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OPEN ACCESS 

ABSTRACT 

Context. Seagrasses form an important habitat that provides diverse ecosystem services essential 
for both the environment and people. In tropical Queensland, Australia, these meadows hold signifi-
cant economic and cultural value, serving as nurseries for marine species and sustaining dugongs and 
green turtles. The biomass and size of tropical seagrass meadows in Queensland varies considerably 
and are influenced by various factors, both biotic and abiotic. Aims. Functional trait-based 
approaches can improve the estimation of seagrass-meadow resilience and services provision by 
describing the relationship between environment and individual performance. To support these 
approaches, we provide a seagrass functional-trait database focusing on resilience and function 
provision for tropical Queensland. Methods. We employed a combination of literature reviews, 
database searches, botanical information, and structured expert elicitation to target 17 functional 
traits across 13 seagrass species in tropical Queensland. Key results. We developed a traits 
database to inform functional trait-based approaches to assessing seagrass-meadow resilience and 
dynamics. The outputs included trait information for approximately 78% of the targeted traits (of 221 
unique trait–seagrass combinations). Conclusions. With current information on functional traits, we 
can improve the estimation of resilience and ecosystem services for tropical Queensland seagrass 
species. We have also highlighted trait data gaps and areas for further research. Implications. We 
have provided examples of applying this database within the tropical Queensland context, with the 
potential to facilitate regional comparative studies. Our database complements existing plant-trait 
databases and serves as a valuable resource for future trait-based seagrass research in tropical 
Queensland. 

Keywords: database, ecosystem services, functional trait, plant morphology, resilience, seagrasses, 
trait-based approach, tropical Queensland. 

Introduction 

Functional traits are specific characteristics of individual organisms that directly affect how 
well they perform or survive in their environment (Violle et al. 2007; Nock et al. 2016). 
These traits are crucial ecological indicators that can predict ecological dynamics with a 
well-established cause and effect relationships between the traits and the targeted 
ecological process (Streit and Bellwood 2023). For instance, in Eucalyptus trees, bark traits 
relate to flammability and shifting of bark traits of a forest can indicate fire-frequency 
changes (Grootemaat et al. 2017). Establishing clear cause-and-effect relationships can help 
us understand ecosystem services and monitor processes such as increasing fire frequency 
as a result of climate change. Monitoring traits rather than species alone advances our 
understanding of ecosystem function and health as different species might share similar 
traits, known as trait redundancy (Laliberté and Legendre 2010; Nash et al. 2016). Trait-
based methods are widely applied in disciplines such as ecology and biological conserva-
tion, including the assessment of the vulnerability of ecosystem services to a changing 
environment (LeRoy Poff et al. 2006; Butt and Gallagher 2018; Wood and Dupras 2021). 

The application of trait-based approaches to seagrass ecology has been very limited 
despite its widespread application in other communities (Moreira-Saporiti et al. 2023). 
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Seagrass meadows are globally distributed and play a crucial 
role in marine ecosystems (Larkum et al. 2006; Dunic et al. 
2021). They serve as nursery grounds for fish and prawn 
species (Jinks et al. 2019; Jones et al. 2021), and provide 
feeding habitats for herbivorous marine mammals and sea 
turtles (Kelkar et al. 2013; Tol et al. 2016). Additionally, 
seagrass meadows offer valuable ecosystem services such as 
coastal protection through wave attenuation and significant 
carbon storage in sediment (Fonseca and Cahalan 1992; 
Lavery et al. 2013; Johnson et al. 2017; Twomey et al. 2020). 

In the tropical Queensland region of Australia (Fig. 1), a 
diverse range of 12–15 seagrass species have been documented, 
dependent on inclusion of rare species and definition of 
species complex (Waycott et al. 2004; Carter et al. 2021a). 
The total area of seagrass meadows in the Great Barrier 
Reef (GBR) region of tropical Queensland (Fig. 1) estimated 
by habitat modelling is from 35,000 (Coles et al. 2015) to  
88,331 km2 (Carter et al. 2021b). These meadows are mixed-
species meadows and exhibit dynamic changes over time and 
often with evidence of herbivory (Fig. 2). Several large-scale 
seagrass-loss events have been recorded in Queensland over 
the past 30 years (Poiner et al. 1993; Preen et al. 1995; 
Rasheed et al. 2014; McKenna et al. 2015; James Cook 
University 2022). These losses have sometimes been caused 
by a single hazard event, but more commonly are a result 

Fig. 1. Seagrass presence records in tropical Queensland from 1985 to 
2018. Seagrass records are sourced from the TropWATER, James Cook 
University seagrass monitoring programs (Carter et al. 2021a, 2024). 

of multiple impacts, such as consecutive weather events 
that inhibit growth and/or cause direct physical damage to 
meadows (McKenna et al. 2015). Notably, not all seagrass 
meadows respond to individual or multiple events in the 
same way; for instance, meadows in the southern GBR 
displayed a much faster recovery rate than did meadows in 
the central GBR during a series of hazard events in 2011 
(McKenzie et al. 2016). Trait-based methods offer a promising 
solution to understand the high variability in seagrass 
meadows and the consequence of meadow dynamics on 
service delivery. Rather than characterising a seagrass meadow 
solely on the basis of their species composition, these methods 
focus on the combination of traits exhibited by the seagrass 
present in the meadow. This approach allows for a direct 
link between the characteristics of the seagrass meadow and 
its performance in response to environmental conditions. 

There are two significant knowledge gaps that need to be 
addressed to effectively apply trait-based approaches in tropical 
Queensland. First, establishing solid causal relationships 
between traits and their functional outcomes is crucial 
(Funk et al. 2017; Streit and Bellwood 2023). Second, there 
is a lack of comprehensive trait data for seagrass species, 
which has limited previous research, such as a large-scale 
coastal protection estimation (De Battisti 2021). Existing 
curated plant-trait databases, such as TRY Plant Trait Database 
(Kattge et al. 2020) and Austraits (Falster et al. 2021), have 
limited information related to aquatic plants, especially 
submerged seagrass species. Although the current trend of 
using trait-based approaches is increasing (Moreira-Saporiti 
et al. 2023), global or local seagrass trait data are hard to 
gather. Recently, two publicly accessible databases, namely 
Seagrass TraitDB (De los Santos et al. 2022) and a peer-
reviewed paper focused on seagrass meadow structural traits 
(Strydom et al. 2023), have emerged. Seagrass TraitDB aims 
to integrate global empirical data for seagrass traits and is in a 
data-collection stage. Strydom et al. (2023) used a literature-
based approach to gather information from global seagrass 
research to provide 11 traits at the genus level. Collecting 
traits at a genus level is useful for understanding general 
patterns or trends within a group of related species, but does 
not support finer-grained analysis of characteristics specific to  
individual organisms, including mechanisms that are crucial 
to resilience, such as reproductive success. 

The objective of our study was to establish a robust 
knowledge base for the application of trait-based methods to 
tropical seagrass species in Queensland through the develop-
ment of a functional-traits database. To accomplish this, our 
approach involved several key steps. First, we identified a 
comprehensive set of seagrass traits that have the potential 
to influence seagrass recovery, resistance, and ecosystem 
functioning. Subsequently, we used a combination of litera-
ture, database and botanical information searches and 
structured expert elicitation to collect data on the values of 
the identified traits. Expert elicitation allowed us to overcome 
gaps in published information by collecting knowledge 
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Fig. 2. Mixed-species seagrass meadows at Cape Pallarenda, Townsville (19°11 001.3 00S, 146°45 053.7 00E), showcasing trait diversity and the 
ecosystem services they provide. (a) General view of these intertidal seagrass meadows. (b) Clear and dense dugong feeding trails 
indicated with the orange bars. (c) A mixed meadow composed mainly of Halophila ovalis (oval-shaped leaves) and Halodule uninervis 
(thin needle-like leaves). (d) Halodule uninervis (thin, green needle-like leaves, indicated with a yellow circle) co-exists with Zostera 
muelleri subsp. Capricorni (brown strap-like leaves, indicated with red star) in this mixed meadow. 

systematically and transparently from experts (Martin et al. 
2012; Hemming et al. 2018a). Through appropriate question 
design, the results obtained from expert elicitation can 
provide quantitative estimations with associated uncertainty 
(Adams-Hosking et al. 2016). It is common practice to 
supplement information when empirical published data are 
unavailable, as has been seen in fields such as conservation 
(Gallagher et al. 2021) and ecological modelling (James et al. 
2010; Kuhnert et al. 2010). In our study, this approach 
allowed us to complement the information gathered from 
the literature search and further enhance our understanding 
of seagrass traits in a comprehensive and robust manner. 
Finally, we collaborated with existing platforms to make this 
set of seagrass traits readily available for further scientific 
research and management. By establishing this solid founda-
tion of seagrass traits, we have facilitated future advancements 

in understanding and managing tropical seagrass ecosystems 
using trait-based methods. 

Methods 

The study extent covered the tropical Queensland coastline 
(Fig. 1), starting in the south at Gladstone, Queensland, 
Australia (23°50 032 00S, 151°17 019 00E), and extending to the 
western end at Burketown, Queensland, Australia (16°32 011 00S, 
138°00 012 00E). We focused on seagrass species in shallow 
meadows because of limited information for deep-water 
meadows (deeper than 10–15 m). We included the following 
13 well-defined seagrass species occurring in tropical 
Queensland: Cymodocea rotundata (Ascherson & Schweinfurth, 
1870), Oceana serrulata (Byng & Christenh, 2018), Enhalus 
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acoroides (Royle, 1839), Halophila capricorni (Larkum, 1995), 
Halophila decipiens (Ostenfeld, 1902), Halophila ovalis 
(Hooker f., 1858), Halophila spinulosa (Ascherson, 1875), 
Halophila tricostata (M.Greenway, 1979), Halodule uninervis 
(Ascherson 1882), Syringodium isoetifolium (Dandy, 1939), 
Thalassodendron ciliatum (Hartog 1970), Thalassia hemprichii 
(Ascherson, 1871), and Zostera muelleri subsp. Capricorni 
(S.W.L.Jacobs, 2006). Regarding species complexes, Halophila 
ovata, Halophila minor, and  Halophila colesi/australis are 
grouped into Halophila ovalis because of their morphological 
similarities, often making them indistinguishable in the field 
surveys. Similarly, Halodule pinifolia is included in Halodule 
uninervis for the same reason (Carter et al. 2021a). 

To maximise the usability of our tropical Queensland 
seagrass database, we follow the guidelines of creating a 
generic plant-trait database (Kattge et al. 2011). We developed 
a comprehensive list of targeted traits on the basis of their 
relevance to seagrass recovery, resistance, and ecosystem 
services, drawing insights from previous studies (Larkum 
et al. 2018; O’Brien et al. 2018; Johnson et al. 2021). This 
selection was guided by our research focus on understanding 
the dynamics of seagrass meadows in this region, their 
conservation purpose, and the value of the seagrass meadows 
through their ecosystem services. Seventeen traits were 
chosen and their definitions along with their relevance to 
recovery, resistance, or ecosystem services are detailed in 
Table 1. Additionally, these traits are cross-referenced with 
full trait names and TraitID in the TRY Plant Trait Database 
whenever applicable. In this format, our database facilitates 
accessibility for other researchers and mitigates the issue of 
unstandardised plant traits. A few traits were considered 
important in the seagrass ecology discipline but not included 
in the TRY Plant Trait Database; so, they were included in this 
project without providing the TraitID. Recognising that traits 
can exhibit variations within a single species owing to factors 
such as habitat condition, seasonality, or genetics (Albert et al. 
2011; Bolnick et al. 2011), supplementary information 
associated with the data collection (e.g. date of collection, 
measurement method, and coordinates of the location site) 
is required to allow further examination of the traits. We 
reported the biotic and abiotic content of the collected trait 
when applicable. 

We reviewed three types of existing seagrass-trait 
resources (published literature, trait database, and botanical 
information). First, a systematic literature search was 
performed using Scopus (https://www.scopus.com) and Web 
of Science (https://www.webofscience.com) to retrieve 
relevant articles published between 1980 and 2021. The 
search used a combination of keywords, namely ‘each seagrass 
species name’, ‘resistance’, ‘recovery’, ‘resilience’, ‘functioning’, 
and ‘each trait name’ (as listed in Table 1). The articles from the 
two databases were merged and duplicates removed. An initial 
screening was performed by assessing the title and abstract to 
remove studies associated with species not included in our 
study. Further screening was then conducted to categorise 

studies on the basis of their geographic region and measure-
ment method. Priority was given to studies or measurements 
conducted in tropical Queensland, emphasising their inclusion 
in the database. Additionally, preference was given to data that 
recoded trait variation, such as seasonal fluctuations or 
variations in water depth, because these are valuable for 
capturing the breadth of seagrass traits. Second, the following 
trait databases were searched for relevant information: TRY 
Plant Trait Database (Kattge et al. 2020), Austraits (Falster 
et al. 2021), and Seagrass TraitDB (De los Santos et al. 2022). 
Trait data were extracted following the protocol of each 
database. Finally, we sourced botanical information from 
Flora of Australia (2024). There could be a potential bias 
associated with missing seagrass studies that are not 
reported in English. However, the area of interest for this 
study was tropical Queensland and all the published studies 
in Australia are reported in English. 

An expert elicitation process was employed to gather 
information on functional traits and meadow properties that 
were not documented in existing literature. We used the IDEA 
protocol method developed by Hemming et al. (2018a), which  
comprises the following four stages: ‘investigate,’ ‘discussion,’ 
‘estimate,’ and ‘aggregate’. The expert elicitation was conducted 
under the approval from the JCU Human Research Ethics 
Committee (H8879). The experts were identified as any 
person that had sufficient field-work experience of seagrasses 
in tropical Queensland. All experts were provided with an 
information sheet, and participation was completely voluntary 
(Supplementary File S1). The participants responded to the 
survey anonymously, but a unique ID was recorded to trace 
multiple responses from one person. Two general background 
questions were included in the survey, including, what sector 
the experts work, and their experience on seagrass. 

To address the challenges of low response rate for 
particular species and the lengthy survey duration, we 
made slight modifications to the IDEA protocol in our 
study. The ‘investigate’ stage was conducted online by using 
an online survey platform SurveyMonkey (Momentive Inc., 
https://www.surveymonkey.com/). To make sure the 
experts share the same understanding of the purpose of the 
survey, we presented a detailed introduction with survey 
location maps, brief seagrass species information with figures, 
and a trait definition for each question (Fig. S1). In total, 28 
trait/meadow properties from 13 species were included in the 
survey. Every question followed the four-step question format 
(Speirs-Bridge et al. 2010), which asked the participant to 
answer the highest plausible, lowest plausible, best guess, 
and confidence level. This question setup is intended to 
mitigate overconfidence in estimation, and confidence levels 
were applied to standardise material in the discussion section 
(Hemming et al. 2018b). The survey period spanned from 17 
October 2022 to 10 March 2023. The experts were asked to 
base their answer on meadows they encountered along the 
tropical Queensland coast, from Gladstone to Burketown. 
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Table 1. Traits collected in the tropical Queensland traits database. 

Trait name TraitID Full trait name Unit Definition Rationale for relevance to resilience and 
ecosystem services 

Leaf width 145 Leaf width mm Measurement of the widest Wider leaves are subject to higher drag force 
portion of the leaf created by waves, but provide stronger wave-

attenuation ability than do thinner leaves (van 
Rooijen et al. 2018; Twomey et al. 2020) 

Leaf length 144 Leaf length mm Total length of the leaf Leaf length affects the leaf length to width ratio, 
which can further affect the wave-attenuation 
ability and structure complexity of the meadow 
(Twomey et al. 2020; Jones et al. 2021) 

Leaf lifespan 12 Leaf lifespan (longevity) Day The number of days that a leaf Leaf lifespan is a leaf economic property and 
stays on a plant affects the local asexual recovery ability. 

Shorter leaf lifespan generally indicates faster 
growing (O’Brien et al. 2018) 

Leaf nitrogen 660 Leaf nitrogen (N) mg per dry The nitrogen content in the leaf Dugong and sea turtles might target seagrass 
content per leaf content organic per leaf mass and it is expressed as percentage with high nutrients to improve the efficiency 
dry mass dry mass of leaf dry weight of feeding (Tol et al. 2016) 

Rhizome diameter – – mm On a cross section of a rhizome, Rhizomes act as anchor for seagrass. Wide 
the length of a segment from one rhizomes provide stronger resistant force to drag 
end of the rhizome to another end force created by waves than do  thin rhizomes.  A  
through the centre meadow that contains large size seagrass tends 

to attract herbivores (Tol et al. 2016) 

Rhizome density – – 2Count per m The number of rhizomes per Dense rhizomes can reduce resuspension and 
square metre increase the blue carbon storage of a meadow 

(Gacia and Duarte 2001) 

Rhizome – – mm per week The horizontal elongation length of Indicates local asexual recovery ability. After 
elongation rate rhizomes per week disturbance, surviving ramets could form large 

genets again with clonal growth. (O’Brien et al. 
2018) 

Shoot weight 403 Plant biomass and mg The dry weight of a group of Physical size. Wide rhizomes provide stronger 
allometry: Shoot dry leaves that grow from one single resistance to drag forces created by waves 
mass (plant vertical stem plus the dry weight than do thin rhizomes 
aboveground dry mass) of that vertical stem 
per plant 

Shoot density – – 2Count per m The number of shoots (leaves A dense meadow has the ability to create 
based on one single vertical stem) strong wave attenuation. Density can also 
per square metre affect meadow structure and habitat availability 

(Koch et al. 2006; Twomey et al. 2020) 

Low light 788 Species light Day The time required to no shoots The days that seagrass can survive under 100% 
tolerance requirement surviving under completed shaded light shading condition. Excessive suspension 

condition of particles owing to weather events, coastal 
development, and dredging programs can 
cause deficient light for seagrass meadow in 
natural environment (Collier et al. 2016) 

Canopy height 773 Crown (canopy) height mm The vertical length of the A high canopy is subject to high drag forces 
aboveground plant part created by waves but provides stronger wave 

attenuation ability than do thinner leaves (van 
Rooijen et al. 2018; Twomey et al. 2020) 

Seedbank 33/2809 Seed (seedbank) Unitless Presence or absence of the Seedbanks can affect the potential of local 
longevity/seedbank seedbank in the wild recovery of a seagrass meadow after 
duration disturbance (Larkum et al. 2018; Jarvis et al. 2021) 

Seed dormancy 1109 Seed viability Unitless The ability of seed staying viable Supporting local sexual recovery. After a local 
after 3 months population is reduced or has died out, seeds 

can germinate and perform a fast recovery 
depending on environmental conditions. 
(Larkum et al. 2018; Jarvis et al. 2021) 

(Continued on next page) 
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Table 1. (Continued). 

Trait name TraitID Full trait name Unit Definition Rationale for relevance to resilience and 
ecosystem services 

Dispersal potential 
of sexual 
diaspores 

1263 Dispersal unit floating 
capacity 

Unitless The grade of dispersal potential of 
dispersal unity; it is a combination 
of floating ability and viability 

Buoyancy of most important sexual diaspores 
indicate the sexual and external recovery 
ability of a species. Buoyancy contributes only 
partly to dispersal because environmental 
factors, such as current and wind, should also 
be considered (Larkum et al. 2006) 

Total biomass – – 2mg per m The dry weight of the whole plant, 
which includes both above and 
belowground parts 

High biomass of a meadow is an indication of 
high resistance because heavier species will be 
more resistant to drag force. High-biomass 
meadows are positively related to ecosystem 
services because they may attract more 
dugong and turtle than do low biomass 
meadows (Lavery et al. 2013; Tol et al. 2016; 
Jinks et al. 2019; Jones et al. 2021) 

Aboveground 
biomass 

3446 Plant biomass and 
allometry: whole plant 
aboveground dry mass 

2mg per m The dry weight of the 
aboveground parts of the plant 

Beside the effects of biomass discussed 
above, the aboveground biomass is especially 
important to estimate available habitat and 
wave attenuation 

Belowground 
biomass 

2555 Plant biomass and 
allometry: belowground 
plant organ dry mass 
per plant 

2mg per m The dry weight of the 
belowground parts of the plant 

Beside the effects of biomass discussed 
above, the belowground biomass is especially 
important to estimate nutrient storage thus 
recovery rate after disturbance 

TraitID and Full trait name are sourced from ‘TRY Plant Trait Database’ (https://www.try-db.org/TryWeb/Home.php; Kattge et al. 2020), if applicable. Units and 
definitions are supplied. 

All expert responses were standardised using the formula 
outlined in the IDEA protocol (Hemming et al. 2018a). The 
standardised and anonymous results were presented in 
figures and shared with the participants in the ‘discussion’ 
phase to collect their feedback regarding the group average 
(Supplementary Table S1, File S3). Because of a high 
consensus among experts at the ‘discussion’ phase, the 
‘estimate’ stage, which involved a second-round survey, was 
omitted. The ‘aggregate’ stage adhered to the instructions 
of the IDEA protocol and generated the final results. 

Results 

Table 2 presents the trait values obtained from a 
comprehensive review of the literature, trait databases, and 
botanical information. In total, 629 articles were initially 
retrieved from literature databases, and subsequent filters 
were applied to exclude studies conducted outside tropical 
regions, as well as those focused on seagrass-related organisms 
such as adhesive algae and bacterial communities. This initial 
filtering resulted in a final set of 59 articles. From these articles, 
16 were selected for inclusion on the basis of the availability of 
trait measurements. In addition to peer-reviewed articles, trait 
data from trait databases along with botanical information 
were also included. Overall, 151 trait values were collected, 
with 39 sourced from botanical information and 117 from 
literature. Five trait values were derived from dual data 

sources to provide a value range. The Austraits database 
contained the leaf width and length values that are sourced 
from the Flora of Australia, as cited in Table 2. The ideal 
database comprises species trait values accompanied by 
measures of variation such as standard error and quantile. 
Nevertheless, owing to variable data quality, less preferred 
data such as genus-level data were included with additional 
annotation (Table 2). 

In total, 16 experts were invited to participate in the 
survey, and we gathered five responses, all from researchers 
in academic institutions, with experience ranging from 5 to 
>20 years. Of the 28 questions asked, 23 questions received 
multiple responses, varying from two to five individual 
responses. The group-aggregated averages, derived from 
these responses, are presented in Table 3. On reviewing the 
group-aggregated average values (File S2) at the ‘discussion’ 
phase, the experts generally agreed that most of the elicited 
values were reasonable. 

Discussion 

Our project aims to establish a robust foundation for a trait-
based approach to seagrass resilience and services research 
in tropical Queensland. In pursuit of this goal, we focused 
on 17 functional traits associated with recovery, resistance, 
and ecosystem services for 13 seagrass species in tropical 
Queensland. Of 221 traits, data were collected for 78% 
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Table 2. Trait values of the tropical Queensland traits database collected from the literature, databases and botanical information. 

Trait CR OS EA HC HD HO HS HT HU SI TC TH ZC 

Leaf width (mm) 2.0–4.0B 4.0–9.0B 12.5–15.0B 5.0–9.0B 2.5–6.5B 5.0–15.0B 1.5–3.5B 2.0–4.0B 0.5–4.0B 0.5–1.5B 6.0–12.0B 4.0–10.0B 1.5–4.5B 

Leaf length (mm) 70.0–150.0B 60.0–200.0B 300.0–1500.0B 15.0–30.0B 10.0–25.0B 10.0–45.0B 5.0–20.0B 12.0–20.0B 50.0–150.0B 300.0 (max)B 100.0–150.0B 100.0–400.0B 50.0–400.0B 

Leaf lifespan (days) – – – – 8.6C 12.4C 74.0C – – 52.0C – – 56.0C 

Leaf nitrogen content per leaf – – – – – – – – – – – – – 
dry mass (mg per dry mass) 

Rhizome diameter (mm) 2.0B 2.0–3.0B 15.0 (max)B,C 0.9–1.5B 0.8–1.0B,C 1.0–2.0B 1.0–1.5B 1.0B,C 1.0–2.0B 1–2.5B 5.0–6.0B,C 4.0–5.0B,C 0.5–2.5B 

Rhizome density – – – – – – – – – – – – – 
(count per m2) 

Rhizome elongation rate 411.0C 216.0C 0.9C – 215.0C 574.0C – – 136.5C 75.0C – 87.6C – 
(mm per week) 

Shoot weight (mg) 23.4C 38.8C 436C – 2.3C 0.9C – – 9.4C 14.5C 605C 73C 91.3C 

Shoot density (count per m2) 306.25–529.0D 250.0E – – – 58.4–780.0D,F 215.0–316.0E – 564.0–3922.0D,E 333.0–1561.0D – 12.0–2182.4F 565.0–752.0D 

Low-light tolerance (days) – – – – – 30.0–38.0G,H – – 100.0–119.0G,I – – 133.0I 76.0I 

Canopy height (mm) – 86.0E – – – 20.0E 32.0–40.0E – 81.0–85.0E – – – 66.0–250.0E 

Seedbank (unitless)A TransientJ TransientJ NoJ PersistentJ PersistentJ PersistentJ PersistentJ PersistentJ PersistentJ PersistentJ NoJ NoJ TransientJ 

Seed dormancy (unitless)A DistinctJ DistinctJ NoJ DistinctJ DistinctJ DistinctJ DistinctJ DistinctJ DistinctJ DistinctJ Not distinctJ NoJ DistinctJ 

Dispersal potential of sexual PoorK PoorK GoodK Moderate/ Moderate/ Moderate/ Moderate/ Moderate/ PoorK PoorK GoodK GoodK Good/ 
diaspores (unitless)A Kpoor Kpoor Kpoor Kpoor Kpoor moderateK 

Total biomass (mg per m2) 192.0L 101.0L 1019.0L – 6.0L 19.0L 63.0L 6.0L 70.0L 62.0L – 349.0L 133.0L 

Aboveground biomass 49.92L 26.26L 132.47L – 3.24L 6.84L 27.09L 3.96L 11.2L 16.74L – 41.88L 33.25L 

(mg per m2) 

Belowground biomass 142.08L 74.74L 866.53L – 2.76L 12.16L 35.91L 2.04L 58.8L 45.26L – 307.12L 99.75L 

(mg per m2) 

The detailed geographic range of each reference, sampling location and species information are included in Supplementary File S3 and Table S2. 
CR, Cymodocea rotundata; OS, Oceana serrulata; EA, Enhalus acoroides; HC, Halophila capricorni; HD, Halophila decipiens; HO, Halophila ovalis; HS, Halophila spinulosa; HT,  Halophila tricostata; HU,  Halodule 
uninervis; SI, Syringodium isoetifolium; TC,  Thalassodendron ciliatum; TH, Thalassia hemprichii; ZC, Zostera muelleri subsp. Capricorni; –, value is not available in any of the sources. 
Reference sources: BFlora of Australia (2024), CDuarte (1991), DRasheed (2000), EJinks et al. (2019), FSaunders et al. (2015), GLongstaff and Dennison (1999), HLongstaff and Loneragan (1999), ICollier et al. (2011), JLarkum 
et al. (2018), KLarkum et al. (2006), LCollier et al. (2021). 
ATrait information is derived from genus level; species level information is not available. 
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Table 3. The group-aggregated averages of the expert responses. 

Species CR OS EA HC HD HO HS HT HU SI TC TH ZC 

Canopy height (mm) 210 – 550 NE 19.33 26.67 156.67 122.5 200 190 825 176.67 250 

Low-light tolerance (days) 20.6 65 38.5 NE 13.33 – 16.33 12.5 – 25 35 28.33 22.67 

Rhizome elongation rate (mm per week) – – – NE – – 66.67 NE – – NE – 16.67 

This table includes only the 23 questions that received more than two responses (Table S1). 
CR, Cymodocea rotundata; OS, Oceana serrulata; EA, Enhalus acoroides; HC, Halophila capricorni; HD, Halophila decipiens; HO, Halophila ovalis; HS, Halophila 
spinulosa; HT, Halophila tricostata; HU, Halodule uninervis; SI, Syringodium isoetifolium; TC, Thalassodendron ciliatum; TH, Thalassia hemprichii; ZC, Zostera 
muelleri subsp. Capricorni; –, not included in the expert survey; NE, not more than two responses from expert. 

(174 traits values). Among the compiled traits, 23 trait values 
(13%) were obtained from structured expert elicitation, 
demonstrating the importance of expert knowledge as a 
source for ecological or conservation studies (Martin et al. 
2012; Mallen-Cooper et al. 2020). By publishing, our results 
can assist future seagrass trait-based research in tropical 
Queensland and, potentially, regional comparison projects, 
given that the suite of species is common to much of the 
tropical Indo Pacific region. The missing 22% of traits also 
indicate important knowledge gaps and areas for further 
research and data collection on seagrass traits. 

The collated trait values obtained from our study reflect the 
diversity of morphological and life-history strategies of 
seagrass species in tropical Queensland. For example, 
morphologically, the canopy height of E. acorodies is 28 
times greater than that of H. decipiens. The life-history trait 
of low-light tolerance ranged from 13 days for H. decipiens 
to 133 days for T. hemprichii. This diversity of traits observed 
across species is an indication of the wide array of ecosystem 
function and services provided by seagrass meadows in 
tropical Queensland (Mason et al. 2005; Moreira-Saporiti 
et al. 2023). For instance, structural diversity, such as 
aboveground structure, plays important roles for supporting 
diverse fish assemblages, (Jinks et al. 2019; Jones et al. 
2021). Additionally, biomass influences the foraging behaviour 
of dugongs (Tol et al. 2016) and determines the blue carbon 
storage capabilities of meadows (Lavery et al. 2013; Johnson 
et al. 2017). Furthermore, some species exhibit similar values 
in certain traits; for instance, H. uninervis, S. isoetifolium, and 
H. spinulosa all have biomass within the range of 60–70 mg/m2. 
Trait redundancy indicates the resilience of this ecosystem 
because, even though species composition might alter because 
of interference, the overall functional diversity might stay the 
same if multiple species play a similar functional role in the 
community (Laliberte et al. 2010). In the case of tropical 
seagrass, the similar biomass of H. uninervis, S. isoetifolium, 
and H. spinulosa could stabilise the function provided by the 
meadow, even if one species decreases in number, because 
other species might take over the space and bring the meadow 
to a new state with similar functioning. 

Despite our integration of the literature, trait databases, 
botanical information and expert elicitation, some species 
or traits still have limited information. Of the 13 species in 

this study, H. capricorni, H. decipiens, and H. tricostata had 
the least information available in the literature. Furthermore, 
in the expert elicitation, H. capricorni did not receive more 
than two expert responses for any of the questions. This 
species-specific lack of data is likely a result of the low 
abundance of these species in tropical Queensland (Waycott 
et al. 2004). Traits that can be measured by a single 
individual morphological property, such as leaf dimension 
or rhizome features, are more commonly documented in 
existing data and are typically easier for experts to respond 
to. In contrast, traits that involve biotic or abiotic factors, such 
as herbivory pressure, often have less available information in 
the literature or the responses from experts are more 
inconsistent (Table S1). For instance, the nutrient content 
of leaves presents challenges in data collection, with only 
one published study reporting this value, and the raw data 
being inaccessible, leaving only average values available for 
reference (Duarte 1990). Experts reported a lack of confidence 
in providing information on nutrient content. The lack of 
information reflects the further need for research into seagrass 
traits associated with nutrient content, low-light tolerance, and 
seed dormancy. Additionally, traits that influence interactions 
between herbivores and seagrasses are under-represented in 
the literature. These traits often required long-term measurements, 
such as, shoot formation rate and leaf elongation rate, or 
specialised tools, (e.g. leaf toughness; De los Santos et al. 
2016), which limits available data. However, some of difficult-
to-measure traits (hard traits) can be inferred from easier-to-
measure traits (soft traits) (Hodgson et al. 1999). This 
approach, employed in previous research, showed that 
certain hard traits exhibit strong correlation with the other 
soft traits and this link offers a pathway to reduce the effort 
required for collecting hard traits, particularly physiological 
traits such as nutrient content and air-exposure tolerance 
(Belluau and Shipley 2018). We encourage future research to 
include a broader range of trait measurements and explore 
the relationship between soft and hard traits. 

Our database has the potential to inform seagrass trait-
based studies in other tropical regions that share the same 
species. For example, our database provides essential structural 
trait information for assessing the value of seagrass meadows in 
supporting fisheries production (Jones et al. 2021) or estimating 
coastal protection capacity (Christianen et al. 2013). When 
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integrated with other databases, our local database provides 
useful information for broader-scale regional comparisons 
(Vandewalle et al. 2010). For example, assessing the impact 
of land-use changes on functional diversity across eco-
regions or exploring functional diversity in habitats with size 
and connectivity variation worldwide (Jacquet et al. 2017). 
Future research endeavours should aim to explore causal 
relationships between functional traits and ecosystem dynamics. 
For instance, by quantifying recovery and resistance abilities 
of seagrass meadows on the basis of functional-trait values 
and meadow composition, we can elucidate meadow dynamics 
in a trait-based context. However, it is also important to 
recognise the limitation of a trait-based approach, particularly 
when interaction between organisms and the environment are 
driven by location-specific factors, such as epiphyte abundance 
(Balata et al. 2007). In cases where epiphytes contribute 
significantly to meadow recovery, traits alone may not fully 
explain resilience, and other methods may be required. 

Various studies have demonstrated the importance of 
incorporating intraspecific trait variation in plant-trait 
studies (Bolnick et al. 2011; Westerband et al. 2021). Plants 
have the potential to vary in their traits according to 
environmental conditions or genetic composition, which 
can change the performance of the plant or affect the 
habitat it forms (Hughes 2014). In some cases, our database 
reported traits from literature that publish only a single 
value for each trait, such as rhizome elongation rate and 
shoot weight. This limitation has the potential to restrict the 
application of our database. To improve trait-data quality and 
its broader application in research, we encourage researchers 
to publish raw data or at least provide more comprehensive 
details when publishing trait information, such as minimum 
and maximum values, sample date, and sample size. One 
highly comprehensive approach for raw data is using the 
free and open-source platform, Open Science Framework 
(OSF), which encompasses data management plans, version 
control, and data sharing (Sullivan et al. 2019). It is also 
beneficial to condense raw data in a more compact format and 
provide it to other types of repositories that are available 
under an open Creative Commons licence, such as eAtlas in 
Queensland (https://eatlas.org.au/home) and PANGAEA 
(Felden et al. 2023). 

Conclusions 

Our project has provided a fundamental resource for 
implementing a trait-based approach for seagrass studies 
within tropical Queensland and other tropical areas that 
share similar species assemblages. Our primary focus was to 
understand seagrass resilience and the provision of ecosystem 
services, with the careful selection of 17 traits on the basis of 
their relevance to these processes. The innovative mixed-
method approach we employed involved creating a plant-trait 
database by amalgamating literature, databases, botanical 

information and expert elicitation. This method allowed us 
to collect 78% of our targeted traits, affirming the cost-
effectiveness of gathering trait information from experts 
when it is unavailable for specific species or traits in a 
published form. The uneven distribution of collected traits 
among species highlights knowledge gaps, underscoring the 
significance of further empirical data collection targeted to 
traits. Moreover, although our database is designed for 
tropical Queensland, it also serves as a valuable source for 
broader geographic-scale studies. 

Supplementary material 

Supplementary material is available online. 
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