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A B S T R A C T

This paper presents new findings from analyses of a random fractional kinematic wave equation (rfKWE) for
overland flow. The rfKWE is featured with orders of temporal and spatial fractional derivatives and with the
roughness parameter, the effective rainfall intensity and infiltration rate as random variables. The new solutions
are derived with the aid of a numerical method named the homotopy perturbation method (HPM) and
approximate solutions are presented for different situations. The solutions are evaluated with data from overland
flow flumes with simulated rainfall in the laboratory. The results suggest that on an infiltrating surface the
temporal nonlocality of overland flow represented by the temporal order of fractional derivatives diminishes
over time while the spatial nonlocality manifested by the spatial order of fractional derivatives continue if there
is overland flow. It shows that the widely used unit discharge-height relationship is a special case of the solution
of the rfKWE. Procedures are demonstrated for determining the fractional roughness coefficient, nf , the order of
spatial fractional derivatives, ρ, and the steady-state infiltration rate during the overland flow, As. The analyses of
the data show that the mean spatial order of fractional derivatives is ρ = 1.25, the mean flow pattern parameter
m = 1.50, and the mean fractional roughness coefficient is nf = 0.002 which is smaller than the conventional
roughness coefficient, n = 0.108. With these average values of the parameters and their standard deviations,
simulations were performed to demonstrate the use of the methods, which is also a comparison of the classic
KWE and rfKWE models.

1. Introduction

Overland flow is one of the major components in hydrological bal-
ance during rainfall, particularly during heavy rainfall for it is the source
of runoff and floods, and it is also important during irrigation and
snowmelt. It is a major cause of direct soil erosion which results in land
degradation and many other indirect processes such as recharge to the
subsurface flow, pollution of waterways and floods etc. Owing to its
importance, this paper presents findings from theoretical analysis and
experiments on overland flow to refine models and develop procedures
for practical applications.

As it is known that overland flow can be described either by a full set
of mathematical models in hydraulics, namely, the Saint-Venant equa-
tions, or their simplified forms such as the kinematic wave equation
(KWE) (Lighthill and Whitham, 1955; Eagleson, 1970; Chow et al.,

1988). For flow of small depths such as overland flow in many situations
in the field conditions, the KWE model proposed by Lighthill and
Whitham (1955) has been widely used and proven successfully after
nearly seven decades of applications. In the KWE model, a simplified
continuity equation is considered (Chow et al., 1988, p. 281) which
makes the motion of overland flow as the consequence of the gravity
force only due to the existence of the hydraulic friction gradient. Our
earlier analysis using a fractional version of the KWE (fKWE) (Su and
Zhang, 2022) indicated that the order of the space fractional derivatives
is ρ ∼ 1.5 rather than ρ = 1 in the KWE, which prompted the authors to
investigate this model further.

To account for the growing evidence of space–time nonlocal prop-
erties in flow equations comparable to flow in porous media (Zhang
et al., 2009), Harman et al. (2010), Kavvas and Ercan (2015, 2017)
presented space–time fractional kinematic wave equations for open
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channel flow, which can be extended by considering the overland flow
as a thin layer of channel flow. Zhang et al. (2016) proposed a
distributed-order fractional dispersion-advection equation (dofADE) to
model overland flow. The dofADE proposed by Zhang et al. (2016)
captures the super-diffusive movement of water packets along prefer-
ential flow paths with the spatial fractional derivative and describes
delays with the temporal fractional derivatives during the motion of
water packets arising from soil heterogeneity and local topography on a
slope.

This distributed-order time–space fractional partial differential
equation (fPDE) for overland flow is very similar to the fPDEs for solute
transport in soils (Zhang et al., 2009) so that the parameter’s repre-
sentations of the two types of physical processes can be investigated by
analogue. As an extension of their dofADE, Zhang et al. (2017) examined
the saturated subsurface flow on a hillslope, which starts with the
Boussinesq equation (Eq. (3)) and simplified it using the well-known
Dupui-Forchheimer assumption in groundwater hydrology resulting in
a linear dofADE. The inclusion of a term with a distributed order in the
fPDE for overland flow enables the model to explain the fast and slow
components of flows on the hillslope in a way transport of solute is
modelled in soils with large and small pores. With the dofADE, the slow
movement of water and solute in soils and on hillslopes can be inter-
preted as a process of retention or jamming during transport by pores in
soils and/or micro-topography on a hillslope. The dofADE by Zhang
et al. (2017) can be regarded as a simplified form of the multi-term
dofADEs presented by one of the present authors (Su, 2017).　The
fKWE was also proposed by one of the authors (Su, 2020) and Kavvas
et al. (2021) for overland flow, and Kavvas et al. (2021) analysed it
numerically with the finite difference method.

Many processes in nature are subject to random or stochastic vari-
abilities, and overland flow and open channel flow are no exceptions.
These random properties of overland flow are comparable to those of
random flow in soils (Hopmans, 1989; Su, 2023). With these issues in
mind for new formulae for practitioners in hydrology and environmental
science, this paper presents a new version of the fKWE with random
parameters for overland flow and develops new solutions for applica-
tions using the homotopy perturbation method (HPM).

2. The random kinematic and fractional kinematic wave
equations

2.1. The kinematic wave equation of overland flow

For the cross sectional area of the flow, A = wH, with H = H(x, t)
being the depth of runoff and w the constant width, the conservation
form of the continuity equation in the KWE due to Lighthill and
Whitham (1955) takes the following form (Eagleson, 1970, p. 332; Chow
et al., 1988, p. 275-289),

∂H
∂t +

∂q
∂x = r(t) − i(t) (1)

where q is the volumetric discharge of runoff per unit width (or unit
discharge) [L2T− 1] or q = Q/w, where Q is the volumetric discharge
[L3T− 1] and w the width of the flow; r(t) is the effective rainfall in-
tensity; i(t) is the infiltration rate; x is the slope length, and t is time.

The momentum equation relating the unit volumetric discharge and
the depth of runoff is more generally written as an empirical formula
(Eagleson, 1970; Emmett, 1970),

q = cHm (2)

where m is a flow pattern parameter which varies for different types of
flow: m = 3 for laminar overland flow, and m = 5/3 for fully turbulent
overland flow (Eagleson, 1970, Eqs. (15) to (28); Emmett, 1970). The
value determined experimentally for mixed flow in nature varies 5/3 ≤

m ≤ 3 (Emmett, 1970), and the earlier observations from natural

surfaces suggested that it is to be aroundm ≈ 2 (Horton, 1938; Eagleson,
1970, p. 332). c in Eq. (2) is a parameter associated with the hydraulic
gradient and the surface condition. For the flow velocity, the Manning
equation is often used, which, with the SI units, is written as (Chow
et al., 1988, Eq. (2.5.6)),

V =
S1/2f R2/3

n
(3)

where n is the Manning roughness coefficient with the dimension of
[TL− 1/3], Sf is the dimensionless friction slope, and R is the hydraulic
radius.

On a planar surface, the wetted perimeter is simply the width of the
cross section so that the hydraulic radius is R = wH/w = H. The KWE
can be further simplified for flow with small depths where the friction
slope for overland flow, Sf , is set to equal the slope gradient of the land
surface, S0 = tanλs, where λs is the angle of the slope. With overland
flow on a planar surface, the cross-sectional area of the flow is A = wH,
and the unit discharge is q = VH. With the unit width and R = H, the
Manning equation for the velocity and discharge is, respectively, written
as

V =
S1/20

n
Hm− 1 (4)

and

q =
S1/2f

n
Hm (5)

which implies that the parameter in Eq. (2) is c =
S1/2f
n and is approxi-

mated by c =
S1/20
n .

In the following sections, a fractional version of Eq. (1), and the
related depth of flow, flow velocity, unit discharge and key parameters
are investigated.

2.2. The random fractional kinematic wave models of overland flow

In recent years, an fPDE as another version of Eq. (1) known as the
fKWE has been proposed (Su, 2020; Kavvas et al., 2021) and further
analysed using laboratory data (Su and Zhang, 2022). In this paper, the
fKWE is modified further on the following issues:

(1) random parameters are introduced to account for natural varia-
tions in the roughness of a hillslope, nf , the rainfall intensity, r(t),
and infiltration rate, i(t);

(2) a fractional order in time is introduced to account for the vari-
ability of the thin-film flow patterns on slopes which may
resemble flow in porous media when irregular surfaces create fast
and slow flow patterns.

Based on the earlier work of Su and Zhang (2022), a random fKWE or
rfKWE to be analysed in this paper takes the form of

τα− 1∂αH
∂tα +

S1/20

nf
∂ρHm

∂xρ = r(t) − i(t) (6)

where α and ρ are the orders of Caputo’s fractional derivatives
(Podlubny, 1999) which are more convenient for solving initial-value
problems, and τ is a dimension correction factor (Kilbas et al., 2006).

In the previous paper (Su and Zhang, 2022), it was shown that the
fKWE is able to better explain the spatial nonlocality of overland flow,
and that the order of fractional derivatives is around ρ ≈ 1.5 for over-
land flow on indoor experimental flumes, and ρ ≈ 2.0 for overland flow
on longer slopes with data by Emmett (1970). This result enhanced our
curiosity as to how a time–space fractional version of the model
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performs in describing overland flow with random parameters.
The fractional approach interprets the nonlocality property of trans-

port processes in the flow process. The nonlocality explains that the
concentrations of a tracer, flow velocity or any other quantities at pre-
vious times and/or upstream locations contribute to the variation of the
concentration or fluid velocity at the point of observation due to an
uncertain velocity field. The spatial nonlocalitymeans that the change in
the concentration, flow velocity or any other quantities at the point of
observation depends on its upstream value while the temporal nonlocality
implies that the change in the concentration, flow velocity or any other
quantities at the point of observation depends on the prior concentra-
tion, flow velocity or any other quantity loading (Benson et al. 2013).
The spatio-temporal nonlocality implies scale-dependence and history-
dependence which can also be described by non-linear integer PDEs
(Su, 2020).

By introducing the random roughness coefficient, nf , random rainfall
intensity, r(t), and random infiltration rate, i(t), the analysis with the
rfKWE will be compatible with models for random infiltration where
parameters in an equation of cumulative infiltration or infiltration rate
are random variables with certain distributions (Su, 2023). The inclu-
sion of the random roughness coefficient also conforms to the patterns of
natural surfaces which are more random or stochastic rather than
deterministic (Kuipers, 1957; Burwell et al., 1963; Allmaras et al., 1966;
Zobeck and Onstad, 1987; Su, 2023).

In the conventional KWE and in Eqs. (3) and (4) with the dimen-
sionless friction slope Sf , the dimension of n is TLm− 2. In the fractional
version in Eq. (6), either the new roughness parameter, nf , embraces the
newly introduced dimensions or another new parameter is added (Kilbas
et al., 2006, p. 464) so that the rest of the dimensions in Eq. (6) remain
unchanged. Here no new parameter is introduced in Eq. (6) and with the
dimensionless slope S0, the dimension of nf is TLm− ρ− 1, which, for ρ = 1,
becomes TLm− 2 which recovers the original dimensions in the KWE. As a
widely accepted procedure, it is often convenient to use S0 = Sf so that
the analysis can be simplified, which is also used in this paper.

3. Solutions of the fractional kinematic wave equation using the
homotopy perturbation method with different forms of rainfall
and infiltration rates

In this section, a widely used semi-analytical method, namely the
homotopy perturbation method (HPM), which is also called a numerical
method in the literature, is applied to derive solutions of the rfKWE, and
the applications of the solutions are demonstrated as examples with data
from laboratory experiments.

3.1. A brief overview of the homotopy perturbation method

The traditional numerical methods such as the finite difference,
finite elements, and finite volume etc. are well known, and extensively
used. In the 1970 s, an iterative method was developed by Adomian
(1970, 1976, 1990) to solve differential equations, which is now widely
known as the Adomian decomposition method (ADM). In the 1990 s,
Liao (1992, 1995, 1997) developed a more generic method of this kind
known as the homotopy analysis method (HAM) for nonlinear problems.
In the late 1990 s, He (1999, 2003) simplified Liao’s HAM to develop the
homotopy perturbation method (HPM).

Chowdhury et al. (2009) demonstrated that the HAM is a generic
method which can be reduced to both ADM and HPM. Sajid and Hayat
(2008) also showed that the HPM is a special case of the HAM by setting
h = − 1 in Liao’s (1992, 1997) HAM. These three methods have been
extensively used to develop semi-analytical or numerical solutions for
ordinary differential equations (ODEs), partial differential equations
(PDEs), and their fractional counterparts such as fractional differential
equations (fDEs) and fractional PDEs (fPDEs).

Compared to traditional numerical methods which require an initial

condition (IC) and one or two boundary conditions (BCs) as essential
requirements to derive solutions of the PDEs, ODEs and their fractional
counterparts, the advantages of these decomposition methods are their
abilities to solve these equations with only an IC (Yildirim and Kocak,
2009) or one BC or two-point BCs (He, 2003; Rajabi et al., 2007; Ates
and Zegling, 2017). In such cases, the IC is not essential for a solution of
these equations when the HPM or HAM is used. However, the IC and BCs
are essential in many physical problems, and Laplace transform can be
used to incorporate the IC, then the HPM or HAM is used to develop a
solution of the problem (Javidi and Raji, 2011; Javidi and Ahmad,
2013). In this paper the rfKWE is transformed using the Laplace trans-
form by incorporating the IC, then the transformed rfKWE is solved
using the HPM for its solutions with the two-point BCs relevant to
overland flow.

3.2. Solutions of the rfKWE for the depth, velocity and unit discharge of
overland flow with the rainfall intensity and final infiltration rate as
random variables

3.2.1. Depth of the overland flow
The essential background of the HPM is presented in Appendix B, and

the key details of the series decomposition solution are presented in this
section. The solutions of Eq. (6) are presented below subject to the
following generic IC and BCs,

H(x, t) = f(x), t = 0, x > 0 (7)

H(x, t) = H0, t > 0, x = 0 (8)

and

H(x, t) = HL, t > 0, x = L (9)

These IC and BCs state that the initial water profile on the slope is f(x),
the depths of water on the upper and lower boundaries are, respectively,
H0 and HL. These descriptions are generic and apply to situations when
there is an initial depth of water on the slope, f(x), before new runoff
develops from the rainfall excess when the condition r(t) − i(t) > 0 is
met. This situation is simplified for f(x) = 0 when there is no overland
flow on the surface, which is the case to be considered here.

In addition to the IC and BCs, the following rate of infiltration, i(t),
based on the earlier works by Su (2014, 2020, Eq. (6.60)) is

i(t) = As+
(

βS
2λ − 1

)

t[β/(2λ− 1)]− 1 (10)

where As is the final infiltration rate on a hillslope, β is the order of time
fractional derivatives, λ is the order of space fractional derivatives, t is
time, and S is the sorptivity given by

S =
(2λ − 1)(θs − θi)

2λ

[
D2
0Γ(1 − β)Γ(2λ)
K0cosλs

]1/(2λ− 1)

(11)

with Γ(1 − β) and Γ(2λ) being gamma functions, θs and θi the saturated
and initial water ratios, K0 the hydraulic conductivity, D0 the diffusivity
and cosλs = S0 the slope with the λs as the angle of the slope (Su, 2020)
based on the works of Philip (1991) and Su (2014). A simpler equation of
infiltration presented earlier (Su, 2010) can be used too. It should be
noted that the stochastic description of infiltration in terms of integer
calculus (Hopmans, 1989) and random models based on fractional cal-
culus (Su, 2023) are compatible with the analysis of runoff processes
using the random models.

The Laplace transform method can be applied to derive solutions of
both deterministic and random differential equations and their frac-
tional counterparts such as rfDEs and rfPDEs. The procedures used here
are based on the random Laplace transform method demonstrated by
Casabán et al. (2015) and mean square Laplace transform by Burgos
et al. (2022; Villafuerte et al., 2010).
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With i(t) given by Eq. (10) and a random rainfall intensity, r(t) = r0,
denote Re = r0 − i(t). Applying the random Laplace transform to Eq. (6),
the IC and BCs in Eqs. (7), (8) and (9) yields,

S1/20

nf
dρ

dxρ

[
H̃
m
(x, s)

]
+ τα− 1sαH̃(x, s) = R̃e(s) −

∑n− 1

k=0
sρ− k− 1f (k)(x) (12)

where f (k)(x) is the integer-order differentiation of the initial condition,
f(x), with n − 1 ≤ ρ ≤ n (Podlubny, 1999, p. 106) and

R̃e(s) =
(
r0 − As
s

)

−
βS

2λ − 1
Γ[β/(2λ − 1)]
sβ/(2λ− 1) (13)

where Γ[β/(2λ − 1)] is the gamma function of β/(2λ − 1), and s is the
Laplace transform variable. The BCs are now transformed to

H̃(x, s) =
H̃0

s
, x = 0 (14)

and

H̃(x, s) =
H̃L

s
, x = L (15)

In many situations such as experiments described in this paper, there
is no initial overland flow on the slope surface so that f(x) = 0, and in
such cases and with the following substitutions,

g̃(x, s) = H̃
m
(x, s) (16)

and

η =
x
L

(17)

Eq. (12) is then written as follows,

S1/20

nf
dρg̃(η)
dηρ = R̃e(s) − τα− 1sα g̃1/m(η) (18)

and the BCs become,

g̃(η) = g̃0, η = 0 (19)

and

g̃(η) = g̃L, η = 1 (20)

The solutions of Eq. (18) subject to the conditions in Eqs. (19) and
(20) are outlined below using the HPM, which consists of an infinite
series of steps with the first component of the solution as the basis to
construct the next component of the solution. The background and the
detailed derivation of the solution of Eq. (18) subject to the conditions in
Eqs. (19) and (20) are given in Appendix B, and the solution is expressed
as

g̃(η) =
∑∞

k=0

vk(η) (21)

and a two-term approximation is considered in this paper, namely, the
approximate solution of Eq. (18) is given as

g̃(η) = v0 + v1 (22)

The procedures for the solution of Eq. (18) derived using the HPM are
as follows (Ates and Zegling, 2017),
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S1/20

nf
dρg̃(η)
dηρ + p

[

τα− 1sαg̃1/m(η) − R̃e(s)
]

= 0

g̃(0) = g̃0, g̃(L) = g̃L

(23)

where p is the perturbation parameter, and its range of variation is

0 ≤ p ≤ 1. The first component is, for p = 0,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0 :
S1/20

nf
dρg̃(η)
dηρ = 0

v0(0) = g̃0, v0(L) = g̃L

(24)

which has the following solution after applying inverse Laplace
transform, which is similar to the solution of an fDE given by Benchohra
et al. (2009, Eq. (3) for h(s) = 0), and Ates and Zegling (2017, Eq. (15)),

v0(η) = g̃0 +(g̃L − g̃0)η (25)

The next order of the decomposed solution makes use of v0(η) from
Eq. (25) in the fDE in Eq. (23) but with different BCs to yield (Ates and
Zegling, 2017)
⎧
⎪⎨

⎪⎩

p1 :
S1/20

nf
dρv1(η)
dηρ + p

[

τα− 1sαv1/m0 (η) − R̃e(s)
]

= 0

g̃(0) = 0, g̃(L) = 0

(26)

which is a linear fDE, and its solution for p = 1 is given as (Kilbas and
Marzan, 2005),

v1(η) =
nf

S1/20 Γ(ρ)

∫ η

0

[

R̃e(s) − τα− 1sαv1/m0 (η)
]

(η − ξ)1− ρ dξ (27)

which can be integrated but the integration is in a very complicated
form. To offer simpler formulae for practical applications, it can be
reasonably assumed that g0 = 0 in the subsequent iterations so that Eq.
(27) can be simply integrated term-by-term (Gradshteyn and Ryzhik,
2007, Eq. (3.191)–(1), p. 315) to give,

v1(η) = A(t)ηρ +Bηρ− 1+1/m (28)

with

A(t) =
(r0 − As)nf

Γ(ρ + 1)S1/20

−
βSnf

(2λ − 1)Γ(ρ + 1)S1/20

tβ/(2λ− 1)]− 1
(29)

and

B =
Γ(1 − α)Γ(1/m)nf τα− 1

αΓ(ρ + 1/m)S1/20

t− α− 1 (30)

The two-order HPM approximation to the exact solution of Eq. (18) is
given by adding Eqs. (25) and (28) after applying the inverse Laplace
transform and restoring the original variables,

H(x, t) =
[

Hm
0 +

(
Hm
L − Hm

0
) x
L
+ A(t)

(x
L

)ρ
+ B(t)

(x
L

)ρ− 1+1/m
]1/m

(31)

which, for x = 0 at the top end of the hillslope, is H(0, t) = H0, as a
logical consequence. The solution in Eq. (31) is a two-order approxi-
mation only while the exact solution of Eq. (6) is the summation of
infinite terms. Eq. (31) implies that the two-order approximate solution
of the rfKWE using the HPM accommodates both the linear term, x, and
the power functions, xρ and xρ− 1+1/m. One special case of Eq. (31) is for
m = 2, which was from field measurements (Horton, 1938; Eagleson,
1970; Emmett, 1970)), then Eq. (31) is simplified as,

H(x, t) =
[

H2
0 +

(
H2
L − H2

0
) x
L
+ A(t)

(x
L

)ρ
+ B(t)

(x
L

)ρ− 1/2
]1/2

(32)

3.2.2. Velocity and unit discharge of overland flow
With the new solution for H(x,t), the conventional velocity in Eq. (4)

and the unit discharge in Eqs. (5) have to be updated to account for the
nonlocality properties. The change to be introduced is the fractional
roughness coefficient, nf , so that the velocity in Eq. (4) is updated as
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V =
S1/20

nf
Hm− 1 (33)

which is combined with Eq. (31) to give,

V =
S1/20

nf

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
+ A(t)

(x
L

)ρ
+ B(t)

(x
L

)ρ− 1+1/m
]1− 1/m

(34)

and the corresponding unit discharge is updated from Eq. (5) and
combined with Eq. (31) to yield,

q =
S1/20

nf

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
+ A(t)

(x
L

)ρ
+ B(t)

(x
L

)ρ− 1+1/m
]

(35)

With the incorporation of the new roughness coefficient and the
changes in the relationships between H and V, and H and q, the flow
pattern parameter, m, may deviate from the reported values of m = 5/3
for turbulent flow and m = 3 for laminar flow.

3.2.3. Solutions of the rfKWE of overland flow with a random rainfall
intensity under some special conditions

(1) Steady-state infiltration

After a later time when the terms t[β/(2λ− 1)]− 1 and t− α− 1 approach zero,
the rate of infiltration approaches to its steady value, then Eq. (29)
becomes,

A =
(r0 − As)nf

Γ(ρ + 1)S1/20

(36)

and in Eq. (30) B(t)→0, then Eqs. (31), (34) and (35) simplify,
respectively, as

H =

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
+

(r0 − As)nf
Γ(ρ + 1)S1/20

(x
L

)ρ
]1/m

(37)

V =
S1/20

nf

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
+

(r0 − As)nf
Γ(ρ + 1)S1/20

(x
L

)ρ
]1− 1/m

(38)

and

q =
S1/20

nf

[
Hm

0 +
(
Hm
L − Hm

0
) x
L

]
+
(r0 − As)
Γ(ρ + 1)

(x
L

)ρ
(39)

The last component in Eq. (37) scales with H ∼ xρ/m, which is pre-
cisely the asymptotic result H ∼ xρ/2 presented earlier (Su and Zhang,
2022) for m = 2 as a special case. The terms Hm

0 +
(
Hm
L − Hm

0
)
x
L in above

equations represent the conventional movement while the second terms
incorporate the memory-dependent components or nonlocal effects. In
the cases x = 0 and r0 = As, no memory effect is present.

(2) Solutions with steady-state infiltration after the cessation of
rainfall

During steady-state infiltration, further simpler cases appear when
r0 = 0, and Eqs. (37), (38) and (39) are, respectively, simplified as
follows,

H =

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
−

Asnf
Γ(ρ + 1)S1/20

(x
L

)ρ
]1/m

(40)

for the depth of overland flow,

V =
S1/20

nf

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
−

Asnf
Γ(ρ + 1)S1/20

(x
L

)ρ
]1− 1/m

(41)

for the velocity of overland flow, and

q =
S1/20

nf

[
Hm

0 +
(
Hm
L − Hm

0
) x
L

]
−

As
Γ(ρ + 1)

(x
L

)ρ
(42)

for the unit discharge.
Equations (40), (41) and (42) imply that the effects of nonlocality

manifested by the spatial fractional derivatives on the flow are present
throughout the flow process until the end of the flow when the values
containing the linear part, x and the nonlinear component, xρ, in these
equations are equal.

(3) Situations of overland flow on an impermeable surface after the
cessation of rainfall, overland flow with the input and output
being equal, and hydrographs at the end of a hillslope

From Eqs. (40), (41) and (42), it is seen that for flow on an imper-
meable surface which is equivalent to the case As = 0, or r0 = As, the
following expressions result for the neglible depth of flow at the upper
boundary,

H = HL

(x
L

)1/m
(43)

for the depth of flow,

V =
S1/20

nf

(
HL
x
L

)m− 1
(44)

for the velocity, and

q =
S1/20 Hm

L x
nfL

(45)

for the unit discharge.
Obviously, for x = L at the end of the hillslope, Eq. (44) becomes,

V =
S1/20

nf
Hm− 1
L (46)

which is precisely the original velocity in Eq. (4), and Eq. (45)
becomes

q =
S1/20

nf
Hm
L (47)

which is precisely the unit discharge in Eq. (5).
These results imply that the widely used methods of the velocity in

Eq. (4) and unit discharge in Eq. (5) are only special cases of the solu-
tions of this more generic fractional model, rfKWE, for r0 = 0 and As = 0
at large time t→∞ at the end of a hillslope.

(4) Hydrographs at the end of a hillslope

Obviously, for x = L at the end of the hillslope, Eq. (31) becomes,

H(x, t) =
[
Hm
L + A(t) + B(t)

]1/m (48)

which is the hydrograph as a function of time and other parameters
generated by the rainfall with the intensity of r0, where A(t) is given by
Eq. (29) and B(t) by Eq. (30). For moderate or large times when the
microrelief on the slope is filled, B(t)→0, and Eq. (48) becomes,

H(x, t) =
[
Hm
L + A(t)

]1/m (49)

which, after the infiltration reaches its steady state when
t[β/(2λ− 1)]− 1→0, becomes,

H(x, t) =

[

Hm
L +

(r0 − As)nf
Γ(ρ + 1)S1/20

]1/m

(50)

which applies to x = L for large time when infiltration reaches a
steady state, and the slope storage no longer affects the flow.
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Equation (37) has the following implications in practice, if the
roughness and the slope gradients remain unchanged:

(1) after the infiltration reaches a steady state, the depth of overland
flow hydrograph at the end of the slope depends only on the
depth of flow at the end of the slope, and the rainfall intensity r0
as a power function, (r0 − As)1/m.

(2) after the cessation of a rainfall event, the recession in the depth of
flow hydrographs from a hillslope obeys a power function of the
form,

H(x, t) =

[

Hm
L −

Asnf
Γ(ρ + 1)S1/20

]1/m

(51)

and the corresponding unit discharge is given by the asymptotic form
of Eq. (39)

q =
S1/20

nf

[

Hm
L −

Asnf
Γ(ρ + 1)S1/20

]

(52)

which compares with Eq. (5).
These solutions and their simplifications are partly verifications of

the HPM solutions for flow problems on hillslopes. They state that on an
infiltrating surface the temporal nonlocality of flow represented by the
order of fractional derivatives in time diminishes over time while the
spatial nonlocality manifested by the order of fractional derivatives in
space continues as long as there is flow on the infiltrating surface. These
mechanisms are different from that during infiltration of water into
porous soils on a slope where both the temporal and spatial nonlocalities
are present throughout the flow processes (see Eq. (10) and Su, 2014,
2020).

3.2.4. The depth of overland flow, velocity and unit discharge for different
forms of flow pattens

Depending on the flow patterns, the value of m varies, and it is m =

5/3 for turbulent overland flow,m = 3 for laminar overland flow, and its
value observed in the field is m ≈ 2 (Horton, 1938; Eagleson, 1970, p.
332). To determine a specific flow quantity using the above equations,
different values of m need to be specified. As it can be seen in section 4,
the analysis using the rfKWE model with data collected using laboratory
flumes yields a consistent result of m = 1.5. In the field conditions, its
value could be different from m ≈ 2 for the classic KWE.

3.3. Solutions of the rfKWE with the rainfall intensity and final
infiltration rate as a random distribution function

3.3.1. Depth of overland flow
In this section, both the rainfall intensity and the final infiltration

rate are treated as random functions. The random gamma probability
distribution function (pdf) is chosen for the rainfall intensity (Sen and
Eljadid, 1999; Aksoy, 2000),

r(t) =
R0ab

Γ(b)
tb− 1e− at (53)

where R0 is an amplitude, Γ(b) is the gamma function with the
argument, b, being a random variable (Braumann et al., 2018) and a is a
shape parameter that can be regarded as random but not essential. In
addition to the gamma pdf, the exponential pdf can also be used
(Eagleson, 1972) to represent a rainfall process.

The equation of infiltration rate in Eq. (10) is still used here except
with its final infiltration rate, As, being a random variable (Su, 2023).
With these generalisations, Eq. (18) is valid here with the random terms
in place,

S1/20

nf
dρg̃(η)
dηρ = R̃e(s) − sαg̃

1/m
(η) −

∑n− 1

k=0

sρ− k− 1f (k)(x) (54)

and the BCs also take the following forms,

g̃(η) = g̃0, η = 0 (55)

and

g̃(η) = g̃L, η = 1 (56)

except for the source term being

R̃e(s) =
R0

(s+ a)b
−
As
s
−

βS
2λ − 1

Γ[β/(2λ − 1)]
sβ/(2λ− 1) (57)

The procedures based on the HPM in section 3.2.1 can be used equally to
derive solutions with a different rainfall intensity and infiltration rate.
The two-order approximation to the HPM solution of Eq. (54) is

v1(η) = C(t)ηρ +D(t)ηρ− 1+1/m (58)

with

C(t) =
R0abnf

Γ(ρ + 1)Γ(b)S1/20

tb− 1e− at −
Asnf

Γ(ρ + 1)S1/20

−
βSnf

(2λ − 1)Γ(ρ + 1)S1/20

t[β/(2λ− 1)]− 1

(59)

and

D(t) =
Γ(1 − α)Γ(1/m)τα− 1nf

αΓ(ρ + 1/m)S1/20

t− α− 1 (60)

The two-order HPM approximation to the exact solution of Eq. (54),
after restoring the original variables, is given as

H(x, t) =
[

Hm
0 +

(
Hm
L − Hm

0
) x
L
+ C(t)

(x
L

)ρ
+ D(t)

(x
L

)ρ− 1+1/m
]1/m

(61)

3.3.2. Velocity And unit discharge of overland flow
Based on Eq. (61), the velocity in Eq. (4) and the unit discharge in

Eqs. (5) can now be updated in a similar way Eqs. (34) and (35) are
presented, which are

V =
S1/20

nf

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
+ C(t)

(x
L

)ρ
+ D(t)

(x
L

)ρ− 1+1/m
]1− 1/m

(62)

and

q =
S1/20

nf

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
+ C(t)

(x
L

)ρ
+ D(t)

(x
L

)ρ− 1+1/m
]

(63)

3.3.3. Solutions of the rfKWE of overland flow with a random rainfall
intensity under some special conditions

(1) Steady-state infiltration

After a certain time when the terms t[β/(2λ− 1)]− 1 and t− α− 1 approach
zero, the rate of infiltration approaches its steady value, and Eq. (59)
becomes,

C(t) =
R0abnf

Γ(ρ + 1)Γ(b)S1/20

tb− 1e− at −
Asnf

Γ(ρ + 1)S1/20

(64)

and in Eq. (60) D(t)→0, then Eqs. (61), (62) and (63) simplify,
respectively, as

H =

{

Hm
0 +

(
Hm
L − Hm

0
) x
L
+

[
R0abnf tb− 1e− at

Γ(ρ + 1)Γ(b)S1/20

−
Asnf

Γ(ρ + 1)S1/20

]
(x
L

)ρ
}1/m

(65)

for the depth of flow,
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V=
S1/20

nf

{

Hm
0 +

(
Hm
L − H

m
0
)x
L
+

[
R0abnf tb− 1e− at

Γ(ρ+1)Γ(b)S1/20

−
Asnf

Γ(ρ+1)S1/20

]
(x
L

)ρ
}1− 1/m

(66)

for the velocity, and

q =
S1/20

nf

{

Hm
0 +

(
Hm
L − Hm

0
) x
L
+

[
R0abnf tb− 1e− at

Γ(ρ + 1)Γ(b)S1/20

−
Asnf

Γ(ρ + 1)S1/20

]
(x
L

)ρ
}

(67)

for the unit discharge.
The characteristics of H, V and q in Eqs. (65), (66) and (67) depend

on the rainfall patterns which are specified by the parameters R0, a and
b. During a rainfall event when the gamma distribution reaches its
recession stage, the term tb− 1e− at gradually approaches zero as t→∞,
then the above equations are simplified, respectively, as,

H =

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
−

Asnf
Γ(ρ + 1)S1/20

(x
L

)ρ
]1/m

(68)

V =
S1/20

nf

[

Hm
0 +

(
Hm
L − Hm

0
) x
L
−

Asnf
Γ(ρ + 1)S1/20

(x
L

)ρ
]1− 1/m

(69)

and

q =
S1/20

nf

[
Hm

0 +
(
Hm
L − Hm

0
) x
L

]
−

As
Γ(ρ + 1)

(x
L

)ρ
(70)

For flow on an impermeable surface withAs = 0 after the cessation of
rainfall for a considerable time, Eqs. (68), (69) and (70) for the neglible
depth of flow at the upper boundary become identical to Eqs. (43), (44)
and (45), and the same conclusions apply.

3.4. Explanation of the solutions for the depth of flow, H, velocity, V and
unit discharge,q

3.4.1. With a constant or random input,r0
In Eqs. (31) and (32), the coefficient A(t) given by Eq. (29) consists of

two components: the first component is the input to overland flow from
the effective rainfall (or the net input), (r0 − As) which includes the
steady infiltration, and the second component is the absorption by un-
saturated surface which recesses over time as tβ/(2λ− 1)]− 1 and eventually
approaches zero when the hillslope approaches saturation. The coeffi-
cient B(t) characterises the filling of the microrelief on a hillslope during
rainfall, and approaches to zero when the microrelief is filled with
water. From hydrological practice, it can be found that tβ/(2λ− 1)]− 1 and
t− α− 1 approach to zero after a moderate time.

3.4.2. With a random gamma function input
In section 3.3, a gamma function input is used to derive the expres-

sions for the depth of flow, H, velocity, V, and the unit discharge, q.
Similar to the case of a constant or random input, r0, in section 3.4.1,
tβ/(2λ− 1)]− 1 and t− α− 1 in the case of a gamma function input can approach
to zero after a moderate time.

While the parameters in the equation of infiltration can be measured
and the microrelief filling estimated, the calibration of these full equa-
tions require extensive efforts, and further research is needed to address
this issue. With this situation in mind, this paper demonstrates the ap-
plications of the steady-state solutions only.

4. Determination of model parameters and the interpretation of
the results

4.1. Laboratory flume setup and experiments

The data sets used in this study were reported earlier (Zhang et al.,
2014, 2015; Zhang and Wang, 2017), where the experimental proced-
ures were described in detail. For the convenience of the readers, the
facilities and the experimental procedures used for data collection are
briefly outlined below.

The overland flow data were generated by simulated rainfall in a
rainfall simulation hall at the State Key Laboratory of Soil Erosion and
Dryland Farming on the Loess Plateau, Institute of Soil and Water
Conservation, CAS and MWR. One soil type (loessial loamy soil) was
used throughout the experiments to be consistent, and the measure-
ments were made on the flume (hillslope) at five lengths (0.4, 0.8, 1.2,
1.6, and 2 m.) with five slope gradients (18 %, 27 %, 36 %, 47 %, and 58
%) and five rainfall intensities (48, 62.4, 102, 149, and 170 mm.min− 1).
With these scenarios, 125 combinations of data were generated with
each having two replicates so that 250 tests were conducted, and the
replicate means were determined for further analyses.

The runoff flumes were based on perforated metal sheets with five
different lengths, and each flume was 0.4 m wide, and 0.25 m deep. The
flumes were adjustable to form different slopes, and the slope gradients
from 0 % to 84 % were used to fill the loessial loamy soil. The soil was
collected from the 0–25 cm tillage layer on a farmland in the Ansai
District, Shaanxi Province, located in the northern Loess Plateau. The
air-dried soil with a particle composition of 38.7 % sand, 45.6 % silt,
15.7 % clay, and 0.5 % organic matter was sieved through a 4.0 mm
sieve. The sieved soil, with an initial moisture content at approximately
14 %, was packed into the perforated metal plots with four 5.5-cm thick
layers totalling a depth of 22 cm with a bulk density of 1.3 g.cmg.cm− 3.
The surface of each layer of the packed soil was lightly roughened each
time before the next layer was placed, except for the top surface of the
layer left smooth.

A DIK-6000 rainfall simulator by Daiki Riga Kogyo Co., Ltd., Konosu
City, Japan was used to generate the simulated rainfall events. This
simulator, with the height of 8.67 m and an effective rainfall area of 2 m
x 3 m, can produce rain drops with a median diameter of approximately
2.2 mm and a relative uniform rainfall (uniformity >85 %). Each
simulated rainfall event lasted for 60 minutes (min.). Prior to the first 15
min of runoff, runoff suspension samples were collected continuously
from the plots at intervals of 1 min, 2 min, 3 min, 4 min, and 5 min,
respectively, and then at an interval of 5 min. The sheet flow velocity
was measured over the lowest 40 cm segment at two positions (10 cm
from each side wall) using the dye method with a KMnO4 solution and a
stopwatch. The mass of the runoff suspension samples was weighed, and
the volume measured immediately after the simulated rainfall. Quanti-
ties of sediment and runoff were calculated from the measured volume
and weight of the runoff suspension and its density. The mean flow
depth for each plot segment was calculated with the mean flow veloc-
ities at two positions along with the corresponding total runoff volumes.
The velocity of the whole plot was the average of velocities on each
segment. Data analysis was performed using the averages of the last six
values during the quasi-steady state in each experiment. During the
laboratory experiments, majority of the runs produced only inter-rill
erosion and very few events produced very small rills at the end of the
rainfall.
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4.2. Procedures for parameter determination

For simpler models, the model parameters can be directly measured,
but for complicated models, any direct measurement will be more
difficult, and other procedures such as curve-fitting and interpretation
become important. Generally, the difficulty and uncertainty in the
parameter determination increase with the increases in the number of
model parameters. When the number of parameters in a model is large, a
curve fitting process with a computer code could generate fictitious
results because an optimal automatic fitting process could only seek an
optimal numerical value without prioritising its physical relevance. To
find a robust and reliable method for determining the flow parameters in
the above solutions with a hydraulically meaningful result, the pro-
cedures implemented below include the curve-fitting of the measured
unit discharge, q, depth of flow, H, against the distance on the flow path
on the hillslope using the code TableCurve2D, then the desired param-
eters are derived from the optimally fitted parameters.

4.2.1. Determination Of the flow pattern parameter, m, and the
conventional roughness, n, in the KWE

The easiest way for finding the pattern parameter is to fitting Eq. (5)
or (4) to the data. With all the collected data are plotted as one sample
using Eq. (5), Fig. 1 is generated to show that the value of m = 1.43 in
the unit discharge-depth relationship for the data used in this paper.

With q, H, and S0 measured, and m determined from the curve-
fitting, the roughness coefficient can be found by rearranging Eq. (5),

n =
S1/20

q
Hm (71)

By plotting the different data sets for flow depths and unit discharges
measured on different slopes, the mean roughness coefficient deter-
mined using Eq. (71) is n = 0.108, which is also a quantity found for
overland flow on a typicalmedium, freshly disked fallow surface (Engman,
1986, Table 4) that is a reasonable description of the repacked soil on
the flumes in the laboratory.

Once m against n are estimated, and by plotting all the values of m
against n for different experiments under different rainfall intensities
and slope gradients, it is found that a clear relationship exists between
these parameters as shown in Fig. 2,

The relationship between the two parameters in the conventional
kinematic wave equation with the data described in section 4.1 is,

m = 1.24n− 0.052 (72)

which implies that the increase in the roughness on a surface reduces
the flow. This is a very straightforward result.

4.2.2. Determination Of the order of the spatial fractional derivatives, ρ,
with the data from different locations of a hillslope

The unsteady-state water level in Eq. (31) and subsequent formulae
for the velocity in Eq. (34) and the unit discharge in Eq. (35) are char-
acterised with orders of temporal and spatial fractional derivatives for
overland flow, α and ρ, and the order of temporal fractional derivatives
for infiltration, β. The estimation of these 3 parameters at the same time
pose challenges without sufficient information on infiltration, micro-
relief and overland flow. As a special case of the formulae for the key
hydraulic variables, H, V and q, the steady-state formulae in section
3.2.3 are used in this example to demonstrate the application of the new
formulae.

Equation (39) for the unit discharge during steady-state infiltration is
a better start. For simplicity, the depth of overland flow on the upper
boundary, H0, can be negligibly small in situations during experiments
described in this paper so thatH0 = 0 is used, then Eq. (39) is rearranged
to yield,

q = a0x+ b0xρ (73)

where

a0 =
S1/20 Hm

L
nfL

(74)

and

b0 =
(r0 − As)

Γ(ρ + 1)Lρ (75)

Fitting Eq. (73) to the data collected on different sections of the
slope, x, yields the value of ρ, and its mean value from different exper-
iments is ρ = 1.25.

4.2.3. Determination Of the fractional roughness coefficient,nf
First, Eq. (37) is rewritten as, forH0 = 0,

H = (a2x+ b2xρ)
1/m (76)

with
Fig. 1. Determination of the flow pattern parameter m.
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a2 =
Hm
L
L

(77)

b2 =
(r0 − As)nf

Γ(ρ + 1)LρS1/20

(78)

Once b2 is found by fitting Eq. (76) to the data of H against x, rear-
ranging Eq. (78) to find the fractional roughness coefficient, nf (see also
section 4.2.5 for a more robust form). The analysis has resulted in a
mean value of this parameter nf = 0.002.

4.2.4. Determination of the steady-state (or final) infiltration rate on a
hillslope, As, and ρ.

The initial data analyses with Eq. (73) and the subsequent inter-
pretation of the results indicated that a more robust form to determine
the value of ρ is to write Eq. (39) withH0 = 0 in the following form,

q = a0x+ b1xρ − c0xρ (79)

where

b1 = Dr0 (80)

c0 = DAs (81)

with

D =
1

Γ(ρ + 1)Lρ (82)

b1 and c0 in Eqs. (80) and (81) are determined through curve-fitting
Eq. (79) to the data, which also yields the value of ρ, and the average for
the data described in the above experiments is ρ = 1.25.

Rearranging Eqs. (80), (81) and (82) yields the steady-state infil-
tration rate,

As =
c0r0
b1

(83)

which is a very useful expression but is impossible to be determined
directly when the surface is covered by overland flow.

The further analysis of the flow pattern parameter m and the steady-
state infiltration rate is interesting for their representations with As for
flow into the subsurface while m for flow overland. It is found that these
two parameters are closely related as shown in Fig. 3.

Figure 3 implies that the increase in infiltration reduces the quantity

Fig. 2. Relationship between the roughness coefficient and the flow pattern parameter in the classic kinematic wave equation.

Fig. 3. The relationship between the final infiltration rate and the flow pattern parameter.
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of overland flow, which reflects the balance of these two components
during the rainfall-runoff processes.

4.2.5. Determination of parameters m and nf in the rfKWE model
Once the parameter ρ is derived, it is used in Eq. (37) for the depth of

overland flow to determine m. First, taking logarithmic transform of Eq.
(37) withH0 = 0 yields,

logH =
1
m
log(a2x+ b2xρ) (84)

where

a2 =
Hm
L
L

(85)

and

b2 =
(r0 − As)nf

Γ(ρ + 1)S1/20 Lρ
(86)

Similar to Eq. (79), Eq. (84) can be written as follows,

logH =
1
m
log(a2x+ b3xρ + c1xρ) (87)

where

b3 = D2r0 (88)

and

c1 = − D2As (89)

with

D2 =
nf

Γ(ρ + 1)S1/20 Lρ
(90)

By combining Eqs. (88), (89) and (90), the following expression for
the steady-state infiltration rate is found,

As = −
c1r0
b3

(91)

Note that the values determined from Eqs. (83) and (91) are identical
or at least should be close. It has been found that Eq. (87) is easier and
more robust than Eq. (37) to find the value of m during curve fitting
processes.

With Eqs. (74) and (77) or Eqs. (74) and (85), an expression for the
fractional roughness coefficient, nf , is found to be

nf =
a2
a0
S1/20 (92)

The values of m and nf for the data collected in the laboratory
described earlier are plotted in Fig. 4,

Figure 4 is the fractional form of Fig. 2 for the two key parameters,
and the same explanations apply, i.e., the increase in the fractional

roughness coefficient reduces the value of the flow pattern parameter
leading to the decrease in the flow velocity and discharges.

4.3. A summary of the derived parameters and their variabilities

With the procedures outlined above, the key model parameters can
be derived using data and a curve-fitting code. The analysis of the data
from the experiments shows that the flow pattern parameterm decreases
slowly as the roughness coefficient increases (Figs. 2 and 4). This trend is
logical because the increase in the roughness slows down the flow on the
hillslope so that the value of m decreases resulting in the decrease in the
velocity and discharge.

There are other inter-relationships between the model parameters,
and one of them exits between the order of fractional derivatives and the
fractional roughness coefficient in Fig. 5.

Figure 5 clearly indicates that as the roughness of the surface in-
creases the order of fractional derivatives decreases with ρ = 1 as the
asymptotic value. In other words, the increase in the surface roughness
decreases the spatial nonlocality during overland flow processes with
the conventional KWE as the asymptotic result. In an earlier study (Su
and Zhang, 2022), it was found that the value of ρ varies slowly with the
slope gradient and the rainfall intensity.

Another relationship exists between the fractional roughness coeffi-
cient and the conventional roughness coefficient as shown in Fig. 6.

The relationship in Fig. 6 can be used to determine the fractional
roughness coefficient once a robust relationship is established with
sufficient data. This relationship is a useful means for determining the
fractional roughness coefficient without other complicated procedures
because the conventional roughness coefficient can be easily determined
using Eq. (71) or Eq. (5).

With the above procedures the values of the key parameters are
determined, and the average values of the parameters that appear in the
conventional and fractional models are summarised in Table 1. Note that
the definition of the fractional roughness coefficient is different from the
original kinematic wave equation so that its value is different.

It should be pointed out here that the length of the 2-metre flumes
used in the experiments may not long enough to permit the overland
flow to develop full patterns because the flow accelerates as it ap-
proaches the end of the flumes due to the decreasing flow resistance,
which is like the drawdown effect near a weir. More data on long slopes
and natural surfaces are needed to verify how these parameters changes.

4.4. The temporal order of fractional derivatives,α

In section 4.2.2, procedures for determining the spatial order of
fractional derivatives and the fractional roughness coefficient are out-
lined with the data from different locations of a flume representing a
hillslope. The simultaneous determination of the temporal order of
fractional derivatives, α, and other parameters for infiltration pose

Fig. 4. The relationship between the flow pattern parameter and the fractional roughness coefficient.
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challenges without sufficient information on infiltration and filling of
microrelief by runoff on a slope. As a special case of the formulae for the
key hydraulic variables, H, V and q, the steady-state formulae are
demonstrated in this paper only.

5. Comparison of the rfKWE and KWE models for overland flow
on a hillslope

As an application of the method presented in this paper and to
compare it with the classic KWE, here the overland flow profiles on a
hillslope are simulated using Eq. (39) with the parameters summarised
in Table 1.

For the new model rfKWE, the mean and standard deviation of each
parameter is used to determine the random value of that parameter, e.g.,
the random value of the fractional roughness coefficient is determined as

nf = nf +3σf (93)

where nf is the mean value of nf ; σ is the standard deviation from the
mean nf , and f is the random number generator whose values are in
0 < f < 1. All other parameters such asm, As, and r0 are generated in the
same manner. Here 3-fold standard deviation, 3σ, is used, which, of
course, can be 1 or 2 times the standard deviation. The mean value for

Fig. 5. The inter-relationships between the order of spatial fractional derivatives and the fractional roughness coefficient.

Fig. 6. Relationships between the classic and fractional roughness coefficients.

Table 1
The derived parameters and their variabilities in the two models.

KWE/rfKWE Classic model Fractional model

Parameters  n m ρ nf m As, mm/
h

Mean  0.108 1.52 1.25 0.0021 1.50 100.94
Standard
deviation

 0.106 0.327 0.391 0.001 0.232 45.382

Fig. 7. Applications and comparisons of the classic KWE and the new rfKWE models.
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the order of fractional derivatives, ρ, is used only without random
fluctuations due to the consideration of uncertain theoretical back-
ground to be explored (Casaban et al., 2015).

For the classic KWE, ρ = 1 and all other parameters treated as being
random determined using Eq. (93), three simulations were run only so
that three pairs of profiles were generated as shown in Fig. 7.

It can be seen from Fig. 7 that on the majority of the hillslope, the
classic KWE model overestimates the unit discharge compared to that
from the rfKWE while the two models yield the same value at the end of
the slope, x/L = 1. Fig. 7 also demonstrates how the new formulae such
as the unit discharge in Eq. (39) is used, which is similar to the velocity
in Eq. (38) and the depth in Eq. (37).

6. Conclusions and discussions

This paper presents a time–space random fractional kinematic wave
equation (rfKWE) of overland flow with solutions developed using the
homotopy perturbation method (HPM) and procedures for estimating
the key parameters presented. The key conclusions from the develop-
ment and applications are as follows:

(1) The rfKWE is featured with two orders of temporal and spatial
fractional derivatives with the roughness parameter, the effective
rainfall intensity and infiltration rate as random variables or
random distributions.

(2) The solutions using the HPM and random Laplace transform
incorporate both the initial and boundary conditions are pre-
sented for applications. The new solutions are simple with
different simplifications presented. The results suggest that on an
infiltrating surface the temporal nonlocality of overland flow
diminishes over time while the spatial nonlocality exits as long as
there is flow on the surface. These results also show that the
widely used unit discharge-depth of flow relationship in Eq. (5) is
only a special case of a solution of this more generic fractional
model.

(3) Procedures for determining the parameters are outlined with
examples demonstrating their applications. One important
finding is a unique formula for calculating the final infiltration
rate or steady-state infiltration rate using data on the depths of
overland flow and corresponding unit discharge.

(4) Compared to the fractional kinetic wave equation (fKWE) ana-
lysed earlier (Su, 2020; Su and Zhang, 2022), the findings

presented in this paper are verified using data from the labora-
tory, and very useful results come to light, which include the flow
pattern parameter, m, the order of spatial fractional derivative, ρ,
and fractional roughness coefficient, nf . With conventional pro-
cedures in hydraulics and hydrology, these parameters cannot be
easily measured.

(5) The new formulae derived from the rfKWE using the HPM have
been demonstrated and compared to the classic KWE model with
inputs from the parameters determined using the proposed
methods in this paper.

(6) Further work is needed to estimate these parameters for different
flow patterns and surface conditions on long slopes and under
natural conditions. With data on these forms of hillslopes, it
would be clearer to see how the model performs and parameters
change. Then predictions of runoff can be made with the new
model and robust parameters.
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Appendix A. Identities in fractional integration and fractional differentiation

In this paper, the Riemann-Liouville (R-L) fractional integration and Caputo fractional differentiation are used in the derivation of the solutions.
The readers are referred to Podlubny (1999) for more details on these concepts.

The fractional integration of a function f(x, t) is defined as

Iβt f(x, t) =

⎧
⎪⎨

⎪⎩

1
Γ(β)

∫ t

0

f(x, τ)
(t − τ)1− β dτ, β > 0

f(x, t), β = 0
(A1)

where Γ(β) is the gamma function. Eq. (A1) implies that the zero-th order integration of a function f(x, t) is itself, i.e., I0t f(x, t) = f(x, t).
For the power function, tγ, the following identity holds,

Iβt t
γ =

Γ(1+ γ)
Γ(1+ γ + β)

tγ+β (A2)

Caputo fractional differentiation of a function f(x, t) is given as

Dβ
t f(x, t) =

1
Γ(1 − β)

∫ t

0

1
(t − τ)β

∂f(x, τ)
∂τ dτ, 0 < β < 1 (A3)

and the zero-th order fractional differentiation of the function f(x, t) is the function itself, i.e., D0
t f(x, t) = f(x, t).

The Caputo fraction differentiation of a power function is given as
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Dβ
t t

γ =
Γ(1+ γ)

Γ(1+ γ − β)
tγ− β (A4)

The other useful identities include the following:

Iβt D
β
t f(x, t) = f(x, t) − f(x,0) (A5)

where f(x,0) is the initial value of f(x, t), and

Dβ
t I

β
t f(x, t) = f(x, t) (A6)

Appendix B. Essentials for the homotopy perturbation method (HPM)

The HPM was proposed by He in 1999 as a modified method developed by Liao (1992, 1995, 1997), and its applications have been extraordinarily
successful. This method has been applied to solve many types of ODEs, PDEs and their fractional counterparts. In water engineering and hydrology,
Kumbahakar and Singh (2023) have summarised a number of examples. For more details on this topic, the reader is referred to other related materials
(He, 1999, 2003; Kumbahakar and Singh, 2023). Here only the essentials of this method are outlined, and the procedures most relevant to the fKWE in
this paper are detailed in this appendix.

Central to the homotopy perturbation methods and related methods such as homotopy analysis method (HAM) is the concept of homotopy in
topology. Topology is a field in mathematics concerned with geometric properties of a mathematical object that remains unaffected under continuous
deformation (Kumbahakar and Singh, 2023). Homotopy defines a connection between twomathematical objects, and the two objects are homotopic if
one can be continuously deformed into the other, which is the key for approximate solutions in a series when the original problem is expanded in a
mathematical expression known as the homotopy.

For example, for two functions, f(t) and g(t), of a dimension t (either for time or space), a homotopy is defined as

H(t; q) = (1 − q)f(t)+ qg(t) (B1)

which is defined in the range of zero and one, i.e., q ∈ [0,1], where q is called the perturbation parameter or embedding parameter. The homotopy
H(t; q) between these two functions, f(t) and g(t), is itself a continuous function, and Eq. (B1) clearly shows that H(t; q) = f(t) for q = 0 and H(t; q) =
g(t) for q = 1.

For ODEs, PDEs and their fractional counterparts, the HPM has been applied to derive solutions in a series form (He, 1999). For a general dif-
ferential operator which can be an operator for ordinary, partial or fractional differentiation, D, and an analytical function, f(r),

D(u) = f(r) (B2)

where D can be split into two parts, N for a nonlinear operator and L for a linear operator. Then a nonlinear differential equation can be written as

N(u) + L(u) − f(r) = 0 (B3)

A homotopic of the general differential equation in (B2) (He, 1999; Ates and Zegling, 2017) is

H(v, p) = (1 − p)[L(v) − L(u 0)]+ p[D(v) − f(r)] = 0, p ∈ [0, 1] (B4)

where u 0 is the initial approximation of Eq. (B2), and note that the series decomposition solution is defined in terms of v as an approximation to u.
Eq. (B4) can also be written as

H(v, p) = L(v) − L(u 0)+ pL(u 0)+ p[N(v) − f(r)] = 0, p ∈ [0,1] (B5)

Eqs (B4) and B5) mean that

H(v, 0) = L(v) − L(u 0) = 0 (B6)

and

H(v, 1) = D(v) − f(r) = 0 (B7)

With p being the perturbation parameter, the solution of Eqs. (B4) or (B5) is assumed to take a series form of,

v(x, p) = v0(x) + v1(x)p+ v2(x)p2 + ...+

=
∑∞

k=0

vk(x)pk
(B8)

which, for p = 1, gives the desired solution of Eq. (B4) or (B5) as

v(x, p) = v0(x) + v1(x) + v2(x) + ...+

=
∑∞

k=0

vk(x)
(B9)

The accuracy of the HPM in solving nonlinear and complex fluid flow problems has been very satisfactory following comparisons with the
traditional approximation methods (He, 2003) and classic numerical methods such as the Runge-Kutta (Hatami et al., 2016). This innovative method
has been applied to solve various types of nonlinear problems as an alternative to traditional numerical methods (Mohyud-Din et al., 2009).
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