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ABSTRACT

Secure multi-party computation (MPC) is a fundamental concept in distributed

cryptography where a set of n participants with their private inputs wish to com-

pute any given function without revealing any information about their inputs. The

given function ranges from a simple summation to in-depth multiplication which

can simulate many problems in real-world cryptography where the parties need to

maintain privacy of their inputs (e.g., private auction, distributed keys generation

of cryptosystems, privacy-preserving machine learning, set intersection, electronic

voting and etc.). So, this system is the building block of many cryptographic mod-

els.

It is usually assumed that the security of this system is threatened by two types

of adversaries which can corrupt a subset of the total participants: either passive

(semi-honest) or active (malicious). A passive adversary can read the inputs of the

corrupt parties, trying to obtain information about the honest players’ inputs. An

active adversary can additionally make the corrupt parties deviate from the protocol

in an arbitrary fashion to change the outcome of the computation.

Multi-Party Computation from Pre-Processed Information

In this study, we investigate on arithmetic MPC using pre-processed values which

can be generated and computed in an offline pre-processing phase at any time before

implementing the actual online computation in MPC primitives. These values are

uniformly random and can be generated and distributed either by a trusted third

party (initializer) or the participants themselves. Here, the point of having a pre-

processing phase is that the parties do not need to know/hold their private inputs in

this phase while they are able to evaluate a given function much faster than normal

MPC protocols with information-theoretic security using the pre-processed random

values in the online computation phase.

Having said about the idea of pre-distributed random values, we first employ



this technique to propose two general MPC protocols and an application scheme of

MPC in distributed keys generation of a cryptosystem. Namely, our contributions

for general MPC are as follows:

1. Secure Multi-Party Computation Using Pre-distributed Information from an

Initializer : An initializer is a type of third party which distributes some ran-

dom values in the pre-processing phase and does not get involved in the actual

online computation. Our protocol needs only one round of online computa-

tion for both addition and multiplication gates (operations). The protocol is

unconditionally secure against a passive adversary corrupting a coalition of t

parties, and the communication complexity for a multiplication is linear.

2. Unconditionally Fast Secure Multi-party Computation with Multi-depths Gates :

The evaluation of n-inputs multiplication in just one communication round of

online computation is achieved in this contribution. This results a fast compu-

tation technique of any given function with multi-depth multiplications. The

protocol is unconditionally secure against t participants corrupted by a passive

adversary.

3. Efficient Distributed Keys Generation of Threshold Paillier Cryptosystem: As

an important application of MPC in real-world cryptography, an efficient

scheme of distributed keys generation of Paillier cryptosystem is presented.

The efficiency is in terms of the required participants in online computation

and the communication overhead. The model is also secure against t parties

corrupted by an active adversary.

Distributed Oblivious Polynomial Evaluation

Oblivious polynomial evaluation (OPE) is a special case of two-party computa-

tion where a sender party P1 holds a polynomial f(x) of degree k and a receiver

party P2 has a value α. They wish to perform a secure computation such that P2 ob-

tains the value f(α) while neither party gets any information about the other party’s

private input. Distributed oblivious polynomial evaluation (DOPE) is a variant of



OPE where the main two parties communicate with a set of t distributed cloud

servers instead of direct communication with each other. The advantage is that this

system is more decentralized and secure compared to the traditional OPE since it

is less prone to the single point of failure attack. We also give three contributions

of DOPE models as follows:

4. Verifiable DOPE from Somewhat Homomorphic Encryption, and the Extension

to DOT : The servers employ additive homomorphic encryption to compute the

encrypted shares of the outcome. This protocol preserves the security against

an active adversary corrupting a coalition of t− 1 cloud servers. The scheme

is also extended to a protocol of secure
(
1
2

)
distributed oblivious transfer.

5. Outsourcing Verifiable DOPE from Threshold Cryptography : A lightweight

DOPE scheme is presented where the main expensive computation of secure

decryption procedure is outsourced to the cloud servers using threshold cryp-

tography. This technique makes it possible that a receiver party P2 with a

low-computation device (e.g., a mobile or a laptop) gains the output. The se-

curity is maintained against a coalition of corrupt t−1 servers and the opposed

party, and it offers a linear communication complexity.

6. Fair Distributed DOPE via Bitcoin Deposits: Compute-as-a-Service: We present

the first fair and robust DOPE protocol using Bitcoin deposit transactions.

The fairness property ensures that an honest cloud server gains the reward

for conducting a computation service while a corrupt server has to pay some

penalty amount to an honest party. A non-interactive fault-detection tech-

nique is proposed to detect a corrupt server/party. Thus, the perfect security

is maintained against an active adversary.

Note that all the contributions above are based on peer-reviewed articles, which

have been already published, in order to improve on the cutting-edge filed of MPC

and the related area DOPE. To summarize, the aim of this thesis is to provide new

schemes and practical tools for the improvement of the mentioned fields in terms of

the efficiency and security.
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Chapter 1

Introduction

It is quite an interesting fact that various quantitative and even qualitative problems

can be expressed by arithmetic functions. A very common case is when some parties

want to solve a problem by evaluating the function while they need to preserve their

privacies. This is where multi-party computation (MPC) can help. MPC is a broad

and fundamental concept in distributed cryptography where n parties P1, . . . , Pn

with their private inputs x1, . . . , xn wish to obtain the output of an agreed function

using their inputs without revealing any information about the inputs. The func-

tion can contain several addition and multiplication operations. Indeed, MPC is an

important building block for building secure distributed system and reducing the

required trust between the participants. It has various practical applications such

as but not limited to private auction [18], satellite collision [67], privacy-preserving

machine learning [79], secure statistical analysis of personal information [17], dis-

tributed keys generation of cryptosystems [59], confidential benchmarking [32] and

protection against side-channel attacks in hardware [13, 85, 93]. Figure 1.1 illus-

trates a MPC system with n participants.

1.0.1 General Security Model

It is assumed that an adversary can corrupt a subset of total parties in this

system where there are two types of adversaries: either passive (semi-honest) or

active (malicious).
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Figure 1.1 : A MPC system with n participants

A passive adversary can read the internal information of corrupt players in the

attempt to obtain as much as possible information about the honest parties’ inputs.

In addition to this ability, an active adversary can make the corrupt players deviate

from the protocol in an arbitrary fashion trying to forge the outcome of the function

without being detected. Moreover, the adversarial parties are assumed to be either

computationally bounded or computationally unbounded. This assumption suggests

that an adversary can have limited time and computation power (computationally

bounded) or unlimited time and computation power (computationally unbounded).

Based on this assumption, the security of any MPC protocols is divided into two

categories: either information-theoretic (unconditional) security or computational

(conditional) security. An unconditional secure MPC scheme preserves the secu-

rity against a computationally unbounded adversary, while a computational secure

MPC protocol holds the security against a computationally bounded adversary. It is

worth to mention that computationally secure protocols are less efficient and usually

need some form of public-key cryptography. Generally speaking, the security of an

unconditionally secure protocol is stronger as it does not depend on the assumptions

of the computational intractability of the adversary. However, this is achieved at the

cost of higher communication complexity compared to a computational secure pro-
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tocol. Hence, depending on the requirements and available tools, one may consider

a balance between security and efficiency to choose a suitable MPC system.

Any MPC system must satisfy two main security conditions: privacy and cor-

rectness :

� Privacy ensures that any information about the inputs of honest participants

cannot be leaked to a passive adversary, except what the parties can obtain

from the computation outcome after running the protocol.

� Correctness guarantees that the participants are able to compute the correct

outcome at the end of the protocol or detect any malicious behaviour if an

active adversary is present.

After all, we can have a better definition of a MPC system as:

Definition 1. A secure MPC system enables a set of n participants P1, . . . , Pn,

with their inputs x1, . . . , xn, to compute any given function f(x1, . . . , xn) without

revealing any information about the inputs in the presence of an adversary A, such

that A can corrupt a threshold number of t parties.

MPC systems are based on two building blocks: either secret sharing (for arith-

metic functions) or garbled circuit (for boolean functions). Since the scope of this

thesis is about arithmetic circuits, we first explain a very popular secret sharing

scheme.

1.1 Secret Sharing

We employ the Shamir’s secret sharing scheme which is a threshold method and

was first introduced by [96]. A secret holder (dealer) distributes a secret s among n

parties using a random polynomial f(x) = s + a1x + . . . + atx
t mod q where q is a

prime number with the condition q > n and the coefficients aj (for j = 1, . . . , t) are
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chosen randomly in the field Fq. Namely, the dealer sends privately a share fi to the

party Pi where fi ← f(i). In order to obtain the secret, a set of t+1 qualified parties

(access structure) pools their shares and can reconstruct the free constant (secret)

with no private interaction using the Lagrange interpolation method as follows:

f(0) =
t+1∑
i=1

fi · l0,i

Where l0,i is the Lagrange coefficient of the party Pi calculated as:

l0,i =
∏
j ̸=i

−j
i− j

Where i is the index of Pi and j is the index of every other party Pj except Pi.

Clearly, the security of this secret sharing scheme is unconditional against up to t

semi-honest participants (called t-private). More formally:

Definition 2. A threshold secret sharing scheme for distributing the secret s is t-

private if a passive adversary, corrupting any subset of up to t participants, cannot

gain any information about the secret s.

In this thesis, we denote the t-sharings [s]t as a set of t + 1 shares of a random

polynomial f(x) with the degree/threshold t and the secret s.

As an important homomorphic property, the Shamir’s secret sharing is linear where

the participants can reconstruct any linear function with no interaction [11]. Namely,

given two sets of t-sharings [s1]t and [s2]t, a party is able to locally compute a share

of the addition s1 + s2 simply by adding the two shares together as [s1 + s2]t ←

[s1]t + [s2]t. Also, a share of multiplication by a constant factor a can be calculated

as [a · s1]t ← a · [s1]t for any a ∈ Fq.

It was first shown by [98] that a malicious party, who does not follow the protocol,

can change the real secret in the reconstruction phase without being detected by

giving false information as their real share. This is where verifiable secret sharing
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(VSS) techniques are required to prevent these types of attacks in the secret shar-

ing. These techniques are categorized as either fault-detection or cheater-detection.

In the secret sharing with fault-detection, even one honest party is enough to detect

any inconsistency in the system and abort the protocol implying that the majority

can be dishonest. Generally speaking, these protocols are more efficient (lower com-

munication and computation overheads) but less accurate with low probability of

error as the honest participants are unable to find the cheater parties. On the con-

trary, the schemes with cheater-detection work with honest majority in the system

while the perfect security is achieved. This term means that the honest majority

have the ability to detect the cheaters at the cost of less efficiency.

1.2 MPC

Multi-party computation (MPC) was first introduced by Yao [100] in 1982 for the

case of two-party computation and later it was extended by [78] to the case of n par-

ties using cryptographic intractability assumptions. The first information-theoretic

MPC systems were independently presented by [10] and [24]. In particular, [10]

proposed an information-theoretic MPC protocol with the perfect security against

at most t < n/3 parties corrupted by an active adversary. Later, [92] showed that

if broadcast channels are available, unconditional security with low probability of

error is achievable in the presence of up to t < n/2 corrupt players. Also, a MPC

protocol secure against dishonest majority using cut and choose technique was given

by [39]. Generally speaking, the bilateral channels between every pair of players in

unconditionally secure MPC are assumed to be private and secure.

The functions (circuits) in MPC can include inputs addition and multiplication.

Note that the communication complexity of a MPC protocol is measured as the

maximum number of the elements in the field sent and received by the honest parties

in the protocol. As discussed in section 1.1, the secret sharing scheme is usually
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employed in unconditional secure MPC protocols. Here, a participant can calculate

a share of an addition gate with no interaction. For instance, given two t-sharings

[xi]t and [xj]t of the two inputs xi and xj, a party can locally compute the new

share [xi + xj]t = [xi]t + [xj]t of the inputs addition, and at least t + 1 honest

participants obtain the output. However, a problem arises for a multiplication gate

which reduces the level of security and efficiency. Namely, a party can compute a

share of the two-inputs multiplication xi× xj by multiplying their respective shares

together as [xi × xj]2t = [xi]t × [xj]t. It is trivial to show that the new shares

[xi × xj]2t belong to the multiplication polynomial of degree 2t. It implies that at

least 2t + 1 honest parties are required to gain the output xi × xj. Moreover, the

free coefficients of the resulted polynomial are not random which contradicts the

information-theoretic security definition [10]. In summary, the computation of the

addition gate is straightforward whilst the multiplication gate raises a bottleneck in

a MPC system.

Beaver’s Scheme

Some solutions have been proposed to deal with the multiplication problem and

perform the degree reduction of the resulted polynomial. [53] and, later, [68] pre-

sented methods for reducing the degree of a polynomial using linear feature of secret

sharing to redistribute new shares which result the same old secret (pro-active secret

sharing). A very popular and efficient technique is the Beaver’s scheme [6] where a

share of a multiplication gate is computed at the cost of distributing some random

shares and reconstructing two random numbers. Namely, three t-sharings [a]t, [b]t

and [c]t of a correlated random triple a·b = c are distributed among the participants.

Each party locally calculates two random shares of degree t as [ϵ]t = [xi]t − [a]t and

[δ]t = [xj]t − [b]t and the parties reconstruct the random values ϵ and δ. Now, each
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party can calculate a share of the multiplication y = xi · xj of degree t as follows:

[y]t = ϵ · δ + ϵ · [b]t + δ · [a]t + [c]t (1.1)

Clearly, this equation holds the linear feature of secret sharing and only t+1 parties

are required to obtain the output. It is trivial to prove the correctness of the equation

1.1 which can be written as:

[y]t = ([a]t + ϵ) · ([b]t + δ)

= ([a]t + (xi − a)) · ([b]t + (xj − b))

= [xi · xj]

The communication complexity of this technique for each multiplication gate is

linear O(n).

1.2.1 MPC from Pre-Processed Information

Perhaps the most efficient MPC protocols are the ones with pre-processed infor-

mation. The idea is that some random values are computed and distributed among

the participants in a phase before the implementation of the actual circuit computa-

tion. The generation of the random values usually requires expensive computation

power while the point is that the function evaluation stage is lightweight and can

be conducted much faster than the normal MPC systems. These protocols include

two phases:

� Offline Pre-Processing Phase: This phase is offline meaning that the par-

ticipants do not hold their inputs, and it can be executed at any time before

the computation phase. The parties conduct some expensive computation to

generate some random values (e.g., the Beaver’s triples) which can be used in

the computation phase. The generation of the pre-processed random values

can be based on some techniques including homomorphic encryption of public
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key cryptosystems [12, 35], oblivious transfer [71, 46] or using cloud servers

(commodity-based cryptography) [7, 95, 97].

� Online Computation Phase: In this online phase the participants have

their inputs and distribute them among the parties. The parties perform a

fast and cheap evaluation of the given function using the random values they

have obtained in the pre-processing phase.

This technique has recently caught the most attention as the heavy expensive parts

of the computation are transferred to the offline pre-processing phase while the

parties can enjoy the efficient and cheap information-theoretic secure computation

in the actual online phase.

1.3 Oblivious Polynomial Evaluation

Secure two-party computation is a setting of multi-party computation where

two parties with their private inputs want to execute a function computation while

the privacy of their inputs is preserved. In detail, parties P1 and P2, holding the

respective inputs x and y, jointly compute some function f(x, y) such that P1 and P2

obtain the outputs f1(x, y) and f2(x, y), respectively. This system is denoted by the

functionality (x, y) → (f1(x, y), f2(x, y)). Oblivious polynomial evaluation (OPE)

is a variant of two-party computation where a sender party P1 holds a polynomial

of degree k as f(x) = a0 + a1x + . . . + akx
k and a receiver party P2 has a value

α. They wish to conduct a secure computation such that the receiver party P2

gains the value f(α) while the sender party P1 gets nothing. The security model

must ensure that neither party obtains any information relating to the other party’s

private input except the output P2 gains, i.e. f(α). The inputs and the output are

over a pre-determined field Fq and the system can be denoted by the functionality

(f(x), α)→ (⊥, f(α)). Figure 1.2 shows an OPE system schematic. More formally:
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Definition 3. In a secure OPE system, two parties with their private inputs par-

ticipate in the system over the field Fq where the sender party P1 holds a polynomial

f(x) of degree k and the receiver party P2 has a value α. They execute a computa-

tion procedure such that P2 obtains the value f(α). The system is said to be securely

implemented if:

� P1 cannot distinguish α from a value α′ randomly chosen over the field.

� P2 cannot gain any information in relation to the polynomial f(x) except the

output f(α).

Figure 1.2 : An OPE system schematic

Background

OPE, which was first introduced by [81], is a notable building block of many

cryptographic primitives and security models such as RSA keys generation [55], data

mining [1], oblivious neural networking [23], oblivious keyword search [47], scalar

product [56], metering the number of visitors to a website [81], set intersection [48]

and electronic voting [87]. In secure information-comparison protocols, two parties

with their private inputs, say x and y, want to know whether x > y without leaking

any additional information of the inputs which can be used in password comparison,

online auction and benchmarking [41]. It also plays an important role in privacy-

preserving machine learning where a client wishes to execute a secure protocol with a

server/company to gain private information in the classification phase of a machine
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learning algorithm [41]. These algorithms usually have two phases: training and

classification where OPE plays a secure tool to obtain the output in the classification

phase. For instance, in healthcare system a patient intends to obtain a prediction

of his health status from a healthcare company holding a trained model without

revealing any information about his personal health records [57, 50].

1.3.1 Distributed Oblivious Polynomial Evaluation

The recent development of cloud computing has made it possible to outsource

main expensive computations to a number of cloud servers. distributed oblivious

polynomial evaluation ( DOPE) is a special case of OPE where the main two par-

ties communicate with a number of t designated cloud servers to outsource their

OPE computations instead of direct interactions with each other. This system of-

fers higher flexibility as the main two parties do not communicate directly and,

also, they can remain anonymous to each other. However, the main challenge is

that this approach incurs obvious security and privacy breaches as the system must

maintain the security conditions against more parties (the servers) compared to an

OPE system. One may think of using multi-party computation solutions in DOPE

systems, nevertheless, these solutions are generic and are very inefficient, especially

when large inputs are involved [1]. Figure 1.3 illustrates a DOPE system schematic.

Figure 1.3 : A DOPE system schematic
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In the literature, some studies have investigated the idea of employing either one

cloud third party [64, 57, 72, 20, 50] or a set of distributed (t ≥ 2) servers [75, 27] in

their protocols. With regards to DOPE using just one third party, [57] presented a

verifiable privacy-preserving monitoring scheme for mobile health systems with one

cloud-assisted server. Also, [50] proposed a verifiable and private OPE protocol, by

employing homomorphic encryption feature and a trusted server, to record medical

datasets. [20] formally defined the notion of private polynomial evaluation with a

designated server.

Using just one cloud server offers lower communication complexity, however, the

serious drawback is that corrupting only one server causes a central point of failure

breaking the whole security of the system. Therefore, the DOPE protocols which

outsource the computation to a number of t distributed cloud servers (t ≥ 2) are

potentially more decentralized and secure, since corrupting the t servers is less likely.

The number of t cloud servers can be denoted as the security parameter.

The first information-theoretic DOPE protocols were studied by [75]. The main

problem of their protocol is that the privacy of the parties’ inputs is imperfect

(i.e., it is not maintained against the maximum required number of t − 1 servers).

To deal with this problem, they introduced some publicly known information that

increases the communication overhead. As a result, their protocol does not seem

to be suitable and efficient for a system with large datasets. [26] proposed an

unconditionally secure DOPE protocol where the main two parties P1 and P2 are

required to communicate directly which does not meet the security condition that

the two parties are allowed to interact only with the cloud servers. We will discuss

the security model of a DOPE system later in Chapter 5.
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1.4 Motivation

As discussed earlier in this Chapter, MPC is an important structure of many

distributed cryptographic primitives. Recently, the idea of MPC from pre-processed

information has caught lots of attentions by renowned researchers due to its effi-

ciency. Furthermore, with the recent advancement in the decentralized blockchain

technology, efficient MPC systems can be a powerful tool to add security and reduce

the trust between the nodes in it. That is why we aim to give improvements on

MPC system.

DOPE is relatively a new research field and just a few number of studies has been

conducted in this field. Moreover, with the recent development of machine learn-

ing, DOPE (as a variant of OPE) has appeared as a vital component in privacy-

preserving machine learning. Therefore, more researches are required in this field to

make DOPE systems more efficient and practical in the applications of real-world

cryptography.

1.5 Organization and Contributions

In the rest of content in this thesis, each Chapter is based on a published peer-

reviewed conference article. It should be noted that each Chapter contains the

required definitions, preliminaries, security models and evaluations. That is why

we include only general definitions and background in the Introduction Chapter.

Namely, the rest of the thesis is designed as follows:

� Chapter 2: An unconditionally MPC protocol is proposed using a third party

initializer where the initializer is just involved in the offline pre-processing

phase [58]. In terms of the efficiency, this protocol can be considered as an

alternative technique to the Beaver’s scheme.

� Chapter 3: We give an unconditionally secure MPC scheme where the eval-
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uation of a function with n-inputs multiplication is conducted in only one

round of communication in the online computation phase which improves on

the communication round complexity in this field. This ability results a fast

computation of any given function in just one online communication round

[60].

� Chapter 4: We present an efficient and secure scheme of distributed keys gen-

eration of threshold Paillier cryptosystem using the MPC from pre-processed

information [59]. It gives improvements on the required participants and the

communication complexity in the online computation phase for the keys gen-

eration of this cryptosystem in the threshold fashion.

� Chapter 5: The first verifiable DOPE system is proposed using the homomor-

phic feature of the Paillier encryption system. The protocol is also extended

to a system of secure
(
1
2

)
distributed oblivious transfer [61].

� Chapter 6: We give a secure lightweight DOPE scheme where the main

expensive computation of the decryption procedure is outsourced to the cloud

servers using the idea of threshold cryptography [63]. This technique makes

it possible that a receiver party with a low computational power device can

participate in the DOPE and obtain the output.

� Chapter 7: The first fair and robust DOPE system is presented by employing

Bitcoin deposit transactions [62]. The fairness property ensures that an honest

cloud server gains the reward for performing a computation service while a

corrupt server compensates some penalty amount to an honest party.

� Chapter 8: Finally, this Chapter gives the conclusion of this thesis and some

potential suggestions for future research.
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Chapter 2

Secure Multi-Party Computation Using

Pre-Distributed Information from an Initializer

2.1 Introduction

In this Chapter, we propose an information-theoretic secure MPC protocol by

employing an initializer party in the pre-processing phase. Note that, as it was

previously discussed in the section 1.2.1, we utilize the technique of MPC from pre-

processed information in the scope of this thesis. An initializer is a third party

which is just involved in the offline pre-processing phase. In fact, it does not need to

know the function to be computed, nor the players’ inputs, it just distributes some

raw materials used for the actual computation. This idea allows to have an efficient

online computation phase where cheap information-theoretic primitives are used.

In detail, our protocol is a threshold (t + 1, n) MPC system based on the Shamir’s

secret sharing which was discussed in section 1.1. More formally:

Definition 4. A threshold MPC system enables a set of (t + 1, n) (called t + 1 out

of n) participants P1, . . . , Pn, with their private inputs x1, . . . , xn, to compute any

given function f(x1, . . . , xn) without revealing any information about the inputs.

Note that this definition implies that the system is t-private where it must hold

the privacy condition against at most t parties corrupted by a passive adversary.

Indeed, it defines the security level of a MPC protocol where the privacy of the

honest participants’ inputs and the actual protocol outcome is preserved against the

maximum t semi-honest parties [54].
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2.1.1 Background

In the literature, some renowned MPC studies have utilized the method of ran-

dom pre-processed information before the actual computation in both boolean circuit

[14, 77] and arithmetic circuit [12, 40, 35]. Commodity-based cryptography was first

introduced by [7]. The idea of employing an initializer server in a pre-processing

phase was first suggested by Rivest (1999) [94] to propose efficient unconditionally

secure commitment and 1-out of-2 Oblivious Transfer protocols. Later, it was also

used in the MPC studies of [39] and [30] to generate random triples in an efficient

way before the actual computation. Recently, [25] presented a protocol where some

pre-computed information is distributed by an initializer in the pre-processing phase

and the online phase is conducted using oblivious linear evaluation in the presence of

a passive adversary. With regards to employing more than one server, [97] proposed

a MPC protocol where a set of raw triples is distributed by cloud service providers

in a pre-processing phase. An important drawback of using more than one server is

that it causes much higher communication complexity in the pre-processing phase

since the participants must communicate with multiple servers to receive the re-

quired information.

2.1.2 Our Contribution

We present an arithmetic information-theoretic secure MPC protocol which com-

putes a share of inputs addition and multiplication gates with the same multiplica-

tive depth in parallel with no interaction by employing an initializer server [58].

It also can be extended to compute a share of multiplication gates with different

multiplicative levels. Our protocol needs only n ≥ t + 1 participants in the both

offline and online phases and it is unconditionally secure against a coalition of t par-

ticipants controlled by a passive adversary. The protocol requires only one round of

secret sharing in the online phase that is used for both the inputs addition and the
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same-level multiplication gates. Hence, both of these computation gates can be con-

ducted in parallel. This can be achieved at the cost of two rounds of reconstruction

in the online phase and with the linear communication complexity O(n). Therefore,

our protocol can be considered as an alternative to the Beaver’s scheme in terms

of the efficiency. Furthermore, the share of multiplication gates with different mul-

tiplicative depths can be computed by implementing it in different communication

rounds.

2.2 Outline

Our model employs an independent initializer in the pre-processing phase, to

distribute random values among the participants in a probabilistic functionality.

Suppose, two input holders Pi and Pj with their corresponding inputs, xi and xj, are

given two random numbers ri and rj, respectively. The idea is that Pi can calculate

two numbers, αi1 and αi2, such that f(αi1) ≃ ri and f(αi2) ≃ ri while f(xi) ̸∼= ri

where the symbols ≃ and ̸∼= show the dependence and independence notations,

respectively. The same method can be proven for Pj with his corresponding random

number rj such that f(xj) ̸∼= rj. Thus, the multiplication gate f(xi, xj) ← xi × xj

can be expressed as f(xi, xj) ̸∼= ri, rj meaning that the outcome doesn’t depend on

the pseudo-random numbers. In fact, the random numbers just ensure the privacy

condition of our protocol. This trick achieves the possibility of computing a share of

the both addition and multiplication gates in parallel. Moreover, this computation

phase can be conducted using just one round of online secret sharing by the input

holders.

2.3 The Protocol

Our protocol consists of one offline pre-processing phase and an online phase. It can

be executed in parallel for addition gates and multiplication gates with the same
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multiplicative depth, with the capability of being extended to the multiplication

gates with intermediate levels in any given function f(x1, . . . , xn). It is assumed

that private channels between the players are secure and synchronous.

2.3.1 Pre-Processing Phase

This offline phase can be executed by an initializer T at any time before the

online computation phase and it is operated in a probabilistic assumption. Note

that this pre-computed information can be given to the players or purchased by

them before the actual computation. Let the inputs multiplication gate be xi · xj

belonging to the two input holders, Pi and Pj, and also a n-inputs addition gate

be
∑n

i=1 xi in the circuit. Suppose n participants want to compute a share of these

gates in parallel. Fig 2.1 illustrates the detail of the offline pre-processing phase.

� The initializer T generates n random numbers ri (for i = 1, . . . , n) and dis-

tributes them by the t-sharings [ri]t among the participants.

� For the multiplication gate xi · xj , T calculates the value R = ri · rj and

distributes the t-sharings [R]t among the participants.

� T leaves the protocol and takes no step further.

Figure 2.1 : The offline pre-processing phase of our proposed protocol

The communication upper bound of this phase for each multiplication gate xi · xj is

O(n).

2.3.2 Computation Phase

This is a deterministic online phase where the input holders and the participants

are involved to compute the given function. They employ the random pre-computed

information distributed by the initializer in the previous offline phase. This phase
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is divided into two sub-phases: sharing and actual computation.

Sharing

This sub-phase is implemented once for both addition and multiplication gates.

Figure 2.2 shows the online sharing sub-phase.

Inputs: Each input holder Pi (for i = 1, . . . , n) has the input xi.

� Each input holder Pi distributes the t-sharings [xi]t of his input among the

participants.

� Each participant Pk (1 ≤ k ≤ n) computes two new shares, using the cor-

responding random share ri distributed by T in the pre-processing phase, as

follows:

[zi]t = [xi]t + [ri]t

[yi]t = [xi]t − [ri]t

Figure 2.2 : The online sharing in the computation phase

Addition

Here, the actual online computation of the addition gate takes place where each

participant is able to compute a share of an inputs addition gate with no interaction.

This is as efficient as the homomorphic secret sharing method for the addition gate.

Figure 2.3 presents the online computation of the inputs addition gate.
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Output: Each participant Pk among a set of t + 1 participants (1 ≤ t + 1 ≤ n)

computes a share of f(x1, . . . , xn) = x1 + . . .+ xn =
∑n

i=1 xi.

� Each Pk computes the new share of the inputs addition as follows:

[

n∑
i=1

xi]t =

∑n
i=1([zi]t + [yi]t)

2

Figure 2.3 : online computation sub-phase of the inputs addition gate

Now, we evaluate the security conditions of the proposed inputs addition gate based

on the general MPC security conditions described in section 1.0.1.

Correctness

Theorem 1. Each participant has the correct share of the function f(x1, . . . , xn) =∑n
i=1 xi at the end of the inputs-addition sub-phase.

Proof. Based on homomorphic nature of the Shamir’s secret sharing [11], if a set

of n ≥ t + 1 participants pools their shares, they can reconstruct the addition gate

with the following free term:

f =

∑n
i=1[(xi + ri) + (xi − ri)]

2

= x1 + . . . + xn

Privacy

Theorem 2. At the end of the inputs addition, a coalition of up to t participants

(not including Pi) cannot gain any information about the input of Pi, except the

information they can obtain from the outcome after the computation.

Proof. Without loss of generality, let x1 be the input of the player P1. The view of

at most t participants corrupted by a passive adversary (not including P1), denoted
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by V IEWA, would include the following shares:

f2 =

∑n
i=1([z1]t + [y1]t)

2

f3 =

∑n
i=1([z1]t + [y1]t)

2
...

ft+1 =

∑n
i=1([z1]t + [y1]t

2

Where, based on the threshold feature of the Shamir’s secret sharing discussed in

section 1.1, V IEWA cannot gain any information about the free term (z1 + y1) ←

[(x1 + r1) + (x1 − r1)]. Thus, the value x1 is t-private.

Multiplication

In this online sub-phase each participant computes a correct share of a two-inputs

multiplication gate. Note that the protocol can be employed for computing a share

of all the multiplication gates with the same multiplicative depth at the same time

in parallel. In other words, in a circuit with m multiplication gates with the same

multiplicative level (m gates with the same degree), it can be executed m times in

parallel.
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Output: Each participant Pk computes a share of f(xi, xj) = xi × xj in the given

function f(x1, . . . , xn).

� A set of at least t+ 1 participants pools their shares [zj ]t and [yi]t, and recon-

structs the values zj and yi, respectively.

� Each Pk computes a share of the inputs multiplication gate with no interaction

using the corresponding share [R]t, sent by T in the pre-processing phase, as

follows:

[xi · xj ]t =
zj · [zi]t + yi · [yj ]t

2
− [R]t

Figure 2.4 : online computation sub-phase of the inputs multiplication gate

Moreover, the protocol can be extended to compute a share of the multiplication

gates with different multiplicative levels such that it must be implemented for each

intermediate gate separately. As an example, suppose each participant Pk wishes to

compute a share of the function f(x1, x2, x3) = x1 · x2 · x3. First, the participants

obtain two sets of the pre-distributed information (r1, r2, R1) and (r12, r3, R2) where

R1 ← r1 · r2 and R2 ← r12 · r3. The participants compute a share of the multipli-

cation gate x1 · x2 denoted by [x1 · x2]t using the multiplication sub-protocol in one

communication round . Then, similarly, they execute the protocol in another com-

munication round re-assigning the shares [xi]t ← [x1 ·x2]t, [xj]t ← [x3]t, [ri]t ← [r12]t,

[rj]t ← [r3]t and [R]t ← [R2]t. Thus, in a circuit with n multiplication gates with dif-

ferent multiplicative depths, the protocol must be executed in n separate rounds of

communication. This is analogous to the rounds complexity of the Beaver’s scheme

[6]. The communication complexity of a multiplication gate is bounded to be linear

O(n).

The security condition of the each multiplication gate is evaluated in following sec-

tion.
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Correctness

Theorem 3. Each participant Pk computes the correct share of the multiplication

gate f = xi × xj at the end of the inputs multiplication sub-phase.

Proof. After reconstructing the values zj and yi, the share [xi · xj]t can be written

as:

[xi · xj]t =
(xj + rj) · [zi]t + (xi − ri) · [yj]t

2
− [R]t

If a set of at least t + 1 participants pools their shares [xi · xj]t, and based on the

linear feature of the secret sharing, the outcome is computed as:

f =
(xj + rj)(xi + ri) + (xi − ri)(xj − rj)

2
− ri · rj

=
2xi · xj + 2ri · rj

2
− ri · rj

= xi · xj

Privacy

Theorem 4. At the end of the inputs multiplication gate a coalition of t partici-

pant corrupted by a passive adversary cannot gain any information about the input

of Pi and Pj, except the information they can obtain from the outcome after the

computation.

Proof. Without loss of generality, let assume P1 ← Pi and x1 ← xi. The view of the

adversary, V IEWA, would include the following shares:

f2 =
(xj + rj) · [z1]t + (x1 − r1) · [yj]t

2
− [R]t

f3 =
(xj + rj) · [z1]t + (x1 − r1) · [yj]t

2
− [R]t

...



23

ft+1 =
(xj + rj) · [z1]t + (x1 − r1) · [yj]t

2
− [R]t

Where, based on the threshold feature of the Shamir’s secret sharing, V IEWA

cannot gain any information about the shared secret [z1]t ← [x1 + r1]t and R which

is t-shared in the pre-processing phase. Furthermore, the input x1 is masked by the

value y1 ← (x1 − r1) where the t-sharings of r1 is distributed in the pre-processing

phase. Thus, V IEWA can obtain no information about the input x1 and and it is

t-private.

2.4 Conclusion

we propose an unconditionally secure MPC protocol using an initializer in this

Chapter. The initializer is involved in an offline pre-processing phase which can

be conducted at any time before running the actual online protocol. It can be

considered as a server which generates and distributes some random pre-computed

information among the participants in a probabilistic functionality such that the

information can be utilized in the actual online computation phase. Our protocol

presents a solution for the problem of inputs multiplication with linear communica-

tion complexity O(n) in the presence of only n ≥ t+1 participants in both offilne and

online phases which can be considered as an alternative technique to the Beaver’s

scheme. The protocol is unconditionally secure against a coalition of t participants

corrupted by a passive adversary. The online sharing phase can be employed to exe-

cute both the inputs addition and multiplication gates, with the same multiplicative

depth, in parallel. Also, it can be extended to the case of multiplication gates with

different multiplicative levels at the cost of separate communication rounds.
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Chapter 3

Unconditionally Fast Secure Multi-party

Computation with Multi-depths Gates Using

Pre-computed Information

3.1 Introduction

One of the main problems in a MPC system is the computation of multipli-

cation gate with different multiplicative depths as it raises the communication

rounds overhead. For instance, in order to compute a share of a given function

f(x1, x2, x3) = x1 · x2 · x3, the players must perform the first round of communica-

tion with the shares of x1 and x2 to obtain the shares of x1 · x2 and then conduct

another communication round with the shares of x1 · x2 and x3 to compute the

shares of the gate x1 · x2 · x3. This can be done, for example, using the Beaver’s

triples scheme [6] or the method we introduced in Chapter 2 [58]. In other words,

for the circuit f(x1, . . . , xn) =
∏n

i=1 xi the participants need to implement n − 1

separate rounds of communication, i.e., only the shares of the multiplications with

the same multiplicative level is calculated in each communication round. We aim to

deal with this problem and give a solution for it in this Chapter where a share of the

n-inputs multiplication gate can be obtained in just one round of communication in

the actual computation phase. Therefore, our protocol enables computing a share

of any given function in just one round of online computation resulting a fast MPC

system.

In the previous Chapter, we employed an initializer trusted server in our proposed

MPC protocol. However, it may raise the security concern as the initializer can later
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collude with the participants which breaches the privacy of the whole protocol. Thus,

we employ a technique that requires at least 2t+ 1 parties to generate and compute

some pre-processed information in the offline pre-processing phase. As a result, it

reduces the risk of central point of failure attack on a single server.

3.1.1 Our Contribution

In this Chapter, we present an information-theoretic secure MPC protocol to

compute a share of any given function f(x1, . . . , xn), including up to the simulta-

neous n-inputs multiplication gate with different multiplicative depths, in just one

round of online computation [60]. Note that all the multiplication gates can be

implemented in parallel in the computation phase which makes this protocol fast

and it gives an improvement on the current MPC systems in terms of the commu-

nication rounds complexity. Our protocol is operated in the arithmetic circuit and

has two phases, an offline pre-processing phase and an online computation phase.

We employ the technique of hyper-invertible matrices of [8], which has been used by

many other MPC studies, in a loop to generate pseudo-random pre-computed values

in the pre-processing phase. This technique ensures the privacy of the pre-processed

values and, thus, the probabilistic functionality of the pre-processing phase. Our

protocol is secure against a passive adversary corrupting up to t participants. The

communication complexity to perform a n-inputs multiplication gate with different

depths and an addition gate is just O(n2).

3.1.2 Outline

The rest of this Chapter is organized as follows: section 3.2 presents the prelim-

inaries of our protocol. Section 3.3 describes our proposed protocol including the

both phases, and the discussion of the security analysis. Finally, section 3.4 gives

the conclusion.
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3.2 Preliminaries

3.2.1 Secret Sharing with Double Sharings

As we already discussed in the section of unconditionally secure secret sharing

(Section 1.1), the t-sharings [s]t denotes a set of t+1 shares of a random polynomial

with the degree/threshold t and the secret s. As a feature of the Shamir’s secret

sharing, the secret s can be distributed by any number of polynomials with different

degrees over the field. Hence, we also denote the double sharings [.]d,d′ of a same

secret with different degrees d and d′.

3.2.2 Model

We propose a secure MPC model that enables t + 1 (where n ≥ t + 1) out of n

participants to compute a share of any given circuit f(x1, . . . , xn) in only one round

of computation. Specifically, it is capable of computing a share of a simultaneous

n-inputs multiplication with intermediate multiplicative depths, which belong to the

function f(x1, . . . , xn) =
∏i=n

i=1 xi, in just one online communication round. We em-

ploy the hyper-invertible matrices technique introduced in [8] for generating secure

double sharings (two Shamir’s secret sharing of the same random value with two dif-

ferent thresholds) of random values. In fact, an input holder generates the sharings

[α]d and [α]d′ of a random value α, unknown to adversary, where d and d′ are two

different degrees. This technique enables each pair of input holders Pi and Pj, where

1 ≤ i, j ≤ n (i ̸= j), to generate a triple securely in the offline pre-processing phase

[8]. To achieve this goal in our model, a number of n ≥ 2t+1 participants is required

in the pre-processing phase. Then, using a for-loop for each multiplication with the

same multiplicative depth would enable each participant to compute a share of a

triple in threshold t which can be used for the n-inputs multiplication. Finally, the

random generated t-sharings can be employed to compute both n-inputs addition

gate and multiplication gates in parallel.
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3.2.3 Generating Random Triples Based on Hyper-Invertible Matrices

We employ the technique of hyper-invertible matrices introduced in [8] to com-

pute t-sharings of random values in the pre-processing phase of our model. Their

method can be used to generate double sharings of a random value. This technique

also has been used in other MPC studies to generate the shares of random triples in

the secure fashion, see e.g., [38, 33, 22]. For the sake of readability and simplicity,

we describe the important concepts and protocols here; however, it is recommended

to refer to [8] for more detail.

In order to generate double sharings [r]d,d′ of a random value r, we need to define

the notion of hyper-invertible matrices.

Definition 5. An m × n matrix is hyper-invertible if for any sets R ⊆ {1, . . . ,m}

of rows and C ⊆ {1, . . . , n} of columns with |R| = |C| > 0, the matrix MC
R is

invertible, such that it consists of the intersections between rows in R and columns

in C.

It has an important property where any mapping of n points, for example (x1, . . . , xn)

to (y1, . . . , yn), can be calculated using two sets of fixed elements. In other words,

any combination of n inputs/outputs induced by the matrix can be written as a

linear function of the other n inputs/outputs. This feature enables a mapping of

any n input values to be expressed as a linear function of the remaining n input

values.

Based on the proposed technique on [8] for generating triples, each player Pi dis-

tributes a random value si, of degrees d and d′, to the other participants using

the Shamir’s secret sharing. Each player now holds two vectors of the shares

[s1]d,d′ , . . . , [sn]d,d′ and he can compute two new sets of shares with the degrees d

and d′, using the hyper-invertible matrix M , as follows:

([r1]d,d′ , . . . , [rn]d,d′) = M([s1]d,d′ , . . . , [sn]d,d′)
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Such that each set of the sharings [ri]d lies on the polynomial g(.) of degree d, and

the value ri is private against d passive adversaries. Thus, the double sharings

[r1]d,d′ , . . . , [rn]d,d′ are the output for each player.

In order to generate random triples of degree t in a pre-processing phase, given

sharings [ai], [bi] and [ri] of the random values ai, bi and ri, each player computes a

share of a polynomial of degree 2t as follows:

[di]2t = [ai]t[bi]t − [ri]2t = [aibi − ri]2t

and at least 2t+ 1 players pool their shares [di]2t and publicly reconstruct the value

di. Note that a number of at least 2t + 1 parties is required in this phase. Finally,

each player locally computes his new share [ci]t as follows:

[ci]t = di + [ri]t = aibi − ri + [ri]t

Each party now holds the t-sharings [ai]t, [bi]t and [ci]t of the triple ci = ai · bi. the

scheme is clearly t-private and the communication complexity for generating one set

of the double sharing [ri]t,2t and the triple [ai]t, [bi]t and [ci]t is O(n), and, thus, for

n sets is O(n2) [8].

3.3 The Protocol

Our proposed protocol has one pre-processing phase for both addition and multi-

plication gates, and an online computation phase for calculating a share of any given

function f(x1, . . . , xn). Note that the protocol can be implemented in parallel for all

multiplication gates with different multiplicative levels as well. It is assumed that

private communication lines between each two players are secure and synchronous.

1. Pre-Processing Phase: In this offline phase, each input holder generates

a random value and shares it among the players. Depending on the existing

multiplicative depths, the players use the hyper-invertible matrices in a loop

to compute t−sharings of multiplying random values.
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2. Online Computation phase: In this phase, each participant computes a

share of the given function including n-inputs addition and n-inputs multipli-

cation with different depths. The shares of the both gates can be computed

in parallel. Thus, a share of any given function can be computed in only one

round of online computation phase.

3.3.1 Pre-Processing Phase

The probabilistic functionality of this phase ensures the privacy of inputs in the

computation phase. Note that we employ the result of generating random triples

based on the hyper-invertible matrices technique discussed in section 3.2.3. Let

assume that a given function f(x1, . . . , xn) has the gate of n-inputs multiplication

with n−1 different multiplicative depths. It should be stated that this phase can be

implemented in parallel for all multiplication gates
∏m

i=1 xi (m ≤ n) in the function

f(x1, . . . , xn). Figure 3.1 shows the detail of the pre-processing phase.

� Each input holder Pi (for i = 1, . . . , n) generates a random number γi

(where γi ̸= 0) and distributes the t-sharings [γi]t among the participants.

� Also, each input holder generates a random value si and shares it in double

sharings [si]t,2t among the participants.

� Each player Pk locally computes two vectors of double sharings [ri]t,2t

using hyper-invertible matrices M described in section 3.2.3 as:

([r1]t,2t′ , . . . , [rn]t,2t) = M([s1]t,2t′ , . . . , [sn]t,2t)
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� In the gate of multiplying n inputs f(x1, . . . , xn) =
∏n

i=1 xi, for each pair

of the inputs multiplication xi · xj with the same depth, where j ← i + 1,

while j ≤ n (executing a loop):

– Each player Pk computes a 2t-sharing as follows:

[γi]t[γj]t − [ri]2t = [γi · γj − ri]2t

and the players open the value γi · γj − ri.

– Each player Pk computes the new t-sharing as:

[γi · γj]t = γi · γj − ri + [ri]t

– The players execute i← i+1 and [γi]t ← [γi ·γj]t. Note that the new

local sharings [γi]t inside the loop is different from the initial sharings

each input holder distributes as the local sharings change depending

on the multiplicative depths of the gates.

– if i = n, Pk returns the t-sharing [γ1 × . . .× γn]t ← [γi]t.

Output: Each player Pk holds the set of t-sharings ([γ1]t, . . . , [γn]t) and [γ1 ×

. . .× γn]t.

Figure 3.1 : The pre-processing phase of the protocol

The communication complexity of this phase for computing a share of a two-inputs

multiplication gate is O(n), thus, for a n-inputs multiplication it equals O(n2).

3.3.2 Computation Phase

In this phase, each participant Pk computes a share of any n-inputs addition and

n-inputs multiplication in parallel, i.e., this phase can be implemented once for any
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given function. All the participants commence this phase while they are holding the

t-sharings [γi]t (for i = 1, . . . , n) and [
∏n

i=1 γi]t. Figure 3.2 depicts the computation

phase of the proposed protocol.

Input: The players P1, . . . , Pn hold the inputs x1, . . . , xn.

Output: A set of t + 1 or more participants (1 < t + 1 ≤ n) computes a share

of the given function f(x1, . . . xn).

� Each input holder Pi calculates a random value αi as:

αi =
γi
xi

and shares it by [αi]t among the participants.

� A set of t + 1 participants reconstructs the values αi (for i = 1, . . . , n).

Addition

� Each participant Pk calculates the new share of up to n-inputs addition

as follows:

[x1 + . . . + xn]t =
n∑

i=1

[γi]t
αi

Multiplication

� Each Pk computes the new share of the n-inputs multiplication gate as

follows:

[x1 × . . .× xn]t =
[
∏n

i=1 γi]t∏n
i=1 αi

Figure 3.2 : The computation phase of our proposed protocol

Note that the amounts of inputs cannot be zero in the proposed protocol. However, it
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doesn’t affect the correctness since, in any MPC circuit, if a mathematical term in a

function f(x1, . . . , xn) has a zero input, we can remove that term and it doesn’t affect

the outcome as well as the privacy of the other inputs. The fact that this protocol

can compute a share of any given function including addition and multiplication

gates with different multiplicative levels in only one communication round, would

result a fast computation phase. This gives an improvement on the round complexity

of the current MPC systems. The computation phase has the communication upper

bound of O(n2) field elements.

3.3.3 Security Evaluation

We evaluate the protocol based on the security requirements discussed in section

1.0.1. Also, please refer to the section 3.2.3 and [8] for security assessment of the

random sharings [
∏n

i=1 γi]t generated in the pre-processing phase.

Correctness

Theorem 5. each participant Pk (1 ≤ k ≤ t+1) obtains the correct share of a given

function f(x1, . . . , xn) at the end of executing the protocol.

Proof. After implementation of the pre-processing phase, each participant holds the

sharings [γi]t (for i = 1, . . . , n) and [
∏n

i=1 γi]t. In the online computation phase, a

set of t + 1 parties open the random values αi (αi ̸= 0). For the n-inputs addition

gate, each participant Pk computes the following share:

fk =
[γ1]t
α1

+ . . . +
[γn]t
αn

where, based on the linear feature of the secret sharing scheme, the shares fk belong
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to a polynomial with the the free term:

f(x1, . . . , xn) =
α1 · x1

α1

+ . . . +
αn · xn

αn

=
n∑

i=1

xi

Similarly, for the n-inputs multiplication with different multiplicative depths, each

Pk holds the following share:

fk =
[γ1 × . . . γn]t
α1 × . . .× αn

Where the shares fk belong to a polynomial with the constant term:

f(x1, . . . , xn) =
(α1 · x1)× . . .× (αn · xn)

α1 × . . .× αn

=
n∏

i=1

xi

Privacy

Theorem 6. A coalition of up to t parties corrupted by a passive adversary cannot

gain any information about the private inputs, except what they can obtain from the

output.

Proof. The probabilistic functionality of hyper-invertible matrices technique ensures

the privacy of the double sharings [ri]t,2t and, thus, the random values γi ← xi ·αi in

the pre-processing phase. Moreover, the given for-loop in this phase which is utilized

to generate the t-sharings [γi ·γj]t preserves the privacy against a coalition of t semi-

honest parties. Hence, the pre-processing phase outputs the sharings [γ1× . . .× γn]t

which are t-private.
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Without loss of generality, let assume that a coalition of t participants (not including

P1) corrupted by a passive adversary has the view denoted by V IEWA. For the gate

of n-inputs addition in the computation phase, V IEWA is:

f2 =
[γ1]t
α1

+ . . . +
[γn]t
αn

f3 =
[γ1]t
α1

+ . . . +
[γn]t
αn

...

ft+1 =
[γ1]t
α1

+ . . . +
[γn]t
αn

Where, based on the threshold feature of Shamir’s secret sharing, the term [γ1]t
α1

is

private against V IEWA.

Furthermore, V IEWA for the n-inputs multiplication gate is:

f2 =
[γ1 × . . .× γn]t
α1 × . . .× αn

f3 =
[γ1 × . . .× γn]t
α1 × . . .× αn

...

ft+1 =
[γ1 × . . .× γn]t
α1 × . . .× αn

Where, again based on the threshold feature of Shamir’s secret sharing, V IEWA can

gain no information about the free term of the sharings [γ1× . . .× γn]t generated in

the pre-processing phase. Hence, the proposed protocol is secure against a passive

adversary corrupting a coalition of t parties.

3.4 Conclusion

Multiplication gates with different multiplicative depths are the bottleneck in

MPC systems. we present a protocol with information-theoretic security to compute

a share of a simultaneous n-inputs multiplication gate with different multiplicative
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depths in a MPC circuit [60]. Indeed, our protocol can be used to compute a share of

the n-inputs addition and the n-inputs multiplication in parallel in only one online

round of communication. This would result a fast computation technique since a

share of any given function can be computed in one online communication round

which gives an improvement on the round complexity of current MPC systems, e.g.,

the renowned Beaver’s scheme [6] or the protocol given in the Chapter 2 [58]. Our

protocol has two phases: offline pre-processing phase and online computation phase.

We employ the technique of hyper-invertible matrices introduced in [8] in the pre-

processing phase to generate private pre-computed t-sharings which can be utilized

in the computation phase. Our scheme is secure against a coalition of t participants

corrupted by a passive adversary and the communication complexity for computing

a share of the n-inputs multiplication gate is O(n2) field elements.
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Chapter 4

Efficient Distributed Keys Generation of

Threshold Paillier Cryptosystem

4.1 Introduction

As it was mentioned before in Chapter 1, MPC has various areas of applications

in real-world cryptography. Such a notable example is the secure keys generation of

a cryptosystem without a trusted dealer in the distributed system which is called

threshold cryptography.

In threshold cryptography, all the parties are required to participate and cooperate in

the system to perform a secure cryptographic computation. One may think of using

a trusted dealer to generate public and private keys of the encryption system. It is

a trivial task as the dealer publishes the public key and distributes the private key

among the participants such that all the qualified parties collaboratively can decrypt

the ciphertext. However, this system cannot be reliable and secure in practice, since

all the secret information can be leaked, changed or even deleted by an adversary

carrying out a single point of attack on the dealer. Thus, the important notion

of distributed key generation is the solution to generate the keys in a form of the

secret shared among the participants such that it would not be available in a single

location.

4.1.1 Background

Generating an RSA modulus N (which is the product of two prime numbers)

in a distributed fashion has been an important research topic in threshold cryptog-

raphy. It is the core of many cryptographic protocols in which the computations
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are executed without giving any information about the factorization of N to less

than a number of threshold participants in the system. Numerous number of stud-

ies have been undertaken in the field of distributed RSA key generation, see e.g.

[19, 44, 45, 91, 36, 37, 66, 52]. Boneh and Franklin (1997) [19] proposed the first

RSA key generation for a two-party setting. Their protocol was secure against a

passive adversary and they used a trusted third party for the security purpose. [91]

employed pro-active secret sharing and a computationally bounded verifiable secret

sharing in their RSA key generation protocol. A robust protocol with honest ma-

jority was suggested by [45] using the technique of secret sharing over the integers.

[36] proposed a threshold RSA scheme with an efficient security method of zero-

knowledge proofs, based on the hardness of discrete logarithm, where the modulus

N is a product of two safe primes. Nevertheless, their protocol requires an honest

third party to generate and distribute the signature keys. [37] presented an efficient

and robust protocol with honest majority that the cost of going from passive secu-

rity to active security is a constant factor and any fault or malicious behaviour can

be detected. However, the cost of this efficiency is a simplification assumption in

which their protocol is just limited to the number of three parties.

Paillier cryptosystem [88], due to its additive homomorphic feature, is an impor-

tant building block of many cryptographic frameworks, see e.g. [31, 12, 5, 39, 12].

It has the same public key and the ciphertexts’ algebraic structure as the RSA

encryption scheme, however, the private key and the decryption procedure of the

Paillier encryption do not follow from the RSA system. Therefore, a different type

of distributed keys generation technique is required for the threshold Paillier cryp-

tosystem. Nishide and Sakurai (2010) [86] conducted the first study of the Paillier’s

distributed keys generation and proposed a protocol with the honest majority. They

employed the multiparty computation method of [9] and the Pedersen’s verifiable

secret sharing, which is based on the hardness of discrete logarithm, such that the
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protocol holds the security against an active adversary corrupting the minority of

the parties. Their protocol has the private point-to-point communication complex-

ity O(n2) field elements, determined by the factor 6n2, and broadcasts O(tn) field

elements for the process of the shares verification where t is the threshold number

of the parties, and at least n ≥ 2t+ 1 participants are required to generate the keys.

An important question remaining here is that whether can the keys generation of the

Paillier’s system be improved? Recently, [66] presented a system for threshold keys

generation of the RSA and Paillier’s cryptosystems in the two-party setting. Their

protocol maintains the security against an active adversary using the commitment

scheme (zero-knowledge proof) of ElGamal encryption.

4.1.2 Our Contribution

In this Chapter, we present a scheme for distributed keys generation of the thresh-

old Paillier encryption system without a trusted dealer [59]. Our protocol maintains

the full security against a static active adversary corrupting at most t participants

where only one honest party is required to detect any malicious behaviour using

message authentication codes. Furthermore, the keys are t-private, i.e. any set of

equal or less than t parties cannot obtain any information about the factorization of

N . Our model consists of two phases, an offline pre-processing phase and an online

computation phase, where the offline phase can be implemented at any time before

running the actual online phase. The offline phase is executed just for one time in

the whole protocol and random shares of a triple, computed in this phase, can be

used for the generation process of both the public and private keys. This idea allows

us to give a faster computation phase than the protocol of [86] as the computation

of the random preprocessed information can be carried out without the need of the

inputs required for the keys generation. The communication complexity of our pro-

tocol is bounded to O(n2) field elements without any broadcast communication, and
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the required number of participants in the online phase is just n ≥ t + 1 giving the

improvements on the scheme of [86].

To achieve these goals, we employ the technique of hyper-invertible matrices, pre-

sented in section 3.2.3 , to generate the t-sharings of a random triple in the offline

phase [8]. One may think of using the Beaver’s multiparty computation scheme [6]

to generate the threshold sharings of the keys, however, we propose another multi-

party computation approach with the same communication overhead/rounds as the

Beaver’s scheme which was presented in Chapter 2 of this thesis [58]. Moreover,

we utilize the distributed biprimarily test for an RSA modulus, given in [19], and

we propose a non-interactive zero-knowledge proof technique to make the players

commit to their shares in this test.

The remaining structure of this Chapter is designed as follows: Section 4.2 describes

the required materials for our protocol. Section 4.3 presents the actual scheme with

the security proofs. Finally, section 4.4 gives the conclusion.

4.2 Preliminaries

4.2.1 Secret Sharing Over the Integers

As we previously mentioned in section 1.1, the normal Shamir’s secret sharing is

threshold scheme with unconditional security. We also use the secret sharing over

the integers, as a variant of [96], which was first introduced by [44] and modified by

[45]. In this scheme, the secret s must be s ∈ [0, I] where I is the interval for s. The

free constant term a0 = ∆ ·s and the integer coefficients aj, 1 ≤ j ≤ t, are randomly

chosen from the interval aj ∈ [0, K∆2I] where ∆ = n! and K = 2σ. Note that σ

is the statistical security parameter and K is chosen such that 1/K is negligible.

Each party Pi (for i = 1, 2, . . . , n) is given the share fi ← f(i), and to reconstruct

the secret a set of at least t+ 1 participants pools their shares and compute the free
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constant term as:

∆ · f(0) = ∆ ·
t+1∑
i=1

fi · l0,i

where l0,i is the Lagrange coefficient of Pi. Finally, since ∆ · f(0) = ∆2s, the parties

calculate s = ∆·f(0)
∆2 .

Clearly, the secret s cannot be leaked to any subset of less than t + 1 parties with

σ bits statistical security for the this variant of secret sharing. Furthermore, this

method is linear meaning that a player can compute a share of any linear function

with no interaction.

We denote the [s]Zt as a set of the shares generated in the setting of the secret

sharing scheme over the integers with the degree t and the secret s. Without loss

of generality, the secret addition of two values s and r distributed by the normal

secret sharing [s]t and the secret sharing over the integers [r]Zt can be reconstructed

by having the parties pool their shares and compute it over the field as:

s + r =
1

∆2

n∑
i=1

([∆2 · s]t + [∆ · r]Zt )× l0,i

4.2.2 Threshold Paillier Cryptosystem with a Trusted Dealer

The Paillier cryptosystem [88] is a public key encryption system which holds

semantic security according to the decisional composite residuosity (DCR) assump-

tion. This assumption implies that given a ciphertext encrypted under the problem

of DCR, a probabilistic polynomial time adversary has a negligible advantage to

guess the corresponding plaintext [34]. More formally:

Definition 6. Let x0 and x1 be encrypted under a k-bits public key encryption system

based on the problem of DCR assumption. Suppose a probabilistic polynomial time

adversary A obtains an encryption of xβ for a random β ∈ {0, 1}. Let A can guess

the values x0 and x1 with the probabilities p0(A, k) and p1(A, k), respectively. The

encryption system is semantically secure, if |p0(A, k) − p1(A, k)| ≤ ε where ε is

negligible in k.
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We now describe the algorithm of threshold Pailler encryption system where a

trusted party generates and distributes the keys.

Keys Generation: A trusted dealer invokes a probabilistic algorithm Gen(1k) to

generate a pair of the keys (pk, sk)← Gen(1k). The public key is an RSA modulus

pk ← N where N = p · q and gcd(N, ϕ(N)) = 1 such that p and q are two safe

primes, i.e., p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are prime numbers as well.

That is because to make sure that there is a sufficiently large number of generators

in the cyclic group of N2 [86].

The private key sk is the Euler’s totient sk = p′ · q′ = ϕ(N)/4 where ϕ(N) =

(p − 1) · (q − 1). The dealer chooses a random β ∈ Z∗
N , and he masks the private

key as θ = β · ϕ(N)/4 mod N and distributes the t-sharings over the integers [θ]Zt .

Also, θ is added to the public key, i.e. pk = (N, θ).

Encryption: A probabilistic algorithm Encpk(m, r) is invoked to encrypt a plaintext

m ∈ ZN and compute the ciphertext c← Encpk(m, r) as follows:

Encpk(m, r) = gm · rN mod N2

where the simplest value for g is g = N + 1 an element in Z∗
N2 and r is a random

number in Z∗
N .

Decryption: The parties execute the deterministic algorithm Decsk(c) to decrypt

and obtain the plaintext m ← Decsk(c). To achieve the threshold decryption, each

party Pi computes the decryption share ci = c2∆·[θ]Zt mod N2 and publishes it. He

also makes a proof of correct commitment to his share using the zero-knowledge

proof technique described in [43]. The parties compute the plaintext as follows:

m = L(
t+1∏
i=1

c
2l0,i
i mod N2) · (4∆2 · θ)−1 mod N

where the function L(x) is defined as L(x) = x−1
N

.
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4.2.3 Message Authentication Code

The message authentication code (MAC) is an information-theoretic method to

authenticate an output in a multiparty computation system. The output can be ma-

nipulated by an active adversary in the form of a shared secret in the system. Since

this method offers a more efficient computationally unbounded security compared to

other verifiable secret sharing schemes, it has been used in multiparty computation

systems to detect any inconsistency or malicious behaviour, see e.g. [40, 35, 70, 5].

A prover party sending a message m calculates the MAC value, denoted by γα(m),

as γα(m) = α ·m in the field of the computation where α is the MAC key generated

by the verifier. The verifier party accepts m if the equation of the MAC value is

correct, otherwise outputs fail representing the detection of dishonest behaviour and

the protocol is aborted. Clearly, this method is linear and parties can use a global

MAC key α, as an additive secret of the each player’s random key αi, to verify

the computation output. In this case, the probability of cheating ε without being

detected is equivalent to guessing the global MAC key α over the field, i.e., ε = 1/F.

More formally:

Definition 7. A MAC scheme with the key space K is ε-secure to validate an output

m in the field F, where there is a computationally unbounded adversary A deviating

from the system to compute an output m′ such that:

{∀α ∈ K,m ∈ F, ∃m′,m′ ← A| Pr[γα(m) = α ·m′ ∧m ̸= m′] < ε}

4.2.4 Security

We present the security of our scheme based on the ideal/real models. The ideal

model achieves the highest level of security as there exists no type of adversary in

this model. It is assumed a simulator S takes inputs from the participants and

executes the functionality F such that the players do not interact directly with each
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other. The model is denoted by IDEALF ,S . On the other hand, the participants

implement the protocol Π in the presence of a computationally bounded adversary

A in the real model denoted by REALΠ,A. The protocol Π is said to be secure, if

the ideal model IDEALF ,S and the real model REALΠ,A are computationally in-

distinguishable [76]. This implies that S simulates the adversary in the ideal model

by trying to change the actual output without being detected.

We assume there exists a static active adversary in our scheme which intends to devi-

ate from the protocol and change the outcome in the fashion of malicious behaviour.

A static (non-adaptive) adversary corrupts the players before running the scheme

and the corrupt players do not change during the execution of our scheme. The

correctness and the privacy of our scheme is maintained against at most t corrupt

parties in the presence of at least n ≥ t + 1 participants.

4.3 Our Distributed Keys Generation Scheme

In this section, we present our scheme to generate the public and private keys of

the threshold Paillier cryptosystem in the distributed fashion. Our method includes

two offline and online phases, where the public key and the shares of the private key

are computed and verified in the actual online computation phase in the presence

of only n ≥ t + 1 participants.

4.3.1 Pre-processing Phase

This phase can be executed at any time before running the actual online phase

and it is needed only once for the generation process of the both keys. We use the

technique of hyper-invertible matrices, described in the section 3.2.3, to generate

the shares of a random triple in the presence of at least 2t + 1 parties where the

majority is honest. Any inconsistency of the computation can be detected by the

MAC scheme. The participants do not reveal the global MAC key as they locally
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calculate the checking shares to authenticate the output.

Note that the computations of this phase and the public key generation must be

in the order of a field greater than the public key N . Hence, according to [86], the

participants pick a large prime number P such that at least P > [n(3×2k−1)]2 > 2N

where n is the number of participants and k is the security parameter which is also

used to determine the range of two primes p and q for the generation of the public

key. It is recommended to choose a large value for k such that the bit length of P is

at least greater than 1024 bits [99]. Figure 4.1 shows the protocol ΠTriple to generate

and verify t-sharings of a random triple.

Output: Each Party Pi obtains t-sharings [a]t, [b]t and [c]t of the triple a ·b = c.

� Each player Pi (for i = 1, . . . , 2t + 1) generates a random MAC key αi in

FP and sends it to the other participants Pj (j ̸= i).

� Given the sharings [a′]t, [b′]t and [s]t,2t of three random values a′, b′ and s

in the order of FP , each Pi locally computes the sets of the t-sharings [a]t,

[b]t and the double-sharings [r]t,2t using the hyper-invertible matrix M as:

([a]t, [b]t, [r]t,2t) = M([a′]t, [b
′]t, [s]t,2t)

� Pi computes a random 2t-sharing as follows:

[a]t · [b]t − [r]2t = [c− r]2t

and a set of at least 2t + 1 participants opens the value c− r.
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� Each Pi computes the new t-sharing of c as:

[c]t = c− r + [r]t

Verification

� The participants repeat the steps above with another round of hyper-

invertible matrix technique to compute new random double sharings [r′]t,2t

from random given sharings [s′]t,2t. Also, each party calculates the global

MAC key α as the additive secret of the random MAC keys α =
∑n

i=1 αi

and computes the random 2t-sharing:

α · [a]t · [b]t − α[r′]2t = α · [c− r′]2t

and they obtain the value α · (c − r′). Each Pi computes a MAC value

share of c as follows:

[γ(c)]t = α · (c− r′) + α · [r′]t

� Finally, to validate the shares of the triple, Pi locally calculates:

[σ(c)]t = [γ(c)]t − α · [c]t

and a set of at least t+1 parties pools their shares [σ(c)]t and reconstructs

σ(c). The shares of the triple are consistent iff σ(c) = 0, otherwise the

protocol fails and outputs ⊥.

Figure 4.1 : The protocol ΠTriple for generating t-sharings of a random triple

Theorem 7. The protocol ΠTriple is unconditionally secure against a static active

adversary A corrupting up to t parties with small probability of error.



46

Proof. Let H and C represent the honest and corrupted parties in the ideal model,

respectively. Suppose {P1, . . . , Pt} ∈ C and {Pt+1, . . . , Pn} ∈ H. The simulator S

sends the list of the corrupted parties to the functionality. Also, S picks random

values [c′]t, α
′ and [γ′(c)]t for the inputs of the corrupted parties. This is analogous to

the condition where A introduces the errors δc, δα and δγ(c) to the real model which

can be denoted as [c′]t = [c]t+δc, α
′ = α+δα and [γ′(c)]t = [γ(c)]t+δγ(c), respectively.

S executes the functionality and the honest parties detect any inconsistency in the

system with the probability 1− 1/FP since σ′(c) ̸= 0. Therefore, the ideal and the

real models are computationally indistinguishable.

The communication complexity of the protocol ΠTriple is linear O(n). Now, the par-

ticipants need to check the multiplication correctness of the triple generated in this

protocol. This can be achieved by sacrificing another random triple [35]. Figure

4.2 illustrates the protocol ΠCheckTriple to check the multiplication correctness of the

triple. If the check is passed successfully, each party holds the t-sharings [a]t, [b]t

and [c]t as the outputs of the offline phase.

� Another set of triple t-sharings [f ]t, [g]t and [h]t (where f · g = h) are

generated by having the participants implement the protocol ΠTriple once

again. Also the players pick a random value tr in the field.

� Each party computes the new t-sharings [ρ]t = tr · [a]t − [f ]t and [τ ]t =

[b]t − [g]t. At least t + 1 participants obtain the random values ρ and τ .
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� Pi locally calculates a checking share as follows:

[σCheck]t = tr · [c]t − [h]t − τ · [f ]t − ρ · [g]t − τ.ρ

and the players open σCheck. The check is OK iff σCheck = 0, otherwise

the protocol fails and outputs ⊥.

Figure 4.2 : The protocol ΠCheckTriple for checking the multiplication correctness of the

triple

4.3.2 Online Phase

The public and private keys of the threshold Paillier cryptosystem are computed

and verified in this phase. A number of n ≥ t + 1 participants are able to perform

this phase which is an improvement on the scheme of [86] where at least 2t + 1

parties are required to generate the keys. Moreover, we use the MAC scheme to

authenticate the keys output which is less expensive than the protocol of [86] using

the expensive Pedersen’s VSS based on the hardness of discrete logarithm.

Note that one can employ the Beaver’s scheme [6] to compute the shares of the keys,

however, we use our MPC approach described in Chapter 2 [58] which has the same

efficient communication overhead and reconstruction rounds as the Beaver’s scheme.

Distributed Public Key Generation

Inspired by the study of [19], the participants collaboratively generate two primes

p and q using the notion of Blum integers, since about 1/4 of all RSA modulus are

Blum integers. The pro-active secret sharing method allows the parties to redis-

tribute the shares of the two primes such that no less than t players can gain their

actual values, i.e., the factorization of N remains t-private. Figure 4.3 shows the

protocol Πpk to generate the public key of the Paillier’s encryption system. The com-
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putations are performed in the order of P as it described in the pre-processing phase.

Output: A set S of n ≥ t + 1 participants obtains a public key N modulo P .

� The participants choose random values pi, qi ∈ [2k−1, 2k − 1] where k,

as described in the section 4.3.1, is the security parameter such that the

party P1 calculates p1 = q1 = 3 mod 4 and the every other party, except

P1, picks pi = qi = 0 mod 4. Each party Pi distributes the t-sharings [pi]t

and [qi]t in the order of P .

� Player Pj (j ̸= i) generates a random MAC key αj ∈ ZP , and sends it to

the party Pi . Pi replies with the MAC values γαj
([pi]t) = αj · [pi]t and

γαj
([qi]t) = αj · [qi]t.

� Pj accepts the shares [pi]t and [qi]t iff γαj
([pi]t) = αj · [pi]t and γαj

([qi]t) =

αj · [qi]t, otherwise he broadcasts fail and the protocol is aborted.

� After verifying the initial shares, each party Pi ∈ S computes the new

t-sharings of the primes using one round of pro-activization as [p]t =∑n
i=1[pi]t and [q]t =

∑n
i=1[qi]t.

� Pi calculates the random sharings [y]t = [p]t + [a]t and [z]t = [q]t − [b]t.

The parties obtain the values y and z.

� Each party calculates the global MAC key α as the additive secret of the

random MAC keys α =
∑n

i=1 αi. Then, each party Pi ∈ S computes the

MAC value shares of y and z as:

γ([y]t) = α([p]t + [a]t)

γ([z]t) = α([q]t − [b]t)
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� Pi locally calculates the t-sharings [σ(y)]t = γ([y]t) − α[y]t and [σ(z)]t =

γ([z]t)− α[z]t. The parties open the checking values σ(y) and σ(z). The

protocol continues iff σ(y) = 0 and σ(z) = 0, otherwise it fails and is

aborted.

� Pi computes a share of the public key N as follows:

[N ]t =
y · ([q]t + [b]t) + z · ([p]t − [a]t)

2
− [c]t

and a set of at least t + 1 participants obtains the public key N . Each

Pi ∈ S computes a MAC value share of the public key as follows:

γ([N ]t) =
α · y · ([q]t + [b]t) + α · z · ([p]t − [a]t)

2
− α · [c]t

� Pi locally computes:

[σ(N)]t = γ([N ]t)− α[N ]t

and the parties open σ(N). The public key output N is OK iff σ(N) = 0,

otherwise the protocol fails and outputs ⊥.

Figure 4.3 : The protocol Πpk for distributed public key generation of the Paillier cryp-

tosystem

Theorem 8. The protocol Πpk maintains statistical security against a static active

adversary A which corrupts at most t participants with low probability of error.

Proof. Without loss of generality, suppose {P1, . . . , Pt} ∈ C and Pt+1 ∈ H where C

and H represent the sets of corrupt and honest parties in the ideal model, respec-

tively. The simulator S sends a list of corrupt parties to the functionality. Also, S
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sends the random values [p′i]t, [q′i]t and α′
t+1 to the functionality which simulate the

errors [p′i]t = [pi]t + δp, [q′i]t = [qi]t + δq and α′
t+1 = αt+1 + δαt+1 by A in the real

model. Any inconsistency in the initial shares can be detected with small probabil-

ity of error. S chooses random sharings [y′]t, [z′]t and the random MAC key α′ and

sends them to the functionality. This is analogous to the condition where A intro-

duces the errors [y′]t = [y]t + δy, [z′]t = [z]t + δz and α′ = α + δα to the real model.

The functionality is implemented and Pt+1 can detect any malicious behaviour for

obtaining y and z with the probability 1 − 1/FP . Finally, S picks random [N ′]t

and γ′([N ]t) which can be considered as simulating the errors [N ′]t = [N ]t + δN

and γ′([N ]t) = γ([N ]t) + δγN in the real model. S executes the functionality and

Pt+1 detects any malicious behaviour in the computation with the error probability

1/FP . Hence, the ideal and the real models are statistically indistinguishable with

the security parameter k.

If {P1, . . . , Pt+1} ∈ H, the participants open the random values y = p + a and

z = q − b. Each party computes a share of the public key [N ]t and the parties pool

their shares and obtain the public key which can be written as:

N =
(p + a) · (q + b) + (q − b) · (p− a)

2
− c

=
2(N + c)

2
− c

The total communication complexity for generating the Paillier’s public key in

the protocol Πpk is O(n2) field elements with no broadcast communication which

improves on the total communication overhead of [86] which is bounded to the pri-

vate communication complexity O(n2) plus the broadcast coomunication overhead

O(tn). The public key N needs to be checked for small prime divisors up to some

upper bound B. According to [99], it is more efficient in practice to check for the

small prime divisors after computing N instead of checking the individual primes p
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and q for it. This implies that N must be checked for dividing to any prime divisor

smaller than B.

Distributed Biprimarily Test

The participants need to check the multiplication correctness of N that whether it

is a product of two primes p and q without revealing the primes. [19] gave a scheme

for this test using the Euler’s theorem. We propose a technique of non-interactive

zero-knowledge proof to make the participants commit to the values they reveal for

this test. Figure 4.4 presents the protocol ΠBiprimarily for distributed biprimarily test

of N . Note that each participant already holds the random values pi and qi and

their shares from the protocol Πpk.

� The participants pick a random generator g ∈ Z∗
N such that Jacobi

( g
N

) = 1.

� Party P1 computes ϕ1(N) = N + 1− p1 − q1 and every other participant,

except P1, calculates ϕi(N) = −(pi + qi). Each party Pi computes νi =

gϕi(N)/4 mod N and reveals it.

� Each Pi ∈ S proves that he has committed to a correct value of νi. Namely,

all parties conduct a non-interactive zero-knowledge proof to verify νi as

follows:

- Every Pj (j = 1, . . . , n) computes dj = g1/4([pi]t·l0,j+[qi]t·l0,j) mod N ,

where l0,j is the Lagrange coefficient of the party Pj and [pi]t and [pi]t

are the shares he received from Pi in the protocol Πpk. He publishes

dj.
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- The parties compute:

ei = νi ·
n∏

j=1

dj mod N

- For the inputs commitment of P1, all the participants examine that

whether logg(e1) is equal to 1/4(N + 1). If Ok the commitment is

successful, otherwise the protocol fails.

- For the inputs commitment of other parties except P1, the par-

ticipants check that whether ei = 1, i.e., g0. The commitment is

successful if it is Ok, otherwise the protocol fails.

The participants check that whether
∏n

i=1 νi = ±1 mod N . If it fails, N

is not biprime and is discarded.

Figure 4.4 : The protocol ΠBiprimarily for the distributed biprimarily test of N

Correctness

For the zero-knowledge proof of each party Pi, the term
∏n

j=1 dj modN = g1/4(pi+qi) modN

due to the homomorphism of discrete logarithm in the base g. Since ϕ1(N) =

N + 1− p1 − q1, the party P1 proves that he has committed to the correct value of

ν1 by having all the parties compute e1 = g1/4(N+1) mod N . For every other party

except P1, the commitment value is ei = g0 mod N because ϕi(N) = −(pi + qi).

For the biprimarily test, note that ϕ(N) = N + 1 − p − q and
∏n

i=1 νi = gϕ(N)/4.

Since the Jacobi ( g
N

) = 1 and due to the Euler’s theorem, the parties check that

gϕ(N)/4 = ±1 mod N .

In the case that N is not biprime, the test may fail with the probability 1
2
. There-

fore, the test must be repeated for few m iterations to reduce the error probability

which gives the probability 2−m for accepting N , if N is not biprime. However, in
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practice the probability that a non-biprime N passes even one iteration of this test

is actually much less than 1
2

[19].

Distributed Private Key Generation

The participants start this stage while they are holding the public key N and the

additive shares of the private key ϕ(N) from the protocol Πpk. Recall that the idea

is to mask the private key by a random number β ∈ Z∗
N i.e., θ = β · ϕ(N)/4 (see

section 2.2). Note that the private key can be written as ϕ(N) = N − p− q + 1. We

use the similar multiparty computation approach to the protocol Πpk to compute

the t-sharings of θ. Figure 4.5 shows the protocol Πsk for the distributed generation

of the threshold Paillier’s private key.

� Output: Each party of a set S of n ≥ t+1 participants computes the t-sharing

of the masked private key [θ]Zt over the integers.

� Each party Pi ∈ S generates a random number βi ∈ Z∗
N . He distributes

the t-sharings over the integers [ϕi(N)]Zt and [βi]
Z
t among the participants.

� Every other player Pj (j ̸= i) picks a random MAC key αj ∈ Z∗
N and sends

it to Pi who replies with the corresponding MAC values of the shares as

γαj
([ϕi(N)]Zt ) = αj · [ϕi(N)]Zt and γαj

([βi]
Z
t ) = αj · [βi]

Z
t .

� Pj accepts the shares [ϕi(N)]Zt and [βi]
Z
t iff γαj

([ϕi(N)]Zt ) = αj · [ϕi(N)]Zt

and γαj
([βi]

Z
t ) = αj · [βi]

Z
t , otherwise the protocol fails.

� Each Pi calculates the new t-sharings of the secrets by employing one

round of pro-activization as [ϕ(N)]Zt =
∑n

i=1[ϕi(N)]Zt and [β]Zt =∑n
i=1[βi]

Z
t .
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� Pi calculates the random t-sharings [y′]t = [ϕ(N)]Zt + [a]t and [z′]t =

[β]Zt − [b]t, and the parties open the random values y′ and z′.

� Every party calculates the global MAC key α =
∑n

i=1 αi. Each Pi ∈ S

computes the MAC value shares of y′ and z′ as:

γ([y′]t) = α([ϕ(N)]Zt + [a]t)

γ([z′]t) = α([β]Zt − [b]t)

� Every party locally calculates the t-sharings [σ(y′)]t = γ([y′]t)−α[y′]t and

[σ(z′)]t = γ([z′]t)− α[z′]t, and the participants obtain the checking values

σ(y′) and σ(z′). The protocol fails iff σ(y) ̸= 0 or σ(z) ̸= 0, otherwise it

continues.

� Pi computes a share of θ over the integers as follows:

[θ]Zt =
y′ · ([β]Zt + [b]t) + z′ · ([ϕ(N)]Zt − [a]t)

2
− [c]t

� Also, Pi computes a MAC value share of θ over the integers as:

γ([θ]Zt ) =
α · y′ · ([β]Zt + [b]t) + α · z′ · ([ϕ(N)]Zt − [a]t)

2
− α · [c]t

� Pi locally computes:

[σ(θ)]Zt = γ([θ]Zt )− α[θ]Zt

and a set of at least t + 1 participants reconstructs σ(θ). The generation

of the private key shares is OK iff σ(θ) = 0, otherwise the protocol is

aborted and outputs ⊥.

Figure 4.5 : The protocol Πsk for the private key generation of the threshold Paillier

system
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Theorem 9. The protocol Πsk is statistically secure against a static active adversary

A corrupting up to t parties with the negligible probability of error.

Proof. The security proof follows the proof of the protocol Πpk.

Recall that the final step of the threshold decryption is to reveal the public key

θ = β ·ϕ(N) modN (see section 4.2.2), however, the participants hold the t-sharings

[θ]Zt over the integers. Thus, in order to deal with this issue, the parties transform

the t-sharings [θ]Zt to the normal t-sharings [∆2 · θ]t in the order of Z∗
N , by locally

reducing the shares modulo N , and then they pool their new t-sharings to reconstruct

θ in Z∗
N [99].

4.4 Conclusion

Distributed keys generation of encryption systems without a trusted dealer has

been an important topic in the field of threshold cryptography. In this Chapter,

we give an efficient scheme for distributed keys generation of the threshold Paillier

cryptosystem using multiparty computation [59]. Our protocol has two offline and

online phases. We employ the technique of hyper-invertible matrices to generate

random t-sharings of a triple in the offline phase which can happen at any time

before the actual online computation. Also, these shares are authenticated and the

multiplication correctness of the triple is checked. The public and the private keys

are computed and verified in the presence of at least n ≥ t + 1 participants which

gives an improvement on the scheme of [86] where at least 2t+1 parties are required

for that purpose. Moreover, a distributed biprimarily test with a technique of non-

interactive zero-knowledge proof, to check the commitment of the players’ inputs, is

presented to examine the correctness of the public key factorization.

Our scheme preserves the statistical security against a non-adaptive active adversary

corrupting at most t participants with the low probability of error using message
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authentication codes. Furthermore, the computed keys are t-private. The private

communication complexity to generate the keys is O(n2) field elements with no

broadcast communication overhead which also improves on the protocol of [86] where

the private communication complexity is the same as our scheme but the broadcast

overhead is (nt).
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Chapter 5

Verifiable DOPE from Somewhat homomorphic

Encryption, and the Extension to DOT

5.1 Introduction

As described in section 1.3.1, distributed oblivious polynomial evaluation (DOPE)

is a variant of two-party computation where a sender party P1 holds a polynomial

f(x) of degree k and a receiver party P2 has a value α. They wish to perform a

secure computation with the help of t distributed cloud servers over a field Fq such

that P2 gains the value f(α) while the privacy of their inputs is preserved. The

system is the building structure of many cryptographic primitives and it can be de-

noted by the functionality (f(x), α)→ (⊥, f(α)). Using more than one cloud server

(t ≥ 2) offers higher decentralization and security against the central point of failure

attack as an adversary must corrupt more than one server to break the privacy or

forge the output. Also, this system is more flexible as the main two parties do not

communicate directly and they can remain anonymous to each other. Nevertheless,

the security is achieved at the cost of higher communication overhead between the

parties and the servers.

5.1.1 Background

In the literature, the idea of oblivious polynomial evaluation (OPE) has attracted

more researches than DOPE. Some studies have utilized homomorphic feature of en-

cryption systems to present their semantically secure OPE protocols. [49] employed

additive (Paillier encryption) and multiplicative (ElGamal cryptosystem) homomor-

phic encryption methods (i.e., fully homomorphic encryption) to propose their OPE
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protocols for the multivariate case. A simulation-based secure protocol (in ideal/real

paradigm) with this technique was studied by [65] and [51] using homomorphic

encryption. [47] proposed two OPE protocols for keyword search problem using

homomorphic encryption and pseudorandom functions. Some studies have investi-

gated the idea of employing one third party in their OPE protocols [64, 57, 20, 50].

[72] conducted a study to minimize the communication of a computationally-private

information retrieval protocol using a single database for the datasets with large

length. Recently, [49] presented a verifiable and private OPE protocol, by em-

ploying homomorphic feature of Paillier encryption and a trusted server, to record

medical datasets.

There are only very few studies in the literature of DOPE. The first DOPE study

was conducted by [75]. The main issue of their method is that the privacy of the

parties’ inputs is not held against the maximum possible number t−1 servers. They

introduced some publicly known information to address this problem raising the

communication complexity. Another private DOPE protocol was proposed by [27]

with the communication complexity O(kt) where their protocol requires that the

main two parties P1 and P2 directly communicate with each other which does not

meet the condition that the two parties are allowed to interact only with the cloud

servers. All these studies have been conducted in the setting of passive adversary.

Therefore, one may think that the need of considering an active adversary in the

DOPE system (which is more practical and close to the reality) is observed.

5.1.2 Our Contribution

We aim to present the first verifiable and private DOPE protocol using additive

homomorphic feature of Paillier encryption and secret sharing in the presence of

n distributed cloud servers where t number out of them can be chosen to perform

the computation [61]. An advantage of our protocol is that, unlike the protocol of
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[26], the sender and the receiver parties do not communicate directly, i.e. they can

be anonymous to each other. This interesting feature would enable the scheme to

have a setup phase well in advance of the actual computation while the privacy of

the inputs is preserved. Thus, the receiver essentially must not be available in the

setup phase giving a more flexible system. Our protocol holds the security against

a static active adversary corrupting P1 and at most t − 1 dishonest servers with

the IND-CPA security of Paillier cryptosystem and the unconditional security of

message authentication codes (MAC). The adversary tries to deviate from the pro-

tocol and forge the output of P2. However, we assume P2 is not controlled by the

active adversary since he aims to obtain the correct output while he can still remain

semi-honest. To the best of the authors’ knowledge, this is the first verifiable secure

DOPE protocol against a malicious sender and at most t− 1 servers. Furthermore,

it preserves information-theoretic security for the sender’s inputs against a passive

adversary controlling a coalition of the receiver P2 and t − 1 servers . This gives a

security improvement on the DOPE protocol of [75] as their protocol is not privately

secure against the maximum t − 1 servers. The secure outsourced computation of

the homomorphic encryption scheme is performed by the cloud servers in parallel.

Our scheme has the communication complexity with the factor kt which improves

on the communication overhead of [26] where it is determined by the term 2kt.

In addition, the proposed scheme can be extended to a system of secure
(
1
2

)
dis-

tributed oblivious transfer (DOT) with the same security setting and the linear

communication complexity O(k) which is discussed after presenting the main DOPE

protocol.
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5.2 Preliminaries

5.2.1 Model

We propose a secure DOPE protocol where the sender party P1, with the polyno-

mial f(x) of degree k, and the receiver party P2, holding a value α, aim to perform a

secure computation in the presence of a threshold number of t cloud servers (security

parameter) such that P2 computes f(α) while the correctness and the strong privacy

of the inputs are preserved. The idea is that the sender’s polynomial along with its

corresponding MACs are distributed among the servers using the secret sharing.

The MAC keys αi are generated by the servers and used to verify the distributed

shares in the setup phase, and a global MAC key (which is the additive secret of the

keys αi) authenticates the output to P2. Any malicious behaviour and inconsistency

can be detected by having P2 verify the output using the corresponding MAC value

received from the servers. Moreover, the outsourced computation technique enables

fast computation of the large values over the field. Note that in order to preserve

the privacy of the sender’s polynomial, the protocol with a fixed polynomial can

only be implemented up to k − 1 times by the same receiver.

This system can also be extended to secure DOT2
1 as well, where P1 holds two in-

puts, m0 and m1, and P2 has σ ∈ {0, 1}. By employing the extended protocol, P2

learns mσ while the same security condition is met. We utilize Paillier public key

system to encrypt the P2’s input as this cryptosystem is the most suitable additive

homomorphic encryption scheme for large datasets [65].

5.2.2 The Paillier Cryptosystem

We previously discussed the threshold version of Paillier cryptosystem in section

4.2.2. We now revisit the general version of this encryption system, the security

setting and the homomorphic feature. The Paillier cryptosystem [88] works under

the assumption of decisional composite residuosity (DCR) and the security of this
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cryptosystem is said indistinguishability against chosen function attack (IND-CFA)

under the DCR assumption. More formally:

Definition 8. Let x0 and x1 be encrypted using a k-bits cryptosystem under the DCR

assumption. Let a probabilistic polynomial-time adversary A gain the encryption of

xβ for a randomly chosen β ∈ {0, 1}. Suppose A can guess the plaintexts x0 and x1

with the probabilities denoted by p0(A, k) and p1(A, k), respectively. The encryption

system is said to be IND-CFA secure if |p0(A, k)− p1(A, k)| ≤ ε for any ε negligible

in k.

This encryption system includes main three algorithms: keys generation, encryp-

tion and decryption.

Keys Generation: The dealer invokes a probabilistic algorithm Gen(1k), with the

security parameter k, to generate the keys pair (pk, sk)← Gen(1k). The public key

pk is an RSA modulus pk ← N where N = pc · qc such that pc and qc are two large

prime numbers with k/2 bits, e.g., each at least 1024 bits. The private key sk is the

Euler’s totient sk ← ϕ(N) where ϕ(N) = (pc−1)·(qc−1) such that gcd(N, ϕ(N) = 1.

Encryption: The dealer invokes a probabilistic algorithm Encpk(m, r) to encrypt

the message m and computes the ciphertext c← Encpk(m, r) as:

Encpk(m, r) = gm · rN mod N2

where the simplest value for g ∈ Z∗
N2 can be g = N + 1 and r is a random number

chosen in Z∗
N .

Homomorphism. A very useful feature of this cryptosystem is homomorphism which

can be applied to the ciphertexts. Namely, let m1 and m2 be two plaintexts in ZN

which are encrypted with the same public key denoted by Encpk(m1) and Encpk(m2),
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respectively. It is trivial to show that Encpk(m1)×Encpk(m2) = Encpk(m1 +m2) and

also Encpk(m1)
d = Encpk(d ·m1) for any random d ∈ ZN .

Decryption: To decrypt the ciphertext c, a deterministic algorithm Decsk(c) is

invoked to obtain the plaintext m← Decsk(c). In detail, one raises the ciphertext to

the private key ϕ(N) which, based on the Euler’s totient function, can be simplified

as:

[(N + 1)m · rN ]ϕ(N) mod N2 = N · ϕ(N) ·m + 1

proven by the means of binomial coefficients in modulo N2. Let the function L(x)

be L(x) = x−1
N

, the plaintext m can be obtained as follows:

Decsk(c) = L[cϕ(N) mod N2] · ϕ(N)−1 mod N

5.2.3 Security

In this section, we discuss ideal/real security model and the strong security re-

quirements for DOPE protocols. It is assumed that there exists a simulator S in

the ideal model who takes inputs from the participants and implements the func-

tionality F , denoted by IDEALF ,S such that the parties do not communicate with

each other. Hence, this model doesn’t have any type of adversary and it achieves

the highest level of security. The view of this model is denoted by V IEWS . On the

other hand, a protocol Π is executed in the presence of a probabilistic polynomial-

time adversary A in the real model REALΠ,A. The view of the coalition controlled

by the adversary is denoted by V IEWA. Based on the simulation-based security

model, the protocol Π is implemented securely iff IDEALF ,S and REALΠ,A are

computationally indistinguishable [76].

Suppose that P1, with the polynomial f(x), and P2, holding a value α, aim to com-

municate with at least t distributed cloud servers to run a secure DOPE protocol.

According to [15] and [75], the protocol must satisfy the following conditions to hold
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the strong security:

� Correctness: After implementation of the protocol, P2 receives f(α), while

P1 and a maximum threshold number of the distributed servers obtain noth-

ing. Here, an active adversary might attack the system to manipulate the

outcome computed by P2. Thus, the system must be secure against a mali-

cious adversary corrupting a coalition of at most t− 1 dishonest servers in the

computation phase. Note that P2 normally does not deviate from the protocol

since he intends to obtain the correct output; however, he still remains semi-

honest.

� Receiver’s Privacy: Here, the adversary A corrupts a coalition of up to t−1

servers and P1. The protocol must not leak any information about the P2’s

input α to V IEWA.

� Sender’s Privacy: A controls a coalition of the maximum t− 1 servers and

P2. Before and after running the computation phase, V IEWA must learn

nothing about the polynomial f(x) except what it can get from the outcome

f(α). Note that the protocol with the same sender must only be executed up

to k − 1 times, otherwise A can interpolate the sender’s polynomial.

Recall the functionality of an OPE protocol, it can be extended to a DOPE protocol

as follows:

(f(x),⊥,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 servers

, α)→ (⊥,⊥,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 servers

, f(α))

5.3 Our Protocol

The proposed DOPE scheme is discussed in this section. The protocol consists

of two different phases: setup and computation. The sender party P1 interacts with
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the servers in the setup phase, whereas the receiver party P2 communicates with the

servers in the actual computation phase. Each phase has the verifiable stage that

authenticates the inputs and the output using the MACs (described previously in

section 4.2.3), and the protocol fails in the case of detecting any malicious behaviour.

It is assumed that the private communication channels are secure and synchronous.

5.3.1 Setup Phase

This phase can be executed at anytime before running the actual computation

phase. This property enhances the security and the flexibility (since P2 is not avail-

able) of the system. In addition, each server checks the authentication of the given

shares using the MAC scheme.

Assume P1 wishes to distribute the polynomial f(x) of degree k in the field Zq among

a set S of t distributed servers. Figure 5.1 shows the setup phase of the protocol

ΠDOPE.

Inputs: P1 has the polynomial f(x) = a0 + a1x + . . . + akx
k, where am ∈ Zq

for m = 0, 1, . . . , k.

� Each server Si ∈ S (for i = 1, . . . , t) generates a MAC key αi ∈ Zq

uniformly random and sends it to P1.
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� P1 generates k+1 random polynomials of the degree t−1 with the constant

terms a0, a1, . . . , ak and computes the shares [am]t−1 over the integers. He

performs the same process with the MAC values γm ← αmac · am, where

αmac =
∑t

i=1 αi, and computes the shares [γm]t−1 over the integers. He

gives the tuples ⟨ami⟩ to each server Si ∈ S, which is defined as:

{∀Si ∈ S, 0 ≤ m ≤ k : ⟨ami⟩ ← ([am]t−1, γi([am]t−1), [γm]t−1)}

� P1 leaves the protocol and takes no step further.

Verification

� Each Si checks for the share [am]t−1 that γi([am]t−1) = αi · [am]t−1. It

accepts the share iff OK, otherwise broadcasts fail and aborts the protocol.

Figure 5.1 : The setup phase of the protocol ΠDOPE

The communication complexity of this phase is O(kt) where the number of servers

t can be selected as the security parameter. Note that the number of servers t does

not depend on the degree k of the sender’s polynomial.

5.3.2 Computation Phase

P2 firstly encrypts his inputs and broadcasts the ciphertexts. Each cloud server

computes an encrypted share of the output using homomorphic encryption. It re-

peats the same process with the shares of the MACs to obtain the corresponding

encrypted share of the MAC value. P2 calculates the output and checks whether the

final outcome satisfies the verification stage using the MACs he receives from the

servers. Here, a static active adversary, corrupting at most t − 1 servers, can forge
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the output without being detected with the small probability of error ε = 1/q. Based

on [15], the strong security conditions of DOT and DOPE protocols can be acquired

with at least two communication rounds between the servers and P2. Figure 5.2

illustrates the computation phase of the protocol ΠDOPE. In order to maintain the

sender’s privacy, a receiver is allowed to implement this phase only up to k−1 times.

Input: P2 has the value α ∈ Zq.

Output: P2 learns f(α).

� P2 invokes the key generation algorithm Gen(1k) of the Paillier cryp-

tosystem to generate a pair of encryption keys (pk, sk) where pk ← N ,

sk ← ϕ(N) and N = pc ·qc. He encrypts the values αm, for m = 0, 1, . . . , k,

to obtain the ciphertexts:

cm ← Encpk(α
m)

and broadcasts the respective ciphertexts cm.

� Each Si ∈ S computes a new encrypted share:

c′i = (
k∏

m=0

c[am]t−1
m )l0,i mod N2

where l0,i is the Lagrange coefficient of Si as:

l0,i =
∏
j∈S
j ̸=i

−j
i− j

mod q
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� Similarly, each Si computes the encrypted share of the MAC value using

another round of homomorphic encryption as follows:

c′i(γfi) = (
k∏

m=0

c[γm]t−1
m )l0,i mod N2

and it assigns them to the tuple ⟨C ′
i⟩ ← (c′i, c

′
i(γfi), αi). It privately sends

⟨C ′
i⟩ to P2.

� P2 obtains the output using the encrypted shares c′i of the servers as:

c′ =
t∏

i=1

c′i mod N2

f(α)← Decsk(c
′)

Verification

� P2 calculates the global MAC key αmac =
∑k

i=1 αi.

� P2 computes the MAC value of the output as follows:

c′(γf ) =
t∏

i=1

c′i(γfi) mod N2

γ(f(α))← Decsk(c
′(γf ))

� P2 checks that whether:

γ(f(α))− αmac · f(α) = 0

and he accepts f(α) iff OK. Otherwise, he broadcasts fail and outputs ⊥.

Figure 5.2 : The computation phase of the protocol ΠDOPE
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Note that since the inputs, f(x) and α, and the output f(α) are over the field of

a prime number Zq while the public key encryption and the homomorphic feature

are computed in the ring ZN , we must determine the relation between these two

fields. Therefore, in order to have the protocol work properly, it is required that

N = pc · qc > q; otherwise, P2 would calculate f(α) mod N not f(α) mod q. More

precisely, because each term αm · am is in in modulo q2, N must hold the condition

N > (k + 1)q2. It is recommended to choose two large values for the size of the

prime numbers pc and qc, e.g., each at least 1024 bits.

It should be stated that the computation of the new encrypted shares and their cor-

responding MACs can be implemented by the servers in parallel which reduces the

computation time of the protocol. The communication complexity is determined by

the factor kt which gives an improvement of the DOPE protocols of [75] and [26].

5.4 Security Evaluation

In this section, we evaluate the protocol ΠDOPE, based on the security conditions

described in section 5.2.3.

Theorem 10. The protocol ΠDOPE maintains the security against a static active

adversary A corrupting P1 in the setup phase and a coalition of at most t−1 dishonest

servers in the computation phase.

Proof. Let C and H represent corrupt and honest parties/servers, respectively. In

the ideal model, the simulator sends a list of P1, Si ∈ C to the functionality. The

simulator picks random values for the shares [a′m]t−1 in the setup phase simulating

the errors [a′m]t−1 = [am]t−1 + δmi by A in the real model. The errors can be de-

tected using the corresponding MACs with the negligible probability of error 1/q.

In the computation phase, the simulator sends random values c′′i and c′′(γfi) which
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is equivalent to introducing the errors c′′i = c′i + δi and c′′(γfi) = c′(γfi) + δγfi by A

to the real model. The simulator runs the functionality and sends the output f ′(α)

to P2 where f ′(α) = f(α) + δ. Similarly, the simulator calculates the global MAC

key α′
mac = αmac + δα which can be considered as the MAC key cheated by A in the

real model. Any inconsistency between the output and the MAC value γ′(f(α)) is

detected with the probability 1− 1/q in the verification stage, i.e., there is just one

value for α′
mac which results γ′(f(α))− α′

mac · f ′(α) = 0.

If P1, Si ∈ H, the simulator receives their inputs and runs the protocol. It

computes the encrypted shares c′i which can be written as:

c′i = Encpk((
k∑

m=0

αm · [am]t−1)× l0,i mod N)

The simulator employs another round of homomorphic encryption to compute the

new encrypted value c′ as:

c′ = Encpk(
t∑

i=1

([a0]t−1 + α[a1]t−1 + α2[a2]t−1 + . . . + αk[ak]t−1)× l0,i mod N)

= Encpk(
t∑

i=1

(
k∑

m=0

αm · [am]t−1)× l0,i mod N)

Finally, the simulator invokes the algorithm Decsk(c
′) to decrypt c′ and obtains the

output
∑k

m=0 α
m · am = f(α). It then sends the output to P2 and the verification

stage is performed.

We now aim to prove that the privacy of the receiver’s input is held against the

adversary A. P2 encrypts the values αm and broadcasts the respective ciphertexts

cm. Furthermore, the security of the homomorphic encryption is determined by the

IND-CPA security of the Paillier cryptosystem. Thus, V IEWA cannot distinguish

between the input α and random values in the field, and the receiver’s privacy is held
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against the adversary in the real model. Therefore, the ideal and the real models

are computationally indistinguishable.

Theorem 11. A passive adversary A, corrupting a coalition of t − 1 servers and

the receiver P2, cannot gain any information about the polynomial f(x) before and

after executing the computation phase of the protocol ΠDOPE.

Proof. P1 distributes the coefficients a0, a1, . . . , ak among the t servers in the setup

phase with random polynomials of degree t − 1 such that each Si receives k + 1

shares. Without loss of generality, assume that the adversary A corrupts a coalition

of t − 1 servers S1, . . . , St−1 and the receiver P2. Each Si computes the encrypted

share c′i in the computation phase as:

c′i ← Encpk((
k∑

m=0

αm · [am]t−1)× l0,i mod N)

Since V IEWA holds the private encryption key, it can decrypt c′i to obtain the

plaintext. Without loss of generality, let fi be the respective plaintext which can be

shown as:

fi ← (
k∑

m=0

αm · [am]t−1)× l0,i (5.1)

Where, based on information-theoretic security of the secret sharing method and

since fk (the decrypted share of Sk) has more than one unknown share, the poly-

nomial f(x) is uniformly random over the field and, thus, V IEWA can learn no

information relating to it .

After implementing the computation phase, V IEWA calculates the output f(α)

which can be written as:

f(α) = f1 + . . . + ft

=
t∑

i=1

fi
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V IEWA has the plaintexts f1, f2, . . . , ft−1 and the output f(α). It also learns the

number of t−1 shares of each coefficient am. Hence, it can calculate fk by the formula

fk = f(α)−
∑t−1

i=1 fi. However, because the equation of fk (equation 5.1) has more

than one unknown share (i.e., at least for m = 0, 1) and due to the linear feature of

the secret sharing, V IEWA can gain no information relating to the shares [am]t−1

of Sk. Therefore, V IEWA can learn nothing about the coefficients a0, a1, . . . , ak of

the polynomial, and the sender’s privacy is preserved.

5.5 Extension to DOT

Distributed oblivious transfer has been a subject of numerous studies, see e.g.,

[82, 16, 15, 29]. Our protocol can also be extended to a system of secure
(
1
2

)
dis-

tributed oblivious transfer, denoted by DOT2
1. Basically, this system has a similar

functionality to DOPE where P1 holds two inputs, m0 and m1, and P2 has the choice

bit σ ∈ {0, 1} and they communicate with a set S of t distributed servers. A DOT2
1

protocol is securely implemented such that P2 receives mσ and P1 gains nothing

while the security conditions (i.e., privacy and correctness) are preserved against

the adversary [82]. Similar to the DOPE system, our extended DOT2
1 protocol has

two different phases and it holds the security setting. This improves the security of

the protocol of [82] where the privacy of the parties’ inputs is not preserved against

maximum coalition of t − 1 servers. The homomorphic encryption is employed to

perform the private outsourced computation by the cloud servers. Figure 5.3 shows

the extension to the protocol ΠDOT2
1
.



72

Input: P1 has the values m0 and m1 in Zq. P2 holds σ where σ ∈ {0, 1} .

Output: P2 learns mσ.

Verifiable setup phase:

� Each server Si ∈ S (for i = 1, . . . , t) generates a random MAC key αi ∈ Zq

and sends it to P1.

� P1 generates (t−1)-sharings [m0]t−1, [m1]t−1 over the integers integers. He

also calculates γ0 = αmac ·m0 and γ1 = αmac ·m1 where αmac =
∑t

i=1 αi,

and generates the (t− 1)-sharings [γ0]t−1 and [γ1]t−1 over the integers. He

sends the tuples ⟨m0⟩ and ⟨m1⟩ to each server Si where:

{∀Si ∈ S, τ = 0, 1 : ⟨mτi⟩ ← ([mτ ]t−1, γi([mτ ]t−1), [γτ ]t−1)}

� Each Si accepts the share [mτ ]t−1 iff γi([mτ ]t−1) = αi · [mτ ]t−1, otherwise

broadcasts fail and aborts the protocol.

� P1 leaves the protocol and takes no step further.

computation phase:

� P2 generates two k/2-bit large prime numbers pc and qc to calculate a pair

of the Paillier encryption keys (pk, sk) where N = pc · qc. He computes

the ciphertext c0 ← Encpk(1−σ) and c1 ← Encpk(σ) and broadcasts them.
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� Each server Si ∈ S computes in parallel using homomorphism:

c′i = (c
[m0]t−1

0 · c[m1]t−1

1 )l0,i mod N2

where l0,i is the Larange coefficient of Si.

� Each Si employs another round of homomorphic encryption to compute

the encrypted share of the corresponding MAC value as:

c′i(γmσ) = (c
[γ0]t−1

0 · c[γ1]t−1

1 )l0,i mod N2

and it privately sends the tuple ⟨C ′
i⟩ to P2 where ⟨C ′

i⟩ ← (c′i, c
′
i(γmσ), αi).

� P2 obtains the output as follows:

c′ =
t∏

i=1

c′i mod N2

mσ ← Decsk(c
′)

Verification

� P2 calculates the global MAC key αmac =
∑t

i=1 αi.

� P2 computes the MAC value of the output as:

c′(γmσ) =
t∏

i=1

c′i(γmσ) mod N2

γ(mσ)← Decsk(c
′(γmσ))

� P2 checks

γ(mσ)− αmac ·mσ = 0

and he accepts mσ iff it is Ok. Otherwise, he broadcasts fail and outputs

⊥.

Figure 5.3 : The extension of the protocol ΠDOPE to the protocol ΠDOT2
1
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Theorem 12. The protocol ΠDOT2
1
is secure against a static active adversary cor-

rupting P1 in the setup phase and a coalition of t−1 dishonest servers in the compu-

tation phase with the small probability of error. The protocol is also secure against a

passive adversary controlling a coalition of P2(P1) and t− 1 servers before and after

the implementation of the computation phase.

Proof. It is straightforward to verify the correctness of the protocol ΠDOT2
1
. Let

C and H represent the corrupted and honest parties/servers in the ideal model,

respectively. If P1 ∈ C in the setup phase, the simulator sends the random shares

[m′
τ ]t−1 to the functionality which simulates the the introduced errors δτ by the

adversary A in the real model, i.e. [m′
τ ]t−1 = [mτ ]t−1 + δτ . The simulator executes

the functionality and any inconsistency is detected with the error probability of 1/q.

If Si ∈ C in the computation phase, the simulator sends a list of corrupt parties

to the functionality. The simulator picks random values c′′i , c′′i (γmσ) and α′
mac for

their inputs. This is analogous to the condition where A deviates from the protocol

by adding the errors δi, δγmσ
and δα in the real model which can be denoted as

c′′i = c′i + δi, c
′′
i (γmσ) = c′i(γmσ) + δγmσ

and α′
mac = αmac + δα. The simulator runs

the functionality and sends the output m′
σ = mσ + δσ to P2 who is able to detect

the any inconsistency between the output and the corresponding MAC value with

the probability 1 − 1/q and aborts the protocol. If P1, Si ∈ H, the simulator runs

the protocol and P2 receives the new encrypted value c′ ← Encpk((1 − σ).m0 +

σ.m1 mod N). Clearly, if σ = 0 or σ = 1, P2 decrypts and receives either m0 or m1,

respectively.

The privacy condition follows the security evaluation of the main protocol ΠDOPE.

The protocol preserves the strong security in both the sender’s and the receiver’s

sides and the communication overhead is linear O(t). This gives an improvement
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on the protocol of [82] where the communication overhead is O(tdy) in which dy is

the variable degree of a bivariate polynomial with the free term mσ.

5.6 Conclusion

DOPE has been the building block of many cryptographic models. In this Chap-

ter, we propose the first verifiable and private DOPE scheme using additive homo-

morphic encryption feature and secret sharing in the presence of t distributed cloud

servers where t does not depend on the degree of sender’s polynomial k [61]. Our

protocol has two setup and computation phases, and the communication complexity

is determined by the factor kt which gives an improvement on the previous DOPE

protocols of [75] and [26]. The sender party is just involved in the setup phase

which means that the receiver must not necessarily be available in the setup phase

that is, also, an improvement on the protocol of [26]. Furthermore, the outsourced

computations of the homomorphic encryption can be implemented by the servers in

parallel which reduces the computation time.

The security is preserved against a corrupt sender in the setup phase and a static

active adversary corrupting a coalition of at most t−1 dishonest servers in the com-

putation phase using MAC technique. To the best of the authors’ knowledge, this is

the first verifiable secure DOPE protocol which authenticates the correctness of the

receiver’s output with the small probability of error. Moreover, the privacy is held

in environment of the strong security where the privacy of the sender’s/receiver’s

input(s) is maintained against a coalition of t − 1 servers and the opposed party

corrupted by a passive adversary. The security of the sender’s inputs is information-

theoretic before and after running the protocol, while the receiver’s input holds

IND-CPA security of the encryption system.

Our DOPE scheme can be extended to a secure DOT2
1 protocol with the same se-

curity setting and linear communication complexity O(t) which is an improvement
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on the protocol of [82] where the communication overhead is not linear.
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Chapter 6

Outsourcing Verifiable Distributed Oblivious

Polynomial Evaluation from Threshold

Cryptography

6.1 Introduction

In the last Chapter, we presented a verifiable and private DOPE scheme by

employing the Paillier cryptosystem for the receiver party. Namely, the protocol

requires that P1 Shamir-shares the coefficients of the polynomial f(x) among the

servers and P2 encrypts his input exponentiations αj, for j = 1, . . . , k. Each server

uses homomorphic encryption to compute an encrypted share of the output and

sends it to P2 who employs another round of homomorphism, decrypts and verifies

the final output. However, the system cannot be practical in reality for a normal

receiver party P2 with low-computation power devices. That is because the encryp-

tion and the decryption procedures of a public encryption system (in particular the

Paillier encryption, since N is a number with at least 2048 bits and, also, the homo-

morphic encryption computation works with N2) is very expensive and requires a

lot of heavy computation power and time which makes that scheme less favourable

for a normal receiver user P2.

An important question arises here is that is it possible to delegate the expensive

processes of encryption and decryption to P1 and the cloud servers while the in-

puts security conditions are still maintained? Also is that possible to reduce the

communication complexity while the heavy computations are outsourced? These

improvements make it possible that any normal user, with a low computational
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power device, plays the role of the receiver party P2. Needless to say that, the pro-

liferation of mobile devices, such as smart phones and laptops, has provided a new

field in which a user with a computationally weak device would like to participate

and be able to securely outsource a DOPE computation.

6.1.1 Applications

As we already mentioned, OPE (as the parent system of DOPE) has been a

notable building block of various cryptographic models and security fields such

as metering the number of visitors to a website [81], oblivious neural networking

[23], symmetric cryptography [84], oblivious keyword search [47], data mining [1],

RSA keys generation [55], set intersection [48] and electronic voting [87]. In secure

information-comparison protocols, two parties with their private inputs, say x and

y, wish to know whether x > y without leaking any additional information on the

inputs which can be used in password comparison, online auction and benchmarking

[41]. Another important application is in privacy-preserving machine learning which

can be used in healthcare [50], linear regression [28] and two-party inner product

[42]. These algorithms usually have two phases: training and classification where

OPE plays a secure tool to obtain the output in the classification phase in the secure

fashion. As an example, a healthcare company provider trains a model in the train-

ing phase and a patient wishes to gain a prediction of his health status using their

model without revealing any information about his personal health records [50].

In most of these applications, it is assumed that a normal user with low-computation

power is capable of achieving the output. Thus, a DOPE scheme, as a more decen-

tralized and secure alternative tool, must acclimatize to this requirement in order

to be considered in these vast application fields.
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6.1.2 Our Contribution

We present a lightweight DOPE scheme where a sender party P1, holding a

private polynomial f(x) of degree k, and a receiver party P2, with an input α,

wish to conduct a secure computation with the help of t cloud servers such that

P2 obtains the output f(α) over a large field. The number of cloud servers (t) is

independent of the polynomial degree (k). Unlike the protocol of [27], the main two

parties in our system can be anonymous to each other where they interact with the

cloud servers and the servers check that whether the parties commit to their inputs

using non-interactive commitment techniques. We employ the idea of threshold

decryption (described in section 4.2.2) such that the cloud servers perform the secure

computation of modular exponentiation operations which is the main computational

bottleneck of most public key cryptosystems (particularly in our case the Paillier

encryption system) [69]. As a result, P2 with a low-computational device is easily

able to calculate and verify the final output using simple arithmetic operations which

gives an asymptotic improvement on the study of the Chapter 5 [61]. Our scheme

consists of two phases:

� Setup Phase: P1 encrypts his inputs and reveals them, and the servers check

the commitments. P1 also distributes the masked private key among the cloud

servers and leaves the protocol.

� Computation Phase: P2 picks a set of random values over the field and

adds his input to these elements, and reveals them. The servers check the P2’s

commitment to these values. The homomorphic encryption and the heavy

decryption computation of the set are outsourced by the cloud servers. P2 uti-

lizes one round of oblivious transfer to obtain the correct index and calculates

the output. He repeats the same process to verify the output using message

authentication codes.
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Our scheme maintains the security (the inputs privacy and the output correctness)

against a static active adversary corrupting a coalition of up to t − 1 cloud servers

and the opposed party, with IND-CPA security of Paillier cryptosystem for P1 and

statistical security for P2. Unlike most of the works in this field which have consid-

ered just semi-honest adversaries, we present a fully secure DOPE protocol with low

probability of error which can be employed for general distributed privacy preserv-

ing systems. The communication overhead is linear O(t) improving on the previous

DOPE protocols. This gives an important result that the communication complexity

does not depend on the polynomial degree k.

6.2 Security

We previously discussed the security conditions of a DOPE system in the section

5.2.3. We now aim to give a more formal ideal/real security model of a DOPE system

and we later evaluate our scheme based on this model. We assume there exists a

simulator S playing the role of an adversary in the ideal model. S takes the inputs

of the corrupt parties and executes the functionality F such that the participants

do not interact directly with each other. This model achieves the highest level of

security and is denoted by IDEALF ,S with the view indicated by VIEWS . On the

contrary, the participants implement the protocol Π in the presence of a probabilistic

polynomial-time adversary A who corrupts the parties in the real model. The model

is denoted by REALΠ,A with the view of the adversary VIEWA. The protocol Π is

said to be secure if these two models IDEALF ,S and REALΠ,A are computationally

indistinguishable [21].

Most of the DOPE studies have attempted to only meet the strong privacy condition

in their protocols. However, we also add the correctness condition to make our

scheme more practical and secure. As a result, a fully secure DOPE scheme must

satisfy the privacy and the correctness requirements as follows:
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� Receiver’s Privacy: The adversary A corrupts a coalition of P1 and up to

t−1 cloud servers while the receiver party P2 gets involved in the protocol with

the input α ∈ F. The protocol is private for the P2’s input, if for any α′ ∈ F,

the VIEWA for α and that for α′ are computationally indistinguishable.

� Sender’s Privacy: Here, A controls a coalition of P2 and at most t − 1

servers, while the sender party P1 has the polynomial f(x) of degree k. The

simulator S with any input α′ in the field implements the same functionality

in the ideal model and obtains the output f(α′). The privacy of the P1’s

polynomial is preserved, if f(α′) is computationally indistinguishable from

any random values over the field. This requirement implies that VIEWA gains

no information about the polynomial f(x) except the value f(α). Note that

P2 is only allowed to evaluate at most k − 1 values from the same sender P1,

otherwise he can compute the polynomial f(x) and break the sender’s privacy.

� Correctness: The adversary A holds the full control of a coalition of P1 and

up to t− 1 cloud server. P2 with the input α executes the protocol to obtain

the output f(α) while A deviates from the protocol in an arbitrary fashion

to change the output to f(α′) for any α′ ∈ F without being detected. The

correctness of the output is maintained if f(α) and f(α′) are computationally

indistinguishable with low probability of error.

6.3 Our DOPE Scheme

We discuss our protocol in this section which includes two phases: the setup

and the actual computation. P1 communicates with the cloud servers in the setup

phase and then leaves the protocol, while P2 interacts with the servers in the actual

computation phase to evaluate the output.
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6.3.1 Setup Phase

This phase can be executed at anytime well in advance of the computation phase.

P1 encrypts the coefficients of his polynomial f(x) and commits to them showing

that he knows the plaintexts. We propose a non-interactive zero-knowledge proof

technique, which has some similarity to the scheme for the Paillier cryptosystem

given in [4], such that the servers check the commitments and the protocol fails in

case of detecting any inconsistency. Figure 6.1 shows the setup phase of the protocol

ΠDOPE.

Input: P1 holds the polynomial f(x) =
∑k

j=0 ajx
j where aj ∈ Zq.

� P1 invokes the keys generation algorithm Gen(1k) to produce a keys pair

(pk, λ) of the Paillier cryptosystem. He encrypts the coefficients aj to

obtain the ciphertexts cj ← Encpk(aj) as:

cj = gaj · rN mod N2

and he reveals them.

� The servers get involved with P1 to check that whether he has committed

to the correct coefficients aj using non-interactive zero-knowledge proofs.

Namely, for each cj:

* P1 picks random values y ∈ ZN and s ∈ Z∗
N and computes uj =

gy · sN mod N2. He reveals the values uj.

* Each server Si ∈ S chooses a random value ei ∈ ZN and sends it to

P1.

* P1 calculates e =
∑t

i=1 ei. Then he computes τ = y − e · aj mod N

and νj = s · r−e mod N2, and broadcasts them.
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* Si computes ceij mod N2 and reveals it. The value cej =∏t
i=1 c

ei
j mod N2 is computed by the means of homomorphic en-

cryption feature.

* The servers check that if gτ · cej · νN
j = uj mod N2 and the protocol

is aborted if this check fails.

Each server Si picks a random MAC key αi and sends it to P1.

�� P1 calculates the global MAC key αmac as the additive secret of the random

keys αmac =
∑t

i=1 αi. He computes the MAC value of aj as γ(aj) =

αmac · aj and encrypts it to obtain the ciphertext c(γaj)← Encpk(γ(aj)).

� Similarly, the servers check that whether P1 has committed to the correct

encrypted values of γ(aj) using another round of the above non-interactive

zero-knowledge proof technique.

� P2 masks the private key by a random value β ∈ Z∗
N as θ = β ·ϕ(N) modN

and distributes the (t − 1)-sharings [θ]t−1 in the field among the servers.

He also distributes the (t− 1)-sharings [β · λ]t−1 over the field Zϕ(N2).

Figure 6.1 : Setup phase of the protocol ΠDOPE

For the correctness of the proposed zero-knowledge proof technique, note that

since e =
∑t

i=1 ei, The homomorphic property of the encryption system determines

that cej =
∏t

i=1 c
ei
j mod N2. Therefore, the final checking equation can be written

as:
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gy−e·aj · (ge·aj · re·N) · (sN · r−e·N) mod N2 =

gy · SN mod N2 = uj

6.3.2 Computation Phase

P2 generates and publishes a set of m random values such that his input α is an

element in it. The serves are involved with P2 to make sure that he has committed

to the correct inputs using a non-interactive zero-knowledge proof technique. The

servers employ the idea of threshold decryption to perform the expensive part of

the decryption procedure. Namely, the heavy computations of the homomorphic

encryption and the modular exponentiations are outsourced to the cloud servers.

Finally, P2 conducts one round of 1-out-of-m oblivious transfer to obtain the correct

outcome. Figure 6.2 illustrates the computation of the protocol ΠDOPE.

Note that, as we already mentioned in Chapter 5, it is required that N holds the

condition N > (k + 1)q2.

Input: P2 has the value α ∈ Zq.

Output: P2 obtains f(α) modulo q.

� P2 picks m − 1 random elements {r1, r2, . . . , rm−1} over the field Zq. He

adds the input α to these elements with a random index n where 1 ≤ n ≤

m. This makes a random tuple {r1, . . . , rn, . . . , rm} such that rn ← α. He

publishes the tuple {re} for e = 1, . . . ,m.

� The servers check that whether P2 has committed to the correct values he

sent (i.e., r1, . . . , rm) using the MAC commitment scheme. Namely:



85

* Each server Si sends the random MAC key αi, generated in the setup

phase, to P2.

* P2 calculates the MAC value of each re, as γi(re), using the random

MAC key αi and sends it to Si.

* Si checks for each re that whether:

γi(re) = αi · re

Each server Si ∈ S computes m new encrypted shares as:

cie = c0 · cre1 · c
r2e
2 · . . . · c

rke
k mod N2

= c0 ·
k∏

j=1

cr
j
e
j mod N2

where one of these m ciphertexts is the correct encrypted output cin, i.e.,

cin ∈ {ci1, ci2, . . . , cim}.

�� Si sends the (t− 1)-sharings [θ]t−1 to P2.

� The servers compute the modular exponentiations of the threshold decryp-

tion procedure for each cie. Namely, each Si computes c
[β·λ]t−1·l0,i
ie mod N2

where l0,i is its Lagrange coefficient. Each server pools its decrypted share

to compute:

cβ·λe =
t∏

i=1

c
[β·λ]t−1·l0,i
ie mod N2

� P2 conducts one round of 1-out-of-m oblivious transfer with a server to

obtain cβ·λn . He opens θ and can simply calculate f(α) as follows:

f(α) = L(cβ·λn )/θ mod N

Figure 6.2 : Computation of the protocol ΠDOPE
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Verification

P2 and the servers repeat the same computation steps with the encrypted MAC

values to authenticate the output. Figure 6.3 shows the verification of the protocol

ΠDOPE.

Verification

� Similar to the computation process on figure 6.2, Si computes m encrypted

MAC values using the tuple {re} (for e = 1, . . . ,m) as:

ci(γe) = c(γ0) ·
k∏

j=1

[c(γaj)]
rje mod N2

where one of these m ciphertexts is the encrypted MAC value of the output

ci(γn).

� The servers perform the modular exponentiations computation of thresh-

old decryption for each c(γe). Namely, each Si pools [ci(γe)]
[β·λ]t−1·l0,i to

compute:

[c(γe)]
β·λ =

t∏
i=1

[ci(γe)]
[β·λ]t−1·l0,i mod N2

� P2 executes a 1-out-of-m oblivious transfer with a server to gain [c(γn)]β·λ.

He simply calculates the MAC value of the output as:

γ(f(α)) = L([c(γn)]β·λ)/θ mod N
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� P2 obtains the global MAC key αmac =
∑t

i=1 αi and checks whether:

αmac · f(α)− γ(f(α)) = 0

he accepts the output f(α) if it is OK, otherwise the protocol fails and

outputs ⊥.

Figure 6.3 : Verification of the protocol ΠDOPE

Note that the operations of computation and verification can be implemented in

parallel. The communication complexity of our scheme is bounded to be linear

O(t) field elements which implies that it does not depend on the polynomial degree

k. This improves on the communication overheads of the previous DOPE studies

[61, 75, 27] which are O(kt).

6.3.3 Security Evaluation

We evaluate our scheme based on the simulation security model described in

section 6.2.

Theorem 13. The protocol ΠDOPE is secure against a static active adversary cor-

rupting a coalition of at most t−1 servers and P1/P2 with small probability of error.

The security is semantic for the P1’s polynomial and statistical for the P2’s input.

Proof. Let H and C represent the honest and corrupt parties/servers in the ideal

model, respectively. Let {(S1, . . . , St−1), P1} ∈ C and St ∈ H in the setup phase.

The simulator first sends the wrong inputs cjδ (for j = 0, 1, . . . , k) to the functional-

ity which simulate the errors cjδ = cj + δj in the real model. The simulator runs the

functionality and St detects any inconsistency in the commitments of the P1’s inputs

using the proposed zero-knowledge proof technique. Then, the simulator sends the
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random values cieδ, αiδ and the shares [β ·λ]δt−1 and [θ]δt−1 in the computation phase.

This is analogous to the condition where A introduces the errors cieδ = cie + δc,

αiδ = αi + δα, [β · λ]δt−1 = [β · λ]t−1 + δβλ and [θ]δt−1 = [θ]t−1 + δθ to the real model.

The functionality is executed and P2 can detect any inconsistency in the output

using the global MAC key αmac with the probability 1− 1/q.

Let {(S1, . . . , St−1), P2} ∈ C and St ∈ H in the computation phase. The simulator

runs the corresponding MAC commitment in this phase and St checks and detects

any inconsistency in the commitment of the P2’s input.

Note that the privacy of the P1’s polynomial is preserved by the IND-CPA secu-

rity of the Paillier cryptosystem, and P2 holds the privacy of his input α using the

1-out-of-m oblivious transfer with the security parameter m. Some of the efficient

oblivious transfer protocols can be found in [83].

If all the parties and the servers are in H, the functionality is executed with no

fault detection. P2 picks a random set R as:

R = {r1, r2, . . . , rm}

such that rn = α where n ∈ {1, 2, . . . ,m}. Each server Si computes a set of m

ciphertexts cie = {ci1, . . . , cin, . . . , cim} (e = 1, . . . ,m) where cin can be written as:

cin = Encpk[a0 +
k∑

j=1

(aj · αj)]

Finally, the servers perform the heavy computations part of the Paillier’s threshold

decryption on the set of ciphertexts {ce}. P2 gains cβ·λn using one round of
(
1
m

)
oblivious transfer and executes the final simple arithmetic decryption step to obtain

the output f(α).
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6.4 Conclusion

DOPE is a variant of OPE which has many applications in various areas from

cryptographic models to privacy-preserving algorithms. We propose a lightweight

DOPE scheme where the expensive computations of homomorphic encryption and

modular exponentiations are outsourced to a number of t cloud servers which does

not depend on the polynomial degree k [63]. This can be achieved by having

the servers conduct the idea of threshold decryption such that the output still re-

mains confidential to at most t − 1 servers. Therefore, any normal user with low

computational-power devices (e.g., mobile, laptop) would be able to gain and verify

the output which makes this scheme more practical than the previous protocols and

gives asymptotic improvement on the method of the Chapter 5 [61].

Our scheme includes two separate phases: the setup and the actual computation.

The sender P1 is involved with the servers in the setup phase while the receiver P2

interacts with the servers in the computation phase. This implies that the main two

parties can remain anonymous to each other. Our protocol holds the full security

against a static active adversary corrupting a coalition of at most t− 1 servers and

the opposed party by the IND-CPA security of Paillier cryptosystem, and the sta-

tistical security of oblivious transfer with the security parameter m while P2 verifies

the output using the unconditional secure method of global message authentica-

tion code. Also, the servers check the commitments of the parties’ inputs using

two separate non-interactive zero-knowledge proof techniques. The communication

complexity is bounded to O(t) field elements giving an improvement on the previous

studies [75, 27, 61] which had the communication overhead O(kt). This implies that,

unlike the previous studies, the communication complexity can be so efficient such

that it does not depend on the polynomial degree k.
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Chapter 7

Fair Distributed Oblivious Polynomial Evaluation

via Bitcoin Deposits: Compute-as-a-Service

7.1 Introduction

In cloud computing service (the cloud computing providers e.g., Amazon Web

Services, Microsoft Azure, Google Cloud Platform and ...), an honest cloud server

is paid some amount of reward for the service it performs. Also, a corrupt server

compensates some amount for conducting the wrong and malicious service. Hence,

in order to make the DOPE system more practical in the cloud computing service,

where the parties pay for the outsourced computation service to the servers, the no-

tion of fairness is required such that any corrupt party/server must compensate as

well. In other words, achieving the fairness property is a must in secure distributed

systems involved with the cloud computing service, and it is where all the DOPE

protocols are lack of. Thus, we aim to present a fair and robust DOPE scheme us-

ing Bitcoin transactions in this Chapter. In addition to the fairness, the robustness

property ensures that the receiver party P2 gains the correct output, despite the

presence of a threshold number of corrupt servers controlled by an active adversary

in the system. These features would enable the DOPE system to be adapted to the

client/server world of cloud computing service.

7.1.1 Our Contribution

We present the first fair secure DOPE scheme where the sender party P1, having

a polynomial f(x) of degree k, and the receiver party P2, holding the input α,
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conduct a secure outsourced computation service with a set of n cloud servers such

that P2 obtains the output f(α) [62]. The number of cloud servers is n ≥ 2t+1 where

t can be considered the security parameter and it is independent of the polynomial

degree k. The fairness property ensures that an honest server/party never has to

pay any penalty and also, if a server/party does not deliver the correct output

to P2 or aborts the protocol, it compensates to an honest party [62]. This can

be achieved by the features of scripts and time-lock in Bitcoin transactions such

that an honest server gains the reward for the computation service it performs,

whereas each corrupt party/server gets penalized as well. Note that we choose

Bitcoin network, as a decentralised ledger without the need of a third trusted party,

since the market price is less volatile compared to the other cryptocurrencies with

smart contracts. With regards to the outsourced computation service, each server

computes an encrypted share of the output using homomorphic feature of Paillier

cryptosystem. In detail, our scheme consists of two phases:

� Setup Phase: P1 distributes the shares of his polynomial among the servers.

He also commits to the shares using the Pedersen’s non-interactive verifiable

secret sharing scheme [89]. The servers check the commitments and if the

honest majority complain, P1 is dishonest and compensates to the servers.

Otherwise, P1 penalizes every corrupt server and eliminates it from the proto-

col.

� Computation Phase: P2 encrypts his inputs and broadcasts them. Each

server employs one round of homomorphic encryption to compute the en-

crypted share of the output and sends it back to P2 who checks the commit-

ment. If P2 detects any faulty server, he eliminates it and gets compensated

from it. Otherwise, he pays to the honest servers for the computation service

they have executed.
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We assume that the communication channels are asynchronous, and if a server/party

does not perform the computation and communicate by the time-lock tl, it is tagged

as corrupt and makes the compensation for that. Moreover, the servers/parties

send the Bitcoin deposits before commencing each phase. Note that an honest

server gets back its deposit after completing the service in each phase. Our scheme

holds the full security against a static active adversary corrupting a coalition of t

cloud servers and P1 in the presence of the major honest servers (i.e., t+ 1 servers).

The privacy of the P1’s inputs is preserved by the unconditional security of secret

sharing while the privacy of the P2’s inputs is maintained with IND-CPA security

of Paillier cryptosystem. The communication complexity is bounded to O(kt) while

the fairness property is also achieved.

7.2 Preliminaries

7.2.1 Pedersen’s Verifiable Secret Sharing

We employ the non-interactive secret sharing commitment approach of Pedersen

[90] over the integers to detect any corrupt party in our protocol. Note that the

Pedersen’s verifiable secret sharing is unconditionally hiding and computationally

binding under the assumption of discrete logarithm with the information rate 1
2
.

Namely, a dealer chooses two large prime numbers p and q such that q divides p−1,

i.e., the order q is a subgroup of the field Zp. The dealer picks two random generators

g and h over the field Fq such that logg h is unknown. The dealer, holding a secret s

in Zq, shamir-shares the secret among the participants using a random polynomial

p(x) = s + b1x + b2x
2 + . . . + btx

t mod q where bj ∈ Zq (for j = 1, . . . , t). He also

chooses a random companion polynomial p′(x) = s′ + b′1x + b′2x
2 + . . . + b′tx

t mod q

where s′, b′j ∈ Zq and distributes the shares among the participants. Thus, each

party Pi is given two shares [s]t and [s′]t. The dealer computes:
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A0 = gs · hs′ mod p

and publishes it. He also computes Aj = gaj ·ha′j mod p and broadcasts them. Each

share-holder Pi checks that whether the dealer has committed to the correct share

[s]t as follows:

g[s]t · h[s′]t =
t∏

j=0

(Aj)
ij mod p

Pi accepts the share [s]t if the check is OK, otherwise he broadcasts a complaint.

7.2.2 Bitcoin Transactions

Bitcoin is a decentralized peer-to-peer electronic cash system which was designed

and developed by an anonymous person or group of people [80] as the first innovative

idea of cryptocurrency. The transactions are stored in blockchain (as a public ledger)

which helps to achieve agreement in decentralized scenarios without a trusted third

party and also can avoid the single point of failure attack. Due to this property, Bit-

coin has attracted some studies of multi-party computation to add fairness to their

protocols, see e.g., [3, 2, 74, 73]. The data consistency in blockchain is maintained

using a consensus algorithm called proof of work. Namely, the first node solving a

difficult computation puzzle (which generally takes roughly 10 mins) is selected to

record a block of transactions. Moreover, the security of the Bitcoin network is pre-

served by the honest majority of computing power. Note that one may choose any

other cryptocurrency with smart contract which can be applicable to our scheme,

nevertheless, we employ Bitcoin since the market price and the transaction fee is

less volatile and, thus, it is more reliable.

In detail, the system consists of addresses and transactions between them. An

address is the hash of a public key and a transaction works with asymmetric cryp-

tography. Each block can have several transactions in the body section. A sender
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signs a transaction with his private key and the recipient verifies the signature by

the sender’s public key. A transaction can have some inputs, i.e., it can accumulate

money from several past transactions. Each transaction Tx includes the index of the

previous transaction y, the scripts, the value d B and the time-lock tl. The scripts

of a transaction have a very useful feature where the users have much more flexi-

bility in defining the condition on how the transaction Tx can be redeemed. This is

achieved by the input-scripts and output-scripts. The output-script of the transac-

tion Tx is a description function πx with a boolean output. The transaction Tx is

redeemed successfully and is valid if πx evaluates to true, and then it is taken to the

input-script of the next transaction. In other words, the input-script σx is a witness

that is used to make the output-script πy of the last transaction Ty evaluates to true

on the current transaction Tx. One may think of an input-script as a signature of

the transaction and the output-script as a verification algorithm of the signature.

Moreover, if the time-lock tl of the transaction Tx is reached, the transaction is re-

deemed automatically. So, the time-lock tells at what time the transaction becomes

valid. Figure 7.1 shows the structure of the current transaction Tx with the value

d2 B and the last redeemed transaction Ty.

Figure 7.1 : The structure of the transaction Tx in Bitcoin

To summarize, a transaction is valid if 1) the output-script evaluates to true or 2)

the time-lock is reached. In our case, we employ the script and time-lock properties

such that an honest party has the authority to redeem a transaction deposit. This
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can be either making a payment to an honest cloud server for the computation

service it has performed or penalizing a corrupt server. Note that an honest server

gets back its deposit after conducting the computation service.

7.2.3 Security Model

As we previously discussed the ideal/real security model of a DOPE scheme,

the protocol Π is said to be securely implemented if the ideal and the real models,

IDEALF ,S and REALΠ,A, are computationally indistinguishable [21]. We now de-

scribe the security conditions of a fair secure DOPE model. Namely, in a secure

DOPE protocol with n cloud servers, where P1 holds a polynomial f(x) of degree k

and P2 has a value α, the privacy and the correctness requirements must be satisfied

as follows:

� Receiver’s Privacy: The adversary A corrupts a coalition of P1 and a num-

ber of maximum t cloud servers. The protocol maintains the privacy of the

P2’s input, if for any α′ in the field, the VIEWA for α and that for α′ are

computationally indistinguishable in the real model.

� Sender’s Privacy: The adversary A controls a coalition of P2 and up to t

cloud servers. The simulator S executes the functionality with a random value

α′ in the field to gain the output f(α′). The privacy of the sender’s polynomial

is held if f(α′) is computationally indistinguishable from any value randomly

chosen over the field. In other words, VIEWA must get no information about

the polynomial f(x) except the output f(α).

It should be stated that P2 is only allowed to obtain at most k − 1 outputs

from the same sender P1, otherwise, he would be able to gain the polynomial

f(x) and break the sender’s privacy.

� Correctness: Here, a static active adversary A takes the full control of a
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coalition of P1 and up to t cloud servers. P2 implements the protocol to gain

the value f(α) while A deviates from the protocol trying to change the output

to f(α′) without being detected for any α′ over the field. The protocol pre-

serves the correctness if f(α) and f(α′) are computationally indistinguishable.

� Fairness: In addition to the conditions above, we add the fairness property

to our scheme. Namely, in a fair DOPE scheme:

- An honest cloud server gets paid for the computation service it performs.

- An honest party/server never has to pay any penalty.

- If a party/server does not deliver the correct output to P2 or it aborts the

protocol before the computation finishes, it compensates for conducting

the malicious behaviour.

Note that we assume the receiver party P2 is always honest and does not deviate

from the protocol as he wishes to obtain the correct output. Furthermore, in order

to detect a malicious sender P1 and also achieve the robustness feature, the majority

of the cloud servers are honest in our scheme, i.e., n ≥ 2t+ 1 servers with at most t

corrupt servers.

7.3 Our Scheme

We discuss our DOPE protocol in this section. Our protocol includes two phases:

setup and computation.

We assume that the parties have access to a perfect clock and the communication

between the parties takes no time, unless the adversary delays. In particular, the

parties and the servers have agreed on a time-lock tl for the computation delay

before the protocol begins.
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7.3.1 Setup Phase

The sender party P1 is involved with n cloud servers (n ≥ 2t + 1) in this phase.

We assume that P1 and the servers have already posted their deposits via the Bitcoin

network and their transactions are already on the ledger before this phase starts.

Figure 7.2 depicts the setup phase of our protocol ΠDOPE.

Input: P1 holds the polynomial f(x) = a0+a1x+ . . .+akx
k =

∑k
j=0 ajx

j where

aj ∈ Zq.

� P1 has already made the deposit D1B for each server. Also, Each server

Si ∈ S has posted the deposit d B to the ledger.

� P1 distributes t-sharings [a0]t, [a1]t, . . . , [ak]t, denoted by [aj]t among the

servers. Also, as described in the section 7.2.1, he distributes random

companion t-sharings [a′j]t over the field Zq. He picks a large prime p

and two generators g and h in Fq such that logg h is unknown, and he

commits to the shares [aj]t using the Pedersen’s VSS scheme. Namely,

P1 computes the commitments Aj0, Aj1, . . . , Ajt in Fp (see section 7.2.1)

denoted by Aje for e = 0, . . . , t. P1 broadcasts the commitments Aje, i.e.,

totally (k + 1)× (t + 1) commitments.

� Each server Si ∈ S checks for its share [aj]t that:

g[aj ]t · h[a′j ]t =
t∏

e=0

(Aje)
ie mod p (7.1)

and accepts the share [aj]t if the commitment is OK and receives the P1’s

deposit D1B, otherwise it broadcasts a complaint.

If the server does not respond about the check by the time-lock tl, it is

tagged as corrupt.
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� If more than t servers complain, the sender P1 is dishonest and the protocol

fails. Each server gets compensated and redeems the deposit D1B from

P1.

� If equal or less than t servers complain, they are tagged as corrupt. Let

C denote the set of corrupt servers (|C| ≤ t). P1 penalises each server in

C redeeming its corresponding transaction d B and eliminates it from the

protocol.

Figure 7.2 : The setup phase of the protocol ΠDOPE

Note that in order to incentivise and prevent the servers from cheating, the reward

value for each server’s computation service must be greater than its initial deposit,

i.e., D1 > d. Of course, an honest server gets back its deposit at the end of this

phase.

7.3.2 Computation Phase

The receiver P2 starts this phase while the corrupt servers in C in the setup

phase have been eliminated. So, P2 communicates with a set of S ⊆ n − C servers

where |S| ≥ t+1. Similarly, the players post their deposit transactions to the ledger

before commencing this phase. Each server computes an encrypted share of the

output and P2 verifies the shares using the Pedersen’s commitments published in

the setup phase. P2 detects any corrupt server, gets the compensation from it and

eliminates it. Figure 7.3 shows the computation phase of the protocol ΠDOPE.
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Input: P2 has the value α ∈ Zq.

Output: P2 obtains f(α) in Zq.

� P2 has already posted the deposits D2 B for each server. Also, each server

Si ∈ S has sent the deposit transaction d B to the ledger.

� P2 invokes the keys generation algorithm Gen(1k) of the Paillier cryp-

tosystem (described in section 5.2.2) to produce the keys (pk, sk) where

the public key is N = pc ·qc. He encrypts the values αj (for j = 0, 1, . . . , k)

to obtain the ciphertexts cj ← Encpk(α
j) and publishes them.

� Each Si employs the homomorphic feature to compute an encrypted share

of the output as:

ci =
k∏

j=0

c
[aj ]t
j mod N2

similarly, it computes an encrypted share of the companion polynomials,

which it receives in the setup phase as:

c′i =
k∏

j=0

c
[a′j ]t
j mod N2

and sends them to P2. If Si delays and does not send the corresponding

ci and c′i to P2 by the time-lock tl, P2 tags it as a corrupt server.

� P2 decrypts ci and c′i to open the share [f(α)]t of the output and the

companion share [v′]t of the companion polynomials, respectively. Let

Ej =
∏t

e=0 A
ie

je mod p which can be computed by P2 for each server Si.

He checks for Si that whether:

g[f(α)]t · h[v′]t =
k∏

j=0

Eαj

j mod p (7.2)

if it is Ok, he accepts the computation of the share [f(α]t from the server

Si. Otherwise Si is corrupt.
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� P2 penalizes every corrupt servers in this phase, redeems its deposit d B

and eliminates it. Finally, P2 obtains f(α) using the t-sharings [f(α)]t.

Figure 7.3 : The computation phase of the protocol ΠDOPE

Note that an honest servers gets back its deposit after accepting its computation

service by P2. Similar to the setup phase, due to the incentive mechanism and to

prevent the cloud servers from cheating, the reward amount D2 B has to be greater

than each server’s deposit d2 B. The communication complexity of our protocol is

O(kt) which is the same as that in the previous DOPE protocols [61, 27]. However,

our DOPE holds the fairness with the same communication overhead.

7.4 Security Evaluation

We assess the security of our scheme based on the security model described in

section 7.2.3.

Theorem 14. The protocol ΠDOPE is fair and robust against a static active ad-

versary corrupting a coalition of P1 and at most t cloud servers. The security is

unconditional for the P1’s polynomial and semantic for the P2’s input.

Proof. Let H and C denote the honest and the corrupt parties/servers in the ideal

model, respectively. Let {P1, (S1, . . . , St)} ∈ C and {St+1, . . . , S2t+1} ∈ H in the

setup phase. The simulator S broadcasts wrong commitments Ajeδ to the func-

tionality which is analogous to the situation where the adversary A introduces the

errors Ajeδ = Aje + δA to the real model. S runs the functionality and the servers

in H do not accept the t-sharings [aj]t using the non-interactive Pedersen’s VSS

(equation 7.1). Thus, they detect the corrupt P1, penalize him by redeeming his

deposit transaction D1 B and get back their own deposits d B. Let {S1, . . . , St} ∈ C
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and {P1, (St+1, . . . , S2t+1)} ∈ H in the setup phase. S delays by the time-lock tl or

broadcasts wrong complains regarding the P1’s commitments Aje. This is similar

to the same condition in the real model. P1 eliminates the servers in C and gets

compensated by redeeming the deposit d B from each server in that set. Moreover,

each server in H gains the reward D1 B from P1 and gets back its own deposit d B.

Let {S1, . . . , St} ∈ C and {P2, (St+1, . . . , S2t+1)} ∈ H in the computation phase. The

simulator S sends the wrong encrypted shares ciδ and c′iδ to P2. This is analogous if

A introduces the errors ciδ = ci + δc and c′iδ = c′i + δc′ in the real model. S executes

the functionality and P2 detects a faulty server using the extension of the Pedersen’s

commitments in equation 7.2 which can be written as:

k∏
j=0

Eαj

j mod p =
k∏

j=0

gα
j ·[aj ]t · hαj ·[a′j ]t mod p

= g[f(α)]t · h[v′]t mod p

P2 redeems the deposit transaction d B of each server in C and eliminates it. Also,

each server in H achieves the reward transaction D2 B and gets back its own deposit

d B.

P2 accepts ci from an honest server after the verification stage which can be shown

as:

ci ← Encpk(
k∑

j=0

αj · [aj]t)

which clearly is an encrypted share of the output. P2 invokes the decryption algo-

rithm to gain the share [f(α)]t ← Decsk(ci). He gathers at least t + 1 shares from

the honest servers and reconstructs the output f(α).

P1 maintains the privacy of his polynomial f(x) using the unconditional security of

the secret sharing and the Pedersen’s VSS scheme, and P2 employs the IND-CFA

security of the Paillier cryptosystem to preserve the privacy of his input α. Note

that a P2 is only allowed to evaluate at most k − 1 values from the same sender

P1.



102

7.5 Conclusion

DOPE is a variant of two-party computation which is the significant building

block of many cryptographic models and privacy-preserving algorithms. We present

the first fair DOPE protocol where an honest cloud server gains reward for per-

forming a computation service while a corrupt server has to pay some penalty for

conducting the malicious behaviour via Bitcoin deposit transactions [62]. This can

be achieved by using the properties scripts and time-lock in a Bitcoin transaction as a

decentralised means of electronic payment without the need of a trusted third party.

Our scheme includes two separate phases: setup and computation. The sender party

P1 interacts with the cloud servers in the setup phase while the receiver party P2

communicates with the servers in the computation phase. This implies that the

computation phase can be implemented at any time well in advance of the setup

phase. P1 distributes his polynomial among the servers and commits to the shares

using the non-interactive Pedersen’s commitment scheme which are checked by the

servers. Each server employs one round of homomorphic feature of the Paillier cryp-

tosystem to compute an encrypted share of the output, and P2 verifies the share

and detects any corrupt party.

Our protocol maintains the security against an active adversary corrupting a coali-

tion of P1 and up to t cloud servers in the setup phase and a coalition of maximum

t servers in the computation phase in the presence of honest majority of the servers.

The communication complexity is bounded to O(kt) field elements which is the same

as that in the previous DOPE protocols [61, 27], while the fairness property is also

achieved in our scheme.
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Chapter 8

Conclusion

This Chapter presents a brief summary of the thesis results and some potential

directions for future research.

In this thesis, we investigate on the notable research field multi-party computation

(MPC) and the related field distributed oblivious polynomial evaluation (DOPE).

More specifically, several new schemes were proposed to improve on the efficiency

of the existing protocols in these fields. Namely, we utilize the idea of MPC from

pre-distributed information to present the following contributions in MPC:

� An unconditionally secure MPC protocol using a third party initializer ( Chap-

ter 2) [58].

� A fast unconditionally secure MPC scheme with multi-depths multiplicative

gates (Chapter 3) [60].

� An efficient scheme for distributed keys generation of threshold Paillier cryp-

tosystem using MPC (Chapter 4) [59].

DOPE is a variant of two-party computation and it is relatively a new research area.

We also give the following contributions to make DOPE more secure, efficient and

practical in the world of cloud computing service:

� The first verifiable and private DOPE scheme secure against an active adver-

sary (Chapter 5) [61].
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� A lightweight DOPE protocol by outsourcing the heavy computation to the

cloud servers using threshold cryptography (Chapter 6) [63].

� The first fair and robust DOPE scheme via Bitcoin deposits in cloud computing

service (Chapter 7) [62].

While these results show significant contributions, there are still several interesting

potential research directions to be explored in the fields of MPC and DOPE as

follows:

* For the case of fast MPC with multi-levels multiplicative gates, an interesting

topic could be that the participants only hold the shares of the inputs. In that

case, the input holders may not exist in the protocol.

* Another potential idea for the future research is to conduct more studies in

commodity-based MPC. With the recent development of cloud computing,

companies and parties can delegate and outsource their MPC systems to the

cloud servers while the security conditions are also satisfied.

* In DOPE, an interesting topic could be the investigation on unconditionally

secure DOPE against an active adversary without using computational (en-

cryption) assumptions and oblivious transfer in the system.

* Also, another potential future research in DOPE is to conduct an actual im-

plementation of a fair DOPE scheme in the real world of cloud computing. It

could be the scheme presented in this thesis or any other more efficient model.
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computation for privacy-preserving data mining. In: Information Security and

Cryptology–ICISC 2004: 7th International Conference, Seoul, Korea, Decem-

ber 2-3, 2004, Revised Selected Papers 7. pp. 104–120. Springer (2005)

[57] Guo, L., Fang, Y., Li, M., Li, P.: Verifiable privacy-preserving monitoring

for cloud-assisted mhealth systems. In: 2015 IEEE Conference on Computer

Communications (INFOCOM). pp. 1026–1034. IEEE (2015)

[58] Hamidi, A., Ghodosi, H.: Secure multi-party computation using pre-

distributed information from an initializer. In: Security and Privacy: Second

International Conference, ICSP 2021, Jamshedpur, India, November 16–17,

2021, Proceedings 2. pp. 111–122. Springer (2021)



113

[59] Hamidi, A., Ghodosi, H.: Efficient distributed keys generation of threshold

paillier cryptosystem. In: International Conference on Information Technology

and Communications Security. pp. 117–132. Springer (2022)

[60] Hamidi, A., Ghodosi, H.: Unconditionally fast secure multi-party computa-

tion with multi-depths gates using pre-computed information. In: Proceedings

of Seventh International Congress on Information and Communication Tech-

nology: ICICT 2022, London, Volume 2. pp. 329–340. Springer (2022)

[61] Hamidi, A., Ghodosi, H.: Verifiable dope from somewhat homomorphic en-

cryption, and the extension to dot. In: Science of Cyber Security: 4th Interna-

tional Conference, SciSec 2022, Matsue, Japan, August 10–12, 2022, Revised

Selected Papers. pp. 105–120. Springer (2022)

[62] Hamidi, A., Ghodosi, H.: Fair distributed oblivious polynomial evaluation via

bitcoin deposits: Compute-as-a-service. In: Nordic Conference on Secure IT

Systems. pp. 73–86. Springer (2023)

[63] Hamidi, A., Ghodosi, H.: Outsourcing verifiable distributed oblivious polyno-

mial evaluation from threshold cryptography. In: International Conference on

Information and Communications Security. pp. 235–246. Springer (2023)

[64] Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C., Otsuka, A.,

Winter, A.: Information theoretically secure oblivious polynomial evaluation:

Model, bounds, and constructions. In: Australasian Conference on Informa-

tion Security and Privacy. pp. 62–73. Springer (2004)

[65] Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with

simulation-based security. Cryptology ePrint Archive (2009)

[66] Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient

rsa key generation and threshold paillier in the two-party setting. Journal of



114

Cryptology 32(2), 265–323 (2019)

[67] Hemenway, B., Lu, S., Ostrovsky, R., Welser Iv, W.: High-precision secure

computation of satellite collision probabilities. In: Security and Cryptography

for Networks: 10th International Conference, SCN 2016, Amalfi, Italy, August

31–September 2, 2016, Proceedings 10. pp. 169–187. Springer (2016)

[68] Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation.

In: International conference on the theory and application of cryptology and

information security. pp. 143–161. Springer (2000)

[69] Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic

computations. In: Theory of Cryptography: Second Theory of Cryptography

Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005. Pro-

ceedings 2. pp. 264–282. Springer (2005)

[70] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.:

On the power of correlated randomness in secure computation. In: Theory of

Cryptography Conference. pp. 600–620. Springer (2013)

[71] Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic se-

cure computation with oblivious transfer. In: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. pp. 830–842

(2016)

[72] Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate

private information retrieval from homomorphic encryption. Proc. Priv. En-

hancing Technol. 2015(2), 222–243 (2015)

[73] Kiayias, A., Zhou, H.S., Zikas, V.: Fair and robust multi-party computation

using a global transaction ledger. In: Advances in Cryptology–EUROCRYPT

2016: 35th Annual International Conference on the Theory and Applications



115

of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,

Part II 35. pp. 705–734. Springer (2016)

[74] Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to se-

cure computation with penalties. In: Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. pp. 406–417 (2016)

[75] Li, H.D., Yang, X., Feng, D.G., Li, B.: Distributed oblivious function evalua-

tion and its applications. Journal of Computer Science and Technology 19(6),

942–947 (2004)

[76] Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique.

Tutorials on the Foundations of Cryptography pp. 277–346 (2017)

[77] Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-

party computation combining bmr and spdz. In: Annual Cryptology Confer-

ence. pp. 319–338. Springer (2015)

[78] Micali, S., Goldreich, O., Wigderson, A.: How to play any mental game. In:

Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC.

pp. 218–229. ACM (1987)

[79] Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving

machine learning. In: 2017 IEEE symposium on security and privacy (SP).

pp. 19–38. IEEE (2017)

[80] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized

business review p. 21260 (2008)

[81] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Pro-

ceedings of the thirty-first annual ACM symposium on Theory of computing.

pp. 245–254 (1999)



116

[82] Naor, M., Pinkas, B.: Distributed oblivious transfer. In: International Confer-

ence on the Theory and Application of Cryptology and Information Security.

pp. 205–219. Springer (2000)

[83] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA. vol. 1,

pp. 448–457 (2001)

[84] Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on

Computing 35(5), 1254–1281 (2006)
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