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Abstract
This research explores the use of the rotation-based outlier detection (ROD) method for identifying geochemical anomalies 
in a multivariate stream sediment dataset from Iran, targeting porphyry and vein-type Cu mineralization. Geochemical 
datasets often present challenges for outlier detection methods like local outlier factor (LOF) and k-nearest neighbor (KNN), 
which rely on distance or density metrics and require parameter tuning (e.g., neighborhood size k). High-dimensional feature 
spaces further complicate their application. ROD, in contrast, offers a parameter-free, rotation-based approach that effectively 
analyzes geometric relationships between samples in subspaces, mitigating the curse of dimensionality. This makes ROD 
particularly suited to high-dimensional geochemical datasets, where complex relationships between elements (due to lithology 
or mineralization) are critical for identifying anomalies. This study compares ROD with LOF and KNN using two subsets 
of geochemical variables (Ag, As, Au, Bi, Co, Cr, Cu, Mo, Ni, Pb, Sb, Zn; and Ag, As, Au, Cu, Mo, Sb) and evaluates its 
performance based on the receiver operating characteristic (ROC) analysis and the number of known mineral occurrences 
detected in anomaly class. ROD outperforms LOF and KNN, capturing 78% (14 out of 18) of known Cu-bearing mineral 
occurrences. Moreover, ROD shows better conformity between 10% of highest outlier scores and Cu-mineralization sites. 
Rotation cost function in ROD, evaluated using the median absolute deviation (MAD), enhances its ability to detect outli-
ers by focusing on orientation rather than distance, and by reducing noise misclassification. In addition, the parameter-free 
design of ROD and improved handling of high-dimensional data makes it a promising tool for geochemical exploration, as 
it captures unique mineralization-related signals that might be missed by traditional methods.
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Introduction

Multivariate geochemical data resulting from rock chips, 
soil, or stream sediment sampling can serve as potential 
datasets for unsupervised outlier detection methods (e.g., 
Shahrestani and Sanislav 2025a). Unsupervised machine 
learning models have proven highly effective for anomaly 
detection, primarily because they do not require labeled 

samples (e.g., Shahrestani and Carranza 2024). Outlier 
detection methods rank samples based on their deviations 
from normal behavior, reflecting signals originating from 
anomalous sources. These methods are classified into dif-
ferent groups based on the techniques employed to isolate 
outlier samples, including statistical approaches, proxim-
ity-based methods, density-based techniques, clustering 
methods, ensemble approaches, and machine learning 
algorithms (e.g., Shahrestani and Carranza 2024; Zimek 
et al. 2012). In the context of geochemical exploration, 
there is an increasing trend toward using unsupervised 
outlier detection approaches, such as restricted Boltzmann 
machines (RBMs) (Chen 2015), one-class support vector 
machines (OCSVMs) (Chen and Wu 2017; Shahrestani and 
Carranza 2024), dictionary learning (Chen and Sui 2022), 
deep autoencoders (Xiong and Zuo 2016), variational 
autoencoders (VAEs) (Zhao et al. 2023; Esmaeiloghli et al. 
2023), geo-HGAN (Ding et al. 2024), model averaging 
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(Wang and Zuo 2022), isolation forest (IF) (Chen and Wu 
2019), bat-optimized OCSVM models (Chen et al. 2019), 
k-nearest neighbor methods (Chen et al. 2021a), local out-
lier factor (LOF) (Puchhammer et al. 2024; Shahrestani 
and Carranza 2024), distance anomaly factors (Chen et al. 
2021b), density-based spatial clustering of applications 
with noise (DBSCAN) (Hajihosseinlou et al. 2024a), order-
ing points to identify the clustering structure (OPTICS) 
(Hajihosseinlou et al. 2024b), concentration–volume (C–V) 
fractal modeling (Afzal et al. 2011, 2016), the U value-
number fractal (U-N) and the U value-area fractal (U-A) 
methods (Ghannadpour and Hezarkhani 2022), generative 
adversarial networks (GANs) (Zhang and Zuo 2021) and 
self-organizing maps (Bigdeli et al. 2022), to name but a 
few.

From another perspective, outlier detection techniques 
can be categorized into global and local approaches (e.g., 
Liu et al. 2025; Rayana et al. 2016). Global detection algo-
rithms analyze the entire dataset, making them effective 
when outliers exhibit significant deviations from the overall 
data distribution (e.g., Puchhammer et al. 2024). In con-
trast, local detection algorithms focus on specific subsets of 
objects (e.g., Zhao et al. 2019a; Schubert et al. 2014). The 
choice between global and local outlier detection methods 
can greatly impact performance, as the data structure plays 
a pivotal role in determining the most suitable approach. For 
instance, global methods are highly effective when anoma-
lies differ markedly from the majority of the data, whereas 
local methods excel at identifying anomalies within dense 
clusters of normal behavior.

The integration of deep learning techniques in geochemi-
cal anomaly detection has garnered significant attention in 
recent years, offering advanced methods for identifying min-
eralization-associated anomalies. Zhang et al. (2021) intro-
duced a method combining deep convolutional neural net-
works (DCNNs) with pixel pair features, enhancing anomaly 
detection. Huang et al. (2022) applied Bayesian convolu-
tional neural networks to quantify uncertainty in anomaly 
predictions, improving geological interpretations. Cao et al. 
(2023) optimized a random forest model using a competitive 
mechanism and beetle antennae search to advance anomaly 
detection. To address class imbalance in training datasets, 
Shayilan and Chen (2024) proposed a SMOTified extreme 
learning machine (ELM) model, merging the synthetic 
minority oversampling technique (SMOTE) with ELMs. 
Guo and Chen (2024) improved SMOTE by integrating it 
with generative adversarial networks (GANs), creating a 
SMOTified-GAN hybrid to enhance anomaly detection and 
the performance of ELMs in mineralization detection.

Unsupervised deep learning methods for anomaly detec-
tion are categorized into reconstructive and generative 
approaches (Wang and Chen 2025). Reconstruction-based 
methods, such as autoencoders, are effective in identifying 

anomalies through reconstruction errors (Xiong and Zuo 
2016). Various methods, including continuous restricted 
Boltzmann machines (CRBMs) (Chen and Murray 2003), 
deep autoencoders (DAE) (Hinton and Salakhutdinov 2006), 
and variational autoencoders (VAEs) (Doersch 2016), have 
been shown to be effective for detecting multivariate geo-
chemical anomalies. Chen et al. (2014) applied CRBMs to 
model probability distributions in complex geological envi-
ronments, successfully identifying geochemical anomalies 
related to polymetallic mineralization. Similarly, Xiong and 
Zuo (2016) used DAEs to identify complex multivariate dis-
tributions linked to mineralization, while Chen and Shayilan 
(2022) distinguished gold mineralization-related anomalies 
using dictionary learning techniques. Furthermore, Luo et al. 
(2023) enhanced the interpretability of VAE models by inte-
grating geological loss terms. Despite their success, deep 
autoencoder networks (DANs) have faced challenges when 
recognizing multi-element geochemical anomalies, as they 
disregard spatial structures (e.g., Zuo and Xu 2024). Recent 
advancements, such as the framework developed by Soltani 
et al. (2024), integrate deep learning with spatial machine 
learning processors to incorporate local neighborhood infor-
mation and spatial non-stationarities in anomaly detection.

Spatial-based deep learning methods, such as convolu-
tional neural networks (CNNs) (LeCun et al. 1998), convo-
lutional autoencoders (CAEs) (Masci et al. 2011), and graph 
neural networks (Zuo and Xu 2023), have emerged to capture 
spatial relationships among geochemical variables. These 
methods overcome the fixed-size image limitations in CNNs 
and CAEs by allowing more flexible, graph-based modeling 
of geochemical data. Physics-constrained models further 
enhance deep learning interpretations by embedding prior 
geological knowledge and physical laws into frameworks, 
improving alignment with geological processes (e.g., Zuo 
et al. 2023). For example, Xiong et al. (2022) incorporated 
geological constraints into variational autoencoders (VAEs) 
to reveal nonlinear influences on mineralization. While 
reconstruction-based methods use reconstruction errors for 
anomaly detection, they may fail to capture anomaly com-
plexities in geochemical data (Wang and Chen 2025). Recent 
advancements in unsupervised deep learning, such as deep 
autoencoders (DAE), GANs, and graph attention networks, 
are addressing these challenges. Li et al. (2024) developed 
a 1D-CNN model that achieved 99.18% accuracy in deposit 
type classification, while DAGMM (Wang and Chen 2025) 
merges dimensionality reduction with probabilistic mode-
ling, enhancing geochemical anomaly detection. Wang et al. 
(2023) constructed an AlexNet-based CNN for automatic 
lithological identification from stream sediment data, further 
demonstrating the potential of deep learning techniques in 
geochemical exploration.

In geochemical exploration, several key factors should be 
considered when selecting an outlier detection method. First, 
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it is important to choose methods that are robust to high-
dimensional feature spaces or at least evaluate whether they 
suffer from the "curse of dimensionality." As dimensionality 
increases, the distinction between the nearest and farthest 
distances becomes less pronounced, weakening the effective-
ness of distance-based metrics (e.g., Park 2023; Beyer et al. 
1999). Second, the time complexity of the chosen method 
is crucial. For example, the angle-based outlier detection 
method (ABOD: Kriegel et al. 2008) is robust to dimension-
ality but becomes computationally expensive when applied 
to large datasets (Shahrestani and Sanislav 2025b). Third, 
consideration must be given to the number of parameters 
required by an outlier detection method and its sensitivity to 
those parameters. For instance, the accuracy of local outlier 
factor (LOF; Breunig et al. 2000) scores is highly sensitive 
to the choice of the number of neighbours (e.g., Shahrestani 
and Sanislav 2025b). Fourth, high feature density in most 
multivariate geochemical datasets can render certain criteria, 
such as within-class distances from the center, ineffective 
in some clustering-based outlier detection methods. Fifth, 
in many multivariate geochemical datasets, not all samples 
are analyzed for every element, leading to missing data. The 
outlier detection method should address this issue during 
the scoring process. Sixth, interpretability of the resulting 
outlier scores varies significantly among different outlier 
detection methods (Li et al. 2022). Finally, the effectiveness 
of an outlier detection method in delineating geochemical 
anomalies across different scales, from regional surveys to 
local investigations, should be assessed. In regional multi-
variate datasets, for example, samples are often collected 
from diverse geological settings, and the outlier detection 
algorithm should effectively capture these intrinsic sources 
of variation (e.g., Shahrestani and Carranza 2024).

These considerations highlight that the application of 
outlier detection methods in mineral exploration remains in 
its early stages, indicating a significant need for implement-
ing various detection strategies based on different criteria 
for identifying geochemical anomalies. In response to this 
need, this paper investigates the effectiveness of an outlier 
detection method known as rotation-based outlier detection 
(ROD) (Almardeny et al. 2020). In ROD, the dataset is first 
divided into successive 3D subspaces, and each subspace 
is then rotated around the geometric median to determine 
outlier scores. This approach is easy to implement and is 
parameter-free, requiring no assumptions about the under-
lying distribution. To evaluate the efficiency of the ROD 
method in detecting geochemical anomalies, the resulting 
scores are compared with those from two well-established 
local outlier detection methods, LOF and KNN, which are 
applied to a multivariate regional geochemical dataset from 
a Cu-bearing mineralization province in southeastern Iran. 
The performance of ROD is compared with LOF and KNN, 
as these methods are widely used in anomaly detection tasks 

and represent two key approaches. LOF, a density-based 
method, identifies outliers by comparing the local density 
of data points, while KNN, a distance-based method, detects 
outliers based on the distance to the nearest neighbors. 
Both methods are commonly applied to multivariate data-
sets, making them suitable benchmarks for evaluating the 
effectiveness of new outlier detection techniques. Moreover, 
the well-understood behaviors and limitations of LOF and 
KNN, such as sensitivity of LOF to parameter choices and 
challenges of KNN in high-dimensional spaces, are con-
sidered. By comparing ROD—an innovative, parameter-
free method that rotates data vectors about the geometric 
median—the aim is to demonstrate how unique approach of 
ROD addresses these challenges.

Materials and methods

Case study

The Iranian Plate is situated at the boundary between the 
Eurasian Plate to the north and the Gondwana Plate to the 
south (Aminzadeh and Rahimpour 2021). The geotectonic 
history of the Iranian Plate has been shaped by the open-
ing and closing of the Paleo-Tethys and Neo-Tethys Oceans 
(Bagheri and Stampfli 2008; Masoodi et al. 2013). It is 
believed that the Iranian Plate separated from the Eurasian 
Plate during the Late Ordovician to Early Silurian, form-
ing part of the passive margin of the Paleo-Tethys Ocean 
(Nataĭin and Şengör, 2005). The subduction of the oceanic 
crust of the Paleo-Tethys beneath the Eurasian Plate led to 
the rifting of Gondwana and the spreading of the Neo-Tethys 
Ocean in the Early Triassic (Stampfli and Borel 2002). The 
Neo-Tethys Ocean, located between the Iranian and Arabian 
Plates, played a pivotal role in shaping the tectonic frame-
work of the region.

The subduction of the Neo-Tethys crust beneath the 
southern margin of the Iranian Plate resulted in the for-
mation of three main tectonic belts: the Urumieh-Dokhtar 
Magmatic Belt (UDMB), the Sanandaj-Sirjan Zone, and 
the Zagros Folding and Thrusting Belt, which developed 
between the Early Jurassic and Eocene (Ghasemi and Talbot 
2006; Bagheri and Stampfli 2008). The Urumieh-Dokhtar 
Magmatic Arc, a key feature of the region, extends over 
1700 km along the NW–SE direction and is known for host-
ing numerous porphyry copper deposits associated with 
Oligo-Miocene intrusive bodies (e.g., Richards et al. 2012).

The Baft district, located within the Kerman Cenozoic 
Magmatic Arc (KCMA) of the Urumieh-Dokhtar Mag-
matic Belt (UDMB), covers an area of approximately 1250 
 km2 and presents a complex geological setting (Safari et al. 
2015). The basement of the district consists of Paleozoic 
metamorphic rocks, overlain by a Cretaceous mélange, with 
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Eocene volcanic and sedimentary formations (Fig. 1). Mio-
cene intrusive rocks, including the Lalezar granitoid and 
Rabor-Lalehzar Magmatic Complex (RLMC), intrude the 
Eocene volcanic rocks (Shafiei 2010; Srdic et al. 1972). Oli-
gocene–Miocene volcanic and sedimentary sequences are 
also present, with Quaternary deposits covering the region 
(Ghasemzadeh et al. 2022).

The northern parts of the Baft district are dominated by 
Eocene volcanic rocks, including andesites and dacites, 
which are intruded by Upper Miocene quartz monzodiorite 
and granodiorite, part of the Lalezar granitoids or RLMC. 
These granitoids exhibit high-K calc-alkaline characteristics 
and range from gabbrodiorites to granites (Moghadam et al. 
2018). Mineral compositions of the most felsic rocks in the 
region are characterized by the presence of Na-plagioclase, 
quartz, alkali feldspar, biotite, and hornblende, while gab-
bro-diorite rocks contain plagioclase (Ca-rich), hornblende, 
biotite, and clinopyroxene (Srdic et al. 1972; Dimitrijevic 
1973).

The region is economically significant due to its rich por-
phyry copper deposits, with notable mineralization at loca-
tions such as Bid Khan, Ghaleh Asghar, and Harij. These 

deposits are primarily associated with Miocene intrusive 
bodies (e.g., Dimitrijevic 1973). Additionally, vein-type 
mineralization is observed at sites such as Goghar, Ab Bahri, 
and Paynegin (Aghazadeh et al. 2015; Mohebi et al. 2015; 
Ghasemzadeh et al. 2019). The mineralization in these areas 
is linked to the hydrothermal alteration associated with the 
Miocene granitoid intrusions (Ghasemzadeh et al. 2022).

Geochemical data and preprocessing

A geochemical survey was conducted in the Baft district, 
during which 911 stream sediment samples were system-
atically collected, with an average sampling density of one 
sample per 1  km2. These samples were analyzed by geologi-
cal survey of Iran using the inductively coupled plasma—
optical emission spectrometry method (ICP-OES), while 
Au contents were determined using fire assay followed 
by atomic absorption spectroscopy (AAS) (Ghasemzadeh 
et al. 2022). Analytical reliability was ensured through the 
application of duplicate analyses, following the methodol-
ogy of Thompson and Howarth (1976), which demonstrated 

Fig. 1  Simplified geological map of Baft area with the scale of 100,000 (after Srdic et al. 1972)
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a precision of better than 10% for most analyzed elements 
(Ghasemzadeh et al. 2019).

In addition to using mineral occurrences as validation 
points for regional geochemical anomalies, several rock sam-
ples were collected from upstream areas of stream sediment 
sites that exhibited relatively high concentrations of individual 
chemical elements, as indicated by the stream sediment geo-
chemical survey (Table 1). For the multivariate geochemical 
analysis, 12 elements were selected, including the primary 
economic metal (Cu) and pathfinder elements (Ag, As, Au, 
Bi, Cu, Mo, Pb, Sb, Zn) due to their association with min-
eralization processes (e.g., Jamali 2017; Ghasemzadeh et al. 
2019), along with three geologically influenced elements (Cr, 

Co, Ni) (Table 2). To account for the compositional constraints 
inherent in geochemical data, the dataset was subjected to cen-
tered log-ratio (clr) transformation, as proposed by Aitchison 
(1986).

Outlier detection methods

Rotation‑based outlier detection approach (ROD)

Stream sediment geochemical surveys play a crucial role in 
identifying geochemical anomalies associated with anomalous 
sources such as mineral deposits and understanding geochemi-
cal dispersion patterns. Elements in stream sediments can vary 
widely in concentration due to diverse upstream sources and 
roles of weathering, erosion, transportation, and deposition 
(e.g., Shahrestani et al. 2024; Najafian et al. 2023). These pro-
cesses produce complex multivariate datasets characterized 
by inherent heterogeneities and anomalies that conventional 
statistical methods struggle to capture effectively. In this con-
text, the rotation-based outlier detection (ROD) method offers 
significant advantages by considering the relationships among 
multivariate features, enabling the detection of subtle anoma-
lies embedded within high-dimensional datasets. The concept 
of the ROD method can initially be illustrated using a three-
dimensional feature space and subsequently generalized for 
higher dimensions, which is common in most outlier detection 
tasks. Consider three collinear vectors, �⃗x , �⃗y , and ⃗z in  R3, which 
form a parallelepiped with �⃗x and �⃗y  serving as the base (Fig. 2). 
The volume of this parallelepiped can be expressed as follows 
(Almardeny et al. 2020):

where, 𝛾 = ∠(�⃗x, �⃗y)  represents the angle between vectors �⃗x  
and �⃗y , while � denotes the angle between z⃗ and the height (h) 
that is perpendicular from z⃗ to the base (Fig. 2a). Accord-
ing to the figure, vectors �⃗y and z⃗  can be generated by 

(1)volume =
���
�
�⃗x × �⃗y

�
.⃗z
��� =

�
‖�⃗x‖‖�⃗y‖sin𝛾

�
.‖z⃗‖�cos𝜃�

Table 1  Result of sample analysis for Au, Cu, Pb, and Zn in mineral-
ized samples in anomaly checking stage

No Au (ppb) Cu (ppm) Pb (ppm) Zn (ppm)

1 0.75 61 13 1108
2 0.75 2380 21 108
3 1 71 1129 968
4 1 74 1403 1126
5 3 86 13440 11622
6 5 65 1887 1600
7 13 134 17370 13350
8 18 1100 150 1840
9 20 941 1239 669
10 20 943 13 55
11 44 2824 230 797
12 71 5200 8 36
13 122 36 177 60
14 134 3450 107 405
15 184 74 121 61
16 201 186 194 93
17 476 3230 609 2140
18 561 6400 788 184

Table 2  Summary statistics 
of the raw values for the 12 
elements included in the data 
processing procedure from the 
geochemical dataset of the Baft 
area

Min Max Mean Range St.Dev Skewness Kurtosis

Ag 0.01 29.40 0.13 29.39 1.03 25.94 724.56
As 1.20 743.00 19.36 741.80 29.24 17.33 415.12
Au 0.00 0.25 0.00 0.25 0.01 15.21 310.21
Bi 0.02 2.10 0.19 2.08 0.21 4.51 26.54
Co 10.20 89.30 24.47 79.10 9.29 2.08 6.15
Cr 24.00 5810.00 330.62 5786.00 521.58 4.14 25.26
Cu 3.40 331.00 57.34 327.60 26.35 2.35 15.40
Mo 0.30 6.96 1.01 6.66 0.62 4.08 24.63
Ni 9.60 1225.00 83.58 1215.40 124.27 4.19 21.07
Pb 3.40 10000.00 45.49 9996.60 398.67 20.01 456.60
Sb 0.12 119.00 1.69 118.88 4.86 17.32 385.67
Zn 45.00 5640.00 112.47 5595.00 226.27 19.08 423.33
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counterclockwise rotating �⃗x around a diagonal line extending 
from the origin to the upper-right corner using two different 
angles, �′

1
 and �′

2
 . Consequently, the volume of the parallel-

epiped is proportional to the magnitude of �⃗x and the angle 
between �⃗x and the rotation axis (Almardeny et al. 2020).

Another essential concept in the ROD method is the geo-
metric median, which generalizes the median using the appro-
priate L1 estimator. This parameter remains unaffected by out-
liers, as it is not skewed by extreme values on either side of the 

distribution (e.g., Cheng et al. 2024). For dimensions greater 
than two, the computation process becomes more complex; 
therefore, Vardi and Zhang (2000) proposed a modified ver-
sion of the Weiszfeld algorithm to determine the geometric 
median ( gm ) of a feature space S = {X1,  X2, …,  Xm) in  Rd:

(2)

gm → T(gm) =

(
1 −

�
(
gm

)

r
(
gm

)

)+

T̃(gm) +min

(
1,

�
(
gm

)

r
(
gm

)

)
(gm)

Fig. 2  a Parameters related to 
the parallelepiped created by 
three non-collinear vectors of  
�⃗x , �⃗y , and z⃗ and rotation around 
the diagonal line (red line), � is 
angle between �⃗x , �⃗y and � is the 
angle between z⃗  and the height 
(h) (b) F∗(�) function
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where

In the equations above, gm in  Rd represents the geomet-
ric median only if it is a fixed point and satisfies the condi-
tion 

(
gm

)
≤ �

(
gm

)
 . Here, �

(
gm

)
  indicates a weight variable 

at gm , which can be either equal to �(p) —the number of 
data vectors in S that have zero Euclidean distance to gm 
during the iteration process—or equal to zero if �(p)=0. 
In the latter case, T(gm ) is considered as a weighted aver-
age of S, resulting in T(gm) = ̃T

(
gm

)
 , as outlined in the 

Weiszfeld algorithm. It is also noteworthy that gm is unique 
when the points are not collinear, and it remains invariant 
under Euclidean similarity transformations, such as trans-
lation, rotation, and reflection (Almardeny et al. 2020).

In a three-dimensional scenario, let W = { �⃗v1, �⃗v2 , …, , �⃗vn} 
in  R3 represent a series of vectors corresponding to data 
samples. If ��⃗m  in  R3 is the unit geometric median vector 
of W that defines the rotation axis, it can be demonstrated 
that for any vector �⃗v in W that is independent of ��⃗m , the 
signed volume of the parallelepiped formed by rotating 
�⃗v twice around ��⃗m—considering the right-hand rule and 
with 𝜃1 < 𝜃2 in the range of 0 to 2π—can be approximately 
represented as a cost function using the Rodrigues rotation 
formula (Almardeny et al. 2020):

In the above equation, the differences between the 
vectors in the dataset relate to their magnitudes and the 
angle � between �⃗v and ��⃗m , indicating the degree of devia-
tion from the median vector. For simplicity, (cos �sin�2) 
is denoted as F∗(�) (Fig. 2b). Since F∗(�) changes peri-
odically between 0 and 2π, it is advisable to restrict the 
analysis to the range 0 to π, as the trigonometric function 
is evaluated only for the smallest angle between �⃗v and ��⃗m . 
Additionally, for � in {0, �∕2 , �} , F∗(�) is equal to zero, 
leading to three cases: � = F∗(�) = 0 only if �⃗v= ��⃗m ; � =

�

2
 , 

where F∗(�) = 0 only if �⃗v ⟂ ��⃗m ; and � = � , where F∗(�) = 0  
only if �⃗v || ��⃗m . The maximum and minimum values of F∗(�) 
are approximately 0.385 and − 0.385 at the turning points 
(Fig. 1b), referred to as the threshold angles �1 and �2 , 
respectively.

(3)T̃
�
gm

�
=

��
Xi≠gm

�i

‖gm − Xi‖

�−1 �
Xi≠gm

�iXi

‖gm − Xi‖

(4)r
�
gm

�
= ‖R̃(gm)‖, R̃

�
gm

�
=
�

Xi≠gm

�i(Xi − gm)

‖Xi − gm‖

(5)�
(
gm

)
=

{
� (p), if gm = Xp, p = 1,… ,m

0, otherwise

(6)F
(
�⃗v, 𝛾

)
= ⇑ �⃗v ⇑

3
(cos 𝛾sin𝛾2)

Another characteristic of F∗(�) is that F∗
(
� ∈ [0,

�

2
]
)

=−F∗
(
� ∈ [

�

2
,�]

)
 , which ensures the uniqueness of the val-

ues by emphasizing points not lying in the same hyperplane 
as ��⃗m , thereby indicating the orientation of the parallelepiped. 
To preserve the proportionality of deviation characteristics 
among the data vectors, F∗(�) is adjusted to ensure it does 
not approximate � in ( �1,

�

2
]∪(�2,�] . The angles are thus 

scaled down to ( 0,�1]∪(�
2
,�

2
] . Subtracting the geometric 

median from each vector in the dataset helps reveal the rota-
tion cost of low-magnitude vectors that are collinear with 
higher-magnitude vectors while maintaining the relative 
positional relationships among the data points (Fig. 3) 
(Almardeny et al. 2020).

To determine the rotation outlier score, it is essential to 
isolate the ROD costs that are inconsistent with other costs 
(Fig. 3). The median absolute deviation (MAD) is chosen 
due to its robustness and efficiency (Leys et al. 2013):

MAD = median(
|||Xi − X̃

|||)

where X̃ denotes the median of the dataset, and Mi represents 
the outlierness score of the ith data sample. The constant 
value of 0.6745, introduced by Iglewicz and Hoaglin (1993), 
is included in Mi because, for a normal-like distribution, 
Mi approaches 1, as E(MAD) = 0.6745 for large datasets 
(Almardeny et al. 2020).

In high-dimensional scenarios (d > 3), outliers hidden 
within subspaces of complex manifolds often remain unde-
tected (Müller et al. 2012). Data may originate from vari-
ous mechanisms across individual dimensions or subsets, 
suggesting that exploring different perspectives can unveil 
outliers that remain concealed in a comprehensive attrib-
ute space (Kriegel et al. 2012). In high-dimensional feature 
spaces, authentic outliers may also become obscured due 
to the curse of dimensionality, which leads to data points 
becoming too sparse and increases noise levels (Parsons 
et al. 2004). Additionally, in such contexts, the concept 
of neighborhood loses its significance (Beyer et al. 1999), 
making methods reliant on the relative contrast of distances 
between data points increasingly unreliable (Aggarwal et al. 
2001). To address a dataset W in  Rn×d, ROD can be applied 
in the 3D subspaces {Uij, …,  UIJ} that emerge from decom-
posing the entire feature space V into subsets representing 
different combinations of the feature space {si ϵ I |  si = {Uj | j 
ϵ [J]}}. Consequently, the overall outlier score of V for each 
sample is determined by integrating the ROD scores from 
every 3D subspace (Fig. 3) (Almardeny et al. 2020).

To adapt the high-dimensional case to the standard 
three-dimensional approach, two considerations are made. 

(7)Mi =
0.6745(Xi − X̃)

MAD
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In datasets containing features with high magnitudes, 
these features can dominate the algorithm, as the ROD 
cost correlates with vector magnitude for each sample. As 
a result, the MAD may vary significantly, masking some 
three-dimensional scores. To mitigate this issue, the data 
is scaled according to the quantile range, which is robust 
to outliers (Almardeny et al. 2020):

where Xi represents the ith sample, and Q1(X) and Q3(X) 
denote the first and third quantiles of the dataset. In the sec-
ond consideration, constraining the MAD within a prede-
fined numerical range helps to correct false weights attrib-
uted by the average function to each 3D score. To address 
this, the results are scaled to the range [0,1] using the fol-
lowing formula:

In which Xij is the MAD of the ith sample and jth 
3D-subspace.

(8)Xinew =
Xi − Q1(X)

Q3(X) − Q1(X)

(9)Xinew =
1

1 + e−Xij

The LOF and KNN methods

The LOF method is a density-driven method which recently 
used to identify subtle and localized anomalies in geochem-
ical studies (e.g., Puchhammer et al. 2024; Shahrestani and 
Carranza 2024). This technique evaluates the density of a 
data point in relation to its neighbors by calculating the 
local reachable density (ρk), which measures the proxim-
ity of nearby points (Breunig et al. 2000). An LOF score 
is calculated by comparing the density of a point to the 
average density of its k-nearest neighbors. Scores greater 
than 1 indicate potential outliers due to lower relative densi-
ties (Breunig et al. 2000). Unlike global approaches, LOF 
focuses on local density variations, making it effective for 
detecting both isolated and clustered anomalies within 
irregular geochemical distributions. Studies emphasize its 
effectiveness in complex geological environments where 
traditional methods often face challenges with uneven min-
eralization distribution (Shahrestani and Carranza 2024).

The KNN method is a widely utilized approach for 
outlier detection, particularly suitable for geochemical 
studies where identifying deviations from expected pat-
terns is important (e.g., Chen et al. 2021c). This technique 

Fig. 3  Algorithm of the ROC approach (Almardeny et al. 2020)
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determines the distance between a given data point and its 
k-nearest neighbors to assess its conformity within the data-
set. Points with significantly larger distances compared to 
others are flagged as potential outliers, reflecting their dis-
tinctiveness within the data distribution (Angiulli and Piz-
zuti 2002). KNN is non-parametric, requiring no assump-
tions about the underlying data distribution, which enhances 
its versatility in handling diverse datasets. By examining 
local neighborhood relationships, KNN effectively detects 
anomalies in both clustered and dispersed datasets (Chen 
and Shayilan 2022).

Results and discussion

In this research, we utilized the Python implementation 
of the ROD algorithm (https:// github. com/ yzhao 062/ pyod/ 
blob/ master/ pyod/ models/ rod. py; Almardeny et al. 2020; 
Zhao et al. 2019b) to determine the outlier scores for all 
stream sediment samples. Additionally, we calculated the 
scores from the LOF and KNN methods using the ‘scikit-
learn’ Python library. Two criteria were employed to com-
pare the efficiency of different outlier detection methods. 
In regional geochemical exploration, the spatial locations 
of known mineral occurrences, along with mineralized 
samples, can be leveraged to evaluate the efficiency of 
various outlier detection methods in delineating geochemi-
cal anomalies. The first criterion involved constructing the 
receiver operating characteristic (ROC) curve (Fawcett 
2006) using the locations of known mineral occurrences 
and mineralized samples as true positive values, alongside 
randomly selected locations within the entire study area as 
false positive values (Wang and Zuo 2022; Nykänen et al. 
2015). A greater area under the curve (AUC) indicates a 
higher efficiency of the outlier detection methods (e.g., 
Hastie et al. 2009). The second criterion focused on the 
number of detected known mineral deposits and mineral-
ized samples in the anomaly classes of the interpolated 
multivariate geochemical map (e.g., Shahrestani and San-
islav, 2025a). Quantile classification was employed, divid-
ing the interpolated outlier score maps into four quartiles: 
Q1, Q2, Q3, and Q4. Q1 encompasses the lowest 25% of 
the data, Q2 the next 25%, Q3 the following 25%, and Q4 
the highest 25%. Since different outlier detection methods 
yield scores with varying distributions, this classification 
ensures that each quartile contains an equal proportion of 
data (e.g., Liu et al. 2024; Wang and Zuo 2022). When cre-
ating the KNN and LOF models for detecting geochemical 
anomalies in high-dimensional data, several parameters 
must be defined. The most critical of these is the value 
of k, which should be tailored to the characteristics of 
the dataset. Other parameters can typically be set to their 
default values. In regions with established data or “ground 

truth,” the optimal k can be found through trial and error. 
However, for unexplored or greenfield areas lacking known 
mineral occurrences, selecting an appropriate k becomes 
more challenging (Chen et al. 2021c). Given the sensitivity 
of LOF and KNN to the number of neighboring samples 
(k), we calculated the scores of the LOF and KNN meth-
ods with varying k values ranging from 10 to 90 (approxi-
mately 10% of data points) to identify the k value at which 
LOF and KNN generate the most effective geochemical 
maps for capturing known mineralization (Fig. 4). From 
Fig. 4, two characteristics of the LOF and KNN methods 
are apparent. First, LOF exhibits greater sensitivity to k 
values compared to the KNN method, with the AUC sig-
nificantly increasing as the number of neighbor samples 
grows. The second observation is the peak AUC value in 
both outlier detection methods when 70 samples are con-
sidered as the size of the neighborhood. Therefore, this 
optimal k value is selected for comparison of LOF and 
KNN with the ROD method.

After the optimal neighboring size was selected, the per-
formances of LOF (k = 70), KNN (k = 70), and ROD were 
compared in delineating geochemical anomalies originating 
from anomalous sources. Figure 5 illustrates the anomaly 
maps based on outlier scores derived from LOF, KNN, and 
ROD. As shown in Fig. 6, which presents the ROC curves, a 
slight superiority of ROD over both LOF and KNN is dem-
onstrated. However, comparable contrasts between hard data 
(i.e., mineralization) and randomly selected anomalous and 
non-anomalous points are exhibited in the anomaly maps 
produced by KNN and ROD. Additionally, mineralized sam-
ples were also considered validation points in this analysis 
(see Fig. 5). The same trend was observed when mineral-
ized samples were used as validation points, revealing higher 
AUC values for ROD and an increase in the efficiency of 
LOF compared to ROD and KNN. This suggests that while 
a slight edge in overall performance is offered by ROD, 
improved efficacy of LOF is also shown when the valida-
tion dataset includes mineralized samples. These findings 
indicate that valuable insights into the delineation of geo-
chemical anomalies are provided by all three methods, with 
ROD emerging as a particularly effective approach.

One important characteristic of outlier detection meth-
ods is their robustness to the number of dimensions. To 
examine this feature, two different datasets with varying 
feature space sizes were selected. In the first group, all 
trace elements, including Ag, As, Au, Bi, Co, Cr, Cu, Mo, 
Ni, Pb, Sb, and Zn, were considered. In the second group, 
Pearson correlation values were first calculated between 
all clr-transformed trace elements, and one element was 
selected from those with high correlation values. Conse-
quently, six elements, namely Ag, As, Au, Cu, Mo, and Sb, 
were chosen for group 2.

https://github.com/yzhao062/pyod/blob/master/pyod/models/rod.py
https://github.com/yzhao062/pyod/blob/master/pyod/models/rod.py
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Three outlier detection methods were then applied to both 
groups of elements. In the context of geochemical explo-
ration based on regional multivariate data, the number of 
known mineral occurrences in the anomaly class served 
as a benchmark for comparing the geochemical anomaly 
maps produced by different anomaly detection methods 
(see Fig. 5). The classified geochemical maps reveal three 
primary zones of geochemical anomalies. The first zone is 
located in the northern and northeastern parts of the study 
area, encompassing the majority of mineral deposits and 
aligning with the presence of volcanic rocks in these regions 
(Fig. 1). The second zone is situated in the western portion 
of the area and is likely associated with the influence of 
pyroxene-andesite lava flows and altered mafic and ultra-
mafic rocks. The third zone is in the southeastern part of the 
study area, corresponding to altered mafic and ultramafic 
rocks. Table 3 was designed to compare the clr-transformed 
Cu data, LOF, KNN, and ROC applied to the first and 

second groups of elements. The findings in Table 3 reveal 
that the single-element Cu anomaly map outperforms LOF 
in delineating known Cu mineral occurrences. Additionally, 
LOF was found to be more sensitive to the size of the input 
feature space compared to KNN. Moreover, the ROD out-
lier detection method demonstrated significant performance 
in detecting known mineral deposits compared to LOF and 
KNN across both dataset groups. The results suggest that 
adding a new dimension (i.e., a geochemical element) to the 
ROD procedure can enhance the effectiveness of the outlier 
detection practice. This is particularly relevant in geochemi-
cal exploration, where mineral occurrences typically emit 
unique multivariate geochemical signals that can be differ-
entiated from non-anomalous sources. Consequently, an out-
lier detection method capable of managing high-dimensional 
data without compromising performance is of great interest.

Another characteristic of outlier detection methods is 
the spatial relationships between the highest outlier scores 

Fig. 4  ROC curves based on LOF and KNN scores considering various number of nearest neighbors implying more sensitivity of LOF relative 
to KNN
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and the locations of validation points, which in this case 
are known mineral occurrences and mineralized samples. 
Figure 7 illustrates the locations of the top 10% of scores 
obtained from LOF, KNN, and ROD. Five zones are high-
lighted in Fig. 6 to facilitate the comparison of the spatial 
distribution of top outlier scores from the three methods. 
In zone 1, the top scores from KNN and ROD demonstrate 
spatial proximity to known Cu mineralization, with this 
proximity being more pronounced in ROD compared to 
KNN. In zone 2, only one top score stream sediment sam-
ple is observed relative to mineralization for both LOF and 
KNN, while no top score sample is identified in ROD. In 
zone 3, similar performance is noted across all three out-
lier detection methods. In zone 4, distinct patterns emerge 
for KNN and LOF in comparison to ROD, where, similar 
to zone 1, the top scores from ROD are closer to miner-
alization compared to those from KNN and LOF. In Zone 

5, the absence of validation points makes it impractical to 
assume the superiority of any particular method.

The LOF and KNN methods are widely utilized in geo-
chemical anomaly detection, particularly in mineral explora-
tion. LOF, a density-based algorithm, is highly effective at 
identifying local anomalies within heterogeneous geological 
datasets by leveraging spatial neighborhood relationships 
(Puchhammer et al. 2024). Unlike global anomaly detection 
techniques such as isolation forest (iForest), LOF excels in 
analyzing stream sediment geochemical data with varying 
concentration levels, as it can detect deviations from local-
ized geochemical patterns that might otherwise be over-
looked (Puchhammer et al. 2024). Another advantage of 
LOF is its independence from covariance estimation, as it 
strictly relies on Euclidean distances, allowing for the appli-
cation of isometric transformations in compositional data 
analysis (Puchhammer et al. 2024). Similarly, KNN, which 

Fig. 5  Classified geochemical anomaly maps based on interpolated outlier scores emerging from (a) LOF, b KNN, c ROD (all trace elements), d 
ROD (group_2)
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forms the basis of LOF, is a non-parametric method that 
identifies anomalies by comparing each sample to its closest 
neighbors. Its strength lies in its ability to capture complex 
nonlinear patterns in geochemical datasets without requiring 

distributional assumptions, making it useful in both super-
vised and unsupervised anomaly detection scenarios (Chen 
et al. 2021c). Additionally, KNN is highly intuitive and 
can be adapted to different geological settings, particularly 

Fig. 6  ROC curves based on 
LOF, KNN, and ROD scores 
demonstrating the efficiency 
of ROD over LOF and KNN 
considering (up) mineral occur-
rences, and (down) mineralized 
samples
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where geochemical anomalies exhibit localized clustering 
(Puchhammer et al. 2024).

Despite their advantages, both LOF and KNN have 
significant limitations. A major drawback of LOF is its 
reduced effectiveness in high-density sampling areas, 
where geochemical values transition gradually toward 
mineralized zones. In such cases, samples located 
directly over mineralized deposits may not be flagged 
as anomalies, limiting the method applicability in cer-
tain geological environments (Puchhammer et al. 2024). 
Furthermore, LOF performance is highly sensitive to the 
choice of the nearest-neighbor parameter (k), with opti-
mal results typically achieved when the number of input 
variables is limited to five to ten. Beyond this range, 
the reliability of distance-based calculations decreases 
due to the curse of dimensionality, which affects both 
LOF and KNN (Shahrestani and Sanislav 2025b). The 

selection of k is particularly challenging in greenfield 
exploration, where no known mineral occurrences exist, 
making parameter optimization difficult (Chen et  al. 
2021c). Even in well-studied regions, determining the 
appropriate k value often requires a trial-and-error 
approach, relying on available ground truth data (Chen 
et al. 2021c). Additionally, the KNN framework underly-
ing LOF is computationally intensive for large datasets, 
as it requires calculating pairwise distances between all 
samples, making it less efficient for regional-scale geo-
chemical surveys (Aggarwal and Sathe 2017).

Based on the results, ROD is a promising outlier detec-
tion method for geochemical anomaly detection tasks due 
to apparent advantages over some well-stablished outlier 
detection methods including LOF and KNN. In geochemi-
cal exploration, where datasets often include multiple ele-
ments and complex relationships due to various sources of 
variability such as lithology or mineralization, ROD has 
demonstrated its effectiveness in improving the accuracy of 
anomaly detection. This research reveals a key strength of 
ROD to handle high-dimensional data. Geochemical data-
sets typically contain multiple elements that which of which 
may partially explain the geochemical patterns associated 
with mineralization. ROD performs well when additional 
dimensions are introduced. Unlike LOF and KNN, which 
are sensitive to high-dimensional data, ROD uses subspaces 
to minimize the curse of dimensionality. This makes ROD a 
proper candidate for geochemical exploration, where mineral 
occurrences release unique geochemical signals that may 
only be identifiable when the relationships between ele-
ments are considered. By applying rotation-based detection, 
ROD can better capture these complex signals and avoid 
the performance issues LOF and KNN encounter in higher-
dimensional spaces.

Another advantage of ROD is its rotation cost function, 
which is particularly well-suited to detecting anomalies 
in geochemical data. The method uses a rotation-based 
approach to analyze the geometric relationships between 
samples, detecting anomalies based on their orientation in 
subspaces rather than relying solely on distance or density. 
This makes ROD highly effective in identifying geochemical 
outliers, where anomalies may not always be distinguished 
by their proximity to neighboring samples but rather by 
their overall deviation from expected geochemical patterns. 
ROD is less dependent on subjective parameters such as 
neighborhood size (k), which often require careful tuning 
in methods like LOF and KNN. The independence of ROD 
from this parameter provides a practical advantage over 
LOF and KNN, both of which require careful selection of k 
to achieve optimal results, particularly in the case of LOF. 
Furthermore, ROD, uses MAD in its evaluation of rotation 
costs, which enhances its ability to identify true anomalies 
while reducing the likelihood of classifying noisy points 

Table 3  Number of mineral occurrences detected by single-variate 
clr-transformed Cu data, LOF, KNN, and ROD anomaly maps

A: Threshold, B: Number of deposits in each class, C: Relative num-
ber of occurrences (%) in each class

Method A B C

Cu univariate anomaly map Q1 3 16.7
Q2 1 5.6
Q3 4 22.2
Q4 10 55.6

LOF_70 Q1 1 5.6
Q2 4 22.2
Q3 8 44.4
Q4 5 27.8

LOF_70_group_2 Q1 1 5.6
Q2 3 16.7
Q3 7 38.9
Q4 7 38.9

KNN_70_ Q1 0 0.0
Q2 3 16.7
Q3 5 27.8
Q4 10 55.6

KNN_70_group_2 Q1 0 0.0
Q2 3 16.7
Q3 6 33.3
Q4 9 50.0

ROD Q1 1 5.6
Q2 1 5.6
Q3 2 11.1
Q4 14 77.8

ROD_group_2 Q1 1 5.6
Q2 1 5.6
Q3 4 22.2
Q4 12 66.7
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Fig. 7  Spatial distribution of top 10% outlier scores emerging from LOF (a), KNN (b), and ROD (c) relative to known Cu mineralization
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as outliers. The ROD method has potential limitations in 
identifying geochemical anomalies. Its high computational 
complexity arises from breaking the entire attribute space 
into multiple 3D subspaces, making it inefficient as dimen-
sionality increases, leading to long processing times with 
high-dimensional datasets. Additionally, ROD may struggle 
to detect anomalies that span across multiple dimensions 
since it focuses on localized subspaces rather than the over-
all dataset structure. While it does not require assumptions 
about statistical distributions, its reliance on the geometric 
median for rotation makes it sensitive to changes in data 
distribution, which can affect performance in skewed or mul-
timodal datasets. Furthermore, selecting a limited number of 
3D subspaces to enhance efficiency could reduce precision, 
resulting in missed anomalies if the chosen subspaces are 
not appropriate.

The ROD method is effective in high-dimensional geo-
chemical datasets but does not explicitly consider spatial 
relationships or compositional associations between ele-
ments. While ROD excels at identifying statistical outliers 
by focusing on geometric relationships in feature space, it 
fails to account for the spatial context of the data or the 
geological processes influencing geochemical distributions. 
Consequently, ROD may struggle to distinguish between 
anomalies linked to geological processes and those arising 
from noise or data inconsistencies. However, identifying 
geochemical anomalies requires consideration of both spa-
tial patterns and elemental associations, as these factors are 
crucial in differentiating mineralization-related anomalies 
from background variations (Zuo and Xu 2024). To address 
this need, a novel methodology involving a dual-branch deep 
learning model is proposed, which integrates a graph convo-
lutional autoencoder (GCN-AE) for spatial feature extraction 
and a long short-term memory autoencoder (LSTM-AE) for 
spectral feature analysis. This approach captures both spa-
tial relationships among geochemical samples and composi-
tional variations within individual samples (Xu et al. 2024). 
In contrast, while ROD is effective in high-dimensional 
datasets, its lack of explicit incorporation of spatial context 
may limit its sensitivity to mineralization patterns that are 
spatially controlled.

Conclusions

This study highlights the distinct advantages of the ROD 
method in geochemical anomaly detection, showcasing its 
effectiveness compared to traditional techniques like LOF 
and KNN. ROD consistently demonstrates superior perfor-
mance in high-dimensional datasets common in geochemi-
cal exploration, where complex interactions among multiple 
elements, influenced by factors such as lithology and min-
eralization, present significant challenges for conventional 

methods. By addressing the curse of dimensionality through 
subspace analysis, ROD maintains strong performance even 
as additional variables are introduced, excelling in the iden-
tification of subtle geochemical signals associated with 
mineralization that other methods may overlook. A key 
advantage of ROD is its enhanced sensitivity, which allows 
for better detection of mineral occurrences by focusing on 
the intricate relationships between elements. This capability 
is evident in its superior AUC values and improved detec-
tion of known mineral occurrences in anomaly maps and 
ROC curves, effectively delineating anomalous areas while 
minimizing false positives. Such performance highlights the 
potential of ROD for advancing geochemical exploration. 
Despite its promising performance, there are opportunities 
for further improvement in the ROD method. One poten-
tial enhancement could be optimizing the selection of sub-
spaces informed by geochemical domain knowledge. This 
approach may refine the identification of outliers associated 
with specific mineralization types, leading to improved accu-
racy. Additionally, future work aims to utilize ROD on a 
limited number of 3D subspaces of interest. This strategy 
is designed to speed up the running time of method while 
maintaining its precision, thereby enhancing its practicality 
for geochemical analysis.
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