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Abstract

Training deep learning models generally requires large, costly datasets which can limit their application towards in-house
segmentation tasks. This study investigates the trade-off in dataset size within the context of pelvic multi-organ MR segmenta-
tion where we evaluate the performance of nnU-Net, a well-known segmentation model, under conditions of limited domain
and data availability. 12 participants undergoing treatment on an Elekta Unity were recruited, acquiring 58 MR images, with
4 participants (12 images) withheld for testing. Prostate, seminal vesicles (SV), bladder and rectum were contoured in each
image by a radiation oncologist. Seven models were trained on progressively smaller subsets of the training dataset, simulat-
ing a limited dataset setting. To investigate the efficacy of data augmentation, another set of identical models were trained
without augmentation. The performance of the networks was evaluated via the Dice Similarity Coefficient, mean surface
distance, and 95% Hausdorff distance metrics. When trained with entire training dataset (46 images), the model achieved
a mean Dice coefficient of 0.903 (Prostate), 0.851 (SV), 0.884 (Rectum) and 0.967 (Bladder). Segmentation performance
remained stable when the number of training sets was > 12 images from 4 participants, but rapidly dropped in smaller data
subsets. Data augmentation was found to be influential across all dataset sizes, but especially in very small datasets. This
study demonstrated nnU-Net's proficiency in performing male pelvic multi-organ segmentation under a limited domain, a
single scanner, and under limited data constraints. We found that the performance degradation was often modest until a
threshold is reached (12 images), below which it dropped significantly. Data augmentation improved performance across all
data sizes, but especially for very small datasets. We conclude that nnU-Net’s low data requirement can be advantageous for
in-house cases with consistent protocol and scarce data availability.

Keywords Segmentation - Multi-organ segmentation - Prostate cancer - Seminal vesicles - Rectum - Bladder - Deep
learning - MRI - Medical image - Training size

Introduction
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treatment option for prostate cancer [1, 2]. This treatment
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fully realise these advantages, organs-at-risk (OAR) and tar-
get regions must be defined while the patient is on the couch
so that the treatment plan can be adapted before delivery.
Thus, fast and automatic, yet robust, segmentation tech-
niques are particularly beneficial in the context of MRgRT.

There are extensive reports on automated pelvic organ
segmentation [3]. While Convolutional Neural Network
(CNN) based methods are popular, methods involving the
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application of transformers have recently been reported.
Table 1 outlines state-of-the-art studies on pelvic organ MR
segmentation. Most of these studies incorporate large public
or private datasets, with minimal investigation done on the
effects of small datasets.

Large and diverse datasets generally result in more robust
and generalisable models [16—18]. However, the process of
gathering and validating medical domain datasets incurs
notable costs [19]. In situations where training data is lim-
ited, semi-supervised learning (SSL) techniques are often
implemented [17, 18]. This type of learning encourages the
model to incorporate unlabelled data in combination with
the labelled data for training. Whilst some reports show
semi-supervised models achieving similar results to top-
performing fully supervised models [18], SSL models still
exhibit disadvantages. These include potential bias intro-
duced by class imbalance in their training dataset, the neces-
sity to inspect the quality of unlabelled data, as low-quality
unlabelled data can hurt overall performance, and added
complexity/overhead to the model’s framework [18].

Another emerging technique gaining popularity is the
Few Shot Learning (FSL). This method utilises a pre-trained
model, originally trained on an unrelated task, and fine-tunes
it only a few labelled samples (as low as 1) for the new task
[20-22]. However, FSL also encounters challenges such as
a lack of pre-trained models specifically for medical images
[23] and cross-domain transferability issues (models must
be pre-trained on a similar-enough task) [20, 24]. Moti-
vated by these arguments and to limit this study’s scope, we
explore the use of a small training dataset and the subsequent
impacts on performance of a supervised model.

The model selected for this study is nnU-Net (version
2.2) [25], chosen due to its open-source availability, flex-
ibility for modification [26] and demonstrated performance
and robustness in prior literature [18, 27]. A review paper
benchmarking the segmentation performance of U-Net vari-
ants found that nnU-Net outperformed other U-Net variants
(i.e., Attention U-Nets, SegResNets, and U-Net++) in Dice
Similarity Coefficient (DSC) performance when applied on
small datasets, less than 100 images [27]. Furthermore, a
recent benchmark study showed that despite its earlier intro-
duction, the nnU-Net framework still outperforms a more
recently introduced framework, Auto3DSeg, which is part
of the MONALI library [28].

There are potential applications for DL segmentation,
for example for local, in-house contouring applications to
accelerate specific workflows, where data may be scarce.
In this study, we aimed to quantify the segmentation per-
formance of nnU-Net trained with a limited training dataset
condition. Seven different models were trained with each
exposed to a progressively reduced training dataset. Finally,
we presented a performance analysis on the models using an
identical test set.

@ Springer

Methodology
Dataset
Dataset acquisition

With the approval of the Townsville Hospital and Health
Service (THHS) Human Research Ethics Committee
(reference number: HREC/QTHS/71867), images were
obtained from consenting participants undergoing radia-
tion therapy for prostate cancer at the THHS, Australia,
between 2021 and 2024. The candidate’s inclusion criteria
were histologically confirmed prostate cancer and aged
18 years or older. For each fraction, at least 4 MR images
of the pelvic region were obtained for the study: a pre-
treatment scan (before treatment replanning stage), a scan
during treatment (replanning stage), a verification scan
(before treatment beam delivery) and a post-treatment scan
(after treatment beam delivery). All scans except those
obtained during the treatment replanning stage were manu-
ally delineated (prostate, bladder, seminal vesicles (SVs),
and rectum) by an experienced radiation therapist and radi-
ation oncologist. Twelve participants, comprising a total
of 58 images, were recruited, contoured and included in
this study.

All images were volumetric-transverse T2 weighted
images obtained on the Elekta Unity 1.5 T MR-Linac with
the prostate located at the isocentre. Images were obtained
with one of the two sets of scan parameters due to a change
in site protocol, outlined in Table 2.

Limited training sets experiment

To observe the effect of training dataset size on model
performance, 7 different models were trained using pro-
gressively smaller datasets. The reference model (Exp A)
was trained with 46 labelled cases, and other models with
nested subsets (Table 3). All models were tested on the
same labelled test cohort consisting of 12 images from
participants Pt9, Pt10, Pt11, Pt12.

To investigate the effect of data augmentation, training
was performed with and without nnU-Net’s default aug-
mentations (rotation, scaling, Gaussian noise, Gaussian
blur, brightness, contrast, simulation of low resolution,
gamma correction and mirroring [25]).

Model and processing

MRI samples were pre-processed by resampling to a
common reference and cropped to a field-of-view of
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Table 2 Data scan parameters

Scan parameters 1 Scan parameters 2

Scan Type TSE T2 3D Tra TSE T2 3D Tra
Reconstructed voxel size 0.833x0.833x1 0.833x%0.833x1
[mm]
Reconstructed matrix size 480x480x300 576 X 576x300
Repetition time [ms] 1535 1400
Echo time [ms] 277.818 182.726
Bandwidth (Hz) 740 744
Echo train length (TSE 114 75
factor)
Number of scans 67 284

Table 3 Train dataset variation table

Experiment Total num of contoured No. unique
images participants

A (100%) 46 8 (Pt1-8)

B (87.5%) 40 8 (Pt1-8)

C (75%) 35 8 (Pt1-8)

D (50%) 23 7 (Pt1-7)

E (37.5%) 17 5 (Pt1-5)

F (25%) 12 4 (Pt1-4)

G (12.5%) 6 2 (Pt1-2)

141 %257 x 217 voxels that was chosen to include all ROIs
in the dataset.

A nnU-Net models (version 2.2) [25] with the default
model and training and inference pipelines (except for
data augmentation in experiments omitting this), were
trained for each experiment. The nnU-Net framework
allows for automatic parameter configuration by examin-
ing the dataset’s characteristics. Fixed parameters such as
optimizer and loss function, are consistent regardless of
dataset. Rule-based parameters are dataset-dependent and
include the image resampling strategy, patch size, batch
size and network topology. Empirical parameters, which
involve ensemble selection and the choice of post process-
ing methodology, are chosen based on a trial-and-error
method. Full details on how parameters for nnU-Net are
generated can be found in its original paper. The opti-
mised parameters are reported in Supplementary Materials
2. Training was conducted via fivefold cross validation.
Model training and inference were conducted on a Tesla
P100-SXM2 GPU with 16 GB of VRAM, 8 cores of the
Dual Xeon 14-core E5-2690, and 32 GB of RAM.

In addition to nnU-Nets default postprocessing and to
ensure connected masks were produced, only largest con-
nected component was retained for bladder, rectum, and

@ Springer

prostate. For SVs, the 2 largest components were retained
to account for the left and right vesicles.

Evaluation

The model’s segmentation performance was quantified with
Dice Similarity Coefficient (DSC), 95% Hausdorff Distance
(HD95) and Mean Surface Distance (MSD). DSC measures
the overlap between ground truth and predicted organ masks,
with scores ranging from O (no overlap) to 1 (perfect over-
lap), HD9S is calculated as the 95th percentile of the dis-
tances between boundary contours, and MSD measures the
average distance between the boundaries of the contours.

Because the axial extent of contouring of the SVs and
rectum were not specified in the contouring protocol, these
varied significantly within the dataset. To exclude the uncer-
tainty of axial contouring extent, the predicted contour for
these organs was axially cropped to the axial field-of-view
(FOV) of the ground truth.

Results

The reference model’s performance can be seen in Table 4
and Fig. S1 in Supplementary Materials 1. These results
demonstrate the model’s satisfactory performance. The
model achieved a mean DSC score of at least 0.8 across
all organs, and all organs except the rectum had an HD95
distance below 5 mm.

DSC performance for each organ is depicted in Fig. 1,
there is an improvement in DSC when the training data
increases from 6 (Exp G) to 12 (Exp F) cases by 0.173,
0.090, 0.296, 0.303 in prostate, rectum, SV and bladder,
respectively. However, beyond Exp F, improvements begin
to plateau despite further increase in training size.

There is a reduction in both MSD and HD95 performance
as the training dataset is limited further (Figs. 2 and 3). The
bladder and prostate experience incremental reductions in
performance whilst maintaining a consistent range through-
out multiple experiments. In contrast, the rectum and SV
exhibit more unpredictable behaviour, where models trained
with fewer data points perform better than those trained
with more data points. This is seen in the rectum, where
the model trained with 50% of the training dataset (Exp D)
yielded a median HD95 of 4.752 and median MSD of 0.696
as opposed to model trained with 100% train data (Exp A) at
a median HD95 of 6 and a mean MSD of 0.927.

Data augmentation generally benefits performance, par-
ticularly for models trained with the least data (i.e., Exp
G in Fig. 1, 2, 3). Otherwise, the non-augmented models
performed similarly to augmented models. Compared to
the augmented counterparts, improvements in performance
due to increases in dataset sizes are more significant. For
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Table 4 Mean Dice, HD95, and MSD comparison against other state-of-the-art models

Mean surface distance (mm)

95% hausdorff distance (mm)

DSC

Rectum Bladder

SV

Rectum Bladder Prostate

SV

Bladder Prostate

Rectum

Prostate

Models

0.919

3.28
44

9.56
2.5%

0.944

0.83

0.95
>0.912*

ResGNet [5]

5.8

53

74

0.78 0.83

0.46

MONALI 3D U-Net [7]

Muled-Net [12]

0.660

0.9%
591

2k

2.6%

>0.912%* >0.912%*

0.842%*

Deep LOGISMOS [15]

3D GAN [6]

9.71
7.74

0.92

0.83

0.017

1.612

0.605

1.41

0.964
0.967

0.918

Semi Supervised 3D U-Net [4]

Ours (Exp A)

0.683 1.081 0.435

1.053

8.813

2.454

3.035

0.884

0.851

0.903

Values are as reported in paper on different/independent dataset and only provided as reference

*Median values, source paper did not provide mean

Bolded values represent the best performance

example, between Exp A and Exp F, there was an improve-
ment of 0.475 for prostate HD9S5 in the non-augmented
compared to just 0.195 in the augmented models. Further
details of the results are recorded in Tables S1 to S4 in the
Supplementary Materials 1.

Figure 4 depicts the visual performance of generated
contours as the training data is further limited. The gener-
ated prostate and bladder contours remained relatively stable
throughout, while the generated SV and rectum contours
were significantly more affected as the training data was
limited.

Reference model performance in context
of the state-of-the-art (SOTA) models
in the literature

See Table 4.

Model performance in limited dataset setting (with/out
influence of augmentation)

See Figs. 1, 2, 3, 4.

Discussion

The purpose of this study was to explore the limits of nnU-
Net under a limited training dataset. Previously, Bhandary
et al. [27] found that in the context of a small training sample
size (n < 100), nnU-Net outperformed other U-net variants.
Similarly, by training an nnU-Net model with only 76 scans,
Lorenzen et al. [8] were able to achieve a median DSC of
0.96 (prostate), 0.97 (rectum), 0.98 (bladder) and 0.94 (SVs)
on the test set.

Results of this study further demonstrated nnU-Net's
ability to perform pelvic multi organ segmentation with a
limited dataset, showing that with a training dataset as small
as 12—17 individual images from 4-5 participants can yield
potentially acceptable results, 0.888/0.817/0.833/0.958 DSC
for prostate/SV/rectum/bladder on the test cohort (Fig. 1)
When comparing its DSC performance against other works
nnU-Net still maintains comparable results against state-of-
the-art models (Table 4). For prostate segmentation, nnU-
Net achieved a DSC score of 0.903, while Muled-Net by Ren
et al. [12]with a DSC score of 0.95. These results exceed
the interobserver variability range of DSC, 0.88 +0.05, as
reported by Roach et al. [29], indicating the reliability of the
contours is within that expected of a human observer.

Increasing training data from 6 images from 2 par-
ticipants (Exp G—12.5% train data) to 12 images from
4 participants (Exp F—25% train data) yielded the most

@ Springer
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Fig.1 Organ DSC performance in a limited dataset setting with/out augmentation (Note: The plot domain is limited, resulting in clipping of

some boxes)

noticeable improvement. However, beyond 12 training cases,
only incremental improvements to the model performance
were observed. This finding is consistent with other deep
learning segmentation studies involving limited datasets.
Vésconez et al. [14] examined the impact of reducing the
training dataset on residual U-Net ‘s [10] prostate segmenta-
tion. The study observedthe most noticeable improvement
when increasing the training datasets from 30 to 60 cases,
with only marginal gains beyond that. Similarly, for prostate
segmentation using a U-Net model, Bardis et al. [30] found
that notable improvement was seen when training cases
increased from 8 to 120. However, performance plateaued
beyond 160 training cases.

One explanation for nnU-Net's robust performance
could be the use of data augmentation during training [25].
Data augmentation is known to improve U-Net variant
models’ performance trained on small datasets [31, 32] by
artificially increasing the number of datapoints from exist-
ing samples. Additionally, other benefits of augmentations,
such as reducing the risk of overfitting [16] and enhanc-
ing the model’s overall robustness against input variability
[33, 34], have been well documented. This study supports
these advantages conclusions, showing that augmentation

@ Springer

improves performance, with a more pronounced effect in
smaller datasets. Augmentation improved the segmenta-
tion of smaller or irregularly shaped organs, such as the
SV and rectum, while it had smaller effects on larger
organs (i.e. bladder and prostate). These results together
demonstrate that the use of data augmentation is important
in limited data contexts.

The following failure modes were most commonly noted
when qualitatively assessing the segmentations. Firstly, due
to similar intensities, the model incorrectly labelled hydrogel
spacer as seminal vesicles and the pubic bone as bladder.
This effect was more common in models trained with smaller
training sets. Please refer to Figs. 1-10 in Supplementary
Materials 3 for examples of these failure cases. Secondly,
regardless of training size, the model was often inaccurate at
the prostate/SV interface. Such inaccuracies are also observ-
able in the ground truth labels, indicating that this variability
may be learned by the models. Lastly, the contouring pro-
tocol did not explicitly define the superior-inferior borders
extent of the SVs or rectum, meaning that the ground truth
labels varied in axial coverage. To avoid penalising predic-
tions that extended beyond the contoured axial extent for a
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given image, the prediction label was cropped to match the
ground truth label’s extent during metric calculations.

This study evaluated nnU-Net on a relatively small test-
ing cohort of 12 images, which may affect the generalisa-
tion of the results presented. To explore this limitation, we
conducted an additional analysis on the model performance
when performing inference on images independent to the
testing set, concluding that the test performance tends to
generalise over the acquired dataset, with some concerns
about generalisation for the seminal vesicles and rectum at
low data levels. These are unlikely to change the conclusions
of our work. The details of this analysis can be found in
Supplementary Materials 1 under ‘Generalisation Analysis’
section. Additionally, it’s important to note that data in this
study only considered a limited domain context, namely a
single Elekta Unity MR-Linac and only as applied to male
pelvic anatomy. We did not explore the data requirements
for segmentation in a heterogeneous domain context, explore
any effects of domain generalisation to another scanner, nor
non-pelvic anatomy. Lastly, we suspect our findings could
be applicable to other body regions or MRI techniques. Our
work has demonstrated that individual organs require vary-
ing levels of data to achieve reliable results. Conducting a

separate investigation to determine the required training data
sizes for other organs would be an interesting direction for
future studies.

Domain generalisation to other scanners would be
expected to be poor, but this could be acceptable for in-
house applications with human supervision of automated
algorithms. We also investigated only a small subset of pos-
sible convolutional architectures that nnU-Net explores, and
no other models such as transformer-based models. These
represent a point of interest for future research. Finally,
nnU-Net currently incorporates a limited selection of aug-
mentation methods. It would be valuable to explore the per-
formance impact of techniques such as elastic deformation-
based techniques [34], statistical shape methods [35, 36],
GAN-based generative approaches to generate synthetic
training data [37] or the utilisation of automatic augmen-
tation strategy selection methods to identify optimal tech-
niques for a specific dataset [38].

Leveraging the findings from this study and recognising
the often-limited number of training datasets available in
local medical physics or radiology departments, nnU-Net
may serve as a valuable tool for clinical practitioners. Our
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work has demonstrated that, with a cohort of 48 images
from 12 participants, nnU-Net can achieve segmentation
accuracy beyond the reported interobserver variation.
However, we have not yet established the model’s gener-
alisation, reliability, or its robustness in a clinical environ-
ment. Despite these shortcomings, this technique’s minimal
data requirement can be advantageous and useful in some
low-risk, in-house contexts. For instance, models trained
under such conditions may be useful in research studies
where outliers may be acceptable. They can also be uti-
lised to generate an initial contour for human-in-the-loop
research pipelines, particularly in cases where commercial
tools may not perform segmentation according to local site
protocols.

@ Springer

Conclusion

We assessed the performance of nnU-Net, an off-the-shelf,
state-of-the-art segmentation network, in segmenting male
pelvic organ anatomy. This study demonstrated nnU-Net's
success in performing pelvic multi organ segmentation
within limited datasets compared with the wider literature.
Moreover, we found that the performance degradation as
dataset size decreases was often modest until a threshold is
reached (12 images), below which the performance dropped
significantly. Data augmentation improved performance
across all data sizes investigated, but especially for very
small datasets.
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