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ARTICLE INFO ABSTRACT
Keywords: Research into large-scale crop monitoring has flourished due to increased accessibility to satellite imagery.
Sugarcane This review delves into previously unexplored and under-explored areas in sugarcane health monitoring

Health monitoring system

and disease/pest detection using satellite-based spectroscopy and Machine Learning (ML). It discusses key
Remote sensing

considerations in system development, including relevant satellites, vegetation indices, ML methods, factors

::teiltl:t;scopy influencing sugarcan.e ref'lect?nce, optimal groyvth conditions, .common'dis'eases, and traditional detection
Machine learning methods. Many studies highlight how factors like crop age, soil type, viewing angle, water content, recent
Vegetation indices weather patterns, and sugarcane variety can impact spectral reflectance, affecting the accuracy of health
Disease assessments via spectroscopy. However, these variables have not been fully considered in the literature.
Pests In addition, the current literature lacks comprehensive comparisons between ML techniques and vegetation

indices. This review addresses these gaps and discusses that, while current findings suggest the potential for
an ML-driven satellite spectroscopy system for monitoring sugarcane health, further research is essential. This
paper offers a comprehensive analysis of previous research to aid in unlocking this potential and advancing
the development of an effective sugarcane health monitoring system using satellite technology.
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1. Introduction

The Earth’s population has rapidly increased from 2.5 billion in
1950 to over 8 billion in 2024. This change has reflected a signifi-
cant increase in the aggregate agricultural production to sustain the
population (Nikos Alexandratos, 2012; Zabel et al., 2014; Magarey,
2021). The global population growth is projected to reach 9.15 bil-
lion by 2050 and is expected to require a 70% increase in aggregate
agricultural production from 2012 (Nikos Alexandratos, 2012; Zabel
et al., 2014; Tilman et al., 2011; Godfray et al., 2010; Gregory and
George, 2011). Improving yield and agricultural production through
traditional methods has become increasingly challenging, leading to a
growing demand for smart agricultural practices. (Nikos Alexandratos,
2012). Sugarcane is one of the world’s most important agricultural
products, which is grown and produced in large volumes. For instance,
it was reported that in 2021, global sugarcane production was 1861.9
billion kilograms. Australia produced 31.13 billion kilograms in 2021
(Food and Agriculture Organization of the United Nations, 2023),
putting it ninth for worldwide production, where 95% of production
occurred in the state of Queensland. Sugarcane yield can be heavily
hampered by the impact of a variety of health conditions. Diseases
such as Ratoon Stunting Disease (RSD), Orange Rust, and Sugarcane
Yellow Leaf Virus (SCYLV) can reduce yield by between 43% and 50%
in severe circumstances (Rassaby et al., 2003; Magarey et al., 2004;
Ramouthar et al., 2013; Bailey and Bechet, 1986). A study by Magarey
et al. (2021), suggested that in 2019, there was an annual economic
loss of $25 million as a result of RSD infection with varying rates of
incident across 87000 ha of sugarcane in Australia. Other factors that
diminish crop health and contribute to a reduction in sugarcane yield
include parasites, crop stress, and irrigation problems (for irrigated
cane). Implementing methods to easily diagnose and early detection
of any of these conditions on a large scale is vital for improving yield
and the overall farming economics.

There are several methods the agricultural industry currently uti-
lizes to determine existing health conditions. The key motivation be-
hind these health monitoring technologies is to increase the likelihood
of early detection, preventing the condition from spreading or further
deterioration in currently affected crops. A majority of current disease
detection methods require visual inspection of symptoms or laboratory
testing to conclusively determine the presence of a disease (Zhu et al.,
2010; Carvalho et al., 2016; Young et al., 2016; Fegan et al., 1998; Ghai
et al., 2014). Although accurate, collecting and testing enough samples
to adequately evaluate the health of the crops is time-consuming and
infeasible in large-scale agriculture. For example, the average sugar-
cane farm in Queensland is 110 Ha as of 2019 (Canegrowers, 2019)
which makes visual inspection and sample collection challenging. Many
sugarcane diseases can be identified by the morphological changes they
cause. However, some diseases are asymptomatic and consequently,
visual inspection may not be reliable for disease identification (Grisham
et al., 2010). Furthermore, sugarcane can grow to a height of 2 to 7
meters and form very dense vegetation, making it difficult for personnel
to traverse mature fields and consequently, perform visual inspections
of mature crops (Som-ard et al., 2021; Yamane, 2019). Thus, it would
be beneficial to implement large-scale remote sensing for crop health
monitoring that could identify crop health hazards before widespread
impact and/or visible symptoms.

Several studies have shown the possibility of distinguishing healthy
and unhealthy sugarcane without traditional laboratory testing (Apan
et al., 2004; Moriya et al., 2017; Grisham et al., 2010; Narmilan et al.,

2022; Simoes and Rios do Amaral, 2023; Ong et al., 2023; Johansen
et al., 2014, 2018; Vargas et al., 2016). These studies focused on deter-
mining if there is a distinctive difference in the spectral reflectance of
healthy and unhealthy crops with field spectroscopy for a variety of dis-
eases. There was a 73% and 96.2% accuracy in identifying SCYLV and
Orange Rust disease in sugarcane with hyperspectral imaging (Grisham
et al.,, 2010; Apan et al., 2004, 2003). In addition to sugarcane, mul-
tispectral imaging has been seen to be an effective disease detection
method in other crops, with an 88% accuracy in detecting several
diseases in wheat, which like sugarcane is a perennial grass (Franke
and Menz, 2007). Spectroscopy provides an opportunity to be able to
diagnose health conditions at the plantations, which may not be visible
to the human eye. Alternatively, true colour RGB images remain a
viable option for disease and pest detection with neural networks or
ML algorithms, especially when visible symptoms are present (Militante
et al., 2019; Srivastava et al., 2020; Ratnasari et al., 2014). However,
a key limitation of RGB imaging is that asymptomatic conditions or
subtle symptoms can easily go undetected, making it less reliable in
cases where early or non-visible symptoms of a disease are critical for
its diagnosis.

Vegetation monitoring extends beyond the scope of vegetation
health monitoring, encompassing a broader set of tasks such as yield
prediction, and fertilizer optimization. These additional areas of study
have seen success with the application of ML and deep learning tech-
niques to both true colour RGB and spectral images (Sanches et al.,
2018; Fernandes et al., 2017; Rahman and Robson, 2016; Everingham
et al.,, 2016; Canata et al., 2021; Shendryk et al., 2020). However,
these topics fall outside the scope of this review, as they have been
extensively covered in other recent review papers (Garcia et al., 2022;
de Franca e Silva et al., 2024).

This review aims to critically assess the current literature on health
condition monitoring in sugarcane with ML algorithms that leverage
satellite spectroscopy data. Additionally, we aim to collate, synthesize,
and compare relevant literature on influential factors pertaining to
the possible development of a large-scale health monitoring system
for sugarcane with freely available satellite-based spectroscopy and
ML. A summary of the collated research is shown in Table 1, with
the inclusion of examples of two other crops that are relevant to the
research objectives of this review.

Gaps in the literature regarding a system of this nature can then
be identified and discussed with the overall objective of increasing
the prevalence of satellite-sensing-based precision agriculture in the
sugarcane industry to increase yield. Influential factors identified and
discussed include:

1. Relevant information regarding sugarcane disease, growth lim-
iting factors, optimal growth conditions and traditional disease
detection methods.

. The most appropriate freely available satellites.

. Relevant vegetation indices.

. Factors that influence the observed reflectance of sugarcane.

. Utilized ML methodology and approach.

a b~ wiN

2. Literature search methodology

Google Scholar returned 15 relevant papers published before Jan-
uary 2024 on the possible development of a sugarcane health moni-
toring system with satellite-based spectroscopy. The Keywords initially
utilized to identify literature were ‘“sugarcane”, “disease”, “remote
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Table 1
Current multispectral and hyperspectral monitoring studies relevant to the development of a large scale sugarcane health monitoring system.
Reference Health Crop Spectroscopy Category Satellite Time ML algorithm Best
condition name series classification
accuracy
Apan et al. Orange Rust Sugarcane Hyperspectral Satellite EO-1 False LDA 96.90%
(2004, 2003) Hyperion
Moriya et al. Mosaic Sugarcane Hyperspectral Drone N/A False SID 92.50%
(2017)
Grisham et al. SCYLV Sugarcane Hyperspectral Handheld N/A True LDA 73%
(2010) Spectrometer
Narmilan et al. White Leaf Sugarcane Multispectral Drone N/A False RF, DT, KNN, 92%, 91%,
(2022) Disease XGB 92%, 92%
Simoes and Rios Orange & Sugarcane Multispectral Drone N/A False RF, KNN, 90%, 90%,
do Amaral Brown Rust SVM 90%; 86%,
(2023) 83%, 88%
Ong et al. Brown Stripe Sugarcane Hyperspectral Handheld N/A False RF, SVM, NB 95%, 85%,
(2023) & Ring Spot Spectrometer 77%
Franke and Powdery Wheat Multispectral Satellite QuickBird True DT 56.8%,
Menz (2007) Mildew & 65.9%,
leaf rust 88.6%
Johansen et al. Cane Grub Sugarcane Multispectral Satellite Geo-Eyel False GEOBIA 79%
(2014)
Johansen et al. Cane Grub Sugarcane Multispectral Satellite Geo-Eyel False GEOBIA 98.7%
(2018)
Dutia et al. Non-specific Mustard Hyperspectral & Satellite EO-1 False DT N/A
(2006) Multispectral Hyperion &
LISS-IV
Bao et al. (2021) Smut Sugarcane Hyperspectral Handheld N/A False CNN >90%
Spectrometer
Vargas et al. Diatraea Sugarcane Hyperspectral & Handheld Landsat 8 False N/A 79.8% &
(2016) saccharalis Multispectral Spectrometer 85.5%
& Satellite
Abdel-Rahman Thrips Sugarcane Hyperspectral Handheld N/A True N/A N/A
et al. (2010) Spectrometer
Soca-Mufioz Orange & Sugarcane Hyperspectral & Handheld N/A False N/A N/A
et al. (2020) Brown Rust Multispectral Spectrometer
& Drone

LTS @ G«

sensing”, “pest”, “health monitoring”, “‘spectroscopy”, “vegetation in-
» «

dex”, “reflectance” and “satellite”. This search only evaluated literature

to be relevant if it contained at least five of the nine specified keywords. lé"iq"eh ‘;mlzds it‘e"liffd
througl| atabase searches
Our literature search methodology is reported in Fig. 1. Through this =00

review process, key factors relevant to the development of this system
were identified.

3. Sugarcane health conditions & growth limiting factors

Records
Removed
(65)

Records Screened

3.1. Sugarcane diseases (90)

Diseases pose a significant challenge in sugarcane cultivation, ne-
cessitating the development of more sophisticated detection methods
to aid in management and increase yield. Orange rust is a disease

Excluded for not

caused by the pathogen Puccinia kuehnii which produces orange patchy Full-Text Assessed lP“°V:‘:il‘g “a‘_? P
. . . . . relevant to speciiie
lesions (Magarey et al., 2022). Infection typically occurs in wet humid @) key words

(10)

conditions and is propagated by water, resulting in yield losses of up
to 38% (Magarey et al., 2004). Puccinia melanocephala is the causal
agent for Brown rust which bears resemblance to orange rust with
the variation between them suggested in their names. Yield losses of
up to 22% have been observed as a result of brown rust infection Studies Included
which typically occurs in dryer climates. Similar to the preceding health as

conditions, the Sugarcane Mosaic Virus which is a Potyvirus has visible
symptoms present on the foliage. Transmission of Sugarcane Mosaic
Virus in nature is primarily several aphid vectors (Lu et al., 2021) such
as Hysteroneura setariae (Lu et al., 2021), Longiunguis sacchari (Singh
et al., 2005), Rhopalosiphum maidis (Brandes et al., 1920), and Toxoptera
graminum (Lu et al., 2021). Once infected, the virus can reduce yield
by 10% to 50% depending on the susceptibility of the variety and its

Fig. 1. Literature Review flow diagram.
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region of origin (Singh et al., 2003; Matsuoka and Maccheroni, 2015;
Singh et al., 1997; Koike and Gillaspie, 1989). Although these diseases
can cause significant yield loss, a large number of current commercial
sugarcane varieties in Australia are resistant to Orange rust, Brown
rust and Mosaic virus (SRA, 2022). Significant losses of at least 50%
have been previously observed (Agnihotri, 1983) as a result of White
Leaf disease. This disease is caused by phytoplasma and can be visually
identified from the striking white foliage. Wang et al. (2021) observed
that Brown Stripe can result in yield losses of up to 40% (Magarey
et al., 2022). Brown Stripe is often in the presence of poor soil nutrition
and is propagated by a fungus Bipolaris stenospila. SCYLV has been
observed to cause up to 37% yield loss Rassaby et al. (2003). Despite
visual discolouration, Ring spot causes no reduction in yield and has
no recommended treatment as a result (Magarey et al., 2022). The
resistance of Australian sugarcane varieties to Ring Spot, Brown Stripe,
White Lead Disease and SCYLV are not known (SRA, 2022).

Unlike the preceding conditions, some sugarcane diseases such as
RSD do not typically exhibit easily identifiable symptoms (Magarey,
2021; Magarey et al.,, 2022). RSD is caused by a bacteria, Leifsonia
xyli, which infects the xylem vessels of the sugarcane (Magarey, 2021;
Davis et al., 1984). It has been indicated that sugarcane in some
regions is significantly more susceptible to RSD than other known
diseases (SRA, 2022). In order to officially diagnose RSD, one of the
following tests must be performed; evaporative-binding enzyme-linked
immunoassay (EB-ELISA) or polymerase chain reaction (PCR). These
tests are time- and cost-prohibitive, and are difficult to perform on large
scales (Zhu et al., 2010; Magarey, 2021). The development of a large-
scale continuous monitoring and detection method would, therefore,
increase the detection of disease, helping to prevent further spread.

A practical solution to a large-scale sugarcane health monitoring
system will need to be capable of identifying health conditions si-
multaneously. However, currently, only one study has attempted to
classify multiple conditions (Ong et al., 2023). Spectroscopy has been
most commonly utilized in studies that consider Orange Rust and
Brown Rust (Soca-Munoz et al., 2020; Apan et al., 2004, 2003; Simoes
and Rios do Amaral, 2023). This is done even though a majority
of commercially used varieties are sufficiently resistant to the dis-
ease (SRA, 2022). It was observed that the greatest variation in the
electromagnetic spectrum for both diseases occurred in the visible and
NIR regions (Soca-Mufioz et al., 2020; Apan et al., 2004, 2003). These
studies utilized either hyperspectral or multispectral imaging, and at
different scales with a combination of Satellites, drones and handheld
spectrometers employed. Where ML was implemented, orange rust was
more accurately detected than any other disease with classification
accuracies between 90% and 96.9%.

While Orange Rust has been more accurately classified in the exist-
ing literature, there are certain factors inherent in the methodology of
this classification that potentially contribute to this trend. Although the
study by Simdes and Rios do Amaral (2023) maintained a consistent
methodology, it primarily focused on classifying varieties resistant to
Orange and Brown rust, rather than identifying infected vegetation.
Consequently, additional research is necessary to ascertain which re-
gions of the electromagnetic spectrum exhibit the most significant
variation due to specific symptoms and to validate that the specified
diseases can be reliably distinguished from healthy sugarcane.

3.2. Sugarcane pests

Similar to diseases, pests also contribute to a severe reduction in
sugarcane yields worldwide. A prominent pest in Central and South
America is a species of moth, Diatraea saccharalis, whose larvae bore
into the internodes resulting in a yield reduction of between 13.5%
and 21.0% (de S. Rossato, Jr. et al., 2013). This is similar to the
13% yield reduction observed across the industry between 1935 and
1957 by Hensley (1971) and in recent years a simple conservative
estimation of yield loss was generalized to 0.77% per 1% of damaged
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internodes (Macedo et al., 2015). Thrips (Thysanoptera) pose a similar
threat to sugarcane in Southeast Asia, South Africa and Australia by
eating the sugarcane leaves, causing lacerations and discolouration
resulting in yield reductions of between 18.0% and 26.8% (Way et al.,
2006, 2010).

Contrary to the aforementioned pests, Canegrubs (Melolonthinae
larvae) feed on the root system of sugarcane which results in reduced
growth, lodging or plant death, significantly affecting the sugarcane
industry. For instance, this pest could cost the Australian sugarcane
industry an estimated $40 million during severe outbreaks (Sallam,
2011; Keith, 2002).

The field of sugarcane pest detection has seen significant advance-
ments, with various studies employing diverse methodologies and tech-
nologies. Notably, Canegrub infestations have been a focal point of
research with recent studies (Johansen et al.,, 2014, 2018) investi-
gating the infestations with multispectral imagery from the Geo-Eyel
satellite, employing Geographic Object-Based Image Analysis (GEOBIA)
achieving classification accuracies of between 75% and 98.7%. Unlike
diseases that may exhibit spectral variations related to moisture con-
tent, the symptoms of Canegrub infestations, often leading to lodging
and significant soil exposure, influence the visible and near-infrared
(NIR) spectra more significantly. Consequently, the detection of Cane-
grub infestations appears to be less dependent on water absorption
bands and may contribute to the high classification accuracy of Cane-
grub symptoms whilst being constrained to wavelengths smaller than
1000 nm.

Vargas et al. (2016) focused on Diatraea saccharalis, utilizing hy-
perspectral and multispectral data from Landsat 8 and a handheld
spectrometer. Their approach, achieving classification accuracies of
79.8% and 85.5%, highlights the significance of incorporating various
sensing technologies. However, the methodology and the explanation
lack clarity. In contrast, Abdel-Rahman et al. (2010) explored Thrips
detection using hyperspectral data and a handheld spectrometer. While
specific accuracy metrics are not provided, the study emphasizes the
potential of hyperspectral imaging for pest identification.

Despite advancements, the field faces challenges similar to those
in disease detection, including a lack of standardization and consis-
tency among studies. Further research is warranted to identify optimal
spectral regions for discerning specific pest-induced symptoms and to
enhance the reliability of pest detection methodologies in sugarcane
cultivation. Additionally, the development of a large-scale continuous
monitoring and detection method would increase the detection of
these pests, providing the opportunity to implement targeted control
measures. Therefore, in this study, we focus on the conditions that
have been detected using satellite-based spectroscopy where possible,
in particular hyperspectral and multispectral images.

4. Spectral imagery

Hyperspectral and multispectral imaging are two forms of spec-
troscopy, which measure the reflected electromagnetic radiation from
an object. These measurements capture several “bands” across the
electromagnetic spectrum, encompassing both visible and non-visible
light (Storch, 2022; Goetz et al., 1985). A band is described as a
small section of the electromagnetic spectrum. Each image captured
is three-dimensional, consisting of an x and y spatial dimension, and
a spectral dimension. The spatial resolution is defined by the physical
dimensions of each pixel, while the spectral resolution is characterized
by the number and size of the bands captured. Hyperspectral imaging
involves capturing a continuous set of narrow bands within the range
of 400 nm to 2500 nm, typically with intervals less than 10 nm (Storch,
2022; Goetz et al., 1985; Sahoo et al., 2015). This allows for the
formation of high-resolution continuous spectral signatures. In contrast,
multispectral imaging captures the spectral information for a discrete
number of bands within the same range, generally with bandwidths
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between 20 and 200 nm (EIMasry and Sun, 2010). Consequently, multi-
spectral imaging has much lower spectral resolution than hyperspectral
imaging. Although higher spectral resolution is desirable, it comes with
increased complexity and computational requirements. Additionally,
there are significantly fewer satellites available with hyperspectral
imaging capabilities than multispectral imaging. It is important to note
that both hyperspectral and multispectral imaging can be captured at
different spatial scales. Small-scale observations are often acquired us-
ing drones or handheld spectrometers, while large-scale assessments are
conducted through satellite platforms. This variation in spatial scales
introduces important considerations when interpreting and comparing
findings in precision agriculture and remote sensing. The choice of
sensor platform greatly influences the spectral and spatial resolution of
the captured image. To overcome limitations in either spatial or spec-
tral resolution, image fusion techniques can be employed, to combine
high spatial resolution panchromatic images with low spatial resolution
spectroscopy data (Sara et al.,, 2021a; Yilmaz and Gungor, 2016).
This approach enhances image quality and can overcome potential
limitations of scale or resolution associated with drones or satellites.

Typically in studies that demonstrated lower rates of classification,
the spectral reflectance measurements were limited to 1000 nm or
less (Grisham et al., 2010; Franke and Menz, 2007; Johansen et al.,
2014; Vargas et al., 2016). In contrast, sensors with a wider spectral
range typically exhibited higher classification rates (Simdes and Rios do
Amaral, 2023; Ong et al., 2023; Apan et al., 2003). This is not a strict
rule given that high classification rates were still seen with a limited
spectral range (Moriya et al., 2017; Narmilan et al., 2022). However, it
is essential to note that the observed high rates of classification in these
studies may be attributed to the specific characteristics of the diseases
investigated. For instance, the diseases examined in these studies are
known to cause white or significantly light discolouration in the leaves.
The distinctive changes in the visible region of the electromagnetic
spectrum could have been pronounced enough to achieve accurate
classification without the need for additional information, thereby re-
ducing the reliance on information from wavelengths beyond 1000 nm.
While studies focusing on diseases with different visual symptoms may
necessitate a broader spectral range for effective classification, the
particularities of the diseases considered in the cited research may
explain success with limited spectral measurements.

An alternative satellite-based sensor to spectroscopy for vegetation
health monitoring is Synthetic Aperture Radar (SAR). Although SAR
primarily provides data about surface structure and topology, it has
proven effective in applications such as sugarcane growth monitoring
and plantation mapping (Hong et al., 2024; Baghdadi et al., 2009;
Li et al.,, 2019; Wang et al., 2020). One of SAR’s key advantages is
its ability to operate independently of cloud cover, making it highly
reliable for continuous monitoring in areas with frequent cloud interfer-
ence. For an in-depth review of SAR’s application in vegetation health
monitoring, readers can refer to the relevant literature (McNairn and
Shang, 2016), as this topic falls beyond the scope of this review.

4.1. Large scale spectroscopy

4.1.1. Hyperspectral

The only study to date which classifies diseased sugarcane with
satellite-based hyperspectral imaging was conducted by Apan et al.
(2003). The study effectively addresses noise and atmospheric effects
through standard techniques of its time. This demonstrates potential
for automation in developing an efficient health monitoring system
after updating to more recent techniques and scaling the approach. The
study found distinct spectral reflectance variations between healthy and
unhealthy sugarcane across the electromagnetic spectrum. The high
spectral resolution of hyperspectral imagery offers the advantage of
capturing nuanced differences specific to particular health conditions,
which may make it preferable when developing sophisticated models
that differentiate multiple conditions. However, limitations due to data
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storage and processing power at the specified satellite sampling fre-
quency may necessitate compromising accuracy. Multispectral imaging
may be an effective compromise for these constraints, but further
research is required to adequately conclude the required or ideal spec-
tral resolution for large scale sugarcane health monitoring systems.
Furthermore, additional investigations are essential to ascertain the
reproducibility of these findings for various health conditions, sugar-
cane varieties, across diverse regions and under varying meteorological
conditions preceding the acquisition of satellite imagery. The impli-
cations of these investigations significantly influence the feasibility of
establishing a robust health monitoring system that is financially viable.

4.1.2. Multispectral

Sugarcane health condition monitoring with satellite-based multi-
spectral imaging has seen more attention than its hyperspectral coun-
terpart (Vargas et al., 2016; Johansen et al., 2014, 2018). These studies
all focus on pests and there are currently no studies that demonstrate
the efficacy of satellite-based multispectral imaging for discerning var-
ious sugarcane diseases. Consequently, there is a lack of assessments
against hyperspectral imagery counterparts with established disease
detection methods. Additionally, the optimal number of bands and their
respective bandwidths for multispectral satellites has yet to be deter-
mined in the context of differentiating sugarcane health conditions.
Although Galvao et al. (2006) compared the effect of bandwidth, they
predominantly utilized satellites that are no longer in operation. There-
fore, there is a prevailing need to revisit and refine this investigation
using contemporary satellites.

The health condition monitoring study by Johansen et al. (2014),
mapped canegrub damage using satellite-based multispectral imaging
and achieved classification accuracies of between 53%-79%. They fur-
ther improved the accuracy of canegrub damage detection to between
75% and 98.7% through the implementation of a spectral difference
segmentation algorithm into their established method (Johansen et al.,
2018). Both models implemented a Geographic Object-Based Image
Analysis (GEOBIA) approach to consider contextual and shape infor-
mation in the analysis. Both studies derived the NDVI to indicate
vegetation health and assessed the standard deviation of the red spec-
tral band to indicate the texture. Empirically derived thresholds were
established for the 30-quantile of NDVI and the 70-quantile of the
red spectral band standard deviation. Regions falling below the 30-
quantile and surpassing the 70-quantile were identified as potential
areas affected by canegrub damage. The severity of the damage was
classified using a set of undisclosed thresholds based on the relative
differences in NDVI and texture values compared to the rest of the
block, however, the rationale behind determining these thresholds was
not included in the paper. Additionally, there was little information on
the effectiveness of the models’ ability to distinguish between canegrub
damage and analogous symptoms such as lodging.

Duft et al. (2019) performed sugarcane variety classification in
Brazil using Sentinel-2 image and found that multispectral satellites can
be utilized to perform classification of sugarcane based on variations
in spectral reflectance. Although there are only a few studies on using
satellite-based multispectral imaging in sugarcane health monitoring, it
has been used in several studies monitoring the health of other crops.
For example, the study by Dutia et al. (2006) incorporated multispectral
imaging from LISS-IV in image fusion where images of high spectral
resolution are fused with images of high spatial resolution to estimate
an image of both high spatial and spectral resolution (Sara et al., 2021b;
Feng et al., 2020). However, the complexity of this approach hinders a
direct assessment of the sustainability of satellite-based multispectral
imagery for a large-scale health monitoring system for sugarcane.
Consequently, the lack of clarity on the minimum required spatial
resolution for effective health monitoring and the potential impact of
atmospheric conditions on the viability of satellite-based imagery for
this purpose underscores the need for further studies in this domain.
Once a comprehensive understanding of the impacts associated with



E.K. Waters et al.

the choice of sensor, in the context of sugarcane health monitoring,
is established, the implementation of image fusion should be explored
further. The ability to combine the strengths of high-spectral-resolution
and high-spatial-resolution images, positions image fusion as a power-
ful technique with the potential to enhance the overall effectiveness
of monitoring systems. This approach, when employed effectively, can
contribute to more accurate and detailed insights into sugarcane health,
paving the way for advanced disease detection methodologies, once the
fundamentals have been sufficiently understood.

In another example of using multispectral satellite for health mon-
itoring, Franke and Menz (2007) found multispectral imaging could
be utilized to detect powdery mildew and leaf rust in wheat. This
indicates it may be plausible to adopt a similar approach in attempting
to identify sugarcane-based health conditions with satellite-based mul-
tispectral imaging. However, the viability of a multispectral satellite for
disease detection will vary for each satellite as each sensor will cap-
ture different bands with varying bandwidths and resolutions. Franke
and Menz (2007) utilized the commercial high-resolution multispectral
satellite QuickBird with a resolution of 2.4 m (European Space Agency,
2022c¢) and therefore a similar approach with a lower resolution freely
available satellite for sugarcane may not yield as effective classification.
Therefore, before attempting to determine the optimal characteristics of
multispectral satellites for disease detection, the viability of conducting
disease detection for sugarcane at all with the currently available
free multispectral satellites should be investigated. The methodology
required to perform disease detection with satellite-based multispec-
tral imagery will remain consistent with the methodology to perform
satellite-based hyperspectral disease detection, with variations in the
vegetation indices and pre-processing methods utilized.

4.2. Small scale spectroscopy

The majority of previous studies for sugarcane were performed with
field spectroscopy or drone rather than satellite (Moriya et al., 2017;
Grisham et al., 2010; Narmilan et al., 2022; Simdes and Rios do Ama-
ral, 2023; Ong et al., 2023; Abdel-Rahman et al., 2010; Soca-Munoz
et al., 2020). The impracticality of field spectroscopy in sugarcane
plantations stems from the crop’s extensive scale and dense vegetation,
rendering the approach comparable to traditional sampling methods
without significant gains in detection capabilities. This comparison is
valid, as a considerable number of diseases affecting sugarcane can
be reliably diagnosed through visible inspections conducted by trained
personnel (Julien et al., 1989; Magarey et al., 2022). While employing
field spectroscopy may enhance confidence in diagnosis, it does not
enhance the efficacy of performing widespread disease detection any
more than employing trained field agronomists. The heart of the issue
is that only sugarcane on the periphery of sugarcane plantations can
be visually inspected. By the time the disease had spread to the visual
periphery of the plantations, it would have likely become a widespread
issue.

The majority of previous studies on sugarcane disease detection con-
ducted in the last 5 years have favoured the use of drones (Moriya et al.,
2017; Narmilan et al., 2022; Simoes and Rios do Amaral, 2023; Soca-
Muifioz et al., 2020). This trend suggests a shift towards approaches
that offer more flexibility in terms of accessibility and manoeuvrabil-
ity. The agility of disease detection tools is paramount for effective
monitoring in the dynamic and expansive context of sugarcane planta-
tions. Although drones can perform these tasks on a wider scale when
compared with hand-held devices, typically drones are not capable of
operating over distances as large as the standard sugarcane plantation
and may require several flights. Furthermore, there are often stringent
legal requirements for operating drones and costs associated with the
acquisition of the drone. With that being said, it is essential to note
that recent literature employing drones reported high classification
results or statistically significant differences between healthy and dis-
eased crops (Moriya et al., 2017; Simdes and Rios do Amaral, 2023;

Computers and Electronics in Agriculture 229 (2025) 109686

Narmilan et al., 2022; Soca-Muiioz et al., 2020). This is not unexpected
considering the potential access to high spatial and spectral resolution
spectroscopy when utilizing drones. Satellite-based remote sensing may
provide an effective alternative or complementary solution for crop
health monitoring at a sufficiently large scale, provided it is able to
produce consistent comparable classification results as drone-based
monitoring. Future studies should investigate trade-offs in classification
accuracy and the logistics of each method for specific applications.

5. Satellites for vegetation health monitoring

Satellites have many applications in remote sensing, including but
not limited to land surveying, earth science, and agriculture (Xue and
Su, 2017; Guzman Q. et al., 2023; Pandey et al., 2023; Emick et al.,
2023). It is highly advantageous to use satellite-based remote sensing
for large or inaccessible areas, where data collection would be infeasi-
ble using conventional methods. Satellite-based remote sensing varies
depending on the sensor. Typically in agricultural applications sensors
include radiometers, spectrometers, panchromatic cameras, and ther-
mal imaging cameras. There are many commercial and freely available
satellites with a combination of the aforementioned sensors. Commer-
cial satellites are often costly, which makes them unsuitable for small
farms or wide use. To facilitate satellite use for affordable monitoring
applications, in this study, we only focus on freely available satellites. A
list of these satellites appropriate for precision agriculture can be seen
in Table 2.

5.1. Satellite selection considerations

An important factor to consider is the temporal resolution of a
satellite, specifically the period of time taken to return to the same
position at nadir, repeating cycles and revisiting times. A repeat cycle
is the time it takes for the satellite to be centred at the same previous
latitude and longitude coordinates, at the same angle. Whereas the
revisit time is the period of time before the same location is surveyed
again at all. This resolution has been increased by some satellites
through the deployment of two identical satellites 180 degrees out
of phase. This is the case for the series of satellites Sentinel-2 and
Sentinel-3 or Landsat 8 and Landsat 9.

Another major factor to consider when selecting an appropriate
satellite for precision agriculture is the spatial resolution. This varies
significantly between satellites and is often significantly better for
commercial satellites. There is often a trade off between high spatial
and spectral resolution, consequently, several freely available multi-
spectral satellites offer varying spatial resolutions depending on the
spectral bands available. Therefore, it is important to ensure satellites
with the desired spectral bands are available in the required spatial
resolution as the variation can be significant. For example, Fig. 2
shows a visual comparison of a true colour image in the available
Sentinel-2 spatial resolutions of 10 m, 20 m, and 60 m. Sentinel-2
captures data across 13 different spectral bands between approximately
400 nm and 2300 nm, however only the red, green, and blue spec-
tral bands are available at every resolution (European Space Agency,
2022d; Slagter et al., 2023). There is only a single NIR band (Band
8) available with a 10 m spatial resolution, centred at 842 nm, in
contrast to the four available in NIR region and two in the SWIR
region at a spatial resolution of 20 m (European Space Agency, 2022d).
Therefore, monitoring specific wavelengths may limit the spatial reso-
lution when considering financial constraints. The trade-offs between
sensors make certain satellites more suitable for specific applications.
For instance, when financial limitations restrict the choice to freely
available satellites, Landsat’s panchromatic imagery can be utilized to
enhance spatial resolution through pan-sharpening, particularly when
the available band resolutions are inadequate. Pan-sharpening with
Landsat has been widely applied in various fields, including vegetation
mapping of sugarcane (Johnson et al., 2014; Sudianto et al., 2023).
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Table 2
Current easily accessible and freely available multispectral and hyperspectral satellites that are deemed appropriate for precision agriculture.
Reference Name Sensor Bands Bandwidth Wavelength  Spatial Partner Repeat cycle Repeat cycle Swath Active
(nm) range (nm) resolution satellite single multiple width
(m) satellite satellite (km)
(Days) (Days)
European Space Sentinel-2A  Multispectral 13 Varies 420 - 2370 10, 20, 60 Sentinel-2B 10 5 290 23-06-15 to
Agency (2022d) Present
European Space Sentinel-2B  Multispectral 13 Varies 420 - 2370 10, 20, 60 Sentinel-2A 10 5 290 07-03-17 to
Agency (2022d) Present
NASA (2022¢) Landsat 9 Multispectral, 11 Varies 30, 15, 100 Landsat 8 16 8 185 27-9-21 to
Panchromatic & Present
Thermal
NASA (2022b) Landsat 8 Multispectral, 11 Varies 30, 15, 100 Landsat 7, 16 8 185 11-02-20 to
Panchromatic & Landsat 9 Present
Thermal
NASA (2022a) Landsat 7 Multispectral, 8 Varies 450 - 2350 30, 15, 60 Landsat 8 16 8 185 15-04-99 to
Panchromatic & 27-09-21
Thermal
SIIS (2010) KOMPSAT-3 Multispectral & 5 Varies 450 - 900 2.0, 0.5 N/a 28 N/A 16 17-05-12 to
Panchromatic Present
SIIS (2010) KOMPSAT-3A Multispectral & 5 Varies 450 - 900 16,04 N/a 28 N/A 13 25-03-15 to
Panchromatic Present
European Space Proba-1 Hyperspectral - 10 400 - 1300 17 N/a 7 N/A 14 22-10-01 to
Agency (2022b) (CHRIS) 4-05-21
European Space SPOT-6 Multispectral & 5 Varies 450 - 890 6, 1.5 SPOT-7 26 13 60 30-06-14 to
Agency (2022e) Panchromatic Present
European Space SPOT-7 Multispectral & 5 Varies 450 - 890 6, 1.5 SPOT-6 26 13 60 30-06-14 to
Agency (2022e) Panchromatic Present
European Space EO1 Hyperspectral - 10 357 - 2576 30 N/a 16 N/A 7.5 21-11-01 to
Agency (2022a) Hyperion 30-03-17
Galeazzi et al. PRISMA Hyperspectral - 12 400 - 2500 30 N/a 29 N/A 30 22-03-19 to
(2008) Present
Storch (2022) EnMAP Hyperspectral - 6.5, 10 420 - 2450 30 N/a 27 N/A 30 01-04-22 to
Present

5.2. Satellite limitations

Although satellites provide the ability for large-scale sensing, there
are several limitations. Satellite imagery is susceptible to atmospheric
effects, such as scattering or absorption, and require atmospheric
correction to be applied to convert atmospheric radiance received
by the satellite to an accurate surface reflection (Liang and Wang,
2020; Agapiou et al., 2011). The surface or “bottom-of-atmosphere”
reflectance represents the true reflectance characteristics of the surface
material. The atmospheric effects vary depending on the spectral band
and were found to produce a mean difference of 18% between the
NDVI of corrected and non-corrected values (Agapiou et al., 2011;
Hadjimitsis et al., 2010). Several techniques and programs can be
utilized to perform atmospheric correction.

A review of approaches to atmospheric correction was undertaken
by Ientilucci and Adler-Golden (2019) which included several com-
mercially available software packages. Quick Atmospheric Correction
(QUAC) and Fast Line-of-Sight Atmospheric Analysis of Spectral Hy-
percubes (FLAASH) are two modules available for the software, Envi-
ronment for Visualizing Images (ENVI), to perform atmospheric cor-
rection (Ientilucci and Adler-Golden, 2019; de los Reyes et al., 2020;
L3Harris Software & Technology Inc, 2022). Other software such as
Atmospheric and Topographic Correction (ATCOR) is available to per-
form atmospheric correction for a variety of remote sensing applica-
tions (Ientilucci and Adler-Golden, 2019; de los Reyes et al., 2020;
ReSe, 2022). The Earth Resource Data Analysis System (ERDAS) and
ENVI are software packages that can also perform a number of other
remote sensing pre-processing tasks including destripping and image
registration. The review conducted by Ientilucci and Adler-Golden
(2019) highlighted that the performance of atmospheric correction
techniques varied depending on the specific type of landscape in con-
sideration. The Empirical Line Method (ELM) performed well (Ientilucci

and Adler-Golden, 2019), however it requires reflectance field mea-
surements. Therefore, when evaluating atmospheric correction tech-
niques for large-scale health monitoring, it is imperative to consider
the landscape and logistical availability of spectrometers for quan-
titative calibrations. To complement these available tools, Quantum
Geographic Information System (QGIS) is a widely adopted open-source
GIS platform that provides the ability to visualize, edit and perform
analyses with geospatial data (QGIS Development Team, 2024). While
similar capabilities are available in commercial software, QGIS offers
an extensive suite of tools that is freely accessible to the public, making
it a valuable resource for a broad range of geospatial applications.
There are freely available packages capable of performing atmo-
spheric correction. Python-Based Atmospheric Correction (PACO), is
a Python library that is based on the ATCOR IDL code (de los Reyes
et al., 2020). The initial release of the software is currently opera-
tional for Sentinel-2 series, Landsat —8, DESIS, and EnMAP satellites
and currently has uncertainty values of approximately 30% and 10%
for retrieval aerosol optical thickness and water vapour, respectively.
Alternatively, Dark Object Subtraction (DOS) is a common and simple
image-based technique that could be implemented for other satellites
not supported by the PACO library (de los Reyes et al., 2020). This
technique assumes that the pixels of the darkest object have a surface
reflectance of approximately zero, and that the majority of the re-
flectance is a result of scattering in the visible light spectrum (Agapiou
et al., 2011; Hadjimitsis et al., 2003). The average of the dark pixel
values can be subtracted from all pixels in the image to adjust for the
atmospheric affects. Satellites such as Sentinel-2 provide products with
atmospheric correction pre-applied or the software to perform it.
Vegetation indices have been investigated and adapted as an al-
ternative method to reduce the atmospheric effects. A new vegetation
index, Atmospherically Resistant Vegetation Index (ARVI) was pro-
posed to be utilized instead of NDVI with fewer atmospheric effects on
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Sentinel-2 Spatial Resolution Comparison

10m

60m

Fig. 2. Spatial resolution comparison of available Sentinel-2 resolutions. Sentinel-2 offers four bands at 10 m resolution, ten bands at 20 m resolution and twelve bands at 60 m

resolution.

the basis that the atmosphere significantly affects the red band (Xue
and Su, 2017; Hadjimitsis et al., 2010; Agapiou et al., 2011).

6. Vegetation indices

Hyperspectral and multispectral imaging offer an alternative to tra-
ditional health monitoring by detecting changes in sugarcane spectral
reflectance as a result of the health condition. These changes in spectral
reflectance occur as a consequence of phenotypic and morphological
changes incurred from the presence of disease or other conditions.
A vegetation index is a transformation performed on the reflectance
values measured with spectroscopy to evaluate the state of vegetation
for a variety of applications in agriculture, environmental monitoring
and ecosystem dynamics (Xue and Su, 2017). Vegetation indices aim to
accentuate important characteristics of the vegetation and reduce the
impact of redundant factors (Xue and Su, 2017; Fang and Liang, 2014).
The result of the vegetation indices can then be utilized in algorithms
to solve agriculture-related problems (Guzman Q. et al., 2023; Xu et al.,
2023). The applicability of a given vegetation index to an application
is dependent on the sensor utilized to capture the spectral reflectance
of the vegetation and the specific objective of the project (Xue and
Su, 2017). Vegetation indices differ for hyperspectral and multispectral
imaging as more specific bands with narrower bandwidths can be
employed with hyperspectral imaging (Xue and Su, 2017).

A widely adopted and robust spectral vegetation index in precision
agriculture and remote sensing is the Normalized Difference Vegetation
Index (NDVI) (Xue and Su, 2017). It serves as a critical tool for assessing
vegetation health, density, and productivity across various spatial and
temporal scales. NDVI capitalizes on the spectral reflectance properties
of plants, specifically their interaction with red and near-infrared (NIR)
regions. Healthy vegetation strongly absorbs radiation in the red region
for photosynthesis while reflecting a significant portion of NIR region
due to leaf cellular structure (Xue and Su, 2017; Karnieli et al., 2010;
Rouse et al., 1974). See for example, Fig. 3 which overlays an NDVI
raster on a true colour image of sugarcane farms in the Herbert region
of Queensland, Australia. This visually indicates variation between
and within paddocks of sugarcane in the region, facilitating further
investigation. NDVI and other commonly derived vegetation indices are
widely accessible if users are unable to compute them directly. How-
ever, the resolution of these indices can vary significantly depending

on the source and associated costs. Pre-processed vegetation indices
are available from a range of platforms, including NASA’s Earthdata,
the European Space Agency’s Copernicus program, and commercial
providers such as Planet Labs.

Apan et al. (2004, 2003) found success in developing five new
vegetation indices, that consider the moisture content of vegetation
and were dubbed the Disease-Water Stress Indices (DSWI). One of
these indices was in the linear combination that achieved the highest
overall accuracy of 96.9% for the classification of orange rust with
LDA. Three out of the five DSWI had the highest canonical correlation
with sugarcane infected with Orange Rust. The DSWI were formu-
lated through the combination of Visible and Near-infrared (VNIR)
and Short-Wave infrared (SWIR) reflectance bands which can indicate
vegetation moisture content at wavelengths of 850, 1250, 1400 and
1650 nm (Gao, 1996; Apan et al., 2004; McFeeters, 1996; Hunt and
Rock, 1989; Alves Varella et al., 2015). The effectiveness of DSWI for
detecting orange rust is likely due to the patchy lesions caused by the
fungal disease, which lead to moisture loss, changes in leaf structure,
and plant stress. Therefore, it is reasonable to expect these indices to be
effective for the detection of other diseases that alter the leaf structure
or moisture content of vegetation (Dutia et al., 2006). The DSWI may
not be effective for diseases that do not alter leaf structure, plant stress,
and moisture content. For example, in the case of RSD, where the leaf
structure of sugarcane remains the same and just the absorbance of
water is affected (Magarey et al., 2022), the DSWI may not respond
as effectively as a typical disease. This presents an opportunity to
potentially utilize additional vegetation indices which focus on the
moisture content of the vegetation (McFeeters, 1996; Hunt and Rock,
1989) or are combined with the DSWI (Xue and Su, 2017).

The prevailing trend in current literature predominantly focuses
on the assessment of raw spectral measurements and at most a single
individual vegetation index, with many studies neglecting to consider
more than one (Grisham et al., 2010; Franke and Menz, 2007; Abdel-
Rahman et al., 2010; Soca-Munoz et al., 2020; Dutia et al., 2006; Vargas
et al., 2016; Johansen et al., 2014, 2018; Moriya et al., 2017; Ong et al.,
2023). This is despite the existence of several studies that assessed
and showed that multiple vegetation indices consistently demonstrated
high classification accuracies (Apan et al., 2003; Narmilan et al., 2022;
Simobes and Rios do Amaral, 2023). Previous success in classifying
Orange Rust in sugarcane was found based on vegetation indices that
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Normalised Difference Vegetation Index
(NDVI)

Fig. 3. Sentinel-2 10 m spatial resolution true colour image of sugarcane farms in the Herbert region of Queensland, Australia, overlaid with an NDVI raster.

accentuate variation in the moisture content of vegetation, thereby in-
dicating that other moisture-based vegetation indices should be heavily
considered in future studies. Table 3 contains vegetation indices from
the collated literature which focus on changes in moisture content, leaf
pigments, and leaf structure for plausible use in a sugarcane health
monitoring system.

7. Influential factors on sugarcane reflectance
7.1. Sugarcane variety

The spectral reflectance of vegetation depends on the plant’s phys-
ical and biochemical characteristics, including Leaf Area Index (LAI),
leaf orientation, biomass, soil background, cell structure, moisture
content and chlorophyll content (Alves Varella et al., 2015; Goetz et al.,
1985; Sahoo et al., 2015; Roy and Ravan, 1996; Roy, 1989; Hapke,
1981; Hapke and Wells, 1981). Given that the varieties of sugarcane dif-
fer from one another, it is reasonable to expect their spectral reflectance
would demonstrate a corresponding change. Galvao et al. (2006) found
a significant difference in spectral reflectance of several Brazilian sug-
arcane varieties. Using multiple discriminant analysis (MDA), Galvao
et al. (2006) were able to achieve 87.5% correct classification in
identifying the variety (Galvao et al., 2005, 2006). Everingham et al.
(2007) performed a similar study with varieties prominent in Australia
during that time period, successfully discriminating sugarcane varieties
with a number of ML techniques, among which random forest (RF) and
support vector machine (SVM) were found to be the most effective with
87.5% and 90% per pixel classification accuracy. Both studies utilized
the EO-1 Hyperion satellite and indicated that the spectral reflectance
of different sugarcane varieties can vary substantially, with the regions
of greatest separability seen in the Near Infrared (NIR) and Short-Wave
Infrared (SWIR) regions (See Figure 2 in Everingham et al., 2007). Duft
et al. (2019) corroborated these results by classifying varieties with a
classification accuracy of 86% and 90% with Sentinel-2.

To establish an effective real-time disease and health monitoring
system using satellite-based spectral imaging, it is essential to consider

variety as a crucial factor. Without accounting for variety-specific
characteristics, the detection of variations in spectral reflectance due
to health conditions across multiple sugarcane varieties becomes im-
practical. Despite these findings, only three health monitoring studies
considered variety (Grisham et al., 2010; Moriya et al., 2017; Simoes
and Rios do Amaral, 2023). Unsurprisingly, Grisham et al. (2010)
found that classification was more accurate when performed within
a variety rather than across multiple varieties, as a consequence of
spectral variation between varieties. It was demonstrated in Grisham
et al. (2010) that SCYLV affects varieties differently with chlorophyll b
levels of HO 95-988 remaining unaffected, but chlorophyll b levels of
LCP 85-384 were significant when infected with SCYLV. This makes it
reasonable to expect that sugarcane diseases may affect varieties in dif-
ferent manners and to different extents, incurring different alterations
in the spectral reflectance. Similarly, it was demonstrated in a study
conducted by Abdel-Rahman et al. (2010) that spectral reflectance of
sugarcane varieties may react differently to Thrips damage. However,
both studies conducted only featured two varieties of sugarcane and
therefore further research should be conducted that considers variety
as a factor.

7.2. Meteorological effects

The majority of research on large-scale sugarcane health monitoring
was based on images at a single location at one point in time (Apan
et al., 2004, 2003; Moriya et al., 2017; Narmilan et al., 2022; Johansen
et al., 2014; Simoées and Rios do Amaral, 2023; Abdel-Rahman et al.,
2010). However, this prevailing pattern implies that annual varia-
tions in weather, such as temperature, humidity, sunlight duration,
wind patterns and quantity of preceding rain, are not considered. By
extension, it is currently unknown how effective a given method of
health monitoring is when applied to different regions. Consequently,
it is currently unknown whether the corresponding variation in these
factors is considerable enough to impact the ability to discern health
conditions with ML and therefore requires further research. Recogniz-
ing this limitation is imperative in the context of developing long-term
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Table 3
Vegetation indices with a plausible application for sugarcane health monitoring.
Reference Vegetation index Formula
: . ; NIR-RED
Rouse et al. (1974) Normalized Difference Vegetation Index (NDVI) NTRIRED

Kaufman and Tanre (1992)

Atmospherically Resistant Vegetation Index (ARVI)

NIR-(RED-BLUE)
NIR+(RED-BLUE)

Genc et al. (2008) Simple ratio index (SRI) %
Merzlyak et al. (1999¢) Plant Senescence Reflectance index (PSRI) Rex%:suu
Jordan (1969b) Ratio Vegetation Index (RVI) %
McFeeters (1996) Normalized difference Water index (NDWI) %
Gao (1996) Normalized Difference Moisture Index (NDMI) %
Tucker (1979) Normalized Green Red Difference Index NGRDI %
Goel and Qin (1994) Non-Linear Index (NLI) 7%2;;2;2

Gitelson et al. (2002)
Daughtry et al. (2000a)

Haboudane et al. (2002a)

Visible Atmospherically Resistant Index (VARI)
Modified Chlorophyll Absorption in Reflectance Index (MCARI)

Transformed Chlorophyll Absorption in Reflectance Index (TCARI)

GREEN-RED
GREEN+RED-BLUE

[(R700 = Rg70) = (0.2(Rq99 — Rsso))%]

31(Raop = Rezp) = (02(Ryp0 = Rssg)) 721

Gamon et al. (1992) Photochemical Reflectance Index (PRI) %
Blackburn (1998) Pigment Specific Simple Ratio (chlorophyll a) (PSSRa) %
Blackburn (1998) Pigment Specific Simple Ratio (chlorophyll b) (PSSRb) %
Apan et al. (2004, 2003) DSWI-1 :186(;00
Apan et al. (2004, 2003) DSWI-2 12565600
Apan et al. (2004, 2003) DSWI-3 'jz‘e?(?
Apan et al. (2004, 2003) DSWI-4 %
Apan et al. (2004, 2003) DSWI-5 %
Merzlyak et al. (1999a) Structurelnsensitive Pigment Index (SIPI) %
Gitelson and Merzlyak Simple Ratio (SR) %
(1994)

SR 800/550 e

Normalized Difference (ND) 750/660 %
Sims and Gamon (2002) ND 800/680 m
Gitelson and Merzlyak ND 750/705 %
(1994)
Sims and Gamon (2002) Modified SR (MSR) %

Rys0—Ryss

Sims and Gamon (2002)

Gitelson and Merzlyak
(1994)

Daughtry et al. (2000b)
Haboudane et al. (2002b)

Rondeaux et al. (1996)

Modified ND (MND)

SR 750/550

Ave(750-850)
Modified Chlorophyll Absorption in Reflectance Index (MCARI)

Transformed Chlorophyll Absorption in Reflectance Index (TCARI)

Optimized Soil-Adjusted Vegetation Index OSAVI

R750 +R705 72R445

R750
RSSS

Average between R;5, and Rgs
R
[(R700 = Re70) — 0.2(Rygp — Rsso)]ﬁ
R
3[(R700 — Re70) = 0.2(Ry99 — Rss9)] ﬁ

Ryo0—R,
1+40.16 500~ Rezo
I+ ) Rgo+Rg70+0.16

Haboudane et al. (2002b) Ratio TCARI/OSAVI e
Carter and Miller (1994) SR 695/420 %

420
Carter and Miller (1994) SR 695/760 %

760
Gitelson et al. (1996) Green Normalized Difference Vegetation Index (GNDVI) %

Gitelson and Merzlyak
(1994)

Normalized Difference Red-edge Index (NDRE)

(NIR-Red-edge)
(NIR+Red-edge)

Gitelson et al. (2003) Chlorophyll index — Green (CiGreen) g’r;e'; -

Gitelson et al. (2003) Chlorophyll index — Red-edge (CiRE) Re’;’e :ge -

Jordan (1969a) Difference Vegetation Index (DVI) NIR — Red-edge

Huete et al. (2002) Enhanced Vegetation Index (EVI) 25x% %
Vincini and Frazzi (2011) Chlorophyll Vegetation Index (CVI) %::fd’

Broge and Leblanc (2001)
Merzlyak et al. (1999b)

Zarco-Tejada et al. (2005)

Triangular Vegetation Index (TVI)

Plant Senescence Reflectance Index (PSRI)

Blue Green Pigment Index (BGI)

10

0.5x(120x (N I R—Green)—200x (Red—Green))

(Red—Green)
Red-edge
Blue
Green

(continued on next page)
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Table 3 (continued).
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Reference Vegetation index

Formula

Louhaichi et al. (2001)
Qi et al. (1994)

Green Leaf Index (GLI)

Modified Soil Adjusted Vegetation Index (MSAVI)

(Green—Red)+(Green—Blue)
(2xGreen+Red+Blue)

2NIR+1-1/(2NIR+1)>—8(NIR—RED)
2

0.9
0.8
0.7
0.6

0.5

NDVI

0.4

0.3

0.2
0.1

0.0

23

38

54

68

83

99

115
129
146

3 161

Ti

LN
M~
i

238
253
268
223
284
300
314
330
353

e (days)

Fig. 4. NDVI measurements of sugarcane across entire growth cycle with MODIS and HJ-1 CCD remote sensing. Background images indicate approximate season.
Source: Adapted from Chen et al. (2020) with Adobe Photoshop and Al generated artwork.

health monitoring systems, where a comprehensive understanding of
environmental dynamics is crucial for accurate and reliable assessment
of diseases.

7.3. Temporal morphological changes & multi-temporal analysis

Growth and maturation cause phenotypic and morphological
changes in characteristics that dictate the spectral reflectance in sug-
arcane. This was investigated and observed in 25 sugarcane fields in
Thailand with imagery from Landsat —8 OLI (Som-ard et al., 2021).
Additionally, the average NDVI of the fields was observed to change
over time, where phases associated with the largest amount of growth
exhibited a higher NDVI (Som-ard et al., 2021). A similar result was
obtained and observed to vary across sugarcanes lifecycle by Chen et al.
(2020) with MODIS and HJ-1 CCD remote sensing, as can be seen in
Fig. 4. Chen et al. (2020) observed that during the initial period from
day 1 to 113, when vegetation coverage was sparse and soil was visible,
NDVI values remained consistently low with minimal variation. A rapid
increase in NDVI was observed between days 113 and 177, coinciding
with the onset of stalk elongation. As the crop transitioned into the
sugar accumulation stage between days 177 and 273, the rate of NDVI
increase slowed. Following this, NDVI values began to decline as the
plant entered its final maturation phase. Comparable results were then
achieved in Indonesia by Susantoro et al. (2019).

Gers (2014, 2003) was able to distinguish phenological stages with
multispectral imaging from Landsat 7, demonstrating that there is a
significant difference in the spectral reflectance of sugarcane at differ-
ent phenological stages. Additionally, temporal morphological changes
indirectly contribute to the change in observed reflectance of sugarcane
through flowering or lodging. This results from the reduction in the
portion of canopy that is observable compared to soil, stalks and flow-
ers, which exhibit different leaf orientation and cell structure (Berding
and Hurney, 2005). Bégué et al. (2008) observed that the spectral
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reflectance of sugarcane varied at an annual scale and concluded it is
likely attributed to a combination of the topography and rainfall. These
factors may need to be considered to accurately classify variation in
spectral reflectance as a consequence of health conditions rather than
seasonal changes.

The temporal aspect of sugarcane health monitoring has received
limited research attention, with the majority of existing literature
adopting a cross-sectional study approach (Apan et al., 2004, 2003;
Moriya et al., 2017; Narmilan et al., 2022; Johansen et al., 2014;
Simoes and Rios do Amaral, 2023; Abdel-Rahman et al., 2010). The
viability of producing a real-time sugarcane health monitoring system
hinges on being able to detect health conditions for sugarcane across
its life cycle with multi-temporal data. An investigation was conducted
into this for disease detection in wheat by Franke and Menz (2007).
Three separate multispectral images were captured at varying points
in a wheat paddock across its life cycle. Spectral mixture analysis was
performed and a decision tree was utilized to classify disease at various
points in the wheat’s life cycle with a classification accuracy of 56.8%,
65.9% and 88.6%. Younger crops have significantly smaller biomass,
and therefore the reflectance will be more heavily influenced by the
background soil as the composition of any given pixel will incorporate
a larger percentage of soil (Alves Varella et al., 2015; Fang and Liang,
2014; Xue and Su, 2017). Additionally, the ML algorithm employed
in this study has been superseded by newer tree-based models; im-
plementing the more recently developed models could yield improved
outcomes for health monitoring. Further studies should be conducted
incorporating in situ soil reflectance measurements and vegetation
indices into the models to observe the impact on results for large-scale
disease detection in crops at early life cycle stages.

The study by Grisham et al. (2010) on SCYLV was the only known
study to conduct multi-temporal disease detection in sugarcane using
field spectroscopy. The results of this study demonstrate variation in
spectral reflectance as a plant matures (Som-ard et al., 2021; Alves
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Varella et al., 2015). This difference in spectral reflectance was ob-
served to decrease between the collection of the first samples on
the 13th of July and the second group of samples collected on the
12th of October. It was then observed in the samples collected on
November 4th that the difference in spectral reflectance increased to
approximately the same as seen in the July samples. The observed
fluctuations in spectral reflectance differences over time suggest that
distinct stages of the sugarcane life cycle may exhibit varying reac-
tions to a disease. This temporal variation in spectral characteristics
could potentially impact the accuracy of disease classification, as noted
by Grisham et al. (2010), emphasizing the importance of understanding
and accounting for temporal changes in sugarcane health monitoring.
It would be beneficial to conduct further research into multi-temporal
disease detection with spectral data to consolidate these findings.

7.4. Viewing angle of vegetation

An additional factor to consider in the development of a satellite-
based real-time health monitoring system is the effects of viewing
angle on spectral reflectance. Sugarcane like many other crops is non-
Lambertian, and therefore a change in the viewing angles will influence
the spectral reflectance. Moriya et al. (2018) investigated the effects of
viewing angle variation in sugarcane radiometric measurements. They
found a noticeable difference in the spectral reflectance profiles of
sugarcane at different viewing angles (See Figure 3 in Moriya et al.,
2018). The Bidirectional Reflectance Distribution Function (BRDF) cor-
rection model developed by Walthall et al. (1985) can be applied to
compensate for the anisotropy factor. Specifically, Moriya et al. (2018)
suggested that it could be utilized to correct hyperspectral images
captured with an Unoccupied Aerial Vehicle (UAV) (Moriya et al.,
2018). The BRDF correction model was utilized to calculate the spectral
reflectance at different viewing angles (See Figure 6 in Moriya et al.,
2018). Moriya et al. (2017) used the BRDF correction for sugarcane
health monitoring and was the only health monitoring study which
considered the effect of viewing angle. Future research should ensure
spectral images are centred at a consistent location and viewing an-
gle. Additionally, the BRDF correction model should be considered to
handle the anisotropy factor.

8. Machine learning algorithms and methods of analysis

For large-scale sugarcane health monitoring, the common theme
amongst current literature is the use of ML algorithms for classification
of the plant health into healthy or unhealthy states (Apan et al,
2004, 2003; Moriya et al., 2017; Narmilan et al.,, 2022; Johansen
et al.,, 2014; Simoes and Rios do Amaral, 2023; Ong et al., 2023).
Numerous ML methods can be undertaken to solve this classification
problem, in depth details of these algorithms can be found in relevant
textbooks (Cerulli, 2023). Table 1 provides details of multispectral and
hyperspectral studies in the literature and shows various ML algorithms
used in them.

The study by Apan et al. (2004, 2003) classifies orange rust disease
in sugarcane exclusively using stepwise Linear Discriminant Analysis
(LDA) with vegetation indices as features. This produced a classification
accuracy of 96.9% with the linear combination of DSWI-2, SR695/420,
and NDWI-Hyp. This demonstrates that ML algorithms can be effective
in classifying the disease state of sugarcane. However, Apan et al.
(2004, 2003) did not compare the effectiveness of different ML al-
gorithms for satellite disease detection, which can be of significance
as indicated by other disease detection papers (Narmilan et al., 2022;
Franke and Menz, 2007; Simoes and Rios do Amaral, 2023; Ong et al.,
2023). Additionally, Apan et al. (2004, 2003) concluded that future
studies should be conducted to determine the viability of disease detec-
tion in the early stages. A simplified visualization of the methodology
used by Apan et al. (2004, 2003) can be seen in Fig. 5. The figure
demonstrates an appropriate overarching approach to sugarcane health
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monitoring with spectroscopy and ML, in which LDA can be replaced
with other ML algorithms.

Several recent studies have made strides in evaluating the effec-
tiveness of various ML algorithms for disease detection in sugarcane.
Notably, Random Forest and Radial SVM consistently emerged as top
performers (Narmilan et al., 2022; Simdes and Rios do Amaral, 2023;
Ong et al., 2023). However, it is important to note that the number
of studies comparing ML algorithms in this context remains some-
what limited, making it challenging to pinpoint the precise factors
contributing to the superior efficacy of a particular method. In a
similar vein, Everingham et al. (2007), while investigating different
ML algorithms to discern various sugarcane varieties based on their
hyperspectral reflectance, found that SVM and Random Forest consis-
tently outperformed other methods. While these findings are still in
their early stages, the emergence of Random Forest and Radial SVM
as potent tools for health monitoring in sugarcane suggests that non-
linear classifiers hold great promise. These classifiers excel at capturing
complex patterns and relationships within the data, hinting at the
potential for more accurate and robust disease detection systems as this
field of research continues to evolve.

ML algorithms utilized in this context exhibit considerable variabil-
ity, leading to diverse classification results. For instance, Apan et al.
(2003) employed LDA achieving a classification accuracy of 96.9%.
The effectiveness of LDA hinges on assumptions related to the linearity
and separability of spectral data and vegetation indices. However,
these assumptions may not consistently hold across different diseases
or datasets, and may require statistical analysis to assess whether the
data meets the necessary assumptions for LDA implementation (James
et al., 2013; Johnson and Wichern, 2014). Evaluating the performance
of LDA against other models like QDA or SVM with non-linear kernels
could shed light on the linear separability of the data. It is very
improbable that there is a single ML algorithm that will consistently
outperform all others for all classification tasks related to sugarcane
health monitoring, and consequently the specific characteristics and
underlying distributions of the data should be analysed when specifying
a desired approach or commenting on its performance. Future studies
should transparently present underlying distributions of their data and
conduct thorough comparisons of multiple ML algorithms based on
these characteristics. Furthermore, in alignment with best practices
for any ML project, rigorous feature selection procedures should be
conducted to ascertain the importance of predictors.

Moriya et al. (2017) took a different approach utilizing Spectral
Information Divergence (SID) to classify mosaic virus in sugarcane from
drone-based hyperspectral images achieving a classification accuracy
of 92%. In two instances of implementing Decision Tree (DT) clas-
sifiers (Narmilan et al., 2022; Franke and Menz, 2007), sub-optimal
performance was exhibited in general or when compared to alterna-
tive tree-based methods. Newer alternative tree-based models, such as
eXtreme Gradient Boosting (XGB) and Random Forest (RF), should be
considered for enhanced accuracy and robustness in sugarcane health
monitoring systems. Alternatively, the only other study to develop a DT
classifier did not perform cross-validation which is vital to corroborate
the effectiveness of the classification method (Dutia et al., 2006).
Despite the widespread application of neural networks in precision
agriculture, only two papers at the time of writing implemented a
neural network for sugarcane health monitoring with spectroscopy
data (Bao et al., 2021, 2024). Future investigations may benefit from
further exploring the capabilities and advantages that neural networks
could bring to this domain.

Several studies analysed the underlying distributions of the data
and performed a more traditional statistical analysis of the differ-
ences between diseased and healthy sugarcane. Canonical Discriminant
Analysis (CDA) was implemented by Abdel-Rahman et al. (2010) and
determined that there is a statistically significant difference in the
hyperspectral reflectance of Thrips damaged crops compared to healthy
crops. A comparable statistical analysis was performed on the spectral



E.K. Waters et al.

Computers and Electronics in Agriculture 229 (2025) 109686

Remote Sensor Data
Acquisition

- A A

Pre-processing &
Atmospheric Correction

Sample Selection &
Vegetation Index Calculation

s -

¥

[ Stepwise LDA |

Z=a1x;+ax; + ot apxy, >

LDA Model

e o

Classify Orange Rust

Fig. 5. Visualization of Apan et al. (2004, 2003) methodology to classify Orange Rust disease from E0-1 Hyperion images in Mackay, Australia with stepwise LDA.

reflectance observed with a laboratory-based spectrometer of sugarcane
with Brown and Orange Rust by Soca-Muiioz et al. (2020) demonstrat-
ing 11.9% and 9.9% differences in the vegetation indices NDVI and
ENVI respectively.

9. Conclusion and future work

In this study, we reviewed factors, identified in the literature, that
affect the accuracy of large-scale sugarcane health monitoring, and
hence need to be considered in the development of a large-scale sugar-
cane health monitoring system. This included sugarcane growth factors,
vegetation indices, specifications of the satellite-based spectroscopy,
factors that influence the observed reflectance of sugarcane, and ML
algorithms utilized in the analysis. To date, there is limited literature
pertaining to a system of this nature and several gaps have been
identified for future research.

A large portion of the current hyperspectral sugarcane health moni-
toring has been conducted with field spectroscopy with limited use for
a large-scale solution for sugarcane farmers. Despite current literature
discussing the effectiveness of spectroscopy to detect sugarcane dis-
ease/pest, they typically lack a comparison of ML algorithms to indicate
the most effective classifier for this application. Furthermore, a large
portion of known sugarcane health conditions have yet to be detected
with newer techniques or systems. There is currently no literature
addressing the possibility of classifying diseases and pests at different
points in the sugarcane life cycle with satellite-based multi-temporal
data.
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A characteristic vital to an effective sugarcane health monitoring
system is the ability to detect and/or identify multiple diseases, pests,
and varieties, simultaneously. Currently, there is limited literature
demonstrating this with any form of spectral imaging for sugarcane.
The current literature indicates the plausibility of a satellite-based
health monitoring system. However, to achieve such a system, several
gaps in the literature need to be addressed before the commencement
of development. Several recommendations have been made for future
studies to fill these gaps.

» A practical solution to a large-scale sugarcane health monitoring
system will need to be capable of identifying a larger number of
health conditions simultaneously. The effectiveness of satellite-
based spectroscopy for health monitoring should be evaluated for
impactful sugarcane diseases yet to be considered, which include
but are not limited to, Sereh, Red Rot, RSD, Smut, Pachymetra,
Chlorotic Streak, Yellow Spot, and Fiji Leaf Gall.

A wide variety of different sugarcane varieties are utilized world-
wide depending on the climate. An ideal large-scale sugarcane
health monitoring system will need to be capable of identify-
ing the aforementioned health conditions for all of the most
prominent sugarcane varieties by considering the variation in
their spectral reflectance. The effectiveness of satellite-based spec-
troscopy for this should be evaluated to indicate if region-specific
health monitoring systems and models are required based on the
local sugarcane varieties.

Future studies should move beyond the prevailing focus on raw
spectral measurements or limited use of vegetation indices con-
sidering the demonstrated success of studies that incorporate
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multiple vegetation indices into their models. Success with veg-
etation indices indicating variation in moisture content indicates
that their inclusion in future studies and systems should be con-
templated.

Further studies should investigate and perform a direct com-
parison of disease classification effectiveness with satellite-based
spectroscopy and drone-based spectroscopy, to indicate trade-
offs in accuracy and real-world logistical consequences associated
with each method.

Models for classifying health conditions need to consider the en-
vironmental and meteorological variations. Current studies often
overlook the influence of annual weather fluctuations, includ-
ing temperature, humidity, sunlight duration, wind patterns, and
precipitation. A comprehensive investigation into how these vari-
ations impact the effectiveness of health monitoring methods and
understanding the interplay between environmental factors and
ML models will contribute to the reliability of sugarcane health
assessments.

Increasing the chance of early detection of health conditions is
vital for reducing the spread or progression of the condition.
Therefore, it would be valuable to develop and evaluate the
effectiveness of models capable of time series disease detection for
prominent sugarcane varieties and diseases. Furthermore, eval-
uating how the different life cycle stages of sugarcane affect
disease detection and the prevalence of exposed soil should be
considered.

Given the diverse nature of sugarcane health monitoring tasks
and datasets, a one-size-fits-all ML algorithm is improbable. Fu-
ture studies should carefully analyse specific characteristics of
their dataset, transparently report distributions, and conduct thor-
ough comparisons among multiple algorithms to identify the
most suitable approach. Rigorous feature selection is essential to
ensure the relevance and impact of predictors in enhancing model
performance.

Neural networks and deep learning have shown unparallelled
performance in various applications. Future research can develop
new neural networks for sugarcane health monitoring and com-
pare them with the most effective ML algorithms for health
monitoring and variety classification.

To incentivize widespread adoption of the discussed precision
agriculture monitoring technology, it would be desirable to uti-
lize freely available satellites. However, freely available satellites
typically have a worse spectral and spatial resolution in compar-
ison to drones or commercial satellites. To determine how much
uncertainty is introduced through the utilization of satellite-based
spectroscopy rather than the superior spatial resolution of drone-
based spectroscopy, both methods should be compared and anal-
ysed. Furthermore, the minimum spatial and spectral resolutions
required to develop a large-scale health monitoring system should
be determined so that the running and production costs of this
system can be reduced where possible.

Developing software to automatically acquire satellite images,
calculate vegetation indices, and detect disease in sugarcane,
displaying the results to a user on a simple user interface and
dashboard is another valuable research and development direc-
tion. The development of a program that is easy to use would be
vital for increasing the probability of its adoption in the industry.

Performing a cost analysis of the sugarcane industry’s current

health monitoring practices against the proposed large-scale health
monitoring system with freely or commercially available satellites

would also be essential for adoption and practice changes.
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