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Simple Summary: Fishmeal is commonly used in aquafeed manufacturing. However, the global
market price of fishmeal is highly fluctuating, and it is not the most sustainable solution. Therefore,
the aquafeed industry is often exploring alternative protein sources such as insect meal to replace
fishmeal. Our study involved testing diets where 10%, 30%, and 50% of the fishmeal was replaced
with black soldier fly larvae to observe how this affects digestion and gut bacteria diversity in hybrid
grouper. The dietary group with 10% substitution showed higher levels of enzymes that help break
down food and absorb nutrients effectively. In contrast, the diets with 30% and 50% replacements
showed signs of weakening in the intestinal walls, which could negatively affect nutrient absorption.
Moreover, the variety of gut bacteria in the groups with 10% and 50% replacement was greater, with
modifications observed in the biological functions associated with energy and nutrient processing.
Our results suggest that replacing some fishmeal with black soldier fly larval meal could potentially
improve gut health and promote the development of sustainable aquaculture diets.

Abstract: This study examined the diversity and responses of intestinal microbiota in hybrid grouper
(Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) fed diets with varying levels of fishmeal replaced by
black soldier fly larvae (BSFL). The 10% BSFL substitution (BSFL10) group showed the highest levels
of trypsin and amylase. Substituting fishmeal with 30% and 50% BSFL weakened the intestinal wall,
resulting in vacuoles, sparse striatal boundaries, and fewer villi. Microbiota diversity, measured
through Shannon’s index, was higher in the BSFL10 and BSFL50 groups than in the control. 16S rRNA
amplicon data revealed the dominance of Firmicutes, Proteobacteria, Bacteroidetes, Spirochaetota,
and Verrucomicrobia phyla. The BSFL-replacement groups showed an increase in Proteobacteria,
Bacteroidetes, and Spirochaetota compared to the control, but fewer Firmicutes. PICRUSt analysis
indicated significant alterations in microbial function, particularly enhanced protein, carbohydrate,
lipid, and energy metabolisms in the BSFL-fed group. Substituting 10% fishmeal with BSFL enhanced
nutrient metabolism and gut microbiota in juvenile hybrid grouper. Further research is needed to
explore factors affecting the efficacy of insect feed as a sustainable aquaculture diet.
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1. Introduction

According to the FAO [1], global fish production is projected to reach 204 million tons
by 2030, a 15% increase compared to 2018. This growth rate is about half of what was
observed in the previous decade. World fish consumption per capita is expected to rise
by 5% from 2018, reaching 21.5 kg in 2030. In 2018, global fish production was estimated
at approximately 179 million tons, with a total sales value of around $401 billion. China
is the leading global aquaculture producer, accounting for about 58% of total production
in 2018. One notable demersal species in this country is the hybrid grouper (Epinephelus
fuscoguttatus ♀ × E. lanceolatus ♂), which is highly valued and cultivated in tropical and
subtropical waters worldwide, particularly along the coastlines of Southeast Asia and the
South China Sea [2,3].

Fishmeal (FM) is a valuable component in aquaculture, poultry, and livestock feeds
due to its high protein content, essential amino acids, minerals, and omega-3 fatty acids.
However, concerns have been raised about the economic, environmental, and social sus-
tainability of FM in feed formulations. Research is being conducted on alternative protein
sources to improve sustainability in fish farming [4,5]. Plant protein sources, such as
soybean meal, soybean protein concentrate, peanut meal, and rapeseed meal, have effec-
tively replaced FM in aquaculture diets in recent years [6,7]. Protein utilization in marine
fish varies depending on the species, and grouper, in particular, has unique nutritional
requirements. The intestinal flora plays a vital role in maintaining the health of the or-
ganism by affecting nutrient absorption, preventing pathogens, and promoting immune
defense [8–10].

Plant-based diets contain indigestible components, such as non-starch polysaccha-
rides (NSPs) [11], along with anti-nutrients like protease inhibitors and lectins in soybeans,
glucosinolates in canola, and gossypol in cottonseed flours. Consequently, using these
plant protein sources in fish feed has been linked to reduced digestive efficiency, decreased
nutrient absorption [12], and alterations in gut microbiota balance [13,14]. Various alterna-
tive protein sources, including insect protein from black soldier fly larvae meal, silkworm
chrysalis meal, Gryllodes sigillatus meal, and Blatta lateralis meal, are rich in crude protein
and fat, as well as antimicrobial peptides, chitin, and prebiotics [15]. These components
can function as ingredients that enhance gut microbiota and immune responses [16–22].

More than 150 insect species are recognized as sustainable protein sources with ade-
quate nutritional value for animal production in the European and Mediterranean Plant
Protection Organization (EPPO) area and North America. Insects provide a protein-rich
component of feed that offers promising possibilities for animal nutrition [16]. The use of
insects as feed is seen as a significant advancement in animal nutrition [17,23,24]. Among
these species, the black soldier fly (Hermetia illucens) has a short larval phase, high fertility,
and exceptional waste conversion rates. Thus, the inclusion of black soldier fly larval
(BSFL) meal in diets has been extensively studied across many fish species. BSFL has
a well-balanced profile of amino acids and fatty acids, making it suitable for aquacul-
ture feed formulations [17,25]. Dietary supplementation with BSFL meal can serve as
a feasible alternative to FM, comprising 20% to 100% in various fish species, including
yellow catfish (Pelteobagrus fulvidraco) [26], Jian carp (Cyprinus carpio var. Jian) [27], rain-
bow trout (Oncorhynchus mykiss) [28], juvenile turbot (Psetta maxima) [29], Atlantic salmon
(Salmo salar L.) [30], African catfish (Clarias gariepinus) [31], hybrid tilapia (Oreochromis
sp.) [32], European seabass (Dicentrarchus labrax) [33,34], red sea bream [35], and Siberian
sturgeon [19].

In our previous study, including BSFL in fish diets by replacing FM at levels ranging
from 10% to 50% had significantly different effects on fish growth [19]. Based on our
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results, we recommend an optimal replacement level of BSFL for marine fish of up to 20%.
However, assessing the impacts of a feed ingredient solely based on growth performance
is insufficient to understand the underlying mechanisms. To date, only a limited number
of studies have investigated the effects of substituting FM with varying levels of BSFL in
farmed fish species through the characterization of intestinal microbiota composition and
histopathology [19].

The gut microbiota plays a crucial role in normal gut function, immunological devel-
opment, lipid metabolism, and energy balance, which in turn influence host development
and physiology [36–39]. Dietary components significantly impact the gut microbiota, as
different diets can selectively promote or suppress the growth of certain microorganism
clades, which in turn affect the host [19].

To evaluate the impact of BSFL meal on fish gut microbiota, we used a broader range
of BSFL inclusion (e.g., 10%, 30%, and 50%) to understand the significant changes that occur
across a different rate of BSFL inclusion. This is important to characterize the interactions
between the host and its gut microbiota through metagenomic analyses [40]. Despite
the beneficial effects of BSFL meal on the growth of some marine species, its impact on
hybrid grouper gut health, function, and microbiota remains unclear. Therefore, this
study aims to investigate the effects of partially substituting FM with BSFL meal, using
intestinal histopathology and gut microbial metagenomics. This study represents the first
high-throughput analysis of gut microbiota composition in hybrid grouper-fed BSFL as a
partial replacement for FM protein. The data generated from this study could serve as a
foundation for formulating grouper feed.

2. Materials and Methods
2.1. Diet Formulation and Preparation

Four isonitrogenous and isocaloric diets were developed to examine the effects of
feeds supplemented with BSFL (Table 1). These diets were formulated to meet the protein
and energy requirements of juvenile groupers. A basal diet without BSFL meal was used as
the control group (CK). Three experimental diets were developed by substituting FM with
BSFL meal at different percentages (10, 30, and 50%) and labeled as BSFL10, BSFL30, and
BSFL50, respectively.

Hybrid groupers with an average weight of 56.49 g ± 0.34 were obtained from a
commercial hatchery in Hainan, China. The fish were fed their experimental diets at
08:00 and 16:00 every day for 42 days after 14 days of acclimatization period (fed with
CK diet). Water quality parameters, including temperature (30.15 ± 0.5 ◦C), dissolved
oxygen (7.20 ± 0.3 mg L−1), salinity (29.75 ± 0.5‰), pH (7.15 ± 0.24), and total ammonia
(0.3 ± 0.2 mg L−1), were monitored and maintained daily. Before conducting the trial,
all animal studies were approved by the Committee for the Care and Use of Creatures
at Hainan Tropical Ocean University and Hainan Key Laboratory for Conservation and
Exploitation of Tropical Marine Fisheries Resources (code: 2019-1134-A1).

2.2. Analysis of Digestive Enzyme Activity in the Intestine

Following a 24 h fasting period at the end of the feeding trial, five fish from each tank
were anesthetized with MS-222 (50 mg L−1) and placed on an ice tray for dissection. The
anterior intestinal tract was collected and flash-frozen in liquid nitrogen before further
analysis. The weights of these tissues were recorded before determining enzymatic activity.
The tissues were homogenized at 3500 rpm with pre-cooled saline at a ratio of 1:9 (w/v) at
4 ◦C for 10 min. The supernatant of the intestinal homogenate was used to evaluate the
activity of digestive enzymes according to the manufacturer’s instructions (Trypsin assay
kit (A080-2-2), Pepsin assay kit (A080-1-1), Amylase (AMS) test kit (C016-2-1), and Lipase
assay kit (A054-2-1), Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Amylase
activity was determined as the enzymatic activity required to hydrolyze 10 mg of starch
per mg of tissue protein after reaction with the substrate at 37 ◦C for 30 min. Lipase activity
was determined as the amount of 1 µmol of substrate consumed per unit of enzyme activity
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when 1 g of tissue protein reacts with the substrate for 1 min at 37 ◦C. Trypsin activity was
measured as a 0.003 absorbance change per minute induced by trypsin in 1 mg of tissue
protein at 37 ◦C and pH 8.0. Each unit of pepsin activity was defined as 1 µg of amino acid
produced from egg white at 37 ◦C per mg of tissue protein per minute.

Table 1. Ingredients and proximate compositions of the experimental diets (as dry-matter basis %).

Ingredients (g 100g−1)
Diets

CK BSFL 10 BSFL 30 BSFL 50

Fishmeal (57%) a 40.0 36.0 28.0 20.0
BSFL (35%) b 7.43 22.0 37.1
Soy protein concentrate (65%) 15.0 15.0 15.0 15.0
Casein 5.0 5.0 5.0 5.0
Shrimp meal 2.5 2.5 2.5 2.5
Wheat flour 16.4 15.27 12.9 9.40
Binding agents 3.0 3.0 3.0 3.0
Microcrystalline cellulose 2.0 2.0 2.0 2.0
Soybean oil 1.0 1.0 1.0 1.0
Fish oil 10.1 7.8 3.6 0
Squid visceral ointment 1.5 1.5 1.5 1.5
Vitamin premix c 1.0 1.0 1.0 1.0
Mineral premix d 1.0 1.0 1.0 1.0
Choline chloride 0.5 0.5 0.5 0.5
Monocalcium phosphate 1.0 1.0 1.0 1.0
Proximate composition

Crude protein 36.72 36.45 37.78 37.75
Crude lipid 14.96 14.67 14.88 14.72
Gross energy (kJ g−1) 17.21 17.27 17.34 17.17

a Fish meal: crude protein 57.0%, crude lipid 6.1%, crude fiber 8.4%, crude ash 16.06%, Lys 3.19%, Arg 2.89%,
His 2.16%, Asp 6.28%, Glu 9.05%, Gly 4.18%, Ala 4.29%, Val 2.41%, Leu 5.21%, Ile 2.40%, Phe 2.95%, Pro 2.37%,
Trp 0.78%, Tyr 1.06%, Ser 2.66%, Met 1.62%, Thr 3.09%. b Black soldier fly larvae: crude protein 35.0%, crude
lipid 32%, crude ash 14.6%, chitin 4.93%, Lys 2.73%, Arg 2.31%, His 0.97%, Asp 3.75%, Glu 5.65%, Gly 3.18%,
Ala 3.29%, Val 2.41%, Leu 3.21%, Ile 1.64%, Phe 1.65%, Pro 2.37%, Trp 0.78%, Tyr 2.06%, Ser 1.66%, Met 0.56%,
Thr 1.49%. c Vitamin mixture (mg kg−1 diet): retinol acetate, 38.0; cholecalciferol, 13.2; α-tocopherol, 210.0;
thiamin, 115.0; riboflavin, 380.0 pyridoxine 88.0; pantothenic acid, 368.0; niacin, 1030.0 biotin, 10.0; folic acid, 20.0;
vitamin B12, 1.3; inositol, 4000.0; ascorbic acid, 500.0 (Ding et al., 2010) [41]. d Mineral mixture (mg kg−1 diet):
MgSO4·7H2O, 3568.0; NaH2PO4·2H2O, 25,568.0; KCl, 3020.5; KAl (SO4)2, 8.3; CoCl2, 28.0; ZnSO4·7H2O, 353.0;
Ca-lactate, 15,968.0; CuSO4·5H2O, 9.0; KI, 7.0; MnSO4·4H2O, 63.1; Na2SeO3, 1.5; C6H5O7Fe·5H2O, 1533.0; NaCl,
100.0; NaF, 4.0 (Ding et al. 2010) [41].

2.3. Histopathological Analyses of Fish Intestinal Tissues

Ten fish were randomly selected from each tank after the feeding trial. Intestinal tract
tissues were freshly fixed with 4% paraformaldehyde. Standard histological techniques
were used to prepare the paraformaldehyde-fixed tissues, which were subsequently embed-
ded in paraffin. The samples were sectioned to a thickness of 5 µm and mounted on glass
slides. The slides were stained with hematoxylin and eosin (H&E) and examined using
light microscopy at 40× and 100× magnifications. Image-Pro Plus 6.0 software (Media
Cybernetics, Rockville, MD, USA) was used to evaluate various aspects of the intestinal
tissue, such as muscular thickness, villi length, villi width, intestinal wall thickness, and
mucosal thickness.

2.4. Intestinal Content Collection

Following a 6-week feeding trial, five hybrid groupers were randomly selected from
the CK, BSFL10, BSFL30, and BSFL50 groups. The fish were euthanized using MS-222 before
dissection. The intestinal contents of each fish were carefully squeezed out and harvested
separately under aseptic conditions. All 20 samples were immediately frozen at −80 ◦C
until DNA extraction. High-throughput sequencing and analysis of the 16S rRNA gene
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V4-V5 region were used to characterize the bacterial communities in the gastrointestinal
contents of the 20 fish.

2.5. Extraction of Bacterial DNA

The bacterial DNA was extracted from the samples using the PowerDNA Isolation Kit
(MoBio, Carlsbad, CA, USA) according to the manufacturer’s instructions. DNA purity and
concentration were evaluated using a NanoDrop spectrophotometer (Thermo, Waltham,
MA, USA) and a Qubit fluorometer (Thermo, USA). The bacterial community structure
was characterized by targeting the 16S rRNA V3 and V4 hypervariable regions with a
primer set (341F: 5′-CCT AYG GGR BGC ASC AG-3′; 806R: 5′-GGA CTA CHV GGT WTC
TAA T-3′) containing Illumina 3′ adaptor sequences and a 12 bp barcode. Sequencing was
performed with an Illumina HiSeq2500 sequencer at Shenzhen Huitong Biotechnology Co.,
Ltd. (Shenzhen, China).

2.6. Amplicon Generation and Library Preparation

Amplicons were generated from 20 to 30 ng of DNA, targeting the V3 and V4 hyper-
variable regions of bacterial 16S rDNA for subsequent taxonomic analysis. A set of primers
was designed to target conserved areas near the V3 and V4 hypervariable regions of the
16S rDNA of bacteria and archaea (forward: 5′-CCT ACG GRR BGC ASC AGK VRV GAA
T-3′; reverse: 5′-GGA CTA CNV GGG TWT CTA ATC C-3′). Tagged adaptors were added
to the termini of the 16S rDNA amplicons to prepare tagged libraries for downstream
NGS sequencing on the Illumina MiSeq sequencer (Illumina, San Diego, CA, USA). PCR
reactions were initiated in triplicate using a 25 µL mixture consisting of 2 µL NTP, 2.5 µL
Trans Start Buffer, 20 ng DNA template, and 1 µL primer.

2.7. Illumina MiSeq Sequencing

The concentration of the DNA libraries was validated using a Qubit 3.0 Fluorometer
before sequencing. The DNA libraries were multiplexed and applied to the Illumina MiSeq
platform (Illumina, San Diego, California, USA) following the manufacturers’ instructions.
Sequencing was performed with the PE250/300 Pairing System, while image analysis and
base calling were conducted using the MiSeq Control Software (MCS, v4.0) on the MiSeq
instrument(Illumina, San Diego, CA, USA).

2.8. Enriched and Amplified DNA Libraries

The metagenomic computational library was constructed following standard Illumina
TruSeq DNA library preparation protocols. Barcoded Illumina MiSeq genome sequencing
was performed using an Illumina MiSeq Genome Analyzer (Illumina, San Diego, CA, USA).
A PE2500 sequencing strategy was employed to create one paired-end (PE) library for
each sample, with a PE library insert size of 500 bp. Each sample yielded a minimum of
20,000 pairs of reads, and the quality score of the clean sequencing data was Q30 > 75%.
DNA fragments with protruding ends were repaired using a mixture of 3′-5′ exonuclease
and polymerase. A unique base A was inserted into the repaired smooth 3′-end of the DNA
fragments. At the 3′-end of the junction, a thymine base facilitates complementary pairing
with adenine. Selective enrichment of double-ended DNA fragments and simultaneous
amplification of DNA libraries were achieved via PCR.

2.9. Functional Predictions of the Intestinal Microbiota

PICRUSt (Phylogenetic Investigation of Communities by Reconstructing the Observed
State) was employed to predict the functional properties of microbial communities by
analyzing the genetic composition of microorganisms [42]. The KEGG database and
operational taxonomic units (OTUs) were used to filter collected reads according to a
Greengenes reference taxonomy (Greengenes 13.5).
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2.10. Bioinformatics and Statistical Analyses

Reads from the sequencer were sorted into individual samples based on their unique
barcodes. The barcode and primer sequences identified by the main sequence were then
removed. Initial rRNA tags were obtained by merging the reads with FLASH (V1.2.7,
http://ccb.jhu.edu/software/FLASH/, accessed on 11 August 2020). High-quality tags
were filtered using QIIME with the SILVA database (Silva 132, http://qiime.org/index.html,
accessed on 11 August 2020) to detect chimera sequences as described by Edgar et al. [43].
The tags were clustered into operational taxonomic units (OTUs) using UPARSE (http:
//drive5.com/uparse/, accessed on 11 August 2020) at a 97% nucleotide composition
similarity [44]. QIIME was subsequently used to determine the phylogenetic placement
of selected OTUs. Microbial diversity at the alpha and beta levels was evaluated using
Shannon’s and Chao1 indices based on the relative richness of OTUs. Principal component
analysis (PCA) measured the relatedness of community composition among samples (beta
diversity). Boxplots and heatmaps for selected microbes were generated using the R
statistical environment (v3.1.2). Function profiles of the gut microbiome were analyzed
with PICRUSt (PICRUSt2, v2.4.1) [42]. 16S rRNA data analysis was performed using the
QIIME data analysis package (QIIME 1, http://qiime.org/index-qiime1.html accessed on
11 August 2020).

3. Results
3.1. Digestive Intestinal Enzyme Activity

Table 2 summarizes the activity of digestive enzymes in the intestine. Among the
experimental groups, the fish group fed the BSFL50 diet exhibited the highest pepsin
activity, followed by the BSFL30 diet. The lowest activity was observed in fish fed with the
CK and BSFL10 diets.

Table 2. Enzyme activities of juvenile hybrid grouper-fed different diets.

Items
Groups

CK BSFL 10 BSFL 30 BSFL 50

Intestine
Pepsin (U/mg protein) 0.30 ± 0.04 c 0.38 ± 0.05 c 0.84 ± 0.11 b 1.17 ± 0.07 a

Amylase (U/mg protein) 0.71 ± 0.30 a 1.29 ± 0.15 a 1.19 ± 0.05 a 0.90 ± 0.18 a

Lipase (U/g) 1.17 ± 0.17 b 1.03 ± 0.17 b 1.41 ± 0.10 ab 2.12 ± 0.30 a

Trypsin (U/mg protein) 2139.07 ± 161.11 c 5904.35 ± 198.88 a 3134.97 ± 201.82 b 1905.98 ± 62.45 c

Values (mean ± SD, n = 5) in the same row with different letters are significantly different (p < 0.05). The absence
of letters indicates no significant difference between treatments.

Statistical analyses revealed significant differences (p < 0.05) in amylase activity be-
tween fish-fed CK, BSFL10, and BSFL50. Fish-fed BSFL50 had the highest lipase activity,
followed by BSFL30-fed fish, with the lowest activity in fish-fed BSFL10. Fish-fed BSFL10
exhibited significantly different (p < 0.05) trypsin activity compared to the CK group and
other BSFL treatments.

3.2. Histological and Morphological Analyses of the Intestinal Tissues

Figure 1 shows the histological examination of the intestine. The findings from our
examination of intestinal morphology are summarized in Table 2. Substituting 10% of
FM with BSFL resulted in a normal intestinal tissue structure, with intact integrity and
well-defined striated margins (black arrow, Figure 1A). The intestinal villi were intact and
neatly extended into the intestinal lumen, showing no signs of damage or shedding. The
muscle thickness, villi length, villi width, intestinal wall thickness, and mucosal thickness
of the intestine were comparable between the BSFL10 and CK groups, indicating that
the BSFL10 diet did not have any discernible impact on intestinal morphology. The CK
group exhibited well-developed intestinal villi, with closely organized columnar epithelial

http://ccb.jhu.edu/software/FLASH/
http://qiime.org/index.html
http://drive5.com/uparse/
http://drive5.com/uparse/
http://qiime.org/index-qiime1.html
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cells. The cytoplasm appeared loose and faintly stained, exhibiting foamy characteristics
(black arrow, Figure 1D), with sparse striated margins (blue arrow, Figure 1D). Goblet cells
were not prominent in either the CK or BSFL10 groups. When 30% and 50% of FM were
substituted with BSFL, the aforementioned measurements appeared shorter and thinner.
The villi were sparse, and the intestinal epithelial cells contained vacuoles (black arrow,
Figure 1B,C), along with a few striated edges (blue arrows, Figure 1C). Furthermore, there
was a slight increase in local subepithelial lymphocytes (yellow arrows, Figure 1B,C), along
with an increase in goblet cells.
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3.3. Illumina Sequencing Quality Analysis and α-Diversity Analysis

A total of 318,928 valid sequences were obtained from 16 samples through high-
throughput sequencing. The number of sequences per sample ranged from 30,529 to
50,996, with an average of 39,866 sequences. Each treatment had a coverage rate above 0.99,
indicating that the OTUs of the samples sufficiently represented their diversity (Table 3).
The samples were normalized to 30,000 sequences before subsequent α-diversity and β-
diversity analyses to minimize potential errors in diversity analysis due to variations in
sequencing depths among samples. Analysis of the rarefaction curve (Figure 2) revealed
a consistent trend as sequencing volume increased, indicating that the Sobs or Shannon
index of each sample did not increase further with additional sequencing data. All samples
were fully sequenced, encompassing a broad range of species.

The results of the Sobs, Chao, Shannon, Simpson, and Coverage indices representing
the intestinal microflora of groupers are displayed in Table 4. All treatment groups demon-
strated high coverage. The Sobs index was significantly higher in the BSFL-treated groups
compared to the CK group (p < 0.05), with BSFL10 and BSFL50 showing significantly
greater values than CK. The trend in the gut microbiota abundance index (Chao) correlated
with that of the Sobs index. The Shannon index was significantly higher in the BSFL groups
compared to the CK group (p < 0.05), with the BSFL10 and BSFL50 groups having values
48.85% and 44.63% higher than the CK group, respectively. Variability in the Simpson index
was significantly greater in the BSFL30 group compared to the CK group (p < 0.05), with
no significant difference observed between the BSFL30 group and the other groups. These
results indicate that BSFL can enhance the abundance and diversity of intestinal flora after
replacing fishmeal at various levels.
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Table 3. Selection of the valid DNA sequences.

Sample-ID Raw PE (#) Combined Qualified Nochime (#) Base (nt) AvgLen (nt) Q20 Q30 GC % Effective %

BSFL10.0 95,058 86,925 84,140 60,221 25,497,648 423 98.15 94.22 53.37 63.35
BSFL10.1 96,464 93,295 91,137 61,637 25,555,748 415 98.38 94.66 53.02 63.9
BSFL10.2 99,033 92,496 90,011 64,678 27,180,916 420 98.04 93.86 52.2 65.31
BSFL10.3 85,341 71,964 69,178 57,014 23,943,945 420 98.23 94.49 53.8 66.81
BSFL30.0 75,879 57,136 55,113 49,231 20,371,855 414 97.52 92.84 52.25 64.88
BSFL30.1 64,755 55,761 54,001 43,067 17,827,745 414 98.27 94.45 50.65 66.51
BSFL30.2 100,928 76,286 71,966 62,162 25,625,892 412 97.73 93.25 51.79 61.59
BSFL30.3 94,196 85,646 82,673 66,766 27,675,346 415 98.16 94.25 52.01 70.88
BSFL50.0 78,874 73,337 71,620 62,314 25,931,448 416 98.36 94.76 54.64 79.10
BSFL50.1 95,222 88,670 86,568 65,211 27,121,028 416 98.29 94.55 54.77 68.48
BSFL50.2 92,718 88,529 86,314 68,622 28,388,865 414 98.38 94.66 53.37 74.01
BSFL50.3 80,809 76,040 74,399 62,482 26,046,974 417 98.24 94.42 53.47 77.32
BSFLCK.0 96,454 88,405 86,070 65,796 27,894,430 424 98.19 94.26 51.62 68.21
BSFLCK.1 86,384 83,556 81,679 61,698 26,141,929 424 98.22 94.36 51.75 71.42
BSFLCK.2 77,818 58,721 51,269 47,730 19,168,573 402 97.41 92.83 51.54 61.34
BSFLCK.3 87,300 80,779 78,574 63,581 26,966,383 424 98.24 94.42 51.63 72.83
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Table 4. Alpha-diversity index (mean ± SD, n = 3).

Groups
Abundance Index Diversity Index

CoverageObserved Features
(Sobs) Chao Shannon Simpson

BSFL10 706.25 ± 13.95 b 728.00 ± 17.11 b 5.09 ± 0.48 b 0.89 ± 0.03 ab 1.00 ± 0.00
BSFL30 564.00 ± 14.75 c 572.25 ± 18.29 c 6.11 ± 0.35 a 0.95 ± 0.01 a 1.00 ± 0.00
BSFL50 813.25 ± 17.95 a 831.00 ± 19.60 a 5.94 ± 0.42 a 0.91 ± 0.03 ab 1.00 ± 0.00

CK 517.25 ± 11.11 c 534.00 ± 6.71 c 4.11 ± 0.17 c 0.84 ± 0.01 b 1.00 ± 0.00

Values (mean ± SD, n = 3) within the same row with different letters are significantly different (p < 0.05). The
absence of letters indicates no significant difference between treatments.

3.4. Distribution of Intestinal Microbiota

Figure 3 shows the structure of the microbial community found in the intestines of
groupers. The dominant bacteria at the phylum level were Firmicutes, Proteobacteria,
Bacteroidetes, Spirochaetota, and Verrucomicrobia, with Firmicutes, Proteobacteria, and
Bacteroidetes exhibiting the highest prevalence. In the CK group, Firmicutes were 2.53,
12.03, and 5.87 times more abundant than in the BSFL10, BSFL30, and BSFL50 groups,
respectively. The BSFL replacement groups exhibited higher levels of Proteobacteria, Bac-
teroidetes, and Spirochaetota compared to the CK group. Proteobacteria were significantly
less abundant in the CK group compared to the BSFL10, BSFL30, and BSFL50 groups by
68.33%, 59.05%, and 153.90%, respectively. Bacteroidetes and Spirochaetota were most
abundant in the BSFL30 group, followed by the BSFL50 group, while the CK group had the
lowest abundance.

At the genus level, Lactobacillus and Pediococcus were the most prevalent. The CK
group had higher levels of Lactobacillus and Pediococcus compared to the BSFL replacement
group. The abundance of Lactobacillus in the CK group was 2.29, 21.49, and 4.97 times
higher than in the BSFL10, BSFL30, and BSFL50 groups, respectively. The abundance of
Pediococcus in the CK group was 3.49, 153.89, and 52.26 times higher than in the BSFL10,
BSFL30, and BSFL50 groups, respectively. Other highly abundant bacteria included Lim-
nobacter, Polynucleobacter, Escherichia–Shigella, Brevinema, Treponema, Bacteroides, Prevotella,
Methyloversatilis, Acinetobacter, and Pseudomonas. The group that had FM substituted with
BSFL exhibited significant increases compared to the CK group, indicating that substituting
FM with BSFL in the formulated diets altered the bacterial community structure of groupers
at the phylum and genus levels.

3.5. Changes in the Microbial Community Structure

Linear discriminant analysis (LDA) is a generalized version of Fisher’s linear dis-
criminant approach used to identify a linear combination of features from two classes of
objects or events for characterization or discrimination. As shown in Figure 4, LD1 and
LD2 accounted for 65.34% and 22.52% of the variance, respectively. BSFL30 showed distinct
differences from the CK group as well as from BSFL10 and BSFL50. In contrast, BSFL10
appeared to be closer to the CK group. There was a small overlap between the BSFL50 and
CK groups, suggesting a considerable alteration in the intestinal microflora structure in
the BSFL replacement groups compared to the CK group. The BSFL30 group exhibited the
most significant changes. The partial overlap between the BSFL10 group and CK group
may have resulted from the restoration of the intestinal microflora structure as the grouper
adapted to the increased level of BSFL substitution.
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3.6. Screening of Taxonomic Units and Heatmap Analysis

The use of linear discriminant analysis effect size (LEfSe) revealed significant differ-
ences in bacterial abundance at the genus level between groupers-fed BSFL-substituted
feeds and the CK group (Figure 5). Differences were determined using LDA, with a score
threshold greater than 3.5. The length of the histogram corresponds to the magnitude of
the effect of the various species (LDA score). In Figure 5, the CK group showed a pre-
dominance of Bacilli, Lactobacillaceae, Alcaligenaceae, Comamonadaceae, Bacillalles, Pediococcus,
and Lactobacillus. In the BSFL10 group, Thiobacillus, Cellvibrionales, Hydrogenophilaceae, and
Halieaceae were the prominent taxa. The major taxa in the BSFL30 group were Bacteroidales,
Selenomonadales, Negativicutes, Bacteroidota, Veillonellaceae, and Porphyromonadaceae. The most
significant taxa in BSFL50 were Acidobacteriota, Holophagae, Turicibacter, Dadabacteriales, Dad-
abacteriia, Dadacacteria, and Dadabacteriales. The heatmap analysis revealed that the grouper
gut microbiota was primarily dominated by Acidobacteriota, Bacteroidota, and Dadabacteria
when the fish were fed diets containing BSFL (Figure 6). As the levels of BSFL in the diet
increased, genera such as Dialister, Porphyromonas, Bilophila, Negativicoccus, Alcanivorax, and
Holdemania became more prominent.

Figure 7 illustrates the multilevel species hierarchy tree derived from the LEfSe analy-
sis. The circle radiating outward represents the phylum-to-genus classification level (or
species), with the innermost yellow circle marking the border. A total of 58 genera of bacte-
ria were identified as significant factors in distinguishing between the groups. The BSFL10,
BSFL30, and BSFL50 groups exhibited a similar in comparison to the CK group, with
relative abundances greater than 0.01%. This suggests significant differences in abundance
(Figure 8). The CK group had slightly higher relative abundances of Moraxellaceae, Lacto-
bacillus, Enterobacter, Bacillaceae, Comamonas, Stenotrophomonas, and Alcaligenes compared
to the BSFL10, BSFL30, and BSFL50 groups. Furthermore, the BSFL30 and BSFL50 groups
showed significantly higher relative abundances of various bacterial genera including
Porphyromonas, Parasutterella, Dialister, Sutterellaceae, Bacteroides, Bilophila, Negativicoccus,
Selenomonadales, Tannerellaceae, Sutterella, Veillonellaceae, Shigella, and Negativicutes.

3.7. Prediction of Metabolic Function

PICRUSt analyses were performed to predict gene functions by assessing the mi-
crobial gene composition (Figure 9). This analysis identified 262 gene families through
the clustering of KOs (KEGG Orthology). Level 3 KEGG pathway analysis revealed that
genes associated with metabolism (e.g., fatty acid elongation in mitochondria and glycan
degradation), electron transfer carriers, carbohydrate metabolism, and glycan biosynthesis
were significantly lower in the CK group compared to the BSFL replacement group. Micro-
bial genes in the intestines of the BSFL10 and BSFL50 treatment groups were associated
with nutritional metabolism, including amino acid, nitrogen, and fatty acid metabolism.
Furthermore, compared to the CK group, uncategorized clusters related to membrane and
intracellular structural molecules, porous channels, protein folding and processing, cell
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division, signal transduction mechanisms, and cellular processes such as lysosome and
cytoskeleton proteins exhibited a similar trend.
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4. Discussion

The hybrid grouper diet primarily consists of a mix of FM and plant-based feed,
such as soybean meal [45,46]. Previous studies have explored the effects of replacing FM
with soybean meal in these fish and found that the grouper’s ability to utilize soy protein
concentrate (SPC) as a dietary protein source is limited [41]. It has been recommended to
restrict fishmeal replacement to below 30% (FM 45.5 g 100 g−1 and SPC 18 g 100 g−1) [41].
Similar results were observed in studies involving other fish species, such as Siberian
sturgeon [19], rainbow trout [47,48], African catfish [49], European seabass [33], and juvenile
Jian carp [50].

Literature has emphasized the importance of gut microecology in understanding the
role of nutrients and their metabolism in fish nutrition [8,9]. This study is the first to
investigate the effects of substituting FM with BFSL in diet formulations for hybrid grouper
using a comprehensive analysis of intestinal histopathology and microbial composition.
The fish’s intestinal tract is the anatomical basis for nutrient digestion and absorption.
Its histological composition includes the mucosa, submucosa, muscularis, and plasma.
Within the mucosa, columnar epithelial cells aid in absorption, while goblet cells produce
digestive enzymes and mucus. These components are crucial for maintaining structural
integrity, promoting digestion, regulating microbiome balance, and supporting immune
function [51]. Therefore, maintaining the integrity of the intestinal structure is vital for
the digestive capabilities of fish. Furthermore, impaired intestinal integrity can lead to
pathogenic breaches in the epithelium, causing immune cell infiltration and inflammatory
responses [52].

The present study revealed that the diets had no significant impact on intestinal
amylase activity. However, intestinal lipase activity in the grouper increased with higher
supplementation of BSFL in the diet, particularly in the BSFL50 group. This finding is consis-
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tent with a previous study on rice field eels (Monopterus albus) fed with BSFL (15.78%). That
study demonstrated that substituting BSFL below 15.78% improved growth and balanced
intestinal flora in the fish, but higher levels negatively impacted lipid metabolism [53].

Interestingly, lipase serves as a signaling molecule that regulates lipid metabolic
pathways [54]. The levels of pepsin and trypsin were significantly higher in the BSFL50
and BSFL10 groups compared to the control group. Moreover, increasing the amount
of BSFL (30% and 50%) in the FM led to a significant reduction in various intestinal
parameters of the fish, such as muscle thickness, villi length, villi width, wall thickness,
and mucosal thickness.

In this present study, vacuoles and thinner intestinal walls were observed at 30–50%
BSFL. This may explain the differences in digestive enzyme activity observed among
the treatment groups. In [55], it was reported that the presence of chitin in BSFL might
trigger an inflammatory response in the intestine, potentially compromising tissue integrity.
However, previous studies utilizing insect-based diets (Hermetia illucens) with 25% and
50% FM substitution in zebrafish (Danio rerio) did not reveal any detrimental effects on the
intestinal tissues of the zebrafish [56]. In cork fish (Channa striata), higher concentrations of
BSFL (20%, 50%, 80%, and 100%) had no significant impact on growth but did increase the
levels of lipase, amylase, and protease enzymes [57].Crude protein levels in fish diets are
often overestimated; however, insect meals can contain significant amounts of non-protein
nitrogen. In fact, non-protein nitrogen, such as chitin, makes up about 16–30% of the total
nitrogen in BSFL meal [58,59]. Chitin is a nitrogenous polymer found in insect cuticles and
is considered a non-protein source of nitrogen [18,60]. It is important to note that chitin is
indigestible for fish and is generally classified as an antinutrient [61]. A study by Guerreiro
et al. [62] found that diets for meagre fish, Argyrosomus regius, particularly those with high
chitin content from BSFL can reduce nutrient digestibility [60]. Since chitin is a primary
component of insect bodies, it cannot be eliminated from the diet when using BSFL as a raw
material [63]. Guerreiro et al. (2021) [62] stated that fish can digest chitin in the presence of
the chitinase enzyme found in their stomachs and intestines. In our study, since we did
not specifically assess the chitin content in the feed or the levels of chitinase enzyme in the
stomachs and intestines of grouper, it is insufficient to evaluate the role of chitin. In the
future, it is worthwhile to conduct related research to address this issue.

The results of this study demonstrate a significant difference in the diversity and
abundance of intestinal microbes between the BSFL and CK groups [64,65]. In our study,
we observed a 6-week (excluding a 2-week acclimatization period) dietary modulation
of intestinal bacterial communities, and the method of collecting the intestinal sample is
consistent with the literature (Nayak, 2010a, 2010b; Loh et al., 2021) [3,66,67]. This allowed
us to assess the effects of diet on the gut microbiome at the same point in time, ensuring
consistency and comparability of results. Although different effects on gut microbiome
modulation were reported, the results are still inconclusive. To the best of our knowledge,
no data have been reported regarding the effect of BSFL on the intestinal microbiome in hy-
brid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Previous studies have shown
that bacteria from the Firmicutes, Proteobacteria, Bacteroidetes, Spirochaetota, and Verrucomicro-
bia phyla are abundant in fish intestines [8,40,66,68–71]. The CK group in the present study
had a higher abundance of Firmicutes compared to the BSFL group, while the BSFL group
was predominantly composed of Proteobacteria, Bacteroidetes, and Spirochaetes. Studies
have also shown that microorganisms from the Firmicutes and Bacteroidetes phyla can
enhance fish digestive and immunological health by combating pathogenic bacteria [72–74].
Proteobacteria and Firmicutes are commonly found in the intestinal microbiota of salmon,
indicating their adaptation to fish intestinal environments or aquatic conditions [75,76].
The presence of Spirochaetota in the BSFL group is noteworthy, as these bacteria play a
crucial role in gut microbiome homeostasis, as demonstrated in a study on L. crocea [77].
Defosse et al. [78] discovered the spirochete Brevinema andersonii, which can be isolated from
autophagosomes. In a study on Trachinotus ovatus, it was observed that these spirochaete
bacteria significantly increased in diseased fish, along with a notable decrease in the levels
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of Firmicutes and Bacteroidetes compared to healthy fish [79]. Wang et al. [80] found that
seahorses (Hippocampus kuda) with enteritis had elevated levels of Spirochaeta, Mycobac-
terium, and Vibrio bacteria. However, the grouper samples in our study did not show signs
of illness and exhibited normal feeding behavior. The nature of the Spirochaeta bacteria in
the intestines remains unknown and requires further investigation. Furthermore, beneficial
bacteria groups such as Lactobacillus, Lactococcus, Bacillus, and Saccharomyces species were
identified in the BSFL group. These findings explain the increased digestive enzyme ac-
tivity in the BSFL group compared to the CK group in our study. Moreover, Lactobacillus,
Leuconostoc, Lactococcus, Enterococcus, Shewanella, Carnobacterium, Aeromonas, Vibrio, Bacillus,
Enterobacter, Pseudomonas, Clostridium, and Saccharomyces species are common probiotics
used in aquaculture practices [72,81–83].

The role of microbiota in promoting fish health, disease resistance, and other beneficial
functions has been extensively documented. This study showed that including optimal
levels of insect meal in fish diets can benefit hybrid grouper aquaculture by modifying
the gut microbiota. The main groups in Firmicutes are Clostridia and Bacillaceae, while
Aeromonas and Enterobacteriaceae are commonly found in Proteobacteria. Enterobacteriaceae
makes up 50% of all bacteria and is frequently present in the gut flora of farmed fish-fed
artificial diets [84]. High levels of Enterobacteriaceae have been observed in the intestinal
chyme of fish-fed H. illucens diets [19,74]. These findings are consistent with the study by
Borrelli et al. [85], which showed that H. illucens significantly enhances the diversity of
microbial populations. Additionally, Enterobacteriaceae bacteria are considered normal in
fish farmed near human populations [86–88]. Józefiak et al. [19] further confirmed that
incorporating full-fat insect meal into feed can stimulate the proliferation of lactic acid
bacteria (LAB) such as Lactobacillus and Enterococcus spp. in rainbow trout. LAB adherence
to the intestinal mucosa can improve mucosal function and morphological development
in rainbow trout [89]. LABs are commonly used as probiotics in fish to enhance immune
responses, protect against infections, and improve nutritional absorption [66,67]. The
immunomodulatory effect may be attributed to chitosan derived from H. illucens and its
oligosaccharide derivatives (chitosaccharides). Chitin is recognized as a prebiotic that can
enhance intestinal absorption [15,90,91] and promote the growth of beneficial bacteria while
inhibiting harmful pathogens, fungi, and viruses [91,92]. Additionally, chitin reduces ox-
idative stress in fish [91] and facilitates the colonization of beneficial gut flora. Chitin found
in insect exoskeletons exhibits antioxidant, antifungal, and antiviral properties [93,94].
Interestingly, a recent study demonstrated that H. illucens possesses a wide range of genes,
such as glutathione S-transferase 1 and UDP-glucosyltransferase 2, that can effectively
metabolize aflatoxin B1. This metabolic capability plays a critical role in preventing the
contamination of mycotoxins in feed [95].

Earlier studies have identified the genus Pseudomonas as a natural part of the micro-
biome of seabass and Gulf killifish, supporting our findings [96–98]. In this study, we
found that the genus Pseudomonas was particularly abundant and showed a high replace-
ment of BSFL. However, more research is needed to fully understand this phenomenon.
Pseudomonas is an opportunistic pathogen that can produce various antibiotics and small
bioactive molecules under favorable conditions, exhibiting antibacterial lysozyme effects.
In adverse conditions, it can cause surface ulceration, swelling, and congestion in fish in-
testines, as observed in fish-fed diets with high levels of BSFL substitution (30% and 50%).

Previous studies have shown that Brevinema andersonii and another member of the
Spirochaetota phylum are more common in the mucosal layer of the terminal intestine
than in the chyme [22]. In our study, we found common spirulina in hybrid groupers-fed
diets with high levels of BSFL substitution (30% and 50%). Recent research indicates that
B. andersonii is more prevalent in the gut mucosa than in the digesta of seawater-phase
Atlantic salmon, regardless of dietary intake [99]. Spirochetes are known for their high
motility and chemotaxis toward mucins. Some species can penetrate mucus and attach to
the gut mucosa [100,101]. However, further studies are needed to determine if this taxon
accumulates in the layer of intestinal mucus regardless of dietary composition. The abun-
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dance of Dadabacteria in the intestines of fish fed the high-BSFL alternative diet was greater
than that in fish fed other diets. Marine Dadabacteria are believed to be widespread in the
marine domain and represent a potential phylum. However, a comprehensive evaluation
of the available genome data for this bacterium is lacking, hindering our understanding
of its genomic structure in the marine environment. Graham and Tully [102] found that
upper mid-ocean Dadabacteria genomes are streamlined, with shorter genomes and reduced
nitrogen content in DNA and projected proteome compared to their phylogenetic counter-
parts. The authors propose that Dadabacteria can break down microorganisms that degrade
organic substances, particularly peptidoglycans and phospholipids.

Various factors, such as diet, phylogeny, and the development of the core microbiome,
influence the fish microbiome. In a study by Zeng et al. [103], variations in the gut flora
of four different feeding fish species (i.e., Hypophthalmichthys molitrix, Ctenopharyngodon
idellus, Aristichthys nobilis, and Carassius auratus) were observed. This suggests that bac-
teria from sources other than plankton may significantly impact the taxonomic profile of
fish. The physicochemical parameters of the aquatic environment, including temperature,
salinity, pH, oxygen levels, pollutants, seasonality, nutrient biorhythms (food supply),
antimicrobials, and other factors, directly affect the gut microbiota [104–108].

In our previous unpublished data, substituting less than 20% of BSFL had beneficial ef-
fects on the digestive capacity and immunological response of hybrid grouper. The present
study analyzed the structure of the intestinal flora, identifying significant differences in
abundance among taxonomic groups and predicting their metabolic processes. This al-
lowed for the investigation of the biological significance of substituting FM with BSFL in
regulating the intestinal microbiota of grouper. Investigating the functional diversity of
bacterial communities emphasizes the importance of the gut microbiome. The analysis
of KEGG orthologs (KOs) linked to the intestinal microbial function in the four dietary
groups indicated that the primary gene functions of identified bacteria were associated with
metabolic processes, consistent with previous findings [109,110]. In the present study, genes
related to genetic information processing, transcription-related proteins, and nucleotide
metabolism were significantly enriched in the CK group. Level 3 KEGG pathway analysis
revealed that microbial functional genes involved in the biosynthesis of secondary metabo-
lites, carbohydrate and lipid metabolism, and amino acid metabolism were relatively less
abundant in the CK group but significantly more abundant in the BSFL-replacement groups.
Fish fed with the BSFL10 and BSFL50 diets exhibited a clustering of large microbial genes
in the intestine, primarily associated with energy metabolism, amino acid metabolism, ni-
trogen metabolism, and lipid metabolism. Furthermore, genes related to cellular formation
and processes, signal transduction mechanisms, and genetic information processing were
highly expressed in the intestines of fish fed with BSFL10 and BSFL50 diets compared to
the CK group, indicating potential involvement in redesigning the microbial membrane
structure [111,112].

Previous studies have shown differences in microbial community function across
various regions of the intestine [113]. For instance, in grass carp, microorganisms in the
hindgut exhibit higher energy and carbohydrate metabolism compared to those in the
foregut [114]. This study confirmed similar findings in hybrid grouper and aligns with
observations of digestive enzyme activity and histological examination of the intestine.

5. Conclusions

This study demonstrates the potential of replacing fishmeal (FM) with black soldier
fly larvae (BSFL) in marine finfish aquaculture, based on identified differences in the
intestinal microbiota of grouper fish-fed diets with varying levels of BSFL and FM. The
dominant microbiota in different dietary groups plays a critical role in regulating microbial
population dynamics and key functional properties related to microbial enzyme production
and nutrient metabolism in the intestine. Specifically, our findings suggest that replacing
10% of FM with BSFL could enhance protein, carbohydrate, and lipid metabolism, as well
as improve the diversity of the intestinal microbiota in hybrid grouper (E. fuscoguttatus
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♀ × E. lanceolatus ♂). However, further research is needed to explore other factors that
may impact the efficacy of replacing FM with insect meal in aquafeed to promote a more
sustainable and environmentally friendly aquaculture industry.
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