea harbors some of the world’s most biologically diverse and highly endemic tropical 
ecosystems. Nevertheless, progressing land-use change in the region threatens their integrity, which will 
adversely affect their biodiversity as well as carbon stocks and fluxes. Our objectives were to (1) compare 
deforestation drivers between Indonesian New Guinea and Papua New Guinea, (2) identify areas with a high risk 
of future deforestation under different development scenarios, and (3) evaluate the effects of potential defor
estation scenarios on carbon pools. We integrated machine learning and cellular automata to model and forecast 
deforestation across New Guinea. We assessed the potential loss of irrecoverable carbon stocks for four defor
estation scenarios ranging from 4.8 % (business-as-usual) to 28 % (high development scenario) forest loss be
tween 2020 and 2040. Areas of high deforestation risk were consistently forecasted in lowland regions across the 
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four deforestation scenarios. In Indonesian New Guinea, 75 % of deforestation was forecasted below ~380 m a.s. 
l., but ranged higher in Papua New Guinea (<750 m a.s.l.). Land change-induced carbon loss varied largely 
across the four scenarios and ranged between 156 and 918 Mt in Indonesian New Guinea and between 223 and 
1082 Mt in Papua New Guinea, respectively. Our analysis reveals promising potential for integrating random 
forests and cellular automata models to forecast high-resolution deforestation over large spatial extents. Our 
models reveal the vulnerability of New Guinea’s lowlands to future deforestation, emphasizing the need to 
protect key areas where deforestation conflicts with the conservation of carbon stocks, ecosystem functions, and 
biodiversity.
Abstract in Bahasa Indonesia: Pulau New Guinea merupakan rumah bagi beberapa ekosistem tropis yang paling 
beragam secara biologis dan sangat endemik di dunia. Namun demikian, perubahan penggunaan lahan yang 
terus terjadi di kawasan ini mengancam integritas kawasan tersebut, yang akan berdampak buruk terhadap 
keanekaragaman hayati serta persdiaan dan fluks karbon. Tujuan penelitian ini adalah (1) membandingkan 
penyebab deforestasi antara New Guinea dan Papua Nugini, (2) mengidentifikasi kawasan dengan risiko tinggi 
deforestasi di masa depan berdasarkan skenario pembangunan yang berbeda, dan (3) mengevaluasi dampak 
skenario deforestasi potensial terhadap sumber karbon. . Kami mengintegrasikan pembelajaran mesin dan 
automata seluler untuk memodelkan dan memperkirakan deforestasi di seluruh New Guinea. Kami menilai 
potensi hilangnya cadangan karbon yang tidak dapat dipulihkan untuk empat skenario deforestasi yang berkisar 
antara 4,8 % (skenario pembangunan biasa) hingga 28 % (skenario pembangunan tinggi) antara tahun 2020 dan 
2040. Wilayah dengan risiko deforestasi tinggi secara konsisten diperkirakan berada di wilayah dataran rendah 
dalam empat skenario deforestasi. Di Papua Nugini, 75 % deforestasi diperkirakan berada di bawah ~380 m dpl, 
namun berkisar lebih tinggi di Papua Nugini (<750 m dpl). Hilangnya karbon yang disebabkan oleh perubahan 
lahan sangat bervariasi di keempat skenario dan berkisar antara 156 dan 918 Mt di Nugini, dan masing-masing 
antara 223 dan 1.082 Mt di Papua Nugini. Analisis kami mengungkapkan potensi yang menjanjikan untuk 
mengintegrasikan hutan acak dan model automata seluler untuk memperkirakan deforestasi resolusi tinggi pada 
wilayah spasial yang luas. Model kami mengungkap bahwa kerentanan dataran rendah New Guinea terhadap 
deforestasi di masa depan, menekankan perlunya melindungi wilayah-wilayah utama di mana deforestasi ber
tentangan dengan konservasi persediaan karbon, fungsi ekosistem, dan keanekaragaman hayati.

1. Introduction

Deforestation and forest degradation pose significant threats to 
global biodiversity, ecosystem services, and climate change mitigation 
(Hansen et al., 2013). Anthropogenic disturbances have become the 
most important factor shaping regional structural variations and the 
second most influential factor, after climate, in shaping global patterns 
of forest structure (Li et al., 2023). Tropical forests, particularly in 
Southeast Asia, continue to exhibit the highest deforestation rates 
globally, although regions of largely undisturbed rainforest still exist, 
such as the island of New Guinea (Hansen et al., 2020). While New 
Guinea’s forests are already experiencing progressing deforestation and 
degradation, these changes occur at a much smaller scale compared to 
other tropical regions (Hansen et al., 2020).

Indonesian New Guinea (ING) features extensive old-growth forest 
tracts covering an area of 34.29 million hectares (Mha), which consti
tutes 83 % of the land area (Gaveau et al., 2021). Although historically 
not defined as biodiversity hotspot due to low levels of environmental 
degradation (Myers et al., 2000), New Guinea’s high-biodiversity wil
derness areas, are gaining increasing recognition as a global priority for 
conserving biodiversity and addressing climate challenges (Brooks et al., 
2006; Jung et al., 2021). The region has recently emerged as a new 
development frontier in Indonesia, with increasing rates of primary 
forest conversion (Austin et al., 2017; Gaveau et al., 2021; Sloan et al., 
2019). Between 2001 and 2022, ING lost ⁓1.04 Mha (⁓ 2.8 %) of its 
tree cover, which has resulted in ⁓ 0.8 Gt of CO₂-equivalent emissions 
(Hansen et al., 2013; Harris et al., 2021). The key drivers of this recent 
deforestation are forest logging, expansion of oil palm (Elaeis guineensis), 
plantations for pulp and paper, aquaculture, road construction, mining, 
and forest fires (Austin et al., 2019; Gaveau et al., 2021; Sloan et al., 
2019). As developments are still recent and forest loss limited in spatial 
extent, ING has now reached a crossroads between severe environmental 
degradation and implementing sustainable development policies 
(Parsch et al., 2022), such as landscape-scale conservation targets, as 
outlined in the 2018 Manokwari Declaration (Cámara-Leret et al., 2019; 
Parsch et al., 2022).

In Papua New Guinea (PNG), the scale of forest conversion to agri
culture is considerably higher than in ING (Alamgir et al., 2019; Gamoga 

et al., 2021; Shearman and Bryan, 2015). Between 2001 and 2022, PNG 
lost ⁓1.79 Mha of tree cover, equivalent to a 4.2 % decrease in tree 
cover since 2000, and released 1.34 Gt of CO₂ equivalents in emissions 
(Hansen et al., 2013; Harris et al., 2021). In 2015, 35.96 Mha (⁓78 %) 
of the country was forested, of which >23 % was degraded through 
anthropogenic activities (Gamoga et al., 2021). The expansion of sub
sistence agriculture, oil palm plantations, and commercial logging op
erations were identified as the main drivers of deforestation by Gamoga 
et al. (2021). Additionally, infrastructure expansion and mining are 
emerging drivers of more recent deforestation (Alamgir et al., 2019).

While Southeast Asia’s forests have become a net source of carbon 
emissions due to deforestation, forest fires, and drainage of peat soils, 
the forests of New Guinea remain a net carbon sink, aiding in the miti
gation of climate change (Harris et al., 2021). Still, their integrity is at 
risk due to ongoing deforestation and forest degradation, driven by the 
increasing pressure on forests to support economic development and 
meet global demands for commodities (Austin et al., 2017; Lewis et al., 
2015). Given these imminent environmental threats and past lessons 
from rapid and extensive forest clearing in other parts of the region such 
as Sumatra and Indonesian Borneo (Kalimantan), it is important to 
assess how an analogous development could affect New Guinea’s forests, 
including their biodiversity and carbon stocks. In contrast to carbon 
emissions and fluxes, as assessed by Harris et al. (2021), irrecoverable 
carbon describes ecosystem carbon stocks, which are manageable, 
vulnerable to disturbance and cannot be recovered within 30 years 
(Noon et al., 2022). Irrecoverable carbon thus exemplifies that despite 
carbon sequestration and management of deforested areas recover
ability of carbon stocks, following loss may still leave a deficit in the 
carbon budget. Therefore, it represents an important measure to advise 
and evaluate climate change policies to reach net-zero emissions by the 
middle of this century (Noon et al., 2022). Monitoring deforestation at a 
global scale in near-real-time is available in the form of remotely sensed 
forest loss data (Hansen et al., 2016; Hansen et al., 2013; Harris et al., 
2017). Spatial analyses based on these remote sensing platforms enable 
the systematic identification of priority areas such as emerging hotspots 
of forest loss in need of management interventions and policy enforce
ment (Harris et al., 2017), as seen in Indonesia’s forestry law enforce
ment efforts (Finer et al., 2018). In addition to monitoring, land-use 
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change models are a powerful approach to advance our understanding of 
current and future deforestation, changes in land use, and their potential 
effects on climate and biodiversity.

In this study, we employ an integrated approach combining random 
forest machine learning with cellular automata forecasting to (1) 
elucidate and compare the patterns and drivers of deforestation between 
ING and PNG, (2) delineate areas with a high future deforestation risk 
under different development scenarios; and (3) evaluate the effects of 
four deforestation scenarios on potential loss in forest-stored carbon 
within the study region.

2. Methods

2.1. Study area

New Guinea, the world’s largest tropical island (786,000 km2), is 
politically divided along the 141◦E meridian. The western half belongs 
to Indonesia, referred to locally as “Tanah Papua,” and encompasses 
approximately 411,000 km2, including adjacent islands. This region was 
recently subdivided into six provinces, but for consistency and clarity, 
we use the term “Indonesian New Guinea” (ING) to refer cohesively to 
this area throughout the study. The eastern part consists of the country 
of PNG and covers about 468,000 km2. New Guinea’s extensive tracts of 
tropical rainforests harbor outstanding biodiversity and endemism, with 
high structural forest integrity (Cámara-Leret et al., 2020; Orme et al., 
2005; Schrader et al., 2024). To compare deforestation drivers and 
patterns, our analysis looked at ING and PNG separately.

2.2. Machine learning

We derived machine learning models (Fig. S1), which were utilized 
to compile the transition potentials for cellular automata forecasting. 
These analyses were conducted using the CAST package version 1.0.0 in 
R version 4.3.3 (Meyer et al., 2024; R Core Team, 2024). To model forest 
loss across ING and PNG, we utilized a Landsat derived dataset, which 
provides annual forest cover loss information at a 30 m × 30 m spatial 
resolution from 2001 to 2020, within the boundaries of existing tree 
cover as of the year 2000 (Hansen et al., 2013). The dataset has been 
validated globally with high accuracy (~90 %) and is well-suited for 
detecting large-scale deforestation events, which are the focus of this 
study, though accuracy may vary regionally. While the dataset is well- 
suited for detecting large-scale deforestation events, which are the 
focus of this study, more fine scale regional studies should be validated 
by comparison with independent reference data interpreted from high 
resolution imagery (e.g. see Egorov et al., 2023). We selected random 
forests for our predictive model due to the non-linear relationships and 
spatial autocorrelation often inherent in spatial data. Decision-tree- 
based models such as random forests are non-parametric and capture 
complex, non-linear relationships with the response variable and in
teractions between the predictor variables that are often associated with 
high-resolution remote sensing data (Belgiu and Drăguţ, 2016; Pal, 
2005). The ensemble nature of random forest models allowed us to 
effectively address these data characteristics as opposed to less complex 
approaches such as linear regression. The autonomy of each decision 
tree and the stochastic nature of creating subsets from the input data 
render random forests robust against outliers, noise, and overfitting 
while capable of handling large datasets (Chan and Paelinckx, 2008; 
Gounaridis et al., 2019). Integrating machine learning with cellular 
automata, as applied here, enhances the ability to capture both spatial 
heterogeneity and spatiotemporal neighborhood features, leading to 
significantly improved accuracy in land-use change simulations 
(Gounaridis et al., 2019; Qian et al., 2020).

2.3. Predictor variable selection and model validation

To select suitable predictors of deforestation, we compiled 19 

candidate variables, categorized into five variable groups (Table 1). We 
implemented a three-stage selection process to identify the best com
bination of predictors of deforestation separately for ING and PNG. In 
the first stage, we selected the most important spatial scale for landscape 
metrics by testing different radii: 100 m, 500 m, 1000 m, 2000 m, and 
5000 m. We considered the proportion of deforested neighbors, edge 
density, and aggregation index using random forests.

In the second stage, we employed forward feature selection (FFS) 
using random forests to identify the most important predictor variable in 
each group. The FFS algorithm trains all possible two-variable combi
nations, then selects the best combination before iteratively increasing 
the number of variables. The process stops when adding further vari
ables does not improve model performance (Meyer et al., 2018). This 
variable grouping approach reduced the number of combinations in the 
subsequent modeling process and thus computation time and resources, 
while simultaneously accounting for variable correlations and in
teractions, as similar variables were grouped. In the third stage, we 
constructed machine learning models with all previously selected vari
ables and applied FFS as implemented by Meyer and Ludwig (2022) to 
identify the variable combination achieving the highest model 
performance.

Within each of the two regions, we initially sampled 20 % of all raster 
cells and balanced the sample ratio of forest and forest loss (1:1; Papua 
⁓3 M cells / PNG ⁓6.3 M cells) to create a calibration dataset for the 
random forest models. From this dataset, 70 % of the cells were used for 
model training, while 30 % were reserved for testing, ensuring that the 
balanced ratio of forest and forest loss was maintained. Model perfor
mance was evaluated using the True Skill Statistic (TSS = Sensitivity +
Specificity − 1), as this indicator is not dependent on prevalence 
affecting predictive accuracy, such as the kappa statistic (Table 2) 
(Allouche et al., 2006). TSS and Kappa values <0 indicate no agreement, 
values between 0.01 and 0.20 indicate slight agreement, values between 
0.21 and 0.40 indicate fair agreement, values between 0.41 and 0.60 
indicate moderate agreement, values between 0.61 and 0.80 indicate 
substantial agreement, and values above 0.80 indicate almost perfect 
agreement (Allouche et al., 2006; Cohen, 1960). Variable importance for 
the final model was assessed by measuring the mean decrease in model 
accuracy if a variable was removed from the model. Besides an inde
pendent validation of the machine learning models, we compared the 
predictions of the resulting machine learning models to observed 
deforestation. Therefore, we used Cohen’s Kappa to determine the 
probability of occurrence threshold (De’Ath, 2007; Elith et al., 2008; 
Elith et al., 2006) for predicted deforestation 2020 in ING and PNG to 
derive binary deforestation prediction maps (i.e., presence or absence of 
deforestation) and compared these with the observed deforestation map 
for the year 2020 by Hansen et al. (2013) using confusion matrices 
(Table 2, Fig. S3). The following cellular automata approach in
corporates the predictions of our deforestation models, which are uti
lized to create transition potential maps.

2.4. Cellular automata

To forecast patterns of deforestation, we built on the SIMLANDER 
modeling framework (Hewitt et al., 2013; Roodposhti et al., 2019) to 
develop cellular automata deforestation scenarios. Cellular automata 
are discrete dynamic process models that uses space, state, time step, 
neighborhood, and transition rules as key components. The spatial 
representation involves raster cells that evolve over discrete time steps. 
These cells change based on a set of transition rules that determine their 
state and influence the states of neighboring cells (Wolfram, 1983). 
Therefore, the suitable determination of transition and neighborhood 
rules is crucial for accurate simulations of dynamic land-use processes in 
a bottom-up fashion. Cellular Automata (CA) explicitly model spatial 
dependencies by updating the state of each cell based on the states of its 
neighbors. This characteristic allows CA to better complement our RF 
model than other forecasting options, as it incorporates neighborhood 
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effects that simulate the spatial contagion of deforestation, as well as 
dynamic feedback mechanisms, such as changes in accessibility and 
suitability over time (Liang et al., 2017; Pérez et al., 2015; Rosa et al., 
2013). Alternative forecasting methods, such as greedy algorithms, 
often produce dispersed allocations that may not reflect the contiguous 
nature of deforestation and therefore tend to overlook the dynamic in
teractions that drive land use changes, leading to predictions that do not 
accurately capture the spatial processes involved (da Silva et al., 2021; 
Rosa et al., 2015).

In our cellular automata model, a predetermined number of cells was 
designated to be deforested during each time step, strategically allocated 
to cells exhibiting the highest transition potential based on the derived 
machine learning model predictions (Fig. S1). The transition potential 
layers were compiled by incorporating neighborhood rules, accessi
bility, suitability, and randomness. The neighborhood rules included a 
weighted matrix of deforested neighboring cells for each focal cell, 
where weights can be altered for calibration. Accessibility was calcu
lated using a sigmoid function for distance decay from road networks, 
with a threshold marking the limit of viable timber extraction activities. 
We incorporated our deforestation risk prediction maps for ING and 
PNG as the model suitability component, while an element of random
ness was introduced through a Weibull distribution function following 
Roodposhti et al. (2019). We calibrated the cellular automata model for 
the period 2015–2020, as we assumed that this time frame best repre
sented recent dynamics of deforestation across New Guinea. Neighbor
hood rules are recognized as the most influential parameters for cellular 
automata calibration (Roodposhti et al., 2019). Following the automatic 
rule detection procedure proposed by Roodposhti et al. (2019), we 
compared 50 neighborhood rules based on 10 different matrices and 5 
radii. The best-performing neighborhood rule, when compared to 
observed deforestation within the same time frame, was selected for 
forecasting purposes (Table S1 & Table S2). Other parameters for cali
bration included an accessibility distance decay function, a threshold, 
and the compilation of the transition potential maps. We evaluated our 
calibration approaches by comparing deforestation simulations for 2020 
against the 2020 reference deforestation layers (Hansen et al., 2013). 
The True Skill Statistic (TSS) was used to assess model accuracy. With 
the calibrated cellular automata, we forecasted four scenarios of future 
deforestation for ING and PNG, respectively (2020–2040). Each scenario 
incorporated a particular rate of change which represents the level of 
forest loss we defined over the simulation period.

2.5. Deforestation forecasting

For the development scenarios, we used deforestation rates from the 
five-year period (2015–2020) to establish a business-as-usual (BAU) 
scenario. This scenario entailed a linear extrapolation of the observed 
rates, projecting a deforestation rate of 4.8 % over a span of 20 years. 
Two intermediate scenarios assumed accelerated forest loss of 10 % and 
20 % over the same period. We also formulated a high development 

Table 1 
Predictor variables used in the analysis.

Variable Group Variable Name Rationale Source

Topography Digital elevation 
model

Deforestation risks 
decrease with 
elevation

Farr et al. 
(2007)

Slope Deforestation risk 
decreases with 
increased slope

Farr et al. 
(2007)

Roughness Deforestation risk 
decreases with 
increased 
roughness

Farr et al. 
(2007)

Hierarchical slope 
position

Deforestation risk 
decreases with 
increased slope

Farr et al. 
(2007)

Distance to rivers Deforestation risk 
is higher near 
rivers

Pickens et al. 
(2020)

Governance, 
People, and 
Tenure

Protected areas Deforestation risk 
is lower in 
protected areas

UNEP-WCMC 
(2024)

Land-use 
concessions*

Deforestation risk 
is higher in land- 
use concessions

Global Forest 
Watch (2019)

Population density Deforestation risk 
positively 
correlates with 
population density

Florczyk et al. 
(2019)

Subnational 
Administrative 
Boundaries (Districts)

Deforestation risk 
varies between 
districts

GADM (2022)

Proximity to 
Infrastructure

Distance to roads, the 
planned Trans-Papua 
highway, and in- and 
excluding “ghost 
roads” **

Deforestation risk 
is higher near 
roads

Engert et al. 
(2024), 
Meijer et al. 
(2018), 
Sloan et al. 
(2019)

Travel time to ports 
(in- and excluding 
“ghost roads”) **

Deforestation risk 
is higher near ports

Engert et al. 
(2024), 
Nelson et al. 
(2019)

Travel time to cities Deforestation risk 
is higher near 
cities

Engert et al. 
(2024), 
Nelson et al. 
(2019)

Landscape 
Structure 
(Multiscale)

Proportion of 
deforested neighbors

Deforestation risk 
is higher near 
previous loss

Hansen et al. 
(2013); 
Hesselbarth 
et al. (2019)

Edge density Deforestation risk 
is higher in more 
fragmented areas

Hansen et al. 
(2013); 
Hesselbarth 
et al. (2019)

Aggregation Index Deforestation risk 
is higher in more 
fragmented areas

Hansen et al. 
(2013), 
Hesselbarth 
et al. (2019)

Distance to forest 
edges

Deforestation risk 
is higher near 
forest edges

Hansen et al. 
(2013)

Distance to recent 
forest loss

Deforestation risk 
is higher near 
recently lost forest

Hansen et al. 
(2013)

Soil & 
Environmental 
Conditions

Aboveground 
biomass carbon

Deforestation risk 
correlates 
positively with 
aboveground 
biomass carbon

Spawn et al. 
(2020)

Precipitation Deforestation risk 
correlates with 
precipitation

Karger et al. 
(2017)

* Not available for PNG.
** We compared model performance with and without including ghost roads 

to the predictor dataset.

Table 2 
Model performance metrics based on independent model validation (based on 
30 % of the dataset) and comparison of predicted deforestation 2020 with 
observed deforestation 2020 maps (Hansen et al., 2013) for Indonesian New 
Guinea (ING) and Papua New Guinea (PNG).

Evaluation Metric Independent 
Validation

Comparison to Observed 
Deforestation

Region ING PNG ING PNG

Kappa threshold 0.49 0.50 0.49 0.52
Accuracy 0.98 0.96 0.99 0.98
Kappa 0.96 0.93 0.49 0.41
Sensitivity 0.97 0.94 0.99 0.98
Specificity 0.99 0.98 0.88 0.95
Balanced Accuracy 0.98 0.96 0.93 0.96
True Skill Statistic 0.96 0.93 0.87 0.93
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scenario that forecasted ⁓28 % deforestation over 20 years, mirroring 
the deforestation trends observed in Kalimantan between 2001 and 
2020 (Fig. 2). The scenario was based on the raised concerns that New 
Guinea could follow the deforestation pathways analogous to other 
major deforestation hotspots in Indonesia (Austin et al., 2017).

2.6. Effect of topography on deforestation

We intersected the forecasted forest loss for the year 2040 with 
topographical characteristics such as elevation and slope derived from 
Farr et al. (2007) to characterize the topographic effects on simulated 
deforestation per region and scenario (Fig. 3, Table 3). We compared the 
topographical characteristics of forecasted forest loss scenarios with 
observed losses in Kalimantan from 2001 to 2020 to evaluate the 
plausibility of forecasted deforestation in New Guinea. To compare the 
distributions of elevation and predicted deforestation in ING and PNG, 
as well as past deforestation in Kalimantan, we applied the Kolmogor
ov–Smirnov test to assess whether the elevation and deforestation pro
files were significantly different between the two parts. To account for 
differences in sample size between the elevation and deforestation 
datasets, we downsampled the larger dataset (PNG) to match the smaller 
one (ING) before conducting these tests.

2.7. Carbon loss from deforestation

To assess potential carbon emissions from forest cover loss associated 
with the respective development scenarios, we assessed irrecoverable 
carbon content (Noon et al., 2022) for which future forest loss was 
simulated by our models. Irrecoverable carbon refers to carbon stocks in 
ecosystems such as forests, peatlands, and wetlands that are vulnerable 
to be released into the atmosphere upon land conversion. Once lost, 
these stocks cannot be recovered within timescales relevant to avoiding 
severe climate impacts (Noon et al., 2022). We considered the carbon 
content of a given cell as lost once a respective cell was completely 
deforested in a scenario and calculated its share of the total irrecover
able carbon loss per scenario and region (Table 4).

3. Results

3.1. Predictor selection

The three-step selection process of predictor variables using random 
forest models revealed that, in the multiscale analysis of landscape 
metrics, all variables performed best at the scale of a 100-m buffer 
around the focal cell. The proportion of deforested neighboring cells 
emerged as the most important variable and represents the impact of 
fine-scale deforestation within a 100 m buffer radius. The variable 
grouping stage selected for ING the proportion of deforested neighbors, 
elevation, travel time to cities, population density, and precipitation. For 
PNG, the proportion of deforested neighbors, elevation, population 

density and travel time to ports were selected in the grouping process. 
These variables were utilized to compile the final machine-learning 
models during another round of forward feature selection.

Our final models revealed that the variables associated with the 
drivers of deforestation were comparable across both regions (Fig. 1). 
The importance of each variable is indicated by the mean decrease in 
model accuracy if the respective variable was removed. In both regions, 
the proportion of deforested neighbors emerged as the most significant 
predictor of future deforestation (Fig. S2). For both regions, deforesta
tion increased with the proportion of deforested neighbors (Fig. 1), 
while nonlinear responses to the other environmental and socioeco
nomic factors, such as elevation, population density, travel time to cities 
or ports, and precipitation, highlighted complex interactions influencing 
deforestation (Fig. 1). For ING, elevation was the second most important 
variable.

Deforestation was predicted to predominantly occur at lower ele
vations. Areas with higher rainfall, higher human population densities, 
and better accessibility were found to be at increased risk of deforesta
tion in ING. In PNG, population density and elevation both reduced 
model accuracy by an average of 8 %, highlighting their equal impor
tance in predicting deforestation. Areas with more human activity were 
more susceptible to forest conversion. Deforestation also predominantly 
occurred at lower altitudes in PNG, while deforestation risk was higher 
in areas closer to ports.

3.2. Model performance

Overall, we observed similar patterns and performance in likelihood 
of deforestation from independent validation and when comparing with 
observed deforestation. Model power and accuracy were high (all TSS ≥
0.6, Kappa >0.4 Table 2) for both ING and PNG. The models exhibited 
high sensitivity, specificity, and balanced accuracy, both in independent 
validation and when compared to observed deforestation between 2001 
and 2020. Incorporating ghost roads in the analysis improved TSS in the 
independent validation from 0.94 to 0.96 for ING and from 0.89 to 0.93 
for PNG. Compared to observed deforestation, TSS improved from 0.82 
to 0.87 for ING and from 0.71 to 0.93 for PNG when ghost roads were 
included in the analysis.

3.3. Cellular automata calibration and forecasting

The high importance of deforested neighboring cells further sup
ported the use of cellular automata for deforestation forecasting 
(Roodposhti et al., 2019). Compared to standard parameters utilized by 
SIMLANDER, TSS values were improved by calibrating the neighbor
hood influence in our cellular automata models following an automatic 
rule detection approach (Roodposhti et al., 2019). Out of 50 trials per 
region, the best calibration of neighborhood dynamics according to the 
highest TSS was selected (matrix 1; radius 1). The calibration results 
demonstrate substantial agreement with the observed deforestation 

Table 3 
Comparative analysis of elevation (m a.s.l.) and slope statistics for forecasted deforestation scenarios. ING = Indonesian New Guinea, PNG = Papua New Guinea.

Region Scenario Q1 Q3 Median Mean SD CV Prop. [%] <500 m Prop. [%] <10◦

4.8 % (BAU scenario) 36 356 78 387 630 163 79 69
10 % 31 383 75 437 734 168 79 69

ING 20 % 31 368 77 436 751 172 79 69
28 % (Kalimantan scenario) 32 368 78 431 745 173 79 68
Topography of ING 27 494 96 468 781 167 90 64

PNG 4.8 % (BAU scenario) 51 482 148 394 532 135 75 61
10 % 47 603 154 443 591 133 72 59
20 % 49 700 167 509 686 135 70 58
28 % (Kalimantan scenario) 51 751 176 534 711 133 69 57
Topography of PNG 45 979 214 621 791 127 63 60

Kalimantan Deforestation in Kalimantan 
2001–2020

20 170 82 170 282 167 63 99.9

Topography of Kalimantan 55 285 109 228 288 127 85 98.7
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between 2015 and 2020 (max. TSS 0.64 for ING, 0.65 for PNG, Table S1 
& Table S2).

3.4. Scenario results forecasting deforestation 2020–2040

The area converted in each deforestation scenario ranged from 
⁓26,158 km2 for ING with a forest conversion rate of 4.8 % over 20 
years (“BAU scenario”) to 113,570 km2 under the pessimistic “Kali
mantan scenario” (Fig. 2). In PNG, the BAU scenario resulted in the 
clearance of ⁓39,004 km2 of forest, while the Kalimantan scenario 
resulted in 145,444 km2 of forest loss. Our deforestation scenarios 
identified potential future deforestation hotspots, encompassing regions 
such as Manokwari, Sorong, the southern Vogelkop lowlands, the 
Bomberay Peninsula, Nabire, Wamena, and Jayapura. Also, the Boven 
Digoel and Merauke Regencies in ING had a high deforestation risk 
across scenarios. In PNG, forecasting highlighted the Western and East 
Sepik Provinces, Madang, the Gulf Province, and the Kamula Doso 
rainforest in the Western Province as well as East New Britain and West 
New Britain as susceptible to future deforestation (Fig. 2, Fig. 4).

3.5. Changes in forecasted deforestation risk with elevation

Patterns of deforestation across all scenarios exhibited a marked 
tendency for deforestation to occur in lowland areas (Fig. 3, Table 3). In 
ING, 79 % of modeled deforestation occurred below 500 m a.s.l. above 
sea level, while in PNG 68 % of deforested raster cells were located 

below 500 m a.s.l. (Table 3). Higher forecasted deforestation risk was 
evident in the lowlands of ING, where the median of deforested cells 
ranged from 28 to 78 m a.s.l. across the four scenarios in comparison 
with a median elevation of 96 m a.s.l. A similar pattern was observed in 
PNG; however, PNG has relatively less lowland area below 500 m a.s.l. 
(63 %) compared to ING (90 %), which is also reflected in the higher 
median and mean elevation values of forecasted deforestation (Table 3). 
Although most forecasted deforestation is predicted to occur in low
lands, it is notable that lowlands experienced lower-than-expected 
deforestation, while mid-elevations (500–1500 m) showed relatively 
higher levels in predicted or observed deforestation across all scenarios 
and regions (Table 4a). In PNG, scenarios with higher deforestation rates 
resulted in the expansion of forecasted deforestation to higher elevations 
from a median of 148 m a.s.l. Higher forecasted deforestation risk was 
evident in the lowlands of ING, where the median of deforested cells 
ranged from 28 to 78 m a.s.l. across the four scenarios in comparison 
with a median elevation of 96 to 214 m a.s.l. in the BAU scenario. Higher 
forecasted deforestation risk was evident in the lowlands of ING, where 
the median of deforested cells ranged from 28 to 78 m a.s.l. across the 
four scenarios in comparison with a median elevation of 96 m a.s.l. in 
the Kalimantan scenario. This relationship was not evident in ING, 
where the median elevation of forecasted deforestation remained con
stant throughout the scenarios. Historic forest loss between 2001 and 
2020 in Kalimantan exhibited similar elevation patterns to ING, with 63 
% of deforested cells occurring below 500 m a.s.l., with a median of 82 
m a.s.l. Higher forecasted deforestation risk was evident in the lowlands 

Table 4 
Loss of irrecoverable carbon (IC) for Indonesian New Guinea (ING) and Papua New Guinea (PNG) under the four deforestation scenarios from 2020 to 2040. IC Lost 
refers to the total stock of IC lost due to deforestation. Net IC loss refers to the proportion of total IC stock lost. Forest loss is the forest area lost due to deforestation.

Scenario ING PNG

IC Lost 
[Mt]

Net IC Loss 
[%]

Forest Loss [Mha] IC Lost [Mt] Net IC Loss 
[%]

Forest Loss [Mha]

4.8 % (BAU) 156 4.03 2.62 223 5.76 3.90
10 % 318 8.20 4.57 382 9.57 6.29
20 % 648 16.74 8.34 762 19.06 10.88
28 % (Kalimantan) 918 23.68 11.35 1082 27.07 14.55

Fig. 1. Partial dependence plots for the selected variables of the final machine-learning models for Indonesian New Guinea (green) and Papua New Guinea (yellow).
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of ING, where the median of deforested cells ranged from 28 to 78 m a.s. 
l. across the four scenarios in comparison with a median elevation of 96 
m a.s.l. (Fig. 3). When comparing slope characteristics, historical forest 
loss in Kalimantan had 99 % deforestation in slopes below 10◦, while the 
forecasted deforestation on flat slopes in ING and PNG was approxi
mately 69 % and 60 %, respectively (Fig. 3).

Kolmogorov–Smirnov tests revealed statistically significant differ
ences between the distributions of elevation and deforestation across all 
three regions. In ING (D = 0.0519, p < 0.0001) and PNG (D = 0.0646, p 
< 0.0001), the differences between elevation and deforestation distri
butions were moderate. In contrast, Kalimantan exhibited a larger dif
ference (D = 0.2462, p < 0.0001), indicating a more pronounced 
divergence between elevation and deforestation patterns in this region.

3.6. Deforestation effects on carbon emissions

For ING, the loss of carbon associated with forecasted deforestation 

ranged between 156 and 918 Mt, depending on the scenario (Table 4). 
For PNG, the range extended from 223 to 1082 Mt of carbon lost. In all 
four ING scenarios, the forest carbon loss was proportional to the rate of 
forest conversion.

Fig. 4 highlights key regions where irrecoverable carbon and fore
casted deforestation under the Kalimantan scenario (Fig. 2d) coincide. 
Areas of high congruence in ING include the southern lowlands north of 
Merauke, the lowlands of the Bird’s Head Peninsula east of Sorong, and 
the Bomberai Peninsula. In PNG, areas with high irrecoverable carbon 
and future deforestation risk, inter alia, extend along the northern coast, 
the southern highlands, and on New Britain.

4. Discussion

4.1. Overview of deforestation scenarios

In this study, we simulated a spectrum of deforestation scenarios to 
assess future deforestation and identify potential deforestation hotspots 
across New Guinea. Our primary objectives were to identify patterns and 
predictors of deforestation, highlight areas at high risk under different 
land-use scenarios, and estimate potential carbon losses linked to these 
scenarios. While emerging deforestation hotspots have previously been 
described for ING (Gaveau et al., 2021) and PNG (Alamgir et al., 2019; 
Shearman and Bryan, 2015), this study represents the first application of 
a consistent methodological framework to model current and future 
deforestation scenarios across the island of New Guinea based on high- 
resolution remote sensing data. Our modeling approach enables the 
comparison of patterns, deforestation hotspots, and their attributes 
while accounting for region-specific drivers of deforestation. The 
delineation of geographical context in deforestation modeling is essen
tial, as regions may have distinct drivers and conditions affecting 
deforestation patterns (Brown et al., 2013). Our spatially confined 
models here resulted in more accurate spatial predictions and enabled a 
more tailored assessment of policy implications. In contrast, studies 
encompassing broader scales (e.g., the entire Indonesian archipelago) 
often lack the granularity necessary to accurately model land-use change 
within specific subregions of a study area (e.g. see Brun et al., 2015; Lim 
et al., 2019).

4.2. Model performance and drivers of deforestation

The integration of machine learning and cellular automata offer a 
robust methodological approach for predicting future deforestation over 
large geographical scales, such as the entire island of New Guinea, 
combining the strengths of both approaches. All models performed well, 
with model evaluation indicating strong agreement in independent 
validation and when compared to observed deforestation according to 
Hansen et al. (2013). The most important predictors of forest loss across 
New Guinea were associated with measures of past forest conversion 
and human modification (i.e., land-use change, population density, 
roads), highlighting that forest loss is spatially clustered and expands 
over time into areas subject to anthropogenic pressures and develop
ment. Globally, increasing human populations, road density, and agri
cultural land use are positively correlated with greater human 
modification, which in turn is associated with the loss of wilderness 
areas, higher degradation of forest structure, and biodiversity loss 
(Kennedy et al., 2019; Li et al., 2023; Venter et al., 2016).

Across New Guinea, the proportion of deforested neighboring cells, 
elevation, and accessibility were the most important predictors of forest 
loss, shaping deforestation and thus highlighting the importance of these 
factors in constraining human modification. These findings align with 
Cushman et al. (2017), who reported that patterns of forest loss risk in 
Kalimantan were primarily driven by elevation and distance to the edge 
of previous forest loss. Similarly, Li et al. (2023) observed that forest 
height, density, and structural complexity in Borneo were positively 
influenced by slope and elevation, indicating that such areas are less 

Fig. 2. Cellular automata forecasting for four future deforestation scenarios (a) 
4.8 % (BAU), (b) 10 %, (c) 20 %, and (d) 28 % (Kalimantan scenario) for New 
Guinea between 2020 and 2040. Cell values show the proportion of deforested 
30 m × 30 m raster cells per 10 km × 10 km hexagonal grid cell.
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likely to experience forest loss and degradation. We identified that 
accessibility plays a key role as a predictor for deforestation across New 
Guinea. In tropical forests, accessibility is a major driver of deforesta
tion, as roads provide access to forested regions for exploitation 
(Laurance et al., 2009). Besides mapped road networks, we utilized a 
novel dataset of previously unmapped “ghost roads” (Engert et al., 
2024), which significantly improved model performance and the accu
racy of our predictions. This result is important as ghost roads are often 
constructed and utilized for logging, mining, and agricultural develop
ment. Most previous studies used incomplete road data, and hence likely 

underestimate the importance of roads as a driver of deforestation 
(Engert et al., 2024).

While machine-learning models are conceptually robust to predict 
land-use change, predictive accuracy depends on the availability of 
spatially explicit information about drivers of these changes for model 
calibration. Land change trends and their driving factors may be subject 
to change over time and under varying socioeconomic and political 
environments (Brown et al., 2013). To account for dynamic predictors, 
we considered concepts such as area partitioning and spatiotemporal 
convolution for dynamic land-use change simulation (Qian et al., 2020). 

Fig. 3. (a) Elevation profiles and elevation of projected forest loss for Indonesian New Guinea (ING) and Papua New Guinea (PNG) under the 28 % deforestation 
scenario 2020–2040 and historical deforestation in Kalimantan, Indonesia 2000–2020 (<2500 m a.s.l.). (b–c) Slope profiles of historical deforestation in Kalimantan 
(2001− 2020) and Simlander forecast scenarios for Indonesian New Guinea and Papua New Guinea capped at 25◦.

Fig. 4. Bivariate map of irrecoverable carbon content and deforestation risk across New Guinea (Kalimantan scenario) per 10 km x10 km hexagonal grid cell. Class 
breaks were calculated using Fisher breaks.
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However, these approaches were not feasible given the large spatial 
scale and grid size of this analysis. To address an uncertainty in con
version rates, we assessed a range of development scenarios. While our 
models aim to predict future deforestation, we were constrained by 
static socioeconomic data such as current road locations and population 
density. As development and land conversion potentially increase under 
national goals aimed at economic development in New Guinea, the 
extent of road networks and accessibility of previously remote regions 
may expand rapidly (Alamgir et al., 2017). Therefore, our model results 
likely present conservative estimates, particularly considering recent 
large-scale agricultural forest conversions, termed the “World’s biggest 
deforestation project” (Jong, 2024) in the southern New Guinea. Future 
research should further advance considerations of economic and infra
structure development, potentially indicating increased deforestation in 
lowland areas not yet connected by existing roads.

4.3. Hotspots of deforestation

Our identified deforestation hotspots show considerable overlap 
with previous studies on forest loss in ING (Gaveau et al., 2021; Sloan 
et al., 2019) and PNG (Alamgir et al., 2019), indicating that these are at 
high risk of forest loss (Fig. 4). Lowland regions were identified as 
particularly vulnerable to future forest loss, with concentrations of 
deforestation forecasted around populated areas. Major deforestation 
hotspots are likely to develop in the southern Vogelkop lowlands, the 
southeast of Papua in the Merauke Regency and around Jayapura in 
ING. Interestingly, the probability of forest loss mapped by (Gaveau 
et al., 2021) was more clustered around these areas where current 
development has already progressed, while our compiled deforestation 
scenarios predicted more scattered patterns of deforestation along major 
planned and existing ghost roads, which are not explicitly limited to the 
proximity to major cities. For PNG, no nationwide deforestation 
modeling approach is currently available, but a descriptive analysis 
focused on new road development projects and resulted in coarse-scale 
deforestation frontiers (Alamgir et al., 2019). These frontiers align with 
and thus support our identified deforestation hotspots. Here, we present 
the first comprehensive deforestation risk mapping across PNG, identi
fying major forecasted deforestation hotspots in the lowlands of the 
Western and East Sepik Provinces, Madang and the Gulf Province. The 
Kamula Doso rainforest in the Western Province, however, is likely the 
most prominent identified area of high deforestation risk in PNG (Fig. 2), 
where indeed a complex conflict between logging companies and am
bitions for forest carbon projects persists (Filer et al., 2023).

4.4. Elevation

The elevation and slope profiles of our modeled deforestation sce
narios (Fig. 3) illustrate how a significant portion of land in ING and 
PNG consists of higher elevations and steeper, i.e., more rugged terrain 
compared to Kalimantan. Despite these challenging topographies, 
concentrated clearings in New Guinea’s lowland forests continue, 
leading to habitat fragmentation that poses significant risks to biodi
versity, landscape connectivity, and ecosystem services. These impacts 
contribute to increased soil erosion and higher carbon emissions (Fahrig 
et al., 2019; Metzger et al., 2021). While the majority of deforestation 
was forecasted below 500 m, the cellular automata model also selected 
considerably steeper slopes in ING and PNG compared to historical 
deforestation in Kalimantan. This was likely driven by the absence of 
otherwise “suitable” areas, with high transition potential for expanding 
deforestation in flat or lowland regions once most nearby areas were 
classified as deforested, and was especially apparent in the high defor
estation scenarios (see Figure 3, Table 4). As the aim of the cellular 
automata model is to meet the rate of deforestation set by the user, it can 
simulate deforestation in areas that may be unlikely to experience 
deforestation. Thus, it is questionable whether ING and PNG may 
experience deforestation dynamics, as seen in Kalimantan, given the 

contrasting topographies. Overall, the more challenging terrain in New 
Guinea will likely constrain the accessibility for large-scale 
deforestation.

4.5. Carbon

We identified areas with a high deforestation risk and their overlap 
with high irrecoverable carbon stocks, which are relevant for climate 
change mitigation (Fig. 4). Our deforestation scenarios suggest that ING 
could lose 156–918 Mt. and PNG 223–1082 Mt of irrecoverable carbon 
between 2020 and 2040. These potential losses represent a substantial 
portion of Indonesia’s and PNG’s annual greenhouse gas emissions, with 
Indonesia emitting approximately 1200 Mt and PNG around 10 Mt in 
2023 (European Commission: Joint Research Centre et al., 2024). Future 
forest loss bears implications for both countries in light of their net-zero 
carbon commitments under the Paris Agreement. However, it is 
important to note that our estimates only reflect the loss of irreplaceable 
carbon (Noon et al., 2022), while total greenhouse gas emissions (Harris 
et al., 2021) from the respective scenarios would be significantly higher.

4.6. Policy implications

Our findings are highly relevant for regional planning, identifying 
the region’s most susceptible to deforestation across New Guinea. Areas 
with a high risk of future deforestation across scenarios should be in the 
focus of regional planning, especially in the light of regional sustain
ability and conservation targets. The 2018 Manokwari Declaration 
pledged to safeguard 70 % of ING’s land area, underscoring a regional 
commitment to fostering sustainable development (Cámara-Leret et al., 
2019; Parsch et al., 2022).

However, land formalization of customary land for large scale agri
cultural developments is a shared pressing topic (Hambloch, 2022; 
Sopaheluwakan et al., 2023) and national development agendas, 
including infrastructural and agricultural expansion projects, seem to 
diverge from this path in both ING and PNG (Alamgir et al., 2019; Sloan 
et al., 2019). Development projects such as the Merauke Integrated Food 
and Energy Estate (MIFEE), referred to as the “World’s biggest defor
estation project”, pose devastating social and ecological impacts (Ito 
et al., 2014; Jong, 2024). The recent subdivision of ING from two into six 
provinces may further complicate coordinated efforts for sustainable 
development in the region and should be subject of future research. The 
highest forecasted deforestation risk was evident in the lowland forests 
of ING (Fig. 3), where only 10 % of land below 500 m a.s.l. falls currently 
within protected areas (Parsch et al., 2022). Given the constraints 
imposed by limited resources for the management of protected areas 
(Sheil et al., 2015), governance should focus on limiting the ongoing 
large-scale conversion of lowland rainforests while including customary 
land rights and development opportunities of Indigenous communities. 
Planned road developments should be reevaluated for their impacts on 
landscape connectivity, as our findings reinforce previously documented 
environmental concerns regarding road infrastructure projects in the 
region (Alamgir et al., 2019; Gaveau et al., 2021; Sloan et al., 2019). In 
early 2024, PNG passed the Protected Areas Act to safeguard 30 % of its 
territories by 2030, reflecting the countries’ commitment to biodiversity 
conservation. While the act has been praised for establishing a legal 
framework to preserve PNG’s ecosystems, concerns persist about its 
implementation, particularly regarding collaboration with customary 
landowners and securing sustainable funding (Raman, 2024). As vast 
areas of New Guinea’s forests are still in a pristine state, the region 
provides a unique window of opportunity for proactive conservation 
prioritization that designs human-modified landscapes for the benefit of 
humans and nature.

4.7. Conclusion

The future trajectory of deforestation across New Guinea remains 
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uncertain. However, numerous indicators suggest that ongoing defor
estation and environmental degradation occur and may potentially 
accelerate. Our models consistently identified lowland areas as partic
ularly vulnerable across all development scenarios. These prospects 
highlight the need for systematic, proactive conservation planning to 
mitigate the effects of land-use change. Such an approach should pro
mote sustainable development, preserve biodiversity, and safeguard 
New Guinea’s unique ecosystems in line with global climate 
commitments.
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