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5 Abstract 

This thesis explores the integration of Health Social Networks (HSN) with the Internet of Things 

(IoT) to enhance the accessibility and accuracy of health information for patients and caregivers. 

HSNs refers to the collection of patient-driven communities that provide rich information to patients 

and caregivers. On the other hand, Health IoT enables remote monitoring of patients to provide non-

invasive, objective, and affordable diagnostic capabilities. By combining HSNs and Health IoT, this 

research aims to facilitate quick and easy access to relevant health information while enabling 

pervasive remote monitoring for improved healthcare outcomes. 

In this thesis, the challenges associated with integrating HSNs, and Health IoT are identified. The 

integrated HSN focuses on the application areas of heart disease, lung disease and bowel disease. 

For heart diseases, the first challenge is finding similar patient groups in HSNs using biosignals 

collected through Health IoT as users often struggle to locate relevant communities for specific 

diseases in HSNs. Users often lack expertise in effectively describing their condition, making it 

challenging to find appropriate communities within HSNs. The second challenge is converting ECG 

(electrocardiogram) results into keywords that allow direct comparison with textual data for HSN 

search. Conventional ECG classification methods can only predict predefined diseases and 

abnormalities from their training dataset, which restricts their ability to cover the wide range of 

possibilities that have not been explicitly trained for. The third challenge is enabling semantic search 

of text-based contents from HSNs using ECG from Health IoT. This challenge involves developing 

methods to convert biosignal data into clinically interpretable descriptions as keywords to search 

relevant health information from HSNs. 

For respiratory diseases, the first challenge is developing an efficient deep learning model that 

effectively combines the strengths of Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and Transformers for the analysis of breath sound. Due to gradient exploding or 

vanishing, RNNs have limitations to model diverse spatial relations and long sequences. CNNs have 

advantages to compose lower-level elements into higher-level entities, making them efficient for 

signal processing tasks. On the other hand, CNNs face constraints in modelling features with varying 

distances due to their reliance on fixed aggregation weights in its convolutional kernel for spatially 

neighbouring input features. The second challenge is enabling semantic search of text-based contents 

from HSNs using breath sound from Health IoT. This challenge involves developing methods to 

convert biosignal data into clinically interpretable descriptions as keywords to search relevant health 

information from HSNs. 

For bowel diseases, the first challenge is collecting bowel sounds for detecting bowel diseases in 

newborns within the Neonatal Intensive Care Unit (NICU). Specifically, affordable methods for 

collecting bowel sounds are lacking. The second challenge is using deep learning models to 

accurately segment bowel sounds. The irregular pattern of bowel sounds poses difficulties in locating 



7 

 

 

 

 

and detecting bowel activities. As a result, conventional deep learning models often face challenges 

in precisely segmenting bowel sounds, thus limiting their effectiveness in diagnosing gastrointestinal 

problems. The third challenge is enabling semantic search of text-based contents from HSNs using 

bowel sounds from Health IoT. This challenge involves developing methods to convert biosignal 

data into clinically interpretable descriptions as keywords to search relevant health information from 

HSNs. 

The thesis aims to develop an integrated HSN framework that encompasses heart disease, lung 

disease and bowel disease, providing comprehensive and efficient healthcare solutions. 

For cardiovascular disease, the first aim is to enable direct biosignal comparison through Health 

IoT, facilitating the identification of similar patient groups in HSNs and overcoming challenges in 

finding relevant communities for specific diseases without requiring users to search on their own. 

The second aim is to enable effective semantic search of cardiovascular disease-related health 

information from HSNs, expanding the coverage of healthcare data possibilities beyond predefined 

diseases and abnormalities. The third aim is to convert the ECG into interpretable clinical 

measurements that describe physical measurement abnormalities, to provide keywords for semantic 

search within HSNs. 

For respiratory disease, the first aim is to develop an efficient deep learning model that combines 

CNNs, RNNs and Transformers to analyse breath sounds, addressing limitations in modelling 

diverse spatial relations and handling long sequences. The second aim is to convert the breath sounds 

into interpretable clinical measurements that describe physical measurement abnormalities, to 

provide keywords for semantic search within HSNs. 

For gastrointestinal disease, the first aim of this research is to develop cost-effective methods for 

collecting bowel sounds and extracting important information about bowel health conditions in the 

NICU for the purpose of detecting bowel diseases in newborns. The second aim is to develop deep 

learning models that accurately segment and detect bowel sounds to improve the diagnosis of 

gastrointestinal problems, despite the challenges posed by the irregular pattern of bowel sounds. The 

third aim is to convert the bowel sounds into interpretable clinical measurements that describe 

physical measurement abnormalities, to provide keywords for semantic search within HSNs. 

To achieve the aims, the thesis begins with a comprehensive survey of the HSN and Health IoT. 

This survey identifies gaps and opportunities in the field. Subsequently, the following approaches are 

developed to address the challenges and aims identified in the survey. 

For cardiovascular diseases, the first approach diagnoses heart diseases by utilising the Gaussian 

Hamming Distance, a similarity comparison method. By comparing the similarity between heart 

sounds of individuals with other patients from online support groups, this approach enables accurate 

searching of online support groups for certain diseases. The second approach develops a Keyword-

based Integrated HSN of Things (KIHoT), which predicts keywords embedding from ECG signals. 
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These keywords are utilised to search HSNs for content with similar keywords, facilitating the 

prediction and identification of heart conditions. The third approach develops CardioVec, a system 

that utilises statistical analysis of specific physiological measurements extracted from the ECG. 

These measurements are then processed to generate human-readable keywords. These keywords can 

be used to search for relevant information or connect with other users on HSN. 

For respiratory diseases, the first approach proposes a deep learning model called Recurrent Local 

Relation Transformer Encoder Classifier (ReLATEC) that utilises local attention and recurrent 

structure to diagnose respiratory diseases from breath sounds collected with mobile devices, that 

combines CNNs, RNNs and Transformers to analyse breath sounds. The second approach develops 

PhysioVec to enable semantic searching of breath sounds. PhysioVec first utilises semantic 

segmentation techniques to extract breath sound patterns. PhysioVec then processes these biosignals 

to extract specific physiological measurements. Through statistical analysis of these measurements, 

PhysioVec generates human-readable keywords that are used for semantic searching within HSN, 

enabling the retrieval of relevant information. The third approach involves using a miniature Bowel 

Sounds Sensor (BoSS) to collect bowel sounds in the NICU. These bowel sounds are then processed 

to extract physiological measurements. The subsequent analysis of these measurements offers 

valuable information for the diagnosis and monitoring of bowel conditions in newborns. 

For gastrointestinal disease, the first approach collects bowel sounds of newborn infants using 

BoSS. The second approach trains ReLATEC with novel weak annotations to accurately segment 

and detect bowel sounds, improving the diagnosis of gastrointestinal problems in newborns. The 

third approach develops PhysioVec to enable semantic searching of bowel sounds.  PhysioVec first 

utilises semantic segmentation techniques to bowel breath sound patterns. PhysioVec then processes 

these biosignals to extract specific physiological measurements. Through statistical analysis of these 

measurements, PhysioVec generates human-readable keywords that are used for semantic searching 

within HSN, enabling the retrieval of relevant information. 

The contributions of the thesis are listed as follows: 

For cardiovascular disease, the first contribution is the introduction of Gaussian Hamming 

Distance to identify similar heart condition groups within HSNs. Through the comparison of heart 

sounds among users in the HSNs, this approach enables the identification of individuals with similar 

heart sounds. The second contribution is the proposal of KIHoT to enable direct comparison of ECG 

signals with textual data for comprehensive access to health information. The third contribution is 

the development of CardioVec, which enables semantic search in HSN. CardioVec utilises clinically 

interpretable descriptions derived from ECG to improve search efficiency and enhance the 

trustworthiness of the reasoning process. 

For respiratory disease, the first contribution involves the design of the ReLATEC for precise 

diagnosis of respiratory diseases using breath sounds captured from mobile devices. This 
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contribution enhances the accuracy of respiratory disease diagnosis by combining the strengths and 

weaknesses of CNN, RNN and Transformer models. The second contribution is the development of 

PhysioVec to enable semantic search of text-based content in HSNs using clinically interpretable 

descriptions derived from breath sounds, improving search efficiency. 

For gastrointestinal disease, the first contribution is the development of a miniature BoSS for 

detecting bowel diseases in newborns, improving early detection in NICUs. Physiological 

measurements from bowel sounds are extracted and identified for detecting gastrointestinal issues in 

newborns. This study is the first to collect and analyse bowel sounds of term newborns, addressing 

the lack of continuous monitoring methods. The second contribution is enhancing the ReLATEC 

model by training it with bowel-sound data to improve the diagnosis of gastrointestinal issues in 

newborns. By providing interpretable clinical formats, this contribution enhances the understanding 

and extraction of meaningful information from biosignals, improving healthcare decision-making 

processes. The third contribution is the development of PhysioVec to enable semantic search of text-

based content in HSNs using clinically interpretable descriptions derived from bowel sounds, 

improving search efficiency. 

 

Keywords: Biomedical engineering, bio informatics, data mining, noise reduction, diagnosis 

using mobile devices. 
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1 Introduction 

 

Figure 1.1 The four main types of NCDs worldwide in 2023. 

Noncommunicable diseases (NCDs) have become a leading cause of death and disability worldwide, 

resulting in a significant number of deaths and disability-adjusted life years. Between 2000 and 2019, 

the four major NCDs, namely cardiovascular disease, cancer, chronic respiratory disease, and 

diabetes, accounted for a significant number of deaths. Cardiovascular disease alone caused 17.9 

million deaths, followed by cancer with 9.3 million deaths, chronic respiratory disease with 4.1 

million deaths, and diabetes with 2.0 million deaths as shown in Figure 1.1. 

Progress has been made in all regions since 2000, with a global improvement of 22% in the 

likelihood of dying from NCDs before the age of 70 (World Health Organization, 2023). Although 

progress has been made, these diseases remained leading causes of death in the United States in 2021, 

with heart disease, cancer, Coronavirus Disease 2019 (COVID-19), and other factors contributing 

significantly. In the United States, the leading causes of death in 2023 were heart disease (695,547 

deaths), cancer (605,213 deaths), COVID-19 (416,893 deaths), unintentional injuries (224,935 

deaths), stroke (162,890 deaths), chronic lower respiratory diseases (142,342 deaths), Alzheimer's 

disease (119,399 deaths), diabetes (103,294 deaths), chronic liver disease and cirrhosis (56,585 

deaths), and nephritis, nephrotic syndrome, and nephrosis (54,358 deaths) (Xu, Murphy, Kochanek, & 

Arias, 2022). Similarly, in Australia in 2023 respiratory diseases accounted for 9.0% of all doctor-

certified deaths, with a total of 14,289 deaths, while heart-related conditions contributed to 14.7% of 

the overall mortality rate, with a total of 23,380 deaths (Australian Bureau of Statistics, 2024).  

Continuous care and monitoring are necessary to prevent deaths caused by common chronic 

diseases such as heart disease. However, the rising cost of healthcare in an ageing society poses a 

significant challenge (Song & Marsh, 2012). For instance, in the US, the training cost for general 

participants exceeds US$300,000 (Vong & Song, 2015). Health Social Networks (HSN) and Internet 
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of Things (IoT) provide solutions for remote diagnosis to enable accessible remote diagnosis. HSNs 

allow individuals to connect, share health-related experiences and provide peer support, while IoT 

enables the passive and continuous collection of physiological data using networked medical sensors.  

HSNs are patient-driven communities that provide rich information to patients and caregivers 

(Song & Marsh, 2012). While medical professionals and offline resources are the foundation of 

healthcare, people still need to share knowledge on social networks. HSNs have become an 

important source of information for patients and physicians to make informed decisions. In recent 

years, many automatic recommendation systems for social networks have been developed (Song & 

Marsh, 2012). For example, 20% of adults have found similar health problems from others online, 

and most of them have benefited from HSNs (Fox, 2011). On the other hand, the IoT provides a 

potential solution for objectively describing health conditions with clinical measurements. IoT 

sensors could collect bowel sounds to provide pervasive, low-cost and autonomous remote 

gastrointestinal health monitoring.  

Although HSNs and Health IoT aim to improve accessibility and reduce healthcare costs, they 

have distinct advantages and limitations. HSNs face usability challenges as users encounter 

difficulties in finding relevant information. Patients often lack expertise in selecting appropriate 

keywords, leading to inconsistencies and misinformation in search results (Elhadad, Zhang, Driscoll, 

& Brody, 2014).  

 

 

Figure 1.2 Common usage of HSNs.  
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Figure 1.2 illustrates the common approach of HSN-based health monitoring, which involves users 

searching for relevant information amid many unrelated posts and articles. The substantial volume of 

data available in HSNs poses the most significant barrier for users seeking relevant information, as 

they must navigate a vast amount of data to find the desired content. HSNs rely on user-entered 

keywords to retrieve the desired information, but users’ lack of expertise in selecting appropriate 

keywords can impact the accuracy and relevance of the search results (Alimova & Tutubalina, 2017; 

Miftahutdinov, Tropsha, & Tutubalina, 2017). 

 
Figure 1.3 Common usage of IoT. 

 

The current Health IoT faces challenges in providing automated search capabilities for relevant 

health information due to the absence of interpretable biosignal pattern analysis. This poses a 

challenge to effective searches for health-related information within HSNs, necessitating manual 

interpretation and monitoring by trained medical professionals (Manogaran et al., 2018). Figure 1.3 

illustrates that the absence of interpretable biosignal pattern analysis in existing IoT methods still 

requires experts to manually interpret and monitor biosignals, leading to costs and time consumption. 

 

 

 

Figure 1.4 Research Problem: Integration of HSNs and IoT. 
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Integrating HSNs with Health IoT technologies shows potential for advancing healthcare by 

facilitating low-cost, autonomous, and effective monitoring and management. However, despite our 

best efforts, we could not find an existing approach that integrates HSNs and Health IoT for this 

problem (Figure 1.4). 

 

Figure 1.5 Common usage of our proposed integrated HSNs. 

 

The proposed integrated HSN aims to enable patients to access medical information and care 

without requiring expert medical knowledge, while also reducing unnecessary human intervention. 

This approach significantly reduces costs and improves access to medical care. Figure 1.5 illustrates 

the overall process of the proposed integrated HSNs. First, the physiological measurements of 

biosignals are extracted from the patient’s body. After that, human-readable clinical descriptions are 

generated from physiological measurements. Finally, the clinical descriptions are used as search terms 

to retrieve relevant information from the internet. 

1.1 Research Problems  

The thesis aims to address the challenges of integrating HSN and Health IoT devices by focusing on 

three main application areas: heart disease, respiratory disease, and bowel disease. The challenges 

identified in each area are approached cohesively to solve specific problems related to each health 

condition. 

For heart disease, the first challenge is utilising biosignal analysis to help individuals find online 

support groups that cater for their specific conditions. HSNs face challenges in accurately matching 

patients with similar conditions due to the informal nature of medical descriptions and the presence of 

spelling errors (Elhadad et al., 2014). Many users encounter difficulties in independently finding 

suitable online support groups due to their limited expertise in describing and locating relevant 

communities. The second challenge involves the effective utilisation of electrocardiogram (ECG) 

signals to improve the performance of disease prediction from ECG. Conventional classification 



27 

 

 

 

 

approaches currently in use have limitations. These approaches can only predict a predefined set of 

diseases and abnormalities, thereby failing to encompass the wide range of possibilities. As a result, 

this limitation hampers the comprehensive search for information within HSNs. The third challenge is 

providing automated search capabilities for relevant health information due to the absence of 

interpretable ECG pattern analysis. This absence hinders the effectiveness of searches for health-

related information for cardiovascular disease within HSNs. Existing ECG diagnostic methods still 

require experts to interpret and monitor ECG data at the end, which is both costly and time-consuming 

(Manogaran et al., 2018). 

In the case of respiratory disease,  the first challenge pertains to the absence of an efficient deep 

learning model that effectively combines the strengths of Convolutional Neural Networks (CNN), 

Recurrent Neural Networks (RNNs), and Transformers for the analysis of breath sounds. 

Conventional deep learning methods, such as CNN and RNN, have limitations in effectively 

modelling varying spatial relations and long sequences that involve long or varying distances 

(Vaswani et al., 2017). RNN possesses certain limitations when it comes to effectively modelling 

diverse spatial relations and handling long sequences, primarily due to issues such as gradient 

exploding or vanishing. Similarly, CNNs encounter limitations when dealing with features that have 

varying distances, as they rely on fixed aggregation weights for spatially neighbouring input features, 

thereby posing challenges in such scenarios (Hu, Zhang, Xie, & Lin, 2019). The second challenge is 

that current approaches lack interpretable breath pattern abnormality analysis for further 

understanding of respiratory conditions. This lack hinders the effectiveness of searches for health-

related information within HSNs, thus necessitating manual interpretation and monitoring by trained 

medical professionals (Manogaran et al., 2018).  

In the context of bowel disease, the first challenge is the lack of affordable methods for collecting 

biosignals, which poses challenges in the detection of bowel diseases in newborns within the Neonatal 

Intensive Care Unit (NICU). Currently, there is no known method for continuous monitoring of 

gastrointestinal health in term newborn infants at the NICU. In addition, locating and detecting 

intestinal sounds from digital recordings remains a challenge due to the irregular patterns and 

occurrence of these sounds (Ranta, Louis-Dorr, Heinrich, Wolf, & Guillemin, 2004; Sazonov et al., 

2010). The nonstationary characteristics of bowel sounds, characterised by duration and amplitude 

variations, make it difficult to recognise and identify bowel sounds, particularly for physicians 

(Hadjileontiadis & Rekanos, 2003). The second challenge is the absence of known approaches that 

can provide real-time, visual monitoring of bowel functions in newborn infants. Currently, doctors 

diagnose bowel diseases in infants manually using a stethoscope, which can be uncomfortable and 

invasive for young children (Y. Huang & Song, 2019; Y. Huang, Song, Rana, & Koh, 2017; I. Song, 

2015). This manual process of annotating and analysing bowel sounds is time-consuming, particularly 

in the presence of noise. Even experienced doctors struggle to identify only a few sporadic bowel 
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events when manually analysing bowel sounds (Ranta et al., 2004). Therefore, there is a need for 

automated bowel sound detection. The third challenge is that current automated bowel sound analysis 

approaches lack interpretable bowel sound pattern analysis for a deeper understanding of bowel 

conditions. This limitation hinders effective searches for health-related information within HSNs, 

thereby necessitating manual interpretation and monitoring by trained medical professionals 

(Manogaran et al., 2018). As a result, the current approach still relies on the manual interpretation of 

bowel sounds and the manual search for information on gastrointestinal health within HSNs. 

1.2 Research Questions 

The following are the research question statements of the problems discussed. 

RQ1.1: How can biosignal analysis be utilised to accurately match individuals with specific health 

conditions to suitable online support groups within HSNs by improving the performance for similarity 

measures of heart sounds? This research question is solved in Chapter 3 Section 3.1. 

RQ1.2: What approaches can be developed to improve the performance of disease prediction from 

ECG? This research question is solved in Chapter 3 Section 3.2. 

RQ1.3: How can interpretable ECG pattern analysis be integrated into direct search capabilities for 

cardiovascular disease-related health information within HSNs? This research question is solved in 

Chapter 3 Section3.3. 

RQ2.1: How can a deep learning model be developed that effectively combines CNN, RNN and 

Transformers to analyse breath sounds, overcoming the limitations of conventional methods? This 

research question is solved in Chapter 4 Section 4.1. 

RQ2.2: What approaches can be employed to enable interpretable breath pattern abnormality 

analysis for a better understanding of respiratory conditions, thereby enhancing the effectiveness of 

searches for health-related information within HSN? This research question is solved in Chapter 4 

Section 4.2. 

RQ3.1: What affordable methods can be developed for the continuous monitoring of 

gastrointestinal health in newborns within the NICU, specifically focusing on the detection of bowel 

diseases? This research question is solved in Chapter 4 Section 4.1. 

RQ3.2: How can real-time, non-invasive visual monitoring of bowel functions be achieved in 

newborn infants, eliminating the need for manual diagnosis using a stethoscope? This research 

question is solved in Chapter 4 Section 4.2. 

RQ3.3: What approaches can be implemented to enable interpretable bowel sound pattern analysis 

for a deeper understanding of bowel conditions, enhancing the effectiveness of searches for health-

related information within HSNs and reducing the reliance on manual interpretation by medical 

professionals? This research question is solved in Chapter 4 Section 4.3. 
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1.3 Hypotheses 

The following are the hypotheses of research question statements. 

• H1.1: Using Gaussian Hamming distance over Euclidian distance improves performance 

for similarity measure of heart sounds. 

o Independent variables: 

▪ Similarity measure method: Gaussian hamming distance vs Euclidian 

distance. 

o Dependent variable: 

▪ performance for similarity measure of heart sounds. 

• H1.2: Training deep learning models using keyword embedding of disease description and 

ECG improves the performance of disease prediction from ECG. 

o Independent variables: 

▪ Training deep learning models using keyword embedding of disease 

description and ECG. 

o Dependent variable:  

▪ Performance of disease prediction from ECG. 

• H1.3: Interpretable ECG pattern analysis enables effective semantical search of 

cardiovascular textual disease-related health information from HSNs. 

o Independent variables: 

▪ Analysis ECG: Interpretable ECG pattern analysis. 

o Dependent variable:  

▪ The effective semantical search of textual cardiovascular disease-related 

health information from HSNs. 

• H2.1: Using a Transformer instead of a Convolutional Recurrent Neural Network (CRNN), 

local attention over global attention in Transformer, and recurrent Transformer block 

instead of independent Transformer blocks improves the performance of breath sound 

diagnosis compared with conventional deep learning approaches. 

o Independent variables: 

▪ Using a Transformer instead of a CRNN 

▪ Using local attention over global attention in Transformer 

▪ Using a recurrent Transformer block instead of independent Transformer 

blocks 

o Dependent variable:  

▪ Performance of breath sounds diagnosis. 

• H2.2: Interpretable breath pattern abnormality analysis enables effective semantical search 

capabilities for respiratory disease-related health information within HSNs. 

o Independent variables: 

▪ Analysis of breath sounds: Interpretable breath sound pattern analysis. 

o Dependent variable:  

▪ The effective semantical search of textual respiratory disease-related 

health information from HSNs. 

• H3.1: Bowel sounds collected from a compact bowel sound sensor provides significant 

information about bowel health conditions. 

o Independent variables: 

▪ Collect bowel sounds from a compact bowel sound sensor. 

o Dependent variable:  

▪ Significant differences in bowel sounds were collected from compact 

sensors of sick and healthy infants. 
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• H3.2: Using the Transformer with localised attention instead of global attention and 

recurrent Transformer block instead of independent Transformer blocks improves 

performance for bowel sound location prediction. 

o Independent variables: 

▪ using a Transformer instead of a CRNN 

▪ attention method: Local vs global 

▪ parameter sharing: Recurrent Transformer block vs independent 

Transformer blocks 

o Dependent variable: 

▪ performance for bowel sound location prediction. 

• H3.2: Interpretable bowel pattern abnormality analysis enables effective semantical search 

capabilities for bowel disease-related health information within HSNs. 

o Independent variables: 

▪ Analysis of bowel sounds: Interpretable bowel sound pattern analysis. 

o Dependent variable:  

▪ The effective semantical search of textual bowel disease-related health 

information from HSNs. 

1.4 Aims and Scopes 

This thesis aims to propose a novel framework that integrates Health IoT with HSNs to enable 

automated searches of relevant health information using biosignals collected from IoT sensors. The 

aims and scopes are organized according to the three main health conditions addressed: heart disease, 

respiratory disease, and bowel disease. 

For heart disease, the first aim is to utilise biosignal analysis to help individuals with specific 

health conditions find relevant online support groups. The goal is to enable direct searching of online 

support groups using biosignals, improving the efficiency and user experience compared with manual 

searches. The second aim is to enable efficient retrieval of relevant information and expand the 

coverage of healthcare data possibilities beyond predefined diseases and abnormalities, specifically in 

the context of cardiovascular diseases and ECG signals. The third aim is to enable semantic search of 

text-based content in HSNs using ECG data from Health IoT. The goal is to create a human-readable 

format that describes abnormalities using measurable physiological measurements, enabling semantic 

searching of these descriptions within the HSNs, allowing direct comparison with textual data, and 

improving search capabilities. 

In the case of respiratory disease, the first aim is to develop an efficient deep learning model that 

integrates the strengths of CNN, RNN and Transformer to achieve non-invasive diagnosis of 

respiratory diseases using breath sounds collected with mobile devices. The goal is to address the 

limitations of conventional deep learning methods in capturing diverse spatial relations and long 

sequences and to reduce overfitting. The second aim is to transform breath sounds into interpretable 

clinical measurements that represent specific physical abnormalities, such as breath frequency and 

depth. These clinical measurements will serve as keywords for semantic search within the HSNs, 

enhancing the search capabilities and facilitating targeted information retrieval.  
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Regarding bowel disease, the first aim is to develop cost-effective methods for collecting bowel 

sounds and extracting important information about bowel health conditions in the NICU to detect 

bowel diseases in newborns. The goal is to achieve real-time, non-invasive monitoring and diagnosis 

of gastrointestinal problems in newborn infants by automating the monitoring and detection of 

specific bowel movements. The second aim is to develop deep learning models that accurately 

segment and detect bowel sounds to improve the diagnosis of gastrointestinal problems, despite the 

challenges presented by the irregular pattern of bowel sounds. The third aim is to convert bowel 

sounds into interpretable clinical measurements that represent specific physical abnormalities 

analysed in Chapter 8. These measurements will include characteristics such as hypoactive bowel 

sounds and hyperactive bowel sounds and will serve as keywords for semantic searches within the 

HSNs. This conversion process will enhance the search capabilities of the HSN and facilitate targeted 

information retrieval. 

1.5 Methodology 

Figure 1.5 illustrates the overall process and architectures of the proposed integrated HSNs to achieve 

the aims. The methodology of this thesis is tailored to address the specific challenges related to heart 

disease, respiratory disease, and bowel disease, as identified in the aims and scopes. 

In Chapter 3 Section 3.1, we propose integrating heart sound analysis into existing HSNs to enable 

remote diagnosis of heart diseases. We extract time series and Mel-Frequency Cepstral Coefficients 

(MFCC) features from the heart sounds and use the Gaussian Hamming Distance to compare healthy 

heart sounds with diseased heart sounds. 

In Chapter 3 Section 3.2, we propose a Keyword-based Integrated HSN of Things (KIHoT). 

KIHoT utilises CNN to predict the word embeddings of medical keywords from ECG signals. These 

medical keywords are selected from HSN posts that are labelled as heart diseases associated with the 

corresponding ECG signals. The framework enables a direct comparison of ECG signals with textual 

data within HSNs, allowing for the exploration of healthcare data possibilities beyond predefined 

diseases and abnormalities. 

In Chapter 3 Section 3.3, we have developed CardioVec, a comprehensive framework comprising 

four modules: the ECG wave detector, the ECG physiological measurement extractor, the ECG 

abnormality detector and the IoT-HSN search interface. The ECG wave detector identifies and locates 

specific positions of the ECG waveforms, from which physiological measurements are extracted. 

These measurements undergo further processing to generate human-readable keywords. Finally, we 

apply Sentence BERT (SBERT), modified BERT (Bidirectional Encoder Representations from 

Transformers) for Semantic Text Similarity (STS) (Reimers & Gurevych, 2019), to search for relevant 

information from the internet using the generated clinical descriptions as keywords. 

In Chapter 4 Section 4.1, we propose a novel deep learning algorithm named Recurrent Local 

Relation Transformer Encoder Classifier (ReLATEC) that utilises relative positional encoding, multi-
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head local attentions and recurrent encoder blocks to non-invasively diagnose respiratory diseases 

using sounds collected with mobile devices. 

In Chapter 4 Section 4.2, we develop PhysioVec, a multistage deep-learning framework for 

indexing breath sounds and for directly searching HSNs using bowel sounds. The breath sound 

recordings are collected non-invasively using mobile phones. We extract breath clinical descriptions 

by segmenting the breath sound using an improved deep learning approach based on ReLATEC, LRT. 

We use the clinical descriptions to search online documents. We use SBERT to convert both online 

documents and clinical descriptions into vectors for semantic searching. 

In Chapter 5 Section 5.1, we collected a total of 240 bowel sounds from two NICU hospitals using 

a miniature Bowel Sounds Sensor (BoSS). The 3D-printed micro stethoscope of BoSS enables 

continuous monitoring of bowel sounds in newborn infants with minimal discomfort. In this study, we 

annotated bowel sound events in newborn infants and performed clinical analysis of bowel sounds in 

term newborn infants. Based on the annotations, we identified physiological measurements of bowel 

sounds that can be used for diagnosing gastrointestinal health. 

In Chapter 5 Section 5.2, we propose the segmentation of bowel sounds using ReLATEC. The 

locations of bowel sounds are then labelled to train the bowel sound detector. The labels are converted 

into weak labels with lower temporal resolution because it is difficult for human listeners to 

accurately identify all bowel sounds due to hospital environmental noises. We then train a ReLATEC 

model to detect the locations and two types of bowel sounds: short bursts and long bursts. The trained 

detector provides real-time annotation of bowel sounds with locations, types and statistics of bowel 

sound activities. 

In Chapter 5 Section 5.3, we integrate bowel sounds into PhysioVec. We collect bowel sound 

recordings non-invasively using BoSS. We extract the clinical descriptions from the bowel sounds by 

segmenting it using LRT. We use the clinical descriptions to search online documents. We apply 

SBERT to convert both online documents and clinical descriptions into vectors for semantic 

searching. 

1.6 Contributions 

The major contribution of this thesis is the integration of HSNs and IoT by interpreting biosignals to 

be searchable in the HSNs that solves the problems illustrated in Figures 1.2 and 1.3. We first perform 

a comprehensive survey on current existing HSNs and IoT to identify that there are no current 

existing methods for integration of HSNs and IoT. 

The contribution of Chapter 3 Section 3.1 is the introduction of Gaussian Hamming Distance as a 

method to identify similar heart condition groups within HSNs. By comparing heart sounds among 

users within the HSNs, this approach enables the automatic matching of patients with similar 

conditions based on their heart sounds. This integration of heart sound analysis into HSNs improves 

the accuracy and convenience of remote diagnosis for cardiovascular disease, eliminating the need for 
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patients to physically visit medical facilities for specialised testing. Our publication (Yi Huang & 

Song, 2018) contributes to this chapter. 

The contribution of Chapter 3 Section 3.2 is the development of the Keyword-based Integrated 

HSN of Things (KIHoT), which predicts keywords from ECG signals and utilises them to search the 

HSNs for content with similar keywords. This integration of ECG signals and health social networks 

improves the prediction of heart conditions and facilitates comprehensive access to relevant 

information. Our publication (Y. Huang & Song, 2019) contributes to this chapter. 

The contributions of Chapter 3 Section 3.3 include providing a feasible solution for HSN 

semantical searching by translating biosignals into human-readable keywords. The integration of IoT 

and HSNs allows doctors and patients to search relevant medical information directly using ECG 

biosignals. Our keyword generation is evidence based and is more readable and more informative for 

doctors and patients. Our publication (Y. Huang & Song, 2022a) contributes to this chapter. 

The contribution of Chapter 4 Section 4.1 is introducing ReLATEC as a novel deep learning 

algorithm specifically designed for non-invasive diagnosis of respiratory diseases using breath sounds 

collected with mobile devices. The algorithm combines the advantages of CNN, RNN and 

Transformer models, leveraging their strengths in feature composition, temporal modelling and 

flexible spatial relations. The evaluation of ReLATEC against CRNN and vanilla Transformer 

demonstrates its superior performance and reduced overfitting, highlighting its potential for accurate 

and efficient respiratory disease diagnosis. 

The contributions of Chapter 4 Section 4.2 are: (1) We proposed a novel LRT combining local 

attention and recurrent Transformer to reduce overfitting and improve performance in the 

segmentation of breathing sounds. (2) Interpret breath pattern abnormality by extracting physiological 

measurements. (3) PhysioVect successfully integrated IoT with HSNs allowing patients and doctors to 

directly search relevant health information using breathing sounds. Our publication (Y. Huang & 

Song, 2022b) contributes to this chapter. 

The contributions of Chapter 5 Section 5.1 are: (1) This is the first time we have recorded bowel 

sounds of newborn infants during pre-feed and post-feed using miniature IoT sensors continuously. 

(2) We measure five clinical bowel activities and classify their types into short bursts (ticks) and long 

bursts (grumbles). (3) We use an arithmetic median (median without duplicates) for filtering the 

physiological measurements of bowel sound activities for hospital environments and sensor 

misplacement and alignments. (4) We find five physiological measurements that are significantly 

different between sick and healthy infants: tick rate, tick duration, tick power, grumble duration and 

grumble power. 

The contribution in Chapter 5 Section 5.2 is the collection of bowel sounds from newborn infants 

using BoSS and the utilisation of this data to train the ReLATEC deep learning model with novel 

weak annotations. This contribution enhances the training process of the ReLATEC model by 
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incorporating relevant bowel sound data from newborn infants. Our publication (Song, Huang, Koh, 

& Rajadurai, 2021)  contributes to this chapter. 

The contributions of Chapter 5 Section 5.3 are: (1) Detection and segmentation of bowel sounds 

into two different types of bowel activities using a Local Recurrent Transformer (LRT) that combines 

local attention and recurrent transformer to reduce overfitting and improve the performance of bowel 

sound segmentation; (2) Extracting human interpretable physiological information through intestinal 

sound pattern; (3) Automatically searching relevant physiological information of bowel activities with 

extracted physiological information on the internet. Our publication (Y. Huang & Song, 2022c) 

contributes to this chapter.  

Due to the time limit, only the final method and important intermediate method includes ablation 

study, and we leave the ablation studies the other preliminary and intermediate studies as future work. 
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2 Literature Review 

This chapter presents a literature review that focuses on recent research related to the application of 

deep learning in Health IoT and HSNs. The review encompasses deep learning of biosignal analysis, 

Health IoT, and information retrieval in HSNs. The primary objectives of this literature review are to 

identify unexplored or unsolved problems and to determine the state-of-the-art approaches. 

To conduct this literature review, we collected relevant studies from search results and references 

of other papers. Each article was thoroughly reviewed, analysing, and summarising the topics, 

problems, methodologies, and results. The search involved exploring academic publication databases 

to identify papers published within the past five years. These papers were then reviewed to analyse the 

addressed topics, problems, methodologies and reported results. A meta-analysis was conducted to 

synthesise the findings, and identify trends, opportunities, and gaps in the literature. Specifically, we 

conducted a systemic review of recent relevant research on deep learning for signal processing, Health 

IoT and HSNs. We also reviewed the technical backgrounds of deep learning and compared the 

advantages and disadvantages of current approaches. 

For the collected papers’ applications and methodologies, we calculated the weighted average 

accuracy. This measurement allowed us to compare the weighted accuracy, highest accuracy and 

lowest accuracy across different application areas, such as bowel activity analysis, lung sound 

analysis and heart sound analysis. Additionally, we compared and presented the weighted average 

accuracy of different data mining algorithms to evaluate the performances of various approaches. The 

weighted average accuracy serves as a performance metric for identifying the best technologies and 

identifying gaps in certain approaches. The calculation of the weighted average accuracy is as (2.1) 

 

 𝐴 =
∑𝑎𝑖

∑𝑚𝑖
, (2.1) 

 

 ai = Overall accuracy of research i 

 mi = Number of samples in the research i 

 

Through our literature review, we identified a trend, research gap and opportunity. The trend 

observed is that HSNs and IoT are becoming important sources of health-related information. 

However, there is currently no integration between Health IoT and HSNs. This research gap presents 

an opportunity for the development of deep learning as a new approach for searching online 

information and processing biosignals. 

In summary, this literature review examines recent research on the application of deep learning in 

Health IoT and HSNs. The Health IoT section focuses on automated biosignal analysis and the 

diagnosis of diseases such as heart conditions, respiratory illnesses and gastrointestinal issues. The 
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aim is to find reliable automated diagnosis methods using biosignals, addressing the need for 

objective, non-invasive and low-cost diagnostic techniques. Common methods employed include 

CNN, RNN and other deep-learning approaches that analyse sounds such as heart murmurs, wheezes 

and bowel noises. The key contribution of these studies is demonstrating that deep learning can 

provide accurate automated diagnosis. 

In the HSN mining section, the main topics revolve around detecting mental illnesses, adverse 

drug reactions and influenza spread using social media data. The challenges in this domain include a 

lack of data in conventional studies and difficulties in interpreting informal texts. The aim is to access 

large volumes of data for healthcare insights. Common methods utilised are Support Vector Machine 

(SVM), RNN and CNN, which analyse the text and metadata of posts. The contributions of these 

studies include showcasing the value of social media for public health monitoring and overcoming the 

limitations of traditional data collection methods. 

The main contributions of this literature review are: 1) Providing an overview of the current 

applications, approaches and performances in applying deep learning to biosignals, Health IoT and 

HSNs. 2) Identifying open research questions and problems in integrating these domains. 3) 

Suggesting potential opportunities for future work in developing artificial intelligence solutions for 

healthcare using multimodal data sources. 

2.1 Health IoT 

This section discusses the application areas, current problems, and approaches of Health IoT for the 

automated diagnosis of biosignals, including heart sounds, ECG, respiratory sounds and bowel 

sounds. Health IoT enables doctors to remotely monitor patients, and advancements in signal 

processing and machine learning have facilitated automated diagnosis for diseases related to the 

bowel, lungs, and heart. 

2.1.1 Application Areas 

Heart sounds are widely used in the diagnosis of coronary artery disease and heart valve defects. 

Abnormal heart sounds can include additional components, such as extra heart sounds or murmurs. 

The detection of abnormal heartbeats indicates underlying diseases, including dysrhythmia, valvular 

disease, stenosis, or pericarditis (F. Wang, Syeda-Mahmood, & Beymer, 2007). Heart sound 

classification methods have been used for diagnosing heart valve defects and other heart diseases 

(Bozkurt, Germanakis, & Stylianou, 2018; Kucharski, Grochala, Kajor, & Kantoch, 2018; Nilanon, 

Yao, Hao, Purushotham, & Liu, 2016; Potes, Parvaneh, Rahman, & Conroy, 2016; Rubin et al., 

2016). Murmurs are abnormal heart sounds caused by turbulent blood flow through a heart valve and 

can be either innocent, indicating a harmless condition, or indicative of a serious heart condition 

(Dominguez-Morales, Jimenez-Fernandez, Dominguez-Morales, & Jimenez-Moreno, 2018). Several 
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studies have specifically focused on the detection of murmurs in heart sounds (Deng & Han, 2016; 

Deperlioglu, 2018; Dominguez-Morales et al., 2018; W. J. Zhang, Han, & Ieee, 2017). 

ECG, another type of biosignal, is used in addition to heart sound signals for diagnosis (Yildirim, 

2018). ECG provides information about heart function and conditions, such as heart arrhythmia. 

Classifiers such as SVM (Azariadi, Tsoutsouras, Xydis, & Soudris, 2016; Verma & Sood, 2018), 

CNN (Xiong et al., 2018), and RNN (Yildirim, 2018) have been used with ECG signals. Some 

approaches have been applied to IoT heart diagnosis systems using ECG signals (Azariadi et al., 

2016; Verma & Sood, 2018). 

Bowel sounds are non-stationary audio signals produced by the gastrointestinal system that may 

carry physiological information about gastrointestinal health. Previous studies have focused on non-

invasive monitoring of intestinal sounds by analysing jitter and shimmer to extract physiological 

information (K. S. Kim, Seo, Ryu, Kim, & Song, 2011). Some studies have compared the similarity of 

bowel sounds to investigate their characteristics (Y. Huang et al., 2017). Some studies have focused 

on the long-term monitoring of gastrointestinal motility by detecting and analysing bowel sounds 

(Goto et al., 2015; Y. Huang & Song, 2019; Yin et al., 2018). Automated diagnosis based on 

biosignals can be applied to bowel diseases such as irritable bowel syndrome and the detection of 

abnormal bowel sounds (Dimoulas, Kalliris, Papanikolaou, Petridis, & Kalampakas, 2008; Y. Huang 

et al., 2017). Bowel sound detection is also used to measure the frequency of bowel sounds in various 

studies (Sazonov et al., 2010; Yin et al., 2018). 

Respiratory sounds, also known as lung sounds or breath sounds, are non-periodic and non-

stationary sounds produced by the lungs and respiratory system (Marshall & Boussakta, 2007). These 

sounds contain important indicators of respiratory diseases such as flu, pneumonia, bronchitis, chronic 

obstructive pulmonary disease, and the severity of bronchial airflow limitation. Breath sounds can be 

collected non-invasively using a handheld microphone placed near the mouth and nose (B. Lei, 

Rahman, & Song, 2014; I. Song, 2015) aiding in the diagnosis of conditions such as pneumonia and 

other respiratory diseases. There are two types of respiratory sounds: normal breathing sounds and 

abnormal sounds. The normal breath process produces breath sounds, while adventitious sounds are 

usually related to abnormal mechanisms. Abnormal respiratory sounds can be further divided into two 

categories: continuous sounds and discontinuous sounds (Bahoura, 2009; Charleston-Villalobos et al., 

2011). Wheezing, a whistling or squeaky continuous sound, is a common indicator of asthma, 

especially in children (Bahoura, 2009; Bokov, Mahut, Flaud, & Delclaux, 2016; Kochetov, Putin, 

Azizov, Skorobogatov, & Filchenkov, 2017). Some studies focus on detecting wheezing in breath 

sounds specifically, while others focus on detecting various types of abnormal respiratory sounds, 

including rhonchi and crackles (Aykanat, Kilic, Kurt, & Saryal, 2017; Bardou, Zhang, & Ahmad, 

2018; İçer & Gengeç, 2014; Naves, Barbosa, & Ferreira, 2016; Sengupta, Sahidullah, & Saha, 2016). 
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2.1.2 Problems 

2.1.2.1 The Need for an Objective Diagnosis Method 

Manual auscultation is a subjective process and not always able to provide accurate results (Aykanat 

et al., 2017; Bahoura, 2009; Deperlioglu, 2018; Dominguez-Morales et al., 2018; Y. Huang et al., 

2017; Naves et al., 2016; Yin et al., 2018), which can be affected by factors such as the use of a 

stethoscope, the low sensitivity of the human ear to low-frequency sounds and the subjective 

experience of trained professionals in traditional heart auscultation (Charleston-Villalobos et al., 

2011; Deng & Han, 2016; Sengupta et al., 2016). In the case of wheeze recognition, parents of 

children are only able to identify wheezing in 59% of cases (Bokov et al., 2016). Indirect bowel 

disorders diagnosed with symptoms can be strongly affected by different unrelated factors such as 

nutrition, stress, and drug usage (Dimoulas et al., 2008). Bowel sound auscultation is proposed for a 

more objective diagnosis. Additionally, the use of handcrafted features and conventional classification 

approaches can introduce subjectivity, whereas deep learning enables end-to-end model building, 

reducing the reliance on subjective interpretation (Yildirim, 2018). 

2.1.2.2 The Need for Non-Invasive Diagnosis 

Bowel sound analysis requires minimal physical contact with the patient’s skin surface, making it a 

more comfortable and non-invasive alternative that does not require specialised professionals (Y. 

Huang et al., 2017). Manometry and electromyography, which are invasive, can cause discomfort and 

inconvenience (Dimoulas et al., 2008). Bowel sound analysis only needs minimal physical contact to 

the skin surface of patients, so it is more comfortable and does not need to be operated by trained 

professionals. However, the author proposes a sound-based method for detecting swallowing events to 

monitor food intake. 

Most computerised breath sound analysis methods rely on contact-based data collection, which not 

only discomforts patients but also requires specialised medical devices and trained professionals (B. 

Lei et al., 2014; I. Song, 2015). Advanced techniques such as X-ray, spirogram and arterial blood 

analysis are invasive, expensive, and potentially harmful (Sengupta et al., 2016).  

2.1.2.3 Environmental Noise 

Environmental noise poses a challenge in non-invasive computerised breath sound analysis (I. Song, 

2015) and the long-term monitoring of bowel activities (Dimoulas et al., 2008), as contactless 

methods introduce environmental noise. One possible countermeasure is to record the breath sound 

with the left channel and subtract it from the environmental noise recorded by the right channel to 

eliminate noise. Accurate and robust approaches are needed for processing low-quality signals, 

including segmenting heart sounds from murmurs and other noise (Deng & Han, 2016; Kang et al., 

2018; Rubin et al., 2016).  
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2.1.2.4 The Need for a Low-Cost Diagnosis Method 

Advanced techniques such as X-ray, spirogram and arterial blood analysis are invasive, which can be 

expensive and potentially harmful (Griffel, Zia, Fridman, Saponieri, & Semmlow, 2013; Sengupta et 

al., 2016). Additionally, complex technologies such as echocardiography, computerised tomography 

and magnetic resonance imaging require specialised expertise for operation.  

2.1.3 Methods 

The conventional approaches to biosignal-based diagnosis involve several steps: pre-processing, 

segmentation, feature extraction and classification. In the pre-processing step, the sounds are 

resampled and normalised. A segmentation algorithm is typically used to identify the portions of the 

biosignal that contain relevant information, such as heartbeats or bowel activities. Researchers often 

employ specific feature extraction methods, such as Fourier transformation, wavelets or derivatives, to 

summarise the frequency information and other relevant features of the signal. These extraction 

methods require expert knowledge and manual work. Fortunately, deep learning methods offer end-

to-end approaches that can accept raw ECG signals or audio spectrograms as input and generate 

features based on the desired tasks. Some deep learning approaches do not require segmentation, as 

they can automatically locate relevant information and discard irrelevant information from raw signals 

(Xiong et al., 2018). Segmentation plays a crucial role in identifying the presence of specific sounds 

and patterns, enabling the detection of abnormalities. For instance, segmentation can detect 

exhalations during breath sound periods, helping identify irregularities. Classification, on the other 

hand, is a machine learning concept where different algorithms are trained using datasets that contain 

relevant features. Once trained, these algorithms can classify new sounds based on their learned 

patterns. Popular algorithms for heart sound classification include deep learning and conventional 

machine learning techniques. 

2.1.3.1 Features 

The common features of audio biosignals are MFCC, Wavelet Transform, Fourier Transform, Short-

Time Fourier Transform (STFT), and other features. Fourier transform-based features describe the 

frequency characteristics of the signal. Fast Fourier Transform (FFT) are widely used in different 

types of audio (Amit, Gavriely, & Intrator, 2009; Verma & Sood, 2018; Yin et al., 2018).  

MFCC is widely used in sound signal analysis (Bahoura, 2009; B. Lei et al., 2014; Sengupta et al., 

2016). MFCC can be estimated by using a parametric approach derived from Linear Predictive Coding 

(LPC), or by using a nonparametric FFT-based approach (B. Lei et al., 2014). MFCC has been used for 

breath sound analysis and bowel sound analysis (Y. Huang et al., 2017; B. Lei et al., 2014; Sazonov et 

al., 2010; I. Song, 2015). 

There are other features such as Power Spectral Density (PSD) (Bokov et al., 2016; Charleston-

Villalobos et al., 2011; İçer & Gengeç, 2014; I. Song, 2015), Autoregressive (Charleston-Villalobos et 
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al., 2011), LPC (Bahoura, 2009), time domain (Amit et al., 2009; Dimoulas et al., 2008; Y. Huang et 

al., 2017). 

2.1.3.2 Convolutional Neural Network (CNN) 

CNN is a type of feed-forward neural network that draws inspiration from the biological concept of 

visual processing and was initially designed for interpreting two-dimensional images. It builds on the 

idea of relating signals from a fixed relative distance to learn local dependencies. In a CNN, a 

convolutional layer consists of a set of feature maps. Each feature map uses a set of trainable shared 

weights to detect elementary features from the previous layer using a sliding window. Positional 

accuracy in a feature map is less critical and can be detrimental when there is a shift in the input. To 

down sample the feature map and reduce sensitivity to the exact position, a pooling layer is often 

used, which selects the maximum value within a region. Compared with a conventional, fully 

connected neural network, CNN requires less memory and exhibits greater robustness to shift, scale 

and distortion. The activation function commonly used in CNNs is the ReLU (Restricted Linear Unit) 

function. 

Equation (5.16) is an expression of a convolution layer.  

 

 (𝑓 ∗ 𝑔)(𝑥, 𝑦) = ∑ ∑ 𝑓(𝑠, 𝑡)𝑔(𝑥 − 𝑠, 𝑦 − 𝑡)𝑏
𝑡−𝑏

𝑎
𝑠−𝑎 , (2.2) 

 

where f (x, y) is the input image, which in a CNN usually represents the pixel values of a small region 

of the image, such as a 5x5 patch. g (s, t) is the convolution kernel (or filter), which is a small matrix of 

weights, typically smaller than the input image, such as 3x3 or 5x5. ∗ denotes the convolution operation. 

(x, y) is a pixel in the output image. s ,t are the positions of elements in the convolution kernel. a, b are 

the half-width and half-height of the convolution kernel. 

Instead of the sigmoid function, CNN usually uses the ReLU (Restricted Linear Unit) function as its 

activation function as in (2.3). 

 

 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥), (2.3) 

 

where X is the training loss; W and b are trainable weight and bias; m and n are the height and width of 

the sliding window. 

One limitation of CNN arises from its fixed distribution of feature maps, whether spatial or 

temporal, which can hinder the learning of meaningful combinations of features. This limitation 

makes CNN inefficient in modelling varying spatial relationships (Vaswani et al., 2017). 

Conventional approaches to address this problem involve using more filters and data to learn different 

combinations of features in different positions. However, when the available data is insufficient, the 

performance of the classifier is significantly compromised. 
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2.1.3.3 Recurrent Neural Network (RNN) 

RNN is another type of neural network that is highly preferred for processing sequential data 

(Yildirim, 2018). In an RNN, the outputs of the neurons are recursively fed back to their inputs, 

allowing them to perform the same task for every input. Long Short-Term Memory (LSTM) is the 

most used type of RNN. It utilises a structure known as a memory block, which consists of three 

gates: the input gate, the output gate and the forgetting gate. Each gate functions as a simple neural 

network, enabling LSTM to effectively store and retrieve information over time. 

RNN has been widely used in Natural Language Processing (NLP) and other time sequence 

analyses due to its ability to relate each signal recursively (Dehghani, Gouws, Vinyals, Uszkoreit, & 

Kaiser, 2018; Vaswani et al., 2017). However, conventional RNNs have limitations when handling 

long sequences. As the gradient accumulates along the input sequence during training, a long 

sequence can cause the gradient to either vanish or explode. This phenomenon can significantly 

impact the ability of the RNN to learn and capture long-range relationships in the data. 

2.1.3.4 Word Embedding 

Word embedding is a widely used method in NLP that projects words into a vector space. Unlike one-

hot encoding, word embedding captures important semantic features of words. For example, similar 

words like “cough” and “breathless” have similar values in word embedding, indicating their semantic 

similarity. In contrast, their one-hot representations lack this similarity. One of the key features of 

word embedding is that it maintains similar vector distances between word pairs with similar 

relationships. Equation (2.4) shows an example of this property. 

 

 Vking - Vman ≈ Vqueen - Vwoman, (2.4) 

where V means the embedding of a word. 

 

Figure 2.1 Illustration of CBOW and Skip-gram. 
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Word embedding is generated through a feature learning approach, where word representations are 

learned from the input layer of a neural network. Two common word embedding models are 

Continuous Bag of Words (CBOW) and Skip-gram. In the CBOW model, a vector is generated by 

predicting the distribution of possible words using the context of the five words before and after the 

target word. In contrast, the Skip-gram model predicts the distribution of the context words given the 

input word. The learned word representations are then obtained from the weights of the hidden layer 

in the neural network. These vector representations can be stored and used like a dictionary, allowing 

for efficient retrieval and usage of word embeddings. Figure 2.1 provides a visual representation 

illustrating the differences between CBOW and Skip-gram models. 

2.1.3.5 Attention and Transformer 

The attention-based approach has been introduced to address the challenge of capturing long-range 

relationships in previous deep-learning approaches in both computer vision (CV) and NLP studies. 

One of the best-known attention-based approaches is the Transformer, initially designed for machine 

translation tasks (Vaswani et al., 2017). The input to the Transformer consists of word tokens 

annotated in a one-hot encoding, which is then processed as a sequence. The Transformer architecture 

has been adapted for CV and audio tasks, where word tokens are replaced by image features and 

audio features such as MFCC and spectrogram. 

Unlike CNN and RNN, the Transformer models relations between time steps using an attention 

mechanism. Unlike RNN, which has a varying number of operations depending on the input sequence 

length, the Transformer has a fixed number of operations, resulting in more efficient processing. 

Additionally, the Transformer learns relations without relying on fixed positions, in contrast to CNN 

(Hu et al., 2019). The attention mechanism in Transformer allows the model to capture relationships 

based on dot-product similarity among input time steps, enabling dynamic learning of relations. This 

contrasts with CNN, which is limited in capturing relations within fixed distances. 

In Transformer, Scaled Dot-Product Attention is used in (2.6): 

 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉, (2.6) 

 

where Q, K and V are query, key and value, respectively; and dk is the dimension of the key. Attention 

function maps query vectors and key-value vectors by dot-product similarity. The attention 

mechanism allows the modelling of input and output relations independent of their positions (Vaswani 

et al., 2017).  

Based on attention, Transformer uses multi-head attention MHA to learn different types of 

relations as shown below: 
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 𝑀𝐻𝐴(𝑄,𝐾, 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑0, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜, (2.7) 

 

 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑞
, 𝐾𝑊𝑖

𝑘 , 𝑉𝑊𝑖
𝑣), (2.7) 

 

where W denotes learnable weights; Q, K, V denote query, key, value; Wq, Wk, Wv denotes weights of 

query, key, value; h denotes the total number of heads; i denotes the index of the head. The 

concatenated vector is then multiplied by a parameter Wo. 

2.1.3.6 Local Relation Modelling Based on Local Attention 

The self-attention feature in the Transformer model calculates attention between all input nodes, 

enabling the capture of global relations. In contrast, local relation approaches calculate attention 

within a specific aggregation window, capturing local attention energy among inputs. This 

aggregation window introduces an information bottleneck like CNN, which is crucial for feature 

learning in the field of CV (Hu et al., 2019). 

One example of a local relation approach is the Local Relation Network (LR-Net) (Hu et al., 

2019), which focuses on finding pixel-to-pixel relations in images. LR-Net replaces the convolutional 

layers in ResNet with local relation layers, enabling the extraction of local relations within the image. 

Building upon LR-Net, the Swin Transformer (Liu et al., 2021) has been proposed and has 

achieved state-of-the-art performance in image classification tasks. The Swin Transformer further 

enhances the capabilities of LR-Net, although the specific improvements and mechanisms that 

contribute to its superior performance require further elaboration. 

2.1.3.7 Recurrent Transformers 

Recurrent Transformers refer to a variant of Transformers that incorporate a recurrent encoder block. 

Examples of Recurrent Transformers include ALBERT (Lan et al., 2019) and Universal Transformer 

(UT) (Dehghani et al., 2018). In this context, a recurrent encoder block consists of an attention layer 

and a feed-forward non-linear layer. 

Instead of using multiple encoder blocks with independent learnable parameters, the recurrent 

encoder block in Recurrent Transformers iteratively computes contextual features. This means that the 

recurrent encoder block is responsible for computing contextual features across multiple layers, 

utilising shared parameters. This approach, known as cross-layer parameter sharing, allows for 

efficient computation and captures long-range dependencies within the input sequence. 

The addition of a recurrent structure in Recurrent Transformers brings several advantages. Firstly, 

it leads to a significant reduction in parameters through cross-layer weight sharing. This weight 

sharing allows for efficient parameter usage across layers. Secondly, the recurrent structure introduces 

recurrent prior knowledge like RNNs, which enables the model to capture sequential dependencies 

and temporal information more effectively (Dehghani et al., 2018). 
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One example of a model that incorporates a recurrent encoder block is UT (Dehghani et al., 2018). 

UT was proposed as an extension to the vanilla Transformer, which is not Turing complete and cannot 

perform certain tasks that can be easily handled by RNNs. By introducing the recurrent encoder block, 

UT is Turing complete, meaning it can theoretically compute any computable function given 

sufficient resources and time. This property of being Turing complete opens a broader range of tasks 

that UT can handle effectively. 

In contrast to UT, ALBERT (Lan et al., 2019) incorporates cross-layer parameter sharing to reduce 

the number of parameters and has demonstrated superior performance compared with approaches that 

use independent parameters. One significant difference between ALBERT and UT lies in their 

treatment of iterations. ALBERT employs a fixed number of iterations (12 times), while UT 

dynamically halts the iterations based on certain criteria. The success of ALBERT suggests that a 

fixed number of iterations of a single Transformer Encoder block can yield satisfactory performance. 

2.1.3.8 Common Approaches to Analysing Diagnostic Sounds 

Table 2.1 Feature matrix of common approaches to analysing diagnostic sounds. 

Approaches Method (Features) Accuracy Data Size Reference 

CNN MFCC 84.0% 3240 (Rubin et al., 2016) 

DWT 82% 3240 (Potes et al., 2016) 

85% 3240 

MFCC 81.3% 3240 (Nilanon et al., 2016) 

MFCC 81.4% 3240 (Bozkurt et al., 2018) 

Fourier Transform 95.2% 3240 (Kucharski et al., 

2018) 

RGB image 94.2% 3240 (Deperlioglu, 2018) 

Sonogram 94.2% 3126 (Dominguez-Morales 

et al., 2018) 

Spectrogram 89.8% 50 (Kang et al., 2018) 

Spectrogram 86% 1630 (Aykanat et al., 2017) 

Spectrogram 98.5% 50 (Bardou et al., 2018) 

STFT Spectrogram 98.2% 817 (Kochetov et al., 

2017) 

Spectrogram 74.0% 176 (W. J. Zhang et al., 

2017) 

Mel Spectrogram 57.91% 

Macro F1-

score, 66.38% 

920 Classification of 

wheeze and crackle  
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Micro F1-

Score 

(Acharya & Basu, 

2020)  

Mel Spectrogram 89.52% F1-

score  

543 COVID-19 detection  

(Imran et al., 2020) 

MFCC 0.95 AUC 

(Area under 

Curve) 

2660 COVID-19 detection  

(Laguarta, Hueto, & 

Subirana, 2020) 

ECG 90.6% Score 8528 Atrial Fibrillation 

Detection  (Limam, 

Precioso, & Ieee, 

2017) 

ECG Time Domain 86.4% 12186 (Xiong et al., 2018) 

Weighted Average 87.0%   

RNN  89.9% 8528 (Limam et al., 2017) 

ECG 99.39% 360 (Yildirim, 2018) 

Weighted Average 90.3%   

 

In Table 2.1, we can find out it is reliable to diagnose disease through sound analysis with 

classification.  CNN has been used in the diagnosis of COVID-19 with cough sound (Imran et al., 

2020; Laguarta et al., 2020). Acharya and Basu (2020) proposed respiratory sound classification for 

normal, wheeze, crackle, and both (wheeze and crackle) sounds using a CRNN based on LSTM and 

CNN. LSTM uses a memory block structure to build a long-distance relations network, which is the 

most common RNN approach. Limam et al. (2017) also previously proposed a phonocardiogram 

classification method (containing both ECG and heart sound) in the 2016 PhysioNet challenge dataset 

using CRNN. Yildirim (2018) proposed ECG classification with BiLSTM (Bidirectional LSTM) and 

Discrete Wavelet Transform (DWT) features. The common procedure for respiratory sound diagnosis 

using deep learning is to extract frame features from the audio and then send those features to the 

model.  

Automated diagnosis offers objectivity and accuracy compared with manual auscultation. Health 

IoT addresses the need for non-invasive, objective, pervasive and cost-effective diagnostic methods. It 

overcomes the limitations of subjective manual diagnosis and has been proven reliable in the 

literature. Currently, Health IoT demonstrates potential in various medical applications, particularly in 

disease diagnosis and prediction. For instance, studies have focused on early detection of heart disease 

(Kumar & Gandhi, 2018; Verma & Sood, 2018) and monitoring (Azariadi et al., 2016; Manogaran et 

al., 2018).  
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In summary, Health IoT, coupled with signal processing and machine learning techniques, 

provides opportunities for automated diagnosis of biosignals. It offers objective and accurate 

diagnostic methods for diseases related to the bowel, lungs, and heart, overcoming the limitations of 

subjective manual diagnosis. Literature supports the reliability and potential of Health IoT in various 

medical applications, including disease detection and monitoring. 

2.2 HSN Mining 

In this section, we review and analyse relevant studies in the field of HSN mining, focusing on their 

application areas, specific problems addressed, and methods employed. The healthcare sector has 

undergone significant transformations in recent years, largely due to the increasing connectivity of the 

internet. This connectivity has resulted in a growing reliance on the internet for making healthcare 

decisions. A healthcare survey conducted in 2011 revealed that 80% of internet users have sought 

online information related to healthcare (Fox, 2011). Additionally, the survey found that one in five 

adult internet users have utilised online platforms to connect with others who share similar health 

concerns (Fox, 2011). These findings highlight the importance of exploring HSN mining and its 

implications for online health communities. 

HSNs are online communities driven by patients that play a crucial role in providing valuable 

information to patients and caregivers (Song & Marsh, 2012). While medical professionals and offline 

resources form the foundation of healthcare, the need for knowledge-sharing on social networks 

remains significant. HSNs have emerged as an important source of information for both patients and 

physicians, enabling them to make well-informed decisions regarding healthcare. Through platforms 

like social media, millions of users collaborate to generate a vast pool of medical knowledge. For 

instance, a study found that 20% of adults have discovered individuals with similar health problems 

online, and most of them have benefited from HSNs in various ways (Fox, 2011). HSNs also facilitate 

connections among individuals who share the same health conditions, enabling them to exchange 

information and provide emotional support.  

Various online platforms are available for healthcare purposes. Blogs, which are updatable 

journals/diaries published by users, offer a means for self-publishing information and managing web 

links. However, the quality of information in blogs cannot always be guaranteed (Miller & Pole, 

2010). Blogs also serve as a platform for communication between medical experts and patients, 

fostering open dialogue (Kamel Boulos & Wheeler, 2007). Wikis, on the other hand, are collaborative 

websites where users can update and contribute content. Although popular and user-friendly, wikis are 

susceptible to vandalism. One notable example is the Flu Wiki, which effectively raises awareness of 

influenza within local public health communities (Boulos, Maramba, & Wheeler, 2006). Additionally, 

there are social sites that provide users with a vast database of healthcare providers to choose from. 

Websites like “Patient Option” enable patients to provide feedback and rate doctors online, allowing 

other patients to make informed decisions based on these ratings (Kamel Boulos & Wheeler, 2007). 
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Adverse medical reactions, unfortunately, have resulted in unnecessary expenditures of billions of 

dollars. 

In this thesis, HSNs encompass a range of platforms, including general-purpose social networks 

like Twitter (now X), that engage in discussions related to health issues and offer a wealth of health-

related data (Achrekar, Gandhe, Lazarus, Yu, & Liu, 2013; Alimova & Tutubalina, 2017; 

Coppersmith, Dredze, & Harman, 2014; Miftahutdinov et al., 2017; Na et al., 2012; Sharif, Zaffar, 

Abbasi, & Zimbra, 2014; Sun, Ye, & Ren, 2015; Elena Tutubalina, Miftahutdinov, Nikolenko, & 

Malykh, 2018; Elena Tutubalina & Nikolenko, 2017). This thesis also considers HSNs to encompass 

various sources of health-related information, such as online health forums, government health 

statistics, medical reports, journal articles, drug databases and other medical information sources. 

HSNs have been proposed by researchers as a cost-effective solution for enabling patients to 

support each other by sharing their experiences online (Song & Marsh, 2012). In addition, various 

automatic recommendation systems have been developed for social networks (Song & Marsh, 2012). 

Compared with conventional methods of data collection, collecting data from HSNs is faster, more 

cost-effective and yields larger amounts of data. Current approaches in the field primarily focus on 

retrieving information from HSNs related to mental health (Coppersmith et al., 2014; Song & Marsh, 

2012; Elena Tutubalina & Nikolenko, 2017), the spread of influenza (Achrekar et al., 2013; Sun et al., 

2015), and Adverse Drug Reactions (ADRs) (Alimova & Tutubalina, 2017; Miftahutdinov et al., 

2017; Na et al., 2012; Sharif et al., 2014; Elena Tutubalina et al., 2018; Elena Tutubalina & 

Nikolenko). 

2.2.1 Application Areas 

Numerous studies have focused on detecting mental disorders within social networks, including the 

assessment of suicide risk and emotional disorders (Cheng, Li, Kwok, Zhu, & Yip, 2017). 

Furthermore, classification methods have been developed to identify depression, bipolar disorder, 

Post Traumatic Stress Disorder (PTSD), and seasonal affective disorder within X/Twitter 

(Coppersmith et al., 2014). An anonymous health condition indexing method has been proposed for 

conditions such as autism and Attention Deficit Hyperactivity Disorder (ADHD) (Song & Marsh, 

2012). 

In the realm of online cancer communities, research has examined the relationships between users 

and the identification of users (X. Wang, Zhao, & Street, 2014, 2017). Additionally, efforts have been 

made to identify influential users within HSNs for cancer survivors or caregivers (Zhao et al., 2014), 

explore the topics of discussion within breast cancer communities (S. Zhang, Grave, Sklar, & 

Elhadad, 2017), and predict whether cancer-related accounts are personal or organisational to analyse 

responses to chemotherapy side effects (L. Zhang, Hall, & Bastola, 2018). 

ADRs are serious conditions caused by medications and play a crucial role in drug post-marketing 

(Elena Tutubalina & Nikolenko, 2017). Social media analysis is widely used for detecting ADRs due 
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to the availability of large amounts of data (Alimova & Tutubalina, 2017). Various approaches have 

been proposed for extracting ADR-related phrases in HSNs, including the use of SVM (Alimova & 

Tutubalina, 2017; Sharif et al., 2014), linguistic approaches (Na et al., 2012), and RNN (Elena 

Tutubalina et al., 2018; Elena Tutubalina & Nikolenko, 2017), as well as Conditional Random Fields 

(CRF) (Miftahutdinov et al., 2017; Elena Tutubalina & Nikolenko, 2017). In addition, Tutubalina et 

al. (2018) proposed a CNN approach for gender and age prediction in various health conditions and 

ADRs, achieving more than 65% F-measure for gender prediction and over 50% F-measure for age 

prediction. 

The detection of the spread of influenza in social media offers a fast and cost-effective alternative 

to conventional approaches. Standard approaches have achieved F-measures of 0.814 on X/Twitter, 

0.768 on Facebook (Achrekar et al., 2013), and 0.892 on Weibo, a Chinese social media platform 

(Sun et al., 2015). 

2.2.2 Problems 

2.2.2.1 Cost of Healthcare Service 

Computerised medical services offer the potential to reduce healthcare costs. These services can be 

broadly categorised into four categories: automated diagnosis and assessment, online health support, 

telehealth, and health information management systems (Vong & Song, 2015). The goal of inclusive 

medical care is to provide affordable healthcare without compromising quality. To achieve this goal, 

healthcare services should be automated and available around the clock. Additionally, enabling 

remote payment methods such as mobile banking can further enhance accessibility and convenience 

(Vong & Song, 2015). 

2.2.2.2 Finding Health-Related Information Online 

The abundance of information available online poses challenges in the healthcare domain. While the 

vast availability of medical information empowers patients and encourages active involvement in their 

treatment discussions, it can also lead to difficulties in concluding personal health status. The 

presence of irrelevant information online hampers the process of accurately assessing one’s health. 

Furthermore, healthcare information obtained online may not always align with the user’s specific 

medical condition, increasing the risk of misinterpretation. The presence of medical jargon further 

complicates matters, making it challenging for individuals without medical expertise to understand the 

information they come across. Additionally, medical information necessary for patient-oriented 

decision-making is often scattered across various websites, making it difficult for individuals to 

access comprehensive and reliable information in one place (Wiesner & Pfeifer, 2014). 

2.2.2.3 Absence of Data and Information 

The major problem for data mining in HSNs to solve is the lack of data in conventional studies. Data 

mining in HSNs solves this problem because there is a large amount of data in the social network. For 
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mental health research, the traditional method is expensive, time-consuming (Coppersmith et al., 

2014) and only has a little data (Elena Tutubalina & Nikolenko, 2017). In conventional approaches, 

inexperienced graduate students accessed suicide risk in social networks and boosted the proportion of 

suicidal cases (Cheng et al., 2017). For flu monitoring, the traditional method is by collecting data 

from doctors manually, which has a one- to two-week delay (Achrekar et al., 2013). It is also 

impossible to manually process a large number of texts on social media, and clinical trials cannot 

track long-term effects, so data mining is required. (Alimova & Tutubalina, 2017). Using social 

network mining also provides a unique aspect of view. Using social network mining provides a 

unique aspect of view. There is also a need for studies to observe personal opinions and experiences 

with chemotherapy (L. Zhang et al., 2018). 

2.2.2.4 Difficulties of Interpreting Social Media 

One of the major challenges in data mining within HSN is the presence of informally written 

biomedical information. HSNs often contain a large amount of user-generated content, which includes 

mistakes, misspellings, and subjective opinions (Miftahutdinov et al., 2017). Online Health 

Communities (OHC) topics are usually heterogeneous, domain-dependent, and differ from 

professional terms used in other general-purpose social networks (S. Zhang et al., 2017). The 

reliability of earlier approaches in data mining is questionable as they tend to overlook essential 

information. Most studies have focused on the general domain, neglecting the specific needs of the 

health domain (Na et al., 2012; Sharif et al., 2014). Moreover, previous studies have often disregarded 

important knowledge, such as semantic information (Sun et al., 2015). Age and gender are critical 

factors in medical applications, but they are frequently assumed to be available or ignored in previous 

studies (E. Tutubalina & Nikolenko, 2018). Additionally, understanding user relationships, behaviour, 

and interactions is crucial for evaluating user survival analysis in HSNs (X. Wang et al., 2014, 2017; 

Zhao et al., 2014). 

2.2.3 Methods 

2.2.3.1 Conventional Machine Learning Approaches 

The features used in the analysed approaches can be categorised into entity-level and content-level 

features. Entity-level features include word embedding, cluster-based representation and semantics. 

Content-level features consist of BOW, parts of speech, sentiment features, pointwise mutual 

information, medical terms, and emotions (Alimova & Tutubalina, 2017). Among these, the most 

employed features are semantics (Alimova & Tutubalina, 2017; Cheng et al., 2017; Sharif et al., 

2014), BOW (Achrekar et al., 2013; Alimova & Tutubalina, 2017), word embedding (Alimova & 

Tutubalina, 2017; Sun et al., 2015), sentiment (Alimova & Tutubalina, 2017; Sharif et al., 2014), and 

emotions. Semantic features, also known as Lexicon features, represent logical entities which are 

groups of similar keywords (Sharif et al., 2014). BOW is a vector-based method that provides a 
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simple approach (Achrekar et al., 2013). Sentiment features indicate the polarity of a sentence, 

whether it is positive or negative, along with the degree of sentiment (Sharif et al., 2014). Word 

embedding is a technique used to convert words into vectors based on training with existing data. In 

the reviewed approaches, word embedding can be obtained from an existing model in a social 

network context (Alimova & Tutubalina, 2017), or generated by clustering indicator seed words, 

which form the initial dataset (Sun et al., 2015). Emotional features indicate the polarity of sentiment 

based on subjective words (Sharif et al., 2014). Additionally, (Sharif et al., 2014) also employed a 

baseline feature that considers the specific meaning of words. 

AdaBoost is a classifier that utilises a regression tree as weak learners (Zhao et al., 2014). The 

boosting method is employed in AdaBoost to combine multiple weak learners into strong learners, 

although the specifics of how this merging process occurs are not explained. In one application, 

AdaBoost is applied to predict a user’s ability to affect others (Zhao et al., 2014). However, the 

methodology or approach used for this prediction is not clarified. Additionally, AdaBoost is utilised to 

categorise five types of social support by extracting post metadata related to lexical, sentiment, and 

topic features (X. Wang et al., 2014). The specific details on how AdaBoost is applied for this 

categorisation and how the post metadata is processed and utilised are not provided. 

2.2.3.2 Recurrent Neural Network (RNN) 

The RNN approaches commonly utilise word embedding in combination with LSTM and CNN. 

These approaches include a joint LSTM+CNN+CRF method for detecting ADR, a Gated Recurrent 

Unit (GRU) for detecting medical terms (Elena Tutubalina et al., 2018), and LSTM for indicating 

account profiles (L. Zhang et al., 2018). 

2.2.3.3 Convolutional Neural Network (CNN) 

CNN is utilised in data mining of HSN using word embedding. In a study by S. Zhang et al. (2017), a 

text mining method was proposed that employed a 100-dimensional word vector and CNN for 

identifying topics of discussion in OHC related to breast cancer. Furthermore, E. Tutubalina and 

Nikolenko (2018) proposed a CNN approach that utilised the word vector feature for gender and age 

prediction in the context of different health conditions.  

2.2.3.4 Summary of HSN Approaches 

Table 2.2 Summary of data mining approaches in HSNs. 

Method Features Performance (F-

measure) 

Data Size Reference 

SVM Entity-level (word 

embedding, cluster-

based representation, 

semantic), content-

80.3% 6320 (Alimova & 

Tutubalina, 2017) 
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level (BOW, parts of 

speech, sentiment, 

pointwise mutual, 

medical terms, 

emotions) 

Semantic word count 61.3% 974 (Cheng et al., 2017) 

Collection, unigrams 89.19% 3000 (Sun et al., 2015) 

Baseline, semantic, 

emotion-related 

78.2% 114000 (Sharif et al., 2014) 

79.73% 5000 

BOW (bag-of-words) 81.4% 25000 (Achrekar et al., 

2013) 76.8% 10000 

Discriminant word 91.0% 200 (Song & Marsh, 

2012) 80% 50 

Average of 

SVM 

 78.8% 164544  

RNN word level feature 81.0% 875 (Elena Tutubalina & 

Nikolenko, 2017)  

word embedding 81.41% 

(accuracy) 

1250 (Elena Tutubalina et 

al., 2018) 

word embedding 85.2% (accuracy) 1824 (L. Zhang et al., 

2018) 

Average of 

RNN 

 83.1% 3949  

CNN Word vector 65% 33332 (S. Zhang et al., 

2017) 

Word vector 50% 33332 (E. Tutubalina & 

Nikolenko, 2018) 

Average of 

CNN 

 57.5% 66664  

Logistic 

regression 

Semantic word count 74.8% 394 (Coppersmith et al., 

2014) 62.6% 441 

76.8% 244 

57.3% 159 

Post type 94.3% 1343 (X. Wang et al., 

2017) 
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Average of 

Logistic 

regression 

 82.0% 2581  

AdaBoost Basic, Lexical, 

Sentiment, Topic 

80% 1333 (X. Wang et al., 

2014) 

Lexical 79.2% 298 (Zhao et al., 2014) 

Average of 

AdaBoost 

 79.9% 1631  

Other 

Approaches 

extract word, part of 

speech tag, suffix and 

prefix, content, word 

type, dictionary 

lookup, cluster-based 

feature, word 

embedding 

79.4% 1250 (Miftahutdinov et 

al., 2017)  

BOW, Negation, type 

dependencies 

0.79 1000 (Na et al., 2012) 

Average of 

Other 

approaches 

 79.2% 2250  

 

From Table 2.2, RNN has an overall better performance and its average F-measure (accuracy) 

is 83.1% while CNNs have an average F-measure of 57.5%, which is the worst approach. This could 

be due to RNN being more suitable for sequencing sensitive data. On the other hand, logistic 

regression and AdaBoost also have around 80% of average performance. 

2.3 Generative Large Language Models 

Recent studies utilize advanced Artificial Intelligence (AI) technologies, namely Language Models 

(LLMs) and Retrieval-Augmented Generation (RAG) techniques. LLMs are powerful models that can 

understand and generate text like human language by learning patterns and structures from large 

datasets. On the other hand, RAG combines information retrieval and text generation to enhance the 

performance of AI systems. 

2.3.1 Application Areas 

The reviewed papers cover a diverse range of application areas within healthcare. These include the 

analysis of multimodal Electronic Health Records (EHR) to improve clinical predictive capabilities 

(Zhu et al., 2024), the development of personalized disease prediction LLM system (Jin et al., 2024), 
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the use of specialized LLMs for liver disease management (Ge et al., 2023), and the implementation 

of real-time patient-AI healthcare conversations to enabling trust-building and accurate medical 

support (Mukherjee et al., 2024). Furthermore, the research extends to medical knowledge acquisition 

and question-answering systems to support healthcare professionals (J. Wang, Yang, Yao, & Yu, 

2024), and the exploration of pharmaceutical regulatory compliance in the healthcare industry (J. Kim 

& Min, 2024). 

2.3.2 Problems 

The utilization of LLMs in healthcare applications presents several challenges. One challenge is the 

integration of diverse types of healthcare data, such as time-series data, clinical notes, and knowledge 

graphs, to improve the prediction of clinical outcomes (Zhu et al., 2024). Another challenge is the 

integration of vast data volumes and inconsistent symptom characterization standards to provide 

personalized healthcare (Jin et al., 2024). Furthermore, there is a need for specialized LLMs tailored 

to specific diseases, like liver disease, to enhance disease management (Ge et al., 2023). LLMs often 

struggle with the complexity and reliability of medical information in question-answering tasks, 

indicating the need for advancements in this area. Ensuring safety and reducing hallucinations pose 

significant challenges for medical LLMs (Miao, Thongprayoon, Suppadungsuk, Garcia Valencia, & 

Cheungpasitporn, 2024; Mukherjee et al., 2024; J. Wang et al., 2024). Additionally, the utilization of 

medical knowledge in question-answering tasks presents challenges, including the inefficiency of 

navigating pharmaceutical guidelines (J. Kim & Min, 2024).  

2.3.3 Methods 

RAG incorporates a retrieval component to retrieve relevant information and integrates it into the 

generation process. For example, Zhu et al. (2024) propose the REALM framework, which utilizes 

LLMs to encode clinical notes and GRU models for time-series EHR data. They also employ RAG to 

extract task-relevant medical entities for matching in a professional knowledge graph.  

In another study, Jin et al. (2024) introduce the Health-LLM system, which combines feature 

extraction techniques and medical knowledge retrieval using the Llama Index to predict diseases. The 

Llama Index is employed to retrieve relevant medical knowledge for the prediction process.  

Ge et al. (2023) develop a liver disease specific LLM called "LiVersa" by applying RAG on 

American Association for the Study of Liver Diseases (AASLD) guidelines and documents.  

Another approach is presented by Mukherjee et al. (2024), who create a constellation of 

specialized LLMs. Their primary agent focuses on driving patient-friendly conversations, while 

several specialist support agents assist with healthcare tasks, such as nurses, social workers, and 

nutritionists, increase safety and reduce hallucinations. 
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The Joint Medical LLM and Retrieval Training (JMLR) program trains LLM and retriever jointly, 

aiming to enhance LLM's ability to leverage medical knowledge for reasoning and answering 

questions (J. Wang et al., 2024).  

J. Kim and Min (2024) also employ a dual-track retrieval approach, utilizing both the user's query 

and the fine-tuned LLM's answer to expand the search scope and retrieve relevant guideline 

documents. 

Miao et al. (2024) propose a strategy that integrates RAG with a specialized ChatGPT model, 

specifically tailored to align with the KDIGO 2023 guidelines for chronic kidney disease (CKD). 

2.3.4 Result and Summary 

The results of these studies demonstrate the potential of AI and LLMs in improving specific aspects 

of healthcare. For instance, Zhu et al. (2024) show that the REALM framework surpasses baseline 

models in accurately predicting in-hospital mortality and readmission risks. Jin et al. (2024) 

demonstrate that the Health-LLM system outperforms existing methods in disease prediction, 

showcasing its potential for early detection and intervention. LiVersa demonstrates the ability to 

answer test questions correctly, although there is room for improvement in providing detailed 

responses (Ge et al., 2023). Polaris demonstrates performance on par with human nurses in a 

comprehensive clinician evaluation (Mukherjee et al., 2024). Additionally, J. Wang et al. (2024) 

demonstrate that JMLR models outperform conventional pre-training and fine-tuning approaches in 

medical question-answering tasks, showcasing their enhanced capabilities. Furthermore, J. Kim and 

Min (2024) find that the QA-RAG model outperforms other baselines, including conventional RAG 

methods and other retrieval approaches.  

2.4 Trends, Gaps and Opportunities 

Table 2.3 Summary of Approaches for Healthcare. 

Approach Usability Cost Efficiency Efficiency of 

Medical Services 

Effectiveness of 

Medical Services 

HSN Moderate High Low Low 

IoT for Health Low Moderate High Moderate 

Proposed 

Integrated HSN 

High High High High 

 

Through an extensive literature review, this research paper identifies trends, gaps and opportunities in 

the field of HSNs and Health IoT, highlighting areas for further investigation and improvement. 

In terms of trends, there is a noticeable shift towards the utilisation of machine learning and deep 

learning methods such as CNN, RNN and LSTM. Researchers are employing these techniques for 

various tasks including classification, topic modelling and information extraction. Additionally, the 
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use of word embeddings and other NLP techniques have gained traction in analysing the vast amount 

of textual data generated on social media platforms. These trends signify the growing interest in 

leveraging advanced computational methods to gain valuable insights from health-related data in 

HSNs and IoT. 

A significant trend in the literature is the increasing application of RAG and LLMs in healthcare. 

These advanced computational methods are being utilized for a variety of tasks, including the analysis 

of multimodal EHR, personalized disease prediction, and the development of specialized LLM chat 

interfaces for conditions like liver disease. The use of RAG and LLMs has gained traction for its 

potential to refine clinical predictions, enhance feature extraction, and improve the accuracy of AI-

generated responses in medical contexts. 

However, several gaps still exist in the integration of HSNs and IoT. One significant challenge is 

the difficulty in interpreting the informal language and grammar used in social media posts, which 

presents a barrier to harnessing the full potential of these data sources. Furthermore, the reliability and 

validity of information shared online pose ongoing concerns, making it crucial to develop approaches, 

such as trustworthiness assessment methods, to ensure the reliability of such data. Ensuring the 

reliability and validity of information shared online is crucial, necessitating the development of 

trustworthiness assessment methods to guarantee the accuracy of data utilized by RAG and LLMs. 

Despite these challenges, there are several promising opportunities for advancements and 

improvements in the integration of HSNs and Health IoT. A comprehensive overview of the 

advantages, disadvantages and proposed approaches is shown in Table 2.3. 

HSNs offer a wealth of rich information but concerns regarding privacy and usability persist. On 

the other hand, IoT solutions provide pervasive and autonomous monitoring capabilities but often 

require experts to interpret and provide necessary information and care. By integrating data from 

HSNs and IoT, healthcare providers can obtain a more comprehensive understanding of a patient’s 

health status, enabling them to make informed decisions regarding diagnosis and treatment. 

One notable opportunity lies in the development of multimodal approaches that combine data from 

HSNs and IoT. This integration allows for a more holistic approach to diagnosis and treatment 

planning, offering healthcare professionals a more complete picture of patients’ health conditions. 

Additionally, leveraging the vast amount of unstructured social data available through HSNs can lead 

to the generation of structured knowledge, providing valuable insights and support for clinicians. 

This, in turn, facilitates evidence-based decision-making in healthcare. 

Real-time monitoring of health discussions on social media platforms is another opportunity that 

holds great potential. By closely monitoring these conversations, healthcare professionals can gain 

early insights into disease trends and outbreaks, enabling more effective prediction and management. 

Furthermore, personalised recommendation and support systems, driven by social data, could enhance 

patient care and engagement, tailoring healthcare services to individual needs. 
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The integration of IoT and RAG-enhanced LLMs presents a significant opportunity to transform 

healthcare by offering a more holistic approach to patient care. IoT devices are capable of providing 

objective, real-time physiological and environmental data, which can complement the rich, yet often 

subjective, information found in social media and clinical notes. 

The gap lies in the absence of approaches that effectively combine data from HSNs and IoT to 

provide comprehensive healthcare solutions. This problem highlights the need to develop methods 

that bridge the gap between these two data sources. 

In conclusion, the integration of HSNs and IoT presents numerous opportunities to revolutionise 

healthcare. By capitalising on these opportunities, we can significantly improve healthcare outcomes, 

enhance patient care and address the challenges faced by the healthcare industry. 
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3 Integrated HSN for Cardiovascular Diseases 

3.1 Measuring Similarity between Biosignal with Gaussian Hamming 

Distance  

3.1.1 Introduction 

Chronic diseases, such as heart diseases, continue to be a leading cause of global mortality (D 

Mozaffarian et al., 2016; Dariush Mozaffarian et al., 2015). However, individuals residing in rural and 

remote areas face significant challenges in accessing healthcare due to high patient-doctor ratios and 

limited availability of specialised medical equipment (Puustjärvi & Puustjärvi, 2011). As a result, 

many individuals in these areas often struggle to receive proper diagnosis and treatment for their 

conditions. 

The advent of online platforms has provided an opportunity to address these healthcare access and 

information gaps. A 2011 survey revealed that 80% of internet users seek healthcare information 

online (Fox, 2011). HSNs have emerged as a potential solution to improve healthcare access and 

facilitate remote diagnosis of cardiovascular diseases. HSNs leverage the growing trend of utilising 

online platforms for healthcare information and support, connecting individuals with similar health 

conditions, and providing a space for sharing information and support. Through HSNs, individuals in 

rural and remote areas can benefit from improved access to healthcare resources and specialised 

knowledge, ultimately enhancing their overall care and wellbeing. 

HSNs face challenges in accurately matching patients with similar conditions due to the informal 

nature of medical descriptions and the presence of spelling errors (Elhadad et al., 2014). Many users 

encounter difficulties in independently finding suitable online support groups due to their limited 

expertise in describing and locating relevant communities.  

This research aims to overcome these challenges by enabling direct biosignal comparison through 

Health IoT, facilitating the identification of similar patient groups in HSNs without requiring users to 

search on their own. By integrating heart sound analysis into HSNs, the research aims to provide heart 

disease patients with an accessible and reliable method of obtaining objective diagnoses. This 

integration would improve the overall accessibility and accuracy of healthcare information and 

support for heart disease patients. 

In this section, we propose integrating heart sound analysis into existing HSNs to enable remote 

diagnosis of heart diseases. Heart sound analysis was integrated into the existing HSNs to enable the 

diagnosis of heart diseases. A dataset of 76 heart sounds was collected, comprising 18 sounds from 

healthy hearts and 58 sounds from diseased hearts. Gaussian time series features were extracted from 

the segmented sounds for subsequent processing. A prediction model was built using this data and a 

classifier was trained. The Gaussian MFCC achieved the highest accuracy of 84.2% in our 

experiments. 
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The contribution is the introduction of Gaussian Hamming Distance (GHD) to identify similar 

heart condition groups within HSNs. By comparing heart sounds among users within the HSNs, this 

approach enables the automatic matching of patients with similar conditions based on their heart 

sounds. This integration of heart sound analysis into HSNs improves the accuracy and convenience of 

remote diagnosis for cardiovascular disease, eliminating the need for patients to physically visit 

medical facilities for specialised testing. 

In summary, this section addresses the research problem of integrating heart sound analysis 

capabilities into existing online support groups and health social networks. By exploring the 

feasibility and potential benefits of incorporating diagnostic features based on heart sounds, the 

objective is to provide heart disease patients with an accessible and convenient method for obtaining 

preliminary assessments and identifying potential abnormalities, without the need for in-person 

medical consultations. The contribution lies in the introduction of the Gaussian Hamming Distance to 

identify similar heart condition groups within HSNs, thereby revolutionising heart disease 

management within online communities and facilitating the development of remote healthcare 

solutions. 

3.1.2 Method 

3.1.2.1 Gaussian Hamming Distance 

GHD (Insu Song, 2015) was applied to the time series data. The input time series was tested with 

variations such as Time Series (TS), Gaussian Raw Data Time Series (GTS), Gaussian Time Series 

with Absolute Value (GATS), Gaussian Time Series with Absolute Value and Pooling (GPATS), and 

Gaussian MFCC Time Series (GMTS).  

For GTS, Gaussian was applied directly to the time series of sound data as (3.1). 

 

 GTS = Gaussian(TS), (3.1) 

 

where TS is the input series. 

On the other hand, GATS took the absolute value of the raw data instead, as sound data often 

contains both positive and negative values. This is because sound waves typically exhibit wave-like 

behaviour, resulting in positive and negative values being near each other. As a result, applying 

Gaussian directly to sound data usually leads to the loss of sound intensity information, since 

Gaussian takes the average value of the sound data in its value which includes both positive values 

and negative values. Therefore, the absolute values of the raw data were utilised as (3.2). 

 

 GATS = Gaussian(|TS|), (3.2) 
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where TS is the input series. 

There was another problem encountered during the experiment. The time taken for applying 

Gaussian filtering and calculating the Hamming distance was found to be significant, particularly 

when using raw data with a sampling rate of 3000 and a window size of 2 seconds. To mitigate this 

issue, GPATS was devised to reduce the size of the array. In this method, pooling was applied to the 

absolute time series data, selecting the maximum value within a specific window length as (3.3). 

 

 GPATS = Gaussian(pooling(|TS|)), (3.3) 

 

where TS is the input series. 

In the previous approaches, one major drawback was the loss of frequency information. To 

overcome this disadvantage, the present study utilised the GMTS approach, which applies Gaussian to 

the MFCC series. In GMTS, Gaussian is applied to the time series of MFCC, incorporating different 

window sizes, whether overlapping or non-overlapping, without applying Gaussian to MFCC 

channels as (3.4). 

 

 GMTS = [Gaussian(ceps=0( TS )),  

 Gaussian(ceps=1( TS )),  

 …,  

 Gaussian(ceps=i( TS ))], (3.4) 

 

where TS is the input series, i is the number of MFCC channels. 

GTS, GATS, and GMTS were evaluated using the K-nearest neighbours (KNN) algorithm and 

compared with the conventional KNN distance measure approach. The k value for the KNN algorithm 

was determined based on the specificity of the trained model using Leave-One-Out-Validation. 

To assess the robustness of the proposed method against environmental noise and inaccurate 

extraction, a stress test was conducted using Leave-One-Out-Validation. In this test, the testing signal 

data was shifted along the time axis, either to the left or right. Shifting left involved discarding some 

data from the beginning of the original sound signal while shifting right involved adding blank 

padding before the beginning of the original signal. Any excessive signal resulting from right shifting 

was discarded to maintain the original signal length. The purpose of this stress test was to evaluate the 

performance of the method under different conditions and assess its resilience to environmental noise 

and inaccurate segmentation. 

Several parameters were considered in the approaches. For all the approaches, the Sigma value of 

the Gaussian must be set. In the case of MFCC, additional parameters include determining whether 

there is overlapping of windows, specifying the size of windows, and selecting the number of 
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channels. When evaluating these parameters, the worst specificity of the stress test was considered, as 

specificity is a critical factor for the reliability of diagnosis, particularly when dealing with a limited 

number of negative (healthy) samples. 

3.1.2.2 Heart Sound Data Collection 

 

Figure 3.1 Example of heart sound in the dataset. 

For the current study, heart sound recordings were retrieved from the internet.  A total of 76 heart 

sound recordings were retrieved from the internet for the current study. Among these recordings, there 

were 18 instances of healthy heart sounds and 58 instances of heart sounds with various diseases or 

disorders. Figure 3.1 illustrates examples of collected heart sounds. The upper plot represents a 

healthy heart sound, characterized by clear S1 and S2 sounds. In contrast, the lower plot depicts a 

heart with a murmur, where noise is present between S1 and S2. This noise indicates turbulent blood 

flow through the heart valves or abnormal connections between the heart chambers. The heart disease 

examples included splitting heart sound, atrial septal defect, click, murmur, regurgitation, 

Hypertrophic Obstructive Cardiomyopathy, Tricuspid Valve Insufficiency and Aortic Valve disorder. 

The heart sounds were labelled based on their classification, with healthy heart sounds labelled as 

Class 0 and abnormal heart sounds labelled as Class 1. To account for variations caused by recording 
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devices, the audio was normalised to minimise the effects of factors such as recorder sensitivity. 

Subsequently, heart sounds were selected from the normalised audio recordings. The selected heart 

sounds were required to exhibit a complete cycle, including both S1 and S2 components.  

3.1.2.3 Experiment Setting 

We first apply a low-pass filter to eliminate high-frequency noise. Next, we perform segmentation to 

isolate one complete cardiac cycle. Subsequently, we extract Gaussian time series features from the 

heart sounds for further processing. Using this data, we construct a KNN prediction model classifier 

to distinguish between normal and abnormal heart sounds. The number of neighbours (the value of k) 

is one. Our best results were achieved using Gaussian MFCC, which yielded an accuracy of 84.2%. 

Two methods have been employed for implementing the KNN algorithm: Hamming distance and 

Euclidean distance. Hamming distance is used to compare the test data with the training data and is 

calculated as shown in (3.5). On the other hand, ordinary KNN estimates the distance between vectors 

using the Euclidean distance, which is calculated as shown in equation (3.6).  

 

 𝐻𝐷 = ∑(𝑥𝑖 − 𝑦𝑖), (3.5) 

 𝐸𝐷 = √∑(𝑥𝑖 − 𝑦𝑖)
2
, (3.6) 

 

where xi and yi are each element of two different series. 

Another indication of the superiority of GHD was demonstrated by Insu Song (2015). In their 

study, GHD was able to effectively capture facial images even when working with low-quality 

images. This highlights the potential of GHD in handling similar challenges in audio signal 

processing. Like facial images, audio signals can also suffer from low quality. These signals can be 

captured either manually or automatically. However, both approaches may introduce errors in sound 

selection, such as including excess blank regions before or after sounds or cutting off parts of the 

sounds. This shifting of sounds can significantly alter the Hamming distance, resulting in decreased 

performance. Furthermore, the presence of environmental noise can negatively impact prediction 

efficiency. The error captured by the Hamming distance can be represented by equation (3.7). 

 

 HD = Ed + Er + En, (3.7) 

 

where difference error Ed is the desired distance for measuring the difference between two sounds 

while shifting error Er and noise error En should be minimised.  To minimise shifting error and noise 

error, a Gaussian filter is applied to the time series. 

Equation (3.8) shows the calculation of Gaussian Hamming distance (GHD) between training data 

and test data. 
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 GHD = |Gaussian(Stest) - Gaussian(Sdata)|, (3.8) 

 

where S is the input series. 

  

Figure 3.2 Process of GHD. 

In the classification procedure for heart sounds using GHD, the heart sound segment S is carefully 

selected and standardised to a fixed length of 1.5 seconds. To ensure consistency, zero padding is 

applied to the segment if necessary. The padded signals are then subjected to a Gaussian processing 

step, where various values of Sigma are utilised. These processed features are subsequently employed 

in conjunction with the KNN algorithm. Figure 3.2 shows the proposed method for measuring GHD 

between testing data and testing data.    

3.1.2.4 The Evaluation Matrices 

The evaluation matrices of our experiments are Sensitivity, Specificity, and Accuracy. Sensitivity, 

specificity, and accuracy are calculated as: 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 
𝑇𝑃

𝑃
, (3.9) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 
𝑇𝑁

𝑁
, (3.10) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃+𝑇𝑁

𝑃+𝑁
, (3.11) 

where TP is the number of true positives; P is the total number of positive ground truth cases; TN is 

the number of true negatives; N is the total number of negative ground truth cases. 

Sensitivity and specificity are evaluation metrics that can help evaluate the performance of a model 

when dealing with imbalanced medical data. They provide valuable information about the model's 

ability to correctly identify positive and negative cases, regardless of the dataset's imbalanced nature. 

Sensitivity measures the model's ability to correctly identify positive cases, while specificity measures 

its ability to correctly identify negative cases. By focusing on these metrics, one can gain insights into 

the model's performance, independent of the data distribution. 

3.1.3 Results 

In this section, the results of GTS, GPATS and GMTS are analysed and compared. Their worst 

possible performance over the stress test is analysed to show the overall performance.  
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Figure 3.3 Accuracy of GTS. 

 

Figure 3.4 Sensitivity of GTS. 
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Figure 3.5 Specificity of GTS. 

 

Figure 3.6 Accuracy of GPATS. 
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Figure 3.7 Sensitivity of GPATS. 

 

Figure 3.8 Specificity of GPATS. 
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Figure 3.9 Accuracy of GMTS. 

 

 

Figure 3.10 Sensitivity of GMTS. 
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Figure 3.11 Specificity of GMTS. 

Table 3.1 Minimum accuracy, specificity and sensitivity of all proposed approaches. 

 Accuracy Specificity Sensitivity 

GTS 0.4744 0.333 0.448 

GPATS 0.632 0.167 0.776 

GMTS 0.842 0.778 0.845 

 

Table 3.2 Confusion matrix of GMTS. 

 Predicted Positive Predicted Negative 

Actual Positive 51 7 

Actual Negative 0 18 

Table 3.1 presents the minimum accuracy, specificity, and sensitivity of all proposed approaches in 

the shifting test and Table 3.2 present the confusion matrix of GMTS. The results indicate that GMTS 

outperforms the other tested methods in terms of accuracy. Additionally, it is observed that applying 

Gaussian to the time series of most approaches leads to an improvement, except for the sensitivity of 

GPATS. 

Figures 3.3-3.5 display the accuracy, sensitivity, and specificity of GTS. The x-axis represents the 

amount of shifting in seconds, while the y-axis represents the corresponding performance 

measurement. It can be seen from the plot that GTS demonstrates significantly higher overall 

accuracy and sensitivity than the original TS. 

However, GTS exhibits reduced specificity when the left shifting amount reaches 0.03s or the right 

shifting amount reaches 0.05s. This may be caused by the loss of intensity information by applying 

Gaussian directly to a wave signal. Additionally, there is only a minor improvement in sensitivity, 
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increasing from 41.4% to 44.8%. Further context is needed to fully understand these percentages and 

their significance. 

Figures 3.6-3.8 show the accuracy, sensitivity, and specificity of GPATS. GPATS proved to be 

more effective in preserving the intensity information of the sound data and exhibited significantly 

more stable performance. Figures 3.5-3.7 show the accuracy, sensitivity, and specificity of GPATS. In 

terms of specificity and sensitivity, GPATS with Gaussian demonstrated more stability and higher 

performance, although there were slight decreases in some shifting amounts. The minimum specificity 

achieved by pooling the absolute value of the time series with Gaussian was 66.7%, whereas the 

minimum specificity in the approach without Gaussian was only 11.1%. Although the sensitivity 

decreased from 70.7% to 55.2% after applying Gaussian, this can still be considered an improvement 

since a sensitivity of 55.2% is more acceptable than a specificity of 11.1% for time series without 

Gaussian. However, despite these improvements, the results were still not satisfactory in terms of 

sensitivity and overall accuracy. 

Figures 3.9-3.11 show the accuracy, sensitivity and specificity of the GMTS algorithm. The 

GMTS algorithm demonstrated superior performance in terms of overall accuracy, specificity and 

sensitivity compared with other methods. Specifically, when using the Gaussian MFCC time series, 

the specificity was more stable, with even minor shifts amounting to 5%. The minimum specificity 

and sensitivity of the Gaussian MFCC approach were 77.8% and 84.5%, respectively, while the 

minimum specificity and sensitivity without Gaussian were only 5.6% and 82.8%, respectively. Table 

3.2 shows the confusion matrix of GMTS. When comparing GMTS with the normal MFCC approach, 

which only considers the entire 2-second-length sound wave as its window, significant stability 

improvements were observed, particularly in terms of specificity, which is crucial for accurate 

diagnosis.  

3.1.4 Conclusion 

This section introduces the use of Gaussian Hamming Distance (GHD) for heart sound comparison, 

addressing research question RQ1.1 and proving hypothesis H1.1. The challenge faced by users in 

finding similar patient groups within the HSN using biosignals collected through the Health IoT is 

highlighted. Users often struggle to locate relevant communities for specific diseases in HSNs and 

lack expertise in effectively describing their condition, making it challenging to find appropriate 

communities within the network. This study aims to enable the direct comparison of biosignals 

through Health IoT, facilitating the identification of similar patient groups in HSNs and overcoming 

the challenges of finding relevant communities for specific diseases without requiring users to search 

on their own. 

To achieve this, we propose a method that diagnoses heart diseases by utilising the GHD, a 

similarity comparison method. By comparing the similarity between the heart sounds of individuals 

and other patients from online support groups, this approach enables accurate searching of online 
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support groups for certain diseases. In this study, we apply the GHD to data series and time series of 

features, demonstrating its potential to improve the robustness of the classifier with a shifting range of 

5%. This means that applying Gaussian to biosignals could provide the classifier with more tolerance 

to errors caused by sound selection or differences between different patients. Further tuning of both 

the Gaussian and the Hamming distance could enhance their tolerance to errors in future research. 

Additionally, the development of deep learning algorithms is expected to provide more reliable 

results, and the proposed method can be applied to deep learning in the next stage of research. 

The contribution of this study is the introduction of the Gaussian Hamming Distance (GHD) to 

identify similar groups of individuals with heart conditions within HSNs. By comparing heart sounds 

among users in HSNs, this approach enables the identification of individuals with similar heart 

sounds. 

Furthermore, the reliable performance of the GHD in handling shifting time series in heart sounds 

has been demonstrated in previous studies and this study. The proposed method could be utilised in 

building a system for automatic and early remote diagnosis. With the prevalence of low-cost mobile 

phones and the extensive development of IoT, a wearable, online and pervasive healthcare system 

could be developed for various disorders, such as heart disease, gastrointestinal disorders, respiratory 

diseases and more. These systems have the potential to be diagnosis based on auscultation, providing 

accessible and efficient healthcare solutions. 

3.2 Measuring Similarity Between Biosignal with Predicted Word 

Embedding Vector 

3.2.1 Introduction 

Common chronic diseases, such as heart diseases, are the leading causes of death in the world (D 

Mozaffarian et al., 2016; Dariush Mozaffarian et al., 2015). Continuous care and monitoring are 

required to protect against these deaths. Health IoT has emerged as a promising approach for 

pervasive, low-cost, and objective health monitoring (Yildirim, 2018).  

ECG is a common biosignal used in Health IoT for diagnosing heart function. ECG provides 

information on cardiac functions, such as heart rate, and is widely used to monitor cardiovascular 

disease in IoT applications (Azariadi et al., 2016; Y. Lei, Chungui, & Sen, 2011; Rasid et al., 2014; 

Verma & Sood, 2018; Yang et al., 2014). The current approaches include real-time ECG beat 

classification (Tejeda & Falcon, 2019), and heart disease classification (Baloglu, Talo, Yildirim, Tan, 

& Acharya, 2019; Limam et al., 2017; F. Wang et al., 2007; Xiong et al., 2018; Yildirim, 2018). 

However, the current Health IoT faces challenges in providing automated search capabilities for 

relevant health information due to the limited interpretability of biosignal pattern analysis. The 

currently used automated diagnosis methods, which primarily rely on conventional classification 

approaches, have inherent limitations that restrict their ability to encompass the wide range of possible 
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diseases and abnormalities. As a result, manual interpretation of biosignals by trained medical 

professionals is still required at the end (Manogaran et al., 2018).  

To address this gap, we propose the Keyword-based Integrated HSN of Things (KIHoT). The 

objective of KIHoT is to extend the scope of healthcare data analysis beyond predefined diseases and 

abnormalities, specifically in the context of cardiovascular diseases and ECG signals. The proposed 

framework aims to automate the processes of data collection, keyword extraction and information 

retrieval, thereby enhancing accessibility to healthcare information without the need for expert 

knowledge. 

KIHoT utilises CNN to predict word embeddings of medical keywords from ECG signals. In the 

previous study (Y. Huang et al., 2017), researchers manually chose the keywords. These medical 

keywords are selected from HSN posts that are labelled as heart diseases associated with the 

corresponding ECG signals. The predicted word embeddings enable the framework to search HSNs 

for relevant medical knowledge. By automating the processes of data collection, keyword extraction 

and information retrieval, KIHoT aims to enhance accessibility to healthcare information without 

requiring expert knowledge. The framework enables a direct comparison of ECG signals with textual 

data within HSNs, allowing for the exploration of healthcare data possibilities beyond predefined 

diseases and abnormalities. 

The proposed method was evaluated using 11,936 ECG signals from patients with heart disease, 

achieving an average accuracy of 98% for disease prediction. The sensitivity of keyword extraction 

was found to be more than 90% for all instances and more than 95% for 80% of instances. These 

results demonstrate the effectiveness of KIHoT in extracting relevant information from HSN portals. 

The major contribution of this research is the development of KIHoT which enables direct 

comparison of ECG signals with textual data for comprehensive access to health information. By 

integrating IoT and HSNs, KIHoT extends the scope of healthcare data analysis beyond predefined 

diseases and abnormalities. The framework automates the processes of data collection, keyword 

extraction and information retrieval, enhancing accessibility to healthcare information without 

requiring expert knowledge. 
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3.2.2 Method 

3.2.2.1 Overall Process 

 

Figure 3.12 The overall process of the proposed approach.  

As illustrated in Figure 3.12, the process begins by collecting ECG signals and disease-related 

expressions from patients. The ECG signals are then segmented and normalised as a preprocessing 

step for both model training and disease prediction. Symptoms within the disease expressions are 

selected as keywords, and the labels in the database are transformed into sets of keywords. 

Next, the keywords are converted into word embedding vectors, and the sum of these word 

embedding vectors (SOWE) is calculated. The normalised ECG signals and SOWE vectors are used 

to train the CNN predictor. The CNN encoder is trained with ECG as input and SOWE as output, 

enabling it to predict the most likely SOWE given an ECG signal. Subsequently, the predicted 

keywords are utilised to search for relevant information in HSNs, providing descriptions of the health 

conditions. The predicted SOWEs are then converted back into keywords to be compared with the 

original keyword sets. Furthermore, the cosine similarities between the original SOWE vectors are 

utilised to predict diseases. 

3.2.2.2 ECG Data Collection 

Since there was no ECG data associated with symptom expressions in HSNs, this study utilised 

fabricated data to test the proposed approach. A new evaluation model was adopted for this purpose. 

The data used in this study were collected from the PTBDB, a Physionet dataset. The PTBDB 

contains 70,207 heartbeats from 268 subjects, along with diagnostic results. The diagnostic labels 

encompass various conditions such as cardiomyopathy, bundle branch block, hypertrophy, 

myocarditis, myocardial infarction, valvular heart disease, dysrhythmia and healthy controls. Each 

recording in the PTBDB comprises 15 signals, including 12 conventional leads and 3 Frank lead 

ECG. The sampling rate of the signals is 1000. 

In the HSNs, patients are not expected to know about their specific diseases. Instead, they are 

solely expected to be aware of their symptoms and write related posts. Since no dataset currently 

exists that links condition-related posts with actual diagnosis results, a dataset was created based on 

the PTBDB. For each disease, a description of its symptoms was selected from the internet and used 

as the posts. It was assumed that patients with the same disease would exhibit the same symptoms. 
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Additionally, it was assumed that patients’ self-reported descriptions of their conditions were 

accurate. Hence, keywords were extracted from the symptom descriptions found online, as symptom 

descriptions are more prevalent in HSNs. The descriptions were obtained from the top search results 

for each disease. 

Key phrases were extracted using the TextRank algorithm (Mihalcea & Tarau, 2004). The top five 

keywords for each condition were chosen through this approach. For healthy subjects, the keyword 

“health” was selected instead. 

Table 3.3 Number of beats in the dataset. 

Disease Original Dataset Selected Dataset 

myocardial infarction 52326 2496 (5%) 

healthy control 10551 2110 (20%) 

valvular heart disease 499 499 (100%) 

dysrhythmia 1290 1290 (100%) 

heart failure 136 - 

palpitation 45 - 

cardiomyopathy 2227 2227 (100%) 

stable angina 162 - 

hypertrophy 991 991 (100%) 

bundle branch block 2323 2323 (100%) 

unstable angina 38 - 

myocarditis 475 - 

 

Table 3.3 presents detailed statistics regarding the samples and the distribution of study subjects 

for each class. The Physionet toolkit was utilised to select the QRS peak. ECG beats were chosen 

from lead II, as it is widely used in other approaches. Under-sampling was employed to balance the 

dataset, specifically selecting only 5% of myocardial infarction and 20% of healthy ECG beats from 

each subject. Some classes with an insufficient number of samples were excluded from this study. 

3.2.2.3 The Sum of Word Embedding (SOWE) 

The main contribution of this study is the generation of keywords based on ECG data. Instead of 

using a one-hot label, the model predicts keywords in the form of SOWE (Sum of Word Embedding 

vectors). The SOWE representation captures both the disease and the bag of keywords. Compared to 

one-hot annotation, word embedding offers two advantages: it can accommodate a large number of 

candidate keywords and it preserves the semantic meaning of the keyword set, making disease 

prediction easier based on a given vector. 

In practical applications, determining the exact number of keywords to describe a condition can be 

challenging. However, with word embedding, a fixed number of attributes can represent a vast 

number of keywords efficiently. Given the large number of keywords in real-world HSN applications, 

the word embedding approach demonstrates improved efficiency. 
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To represent the keywords, an existing word embedding dictionary (Miftahutdinov et al., 2017) 

was utilised. This dictionary, based on CBOW with 200 attributes, was trained using 2.5 million 

unlabelled comments from online social networks and scientific lectures. Each word is projected into 

a 200-dimensional vector. The training of this dictionary was performed using the Gensim library. 

To remove unnecessary stop words, keywords were selected from the emulated post dataset, which 

served as the label. Key phrases were extracted using the TextRank algorithm (Mihalcea & Tarau, 

2004), and the top five keywords for each condition were chosen. For healthy subjects, the keyword 

“health” was selected instead. For each keyword, the corresponding word vector was selected from 

the existing dictionary mentioned above. Since each disease may have multiple keywords, the 

keyword vectors were summed up. 

The SOWE representation of all diseases forms a matrix for disease diagnosis. Labelling ECG 

with SOWE directly offers the advantage of easily incorporating new keywords if they appear in the 

word embedding dictionary. This process is also equivalent to a classification model, where the 

SOWE vectors are compared with other conditions using cosine similarity measurements, as shown in 

(3.12), (3.13), and (3.14): 

 

 Output(X)=W0∙X+b0, (3.12) 

 Classification(X)=W1∙Output(X), (3.13) 

 Classification(X)=W1∙W0∙X+W1∙b0, (3.14) 

 

where W0, W1 are learnable weight, b0 is learnable bias and X is input. 

3.2.2.4 Keyword Extraction from SOWE 

To extract keywords from word embedding, a greedy search algorithm (White, Togneri, Liu, & 

Bennamoun, 2016) was employed in this approach, aiming to extract the most important keywords 

based on the sum of the word embedding vector. The keyword extraction method consists of two 

steps: the greedy searching step; and the refining step. 

 In the greedy searching step, the Bag of Words (BOW) is initialised as an empty set. In each 

iteration, candidate words that minimise the Euclidean distance between the SOWE of the selected 

keyword set and the given keyword vectors are selected and added to the keyword set. This process 

continues until no further keyword can minimise the difference between the SOWE of the keyword 

set and the given word vectors. 

The refining step focuses on replacing each chosen keyword with other candidate words. For each 

keyword, it is first removed from the BOW. Then, each candidate word is added to the BOW to 

determine whether it can further minimise the difference. If a candidate word is found to reduce the 
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difference, it is retained. Otherwise, the refining step is reversed. This refining process continues until 

there is no further improvement in Euclidean similarity or the maximum repetition limit is reached. 

3.2.2.5 CNN ECG-Word Vector Predictor 

 

Figure 3.13 Structure and Detailed Arguments of The Purposed CNN. 

A CNN is trained in this research to convert an ECG signal segment into a 200-dimensional word 

embedding vector. Figure 3.13 illustrates the architecture of the CNN utilised in our study. The CNN 

consists of three convolutional blocks, serving as feature-extracting layers to extract abstract features 

from the raw ECG signals. These feature extractors are designed to capture fundamental 

characteristics from preceding layers. The input size of the ECG raw signal is 651, and it is directly 

fed into the first convolutional block. The final layer of the CNN is a dense layer responsible for 

regressing the 200 attributes of the word embedding vectors using linear kernels. The loss function 

employed for regression is a mean square error. As a baseline, another CNN with an identical 

architecture is trained, but its output layer serves as a conventional multiclass classifier using one-hot 

labels for keyword prediction. The only difference between the two CNNs lies in their output layers. 

Percentage split was the evaluation method in our approaches. We used 70% of the samples for 

training and 30% of the samples for evaluation. We trained two different CNNs with 50 epochs and 

batch sizes of 32. The model is trained with SGD (Stochastic Gradient Descent) with learning rate of 

0.0001. The first CNN was the proposed approach, which predicted the keyword vector of a condition 

given ECG. The other CNN has an output layer as a conventional multiclass classifier, serving as a 

benchmark. 

3.2.2.6 Evaluation Matrices 

The proposed method was evaluated through three different approaches. The first evaluation focused 

on measuring the model’s ability to predict word embedding vectors. The second evaluation aimed to 

assess the accuracy of retrieving keywords from the predicted vectors. The third evaluation involved 

measuring the difference between the predicted vectors and target vectors. To quantify this difference, 

a classification task was performed using the diseases as classes. For each predicted vector, the most 

similar vector from the set of conditions was selected. The condition associated with the selected 
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vector was then compared with the actual condition for evaluation of the prediction. This evaluation 

task aimed to assess the likelihood of confusion among the conditions. 

To further evaluate the advantage of using SOWE over the one-hot label approach, leave-one-

class-out testing was conducted. This testing procedure involved completely removing one class from 

the training set while still attempting to predict that class in the testing set. This evaluation method 

assessed the ability of the proposed model to predict unknown diseases that were not present in the 

training data. 

3.2.3 Result 

3.2.3.1 Keyword Vector Prediction Result 

Table 3.4 Training MSE, Testing MSE and Keyword Extraction Accuracy of CNN and Linear Regression. 

 CNN Linear Regression 

Training MSE loss 0.276 10.154 

Testing MSE loss 0.468 12.903 

Keyword extraction accuracy 98.604% 57.498% 

 

Table 3.4 presents the training Mean Squared Error (MSE), testing MSE and keyword extraction 

accuracy for both CNN and linear regression models. The CNN model demonstrates significantly 

higher performance compared to linear regression. 

To assess the usefulness of the proposed approach, an evaluation was conducted by measuring the 

accuracy of extracting keywords using the predicted vectors. The percentage of correctly extracted 

keywords was compared to the original keywords. The predicted keywords were obtained using the 

greedy search algorithm. For instance, an ECG signal associated with a certain condition, such as 

Myocardial Infarction (MI), would produce a 200-dimensional vector. 

Subsequently, the extracted keyword is selected from a candidate keyword dictionary. This 

dictionary consists of symptoms related to all known diseases and is prepared for the keyword 

selection process. The significant difference in MSE values leads to varying levels of keyword 

extraction accuracy. The CNN model achieves 98.6% accuracy in extracting keywords correctly, 

whereas linear regression only achieves 57.5% accuracy. 

The sensitivity is calculated as (3.15): 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
 (3.15) 

 

while the precision is calculated as (3.16): 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
 (3.16) 

 

The keywords, such as pain, dizziness, rhythms, and vomiting, are selected using a greedy search 

algorithm from the extracted vector. For example, the ground truth keywords for MI, include pain, 

dizziness, weakness, heaviness and vomiting. In this example, three out of the five ground truth 

keywords are correctly predicted, resulting in a sensitivity of 60%. On the other hand, out of the four 

keywords selected by the algorithm, only three are correct, leading to a precision of 75%. 

 

 

Figure 3.14 Sensitivity of keyword extraction of CNN. 

 

Figure 3.15 Specificity of keyword extraction of CNN. 
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Figure 3.16 Sensitivity of keyword extraction of linear regression. 

 

Figure 3.17 Specificity of keyword extraction of linear regression. 

Figure 3.14 (scale from 70% to 100%) displays the number of instances with different sensitivity 

of keywords correctly predicted. The results show that our model successfully extracted all possible 

correct keywords for more than 70% of instances, and it achieved more than 80% accuracy for more 

than 95% of instances. Except for the hypertrophy and health control conditions, where the extraction 

rate was lower, our model correctly identified more than 95% of all keywords for most conditions. 

Therefore, our model provided sufficient information for most instances. In contrast, the baseline 

approach, as depicted in Figure 3.16 (scale from 0% to 100%), only provided sufficient information 

for a limited number of instances. 
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Figure 3.15 (scale from 70% to 100%) illustrates the population of instances that met various 

performance standards for extracting valid keywords. These standards represent the sensitivity of 

keyword extraction. The results show that the sensitivity of keyword extraction was more than 90% 

for all instances and exceeded 95% for 80% of the instances. In comparison, the baseline method, as 

shown in Figure 3.17 (scale from 0% to 100%), exhibited much lower sensitivity and only provided 

useful keywords for a few conditions. 

Table 3.5 Average performance of keyword extraction. 

 Sensitivity Specificity 

dysrhythmia 98.960% 94.345% 

bundle branch block 99.481% 96.403% 

valvular heart disease 99.036% 96.185% 

cardiomyopathy 99.062% 99.005% 

healthy control 99.830% 98.441% 

hypertrophy 95.631% 99.710% 

myocardial infarction 97.298% 95.327% 

 

Table 3.6 Average performance of keyword extraction (baseline). 

 Sensitivity Specificity 

dysrhythmia 43.762% 46.863% 

bundle branch block 73.824% 76.047% 

valvular heart disease 66.024% 61.228% 

cardiomyopathy 65.191% 62.467% 

healthy control 49.660% 19.694% 

hypertrophy 62.935% 78.188% 

myocardial infarction 45.033% 54.503% 

 

Table 3.5 and Table 3.6 present the average sensitivity and specificity of keyword extraction for 

both the CNN approach and the linear regression approach. When comparing the performance of 

these approaches, the CNN approach demonstrated superior results in terms of both sensitivity and 

specificity for all conditions. To be more specific, the CNN approach consistently outperformed the 

linear regression approach in accurately identifying keywords. In addition, our deep learning approach 

provided more stable results and yielded more useful information when compared with conventional 

machine learning approaches. The CNN approach exhibited a larger proportion of instances with high 

sensitivity and specificity, indicating its effectiveness in keyword extraction. 
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3.2.3.2 Disease Prediction Result 

Table 3.7 Classification Result by CNN Classifier with Softmax. 

 Accuracy Sensitivity Specificity 

dysrhythmia 90.347% 96.053% 99.528% 

bundle branch block 98.268% 94.452% 98.615% 

valvular heart disease 84.337% 97.902% 99.912% 

cardiomyopathy 98.974% 89.286% 97.206% 

healthy control 90.476% 93.662% 98.797% 

hypertrophy 87.372% 96.241% 99.696% 

myocardial infarction 89.139% 90.094% 97.381% 

meta-average 91.273% 93.956% 98.734% 

 

Table 3.8 Searching Performance of word Embedding predicted by CNN. 

 Nearest 2nd 3rd 

dysrhythmia 99.505% 99.505% 100.000% 

bundle branch block 99.711% 100.000% 100.000% 

valvular heart disease 98.795% 99.398% 99.398% 

cardiomyopathy 99.413% 99.413% 99.707% 

healthy control 99.490% 99.490% 99.830% 

hypertrophy 99.317% 99.317% 99.659% 

myocardial infarction 99.603% 99.735% 99.735% 

meta-average 99.405% 99.551% 99.761% 

 

Table 3.9Searching Performance predicted by linear regression. 

 Nearest 2nd 3rd 

dysrhythmia 57.426% 76.238% 91.337% 

bundle branch block 92.496% 98.990% 99.567% 

valvular heart disease 63.253% 68.675% 78.313% 

cardiomyopathy 78.299% 81.671% 86.217% 

healthy control 13.095% 18.027% 25.510% 

hypertrophy 78.157% 93.857% 98.294% 

myocardial infarction 62.384% 81.192% 87.550% 

meta-average 63.587% 74.093% 80.970% 

 

Table 3.10 Searching Performance (Leave-One-Class-Out). 
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 Nearest 2nd 3rd 

dysrhythmia 0.000% 27.228% 81.931% 

bundle branch block 0.000% 13.131% 71.573% 

myocardial infarction 0.000% 9.536% 48.079% 

 

The classification performance of word embedding with a linear kernel was compared with a baseline 

classification method. To perform classification tasks using word embedding, cosine similarities 

between the predicted vector and the sum of keyword vectors for each disease are calculated. Table 

3.7 presents the classification results of the CNN classifier, while Tables 3.8 and 3.9 showcase the 

classification results of a cosine similarity-based approach for searching. Specifically, Tables 3.8 and 

3.9 evaluate the performance of classifiers in identifying the correct condition within the top N 

number of nearest conditions based on the cosine similarity of word vectors. Our findings indicate 

that the cosine similarity-based classification achieved slightly better performance compared with the 

CNN classifier. Furthermore, when considering the linear regression approach, most conditions still 

demonstrated acceptable performance when considering the top two or top three similar conditions. 

This suggests that the sum of the symptom keyword vector had a positive impact on the classification 

and diagnosis of diseases. 

Table 3.10 demonstrates that using SOWE as the label has the potential to predict diseases that are 

not present in the training set. Unlike existing disease predictors that output a finite number of labels, 

our proposed approach predicts a word embedding vector that is associated with symptoms. This 

means that theoretically, our approach can predict symptoms related to new diseases that were not 

included in the training data, if the new disease and its related symptoms are provided. To assess the 

effectiveness of predicting symptoms for unseen diseases, we conducted leave-one-class-out 

validation. In this validation, each disease was withheld during training to create a model, which was 

then used to predict the held-out disease. Despite the potentially significant differences in keyword 

sets among different diseases, SOWE effectively captures the semantics of these keyword sets. Word 

embedding enhances the performance of the CNN model and yields acceptable results with linear 

regression. This improvement demonstrates that the embedding dictionary contains valuable 

information about disease similarities, allowing models to establish connections between signals and 

embeddings. Our method can be considered a zero-shot learning approach, as it learns semantic 

embeddings of ECG rather than specific disease classes. Consequently, these semantic embeddings 

have the potential to predict unknown diseases based on their descriptions. 

Table 3.11 Comparison with state-of-the-art ECG deep learning approaches. 

Approach Task Performance 

CRNN (Limam et al., 2017) Atrial Fibrillation 

Detection 

90.6% Score 
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Deep BiLSTM (Yildirim, 2018) ECG Classification 100.0% Macro F1 

score 

CNN (Liu et al., 2021) Arrhythmia 

classification 

98.96% 

Self-supervised representation learning with 

LSTM+MLP (Multiple Layer Perceptron) (Mehari & 

Strodthoff, 2022) 

Disease 

classification 

94.18% 

SOWE regression with CNN (Ours) Disease 

classification 

99.40% 

 

Table 3.11 compares our approach with the recent state-of-the-art ECG deep learning approaches. 

Our approach shows outstanding performance compared to both supervised classification and self-

supervised learning. 

3.2.4 Discussion 

The results demonstrate that when predicting diseases using the sum of word embeddings instead of 

one-hot annotation of Bag of Words, the distributed representation is more robust. The sum of the 

keyword vector offers a simple approach for estimating diseases given keywords and has the potential 

to predict unknown diseases do not present in the training set. This scalable diagnostic framework 

leverages the information in HSNs and demonstrates the effectiveness of using the sum of word 

embeddings to differentiate diseases based on their symptoms. 

With an average accuracy of 98% for disease prediction, KIHoT holds promise as a valuable tool 

for researchers, clinicians and patients. By integrating HSNs and IoT, KIHoT offers an innovative 

method for collecting data and labels without requiring expert knowledge. The proposed system 

enhances accessibility to healthcare information while simplifying the data collection and analysis 

processes. KIHoT’s success in predicting relevant keywords from ECG signals positions it as a 

promising solution for monitoring health conditions and providing timely interventions. Overall, we 

believe that KIHoT has the potential to significantly improve healthcare services by making reliable 

health information more easily accessible to all users. 

While this study offers a feasible solution for integrating HSNs and IoT to provide cost-efficient 

healthcare services, some limitations require further investigation. These include the accuracy of the 

disease-related keyword prediction model, the quality of extracted keywords, and the word 

embedding dictionary. Additionally, the present study utilised emulated data, which may limit the 

applicability of the proposed approach in real social network environments. Further research should 

focus on improving keyword extraction methods to enhance performance and explore the need for a 

more robust model. Future studies should also aim to expand KIHoT’s capabilities to cover a wider 

range of diseases and assess its scalability with larger datasets from multiple sources. 

In conclusion, this study introduces KIHoT, an automated diagnosis framework that integrates 

HSNs and IoT to address challenges such as rising healthcare costs, limited accessibility to healthcare 

information, and the difficulty of finding relevant medical knowledge in HSNs. KIHoT utilises ECG 
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signals to predict disease-related keywords and enhance accessibility to healthcare information. The 

study demonstrates that KIHoT effectively extracts relevant information from HSN portals, achieving 

an average accuracy of 98% for disease prediction and providing a substantial number of valid 

keywords. 

3.2.5 Conclusion 

This section introduces KIHoT, a deep learning framework that integrates IoT and HSNs, solves 

research question RQ1.2 and proves hypothesis H1.2. This study addresses the challenge of converting 

ECG signals into keywords that allow for direct comparison with textual data in HSN searches. 

Conventional ECG classification methods are limited to predicting predefined diseases and 

abnormalities from their training datasets, which restricts their coverage of the wide range of 

possibilities not explicitly trained for. This study aims to enable the direct comparison of ECG signals 

with textual data in HSN searches, expanding the possibilities of healthcare data beyond predefined 

diseases and abnormalities. 

To achieve this, we propose a Keyword-based Integrated Health Social Network of Things 

(KIHoT), a system that predicts word embeddings of medical keywords from ECG signals. KIHoT 

utilises CNN for this prediction, enabling the search of relevant medical knowledge within HSNs and 

facilitating a more comprehensive exploration of health information. 

The main contribution of this research is the proposal of KIHoT, which enables the direct 

comparison of ECG signals with textual data for comprehensive access to health information. One 

significant aspect of KIHoT is its ability to predict word embeddings of medical keywords from ECG 

signals using CNN. This prediction allows for the search of relevant medical knowledge within HSNs, 

providing a more thorough exploration of health information. 

Furthermore, the effectiveness of KIHoT is demonstrated through its evaluation using a substantial 

dataset of ECG signals from patients with heart disease. The framework achieves high accuracy in 

disease prediction and exhibits a high sensitivity in keyword extraction. These results highlight the 

efficacy of KIHoT in extracting relevant information from HSN portals. 

The proposed KIHoT system provides a cost-efficient method for health monitoring by automating 

data collection, data labelling and model training processes. It requires no expert knowledge from 

users, significantly expanding accessibility to healthcare information. This approach focuses on 

helping users search for information about their health conditions on the internet. Based on the highly 

active user base in HSNs, the integrated HSNs could handle a wider range of diseases compared with 

normal automated diagnosis approaches, further enhancing its usefulness and impact in the field of 

healthcare. 
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3.3 CardioVec: Searching and Indexing ECG in HSN 

3.3.1 Introduction 

HSNs provide a scalable, sustainable and rich medical knowledge base. IoT provides a non-invasive, 

easy, low-cost way to collect patient data. However, retrieving the right information from HSNs can 

be time-consuming and challenging as users are often required to use the right keywords to search and 

filter relevant information. The large amount of data from HSNs is the largest barrier to users 

searching for relevant information. HSNs rely on user-entered keywords to find the right information. 

Finding proper keywords to search the internet for diseases requires in-depth experience in internet 

searching and medical knowledge. Due to user inexperience and expertise, search results of HSNs 

often contain errors and informal terms, thus leading to inaccurate analysis (Alimova & Tutubalina, 

2017; Miftahutdinov et al., 2017). 

There are many applications of IoT focus on disease diagnosis and prediction, such as heart 

disease early detection (Kumar & Gandhi, 2018; Verma & Sood, 2018) and monitoring (Azariadi et 

al., 2016; Manogaran et al., 2018). Other approaches include an automatic medicine dispenser (Yang 

et al., 2014) and community health monitoring (Adame et al., 2018; Jara, Zamora-Izquierdo, & 

Skarmeta, 2013; Y. Lei et al., 2011; Mdhaffar, Chaari, Larbi, Jmaiel, & Freisleben, 2017; Rahmani et 

al., 2018). ECG provides information on cardiac functions, such as heart rate, and is widely used to 

monitor cardiovascular disease in IoT applications (Azariadi et al., 2016; Y. Lei et al., 2011; Rasid et 

al., 2014; Verma & Sood, 2018; Yang et al., 2014). The current approaches include real-time ECG 

beat classification (Tejeda & Falcon, 2019), and heart disease classification (Baloglu et al., 2019; 

Limam et al., 2017; F. Wang et al., 2007; Xiong et al., 2018; Yildirim, 2018). 

The current Health IoT faces challenges in providing automated search capabilities for relevant 

health information due to the absence of interpretable biosignal pattern analysis. This hinders 

effective searches for health-related information within HSNs, requiring manual interpretation and 

monitoring by trained medical professionals (Manogaran et al., 2018). Existing ECG diagnostic 

methods still require experts to interpret and monitor ECG data at the end. This is costly and time-

consuming.  

This research aims to enable semantic search of text-based content in HSNs using ECG data from 

Health IoT. The proposed method focuses on converting biosignal data into clinically interpretable 

descriptions, which can serve as keywords for searching relevant health information in HSNs. Thus, 

instead of users manually interpreting and entering keywords, the HSN content can be searched using 

automatically generated keywords from the ECG signals. 

To address these challenges, we have developed CardioVec, a comprehensive framework 

comprising four modules: the ECG wave detector, the ECG physiological measurement extractor, the 

ECG abnormality detector and the IoT-HSN search interface. The ECG wave detector identifies and 

locates specific positions of the ECG wave signals, from which physiological measurements are 
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extracted. These measurements undergo further processing to generate human-readable keywords. 

Finally, SBERT is applied to search relevant information from the internet using the generated clinical 

descriptions as keywords. 

In our evaluation, CardioVec achieved impressive results, with a top-one precision of 79% for all 

types of ECG signals, 75% for myocardial infarction ECG signals, and 97% for cardiomyopathy ECG 

signals. These findings demonstrate the effectiveness and potential of CardioVec in enabling the 

semantic search of ECG data within HSNs, facilitating efficient access to relevant health information 

for improved decision-making in healthcare.  

The main contributions of this work are as follows. First, this study provides a feasible solution for 

leveraging HSNs with a novel IoT approach that translates biosignals into human-readable keywords. 

Secondly, the integration of IoT and HSNs allows doctors and patients to search relevant medical 

information directly using ECG biosignals. Our keyword generation is evidence-based and is more 

readable and more informative for doctors and patients. The proposed system aims to provide HSN 

services from end-to-end that do not require any expert knowledge.  
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3.3.2 Method 

3.3.2.1 Overall Process 

 

Figure 3.18 Overall process of proposed method. 

Figure 3.18 shows the overall process of the proposed approach. CardioVec consists of four modules: 

ECG wave detector, ECG physiological measurement extractor, ECG abnormality detector and IoT-

HSN search interface. The wave positions of ECG signals are detected using the existing toolkit 

called “Neurokit2” (Makowski et al., 2021), which also annotates PQRST waves on each ECG signal 

segment. The ECG physiological measurement extractor calculates five types of physiological 

measurements for each ECG signal, including intervals and voltages. The ECG abnormality detector 

predicts the presence of six types of ECG abnormalities. Finally, SBERT is applied to search relevant 

information from the internet using the generated clinical descriptions as keywords.  

3.3.2.2 Dataset 

The ECG data was collected from PTBDB, a dataset containing eight diseases from 268 subjects with 

diagnostic results (Bousseljot, Kreiseler, & Schnabel, 1995). Each PTBDB recorded 12 conventional 
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leads and three Frank lead ECGs. We used ECG pulses from Lead II because Lead II is widely used 

in other approaches. Some ECG recordings were too noisy to extract the annotations with the existing 

toolkit, so we discarded them. In this study, we focused on myocardial infarction, cardiomyopathy, 

heart failure and angina. Table 3.12 shows the disease class, detailed numbers of ECG samples, and 

number of articles retrieved.  

 

Table 3.12 Number of ECG and Articles Collected for each Disease. 

Diagnostic Class Number of Selected ECG Subjects Number of Collected Articles 

myocardial infarction 146 9 

cardiomyopathy 28 10 

heart failure 3 10 

angina 2 10 

 

We collected 39 articles from the internet. The name of each disease was searched on Google and 

the results on the first page were collected. We collected those articles on diseases to evaluate whether 

our clinical descriptions had the potential to categorise each disease even without directly predicting 

the disease name. For each article, the main contents (usually in “<p>” and “<ul>” tags) were 

extracted. The contents were then converted into plain text and labelled with the disease names. 

3.3.2.3 ECG Segmentation 

 

 

Figure 3.19 PQRST waves in a lead II ECG heartbeat. 

Wave positions of ECG signals were detected with “Neurokit2” (Makowski et al., 2021). ECG was 

cleaned before detection of R peaks (Pan & Tompkins, 1985). To extract the peaks of ECG, the 

positions of R waves were first extracted. Then the relevant peak positions in the same heartbeat were 

extracted: P wave, Q wave, S wave and T wave. Finally, the onset and offset of P waves and T waves 

were also extracted. Figure 3.19 illustrates an example of the segmentation result in a lead II ECG 

from the PTBDB dataset using “Neurokit2”. The PQRST waves' peaks are labelled, and the start and 

end offsets of the P and T waves are also marked. 
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ECG physiological measurements were extracted from the interval and voltages of annotations. 

We extracted five types of physiological measurements, listed as follows. 

3.3.2.4 ECG Physiology Measurement 

The QT interval is the interval between the peak of the Q wave and the peak of the T wave as in 

(3.17). 

 

 IQT =PT-PQ, (3.17) 

 

where PT denotes the position of T peaks, and PQ denotes the position of Q peaks. 

QRS interval is the interval between the position of the Q wave and the position of the S wave as in 

(3.18). 

 

 IQRS=PS-PQ, (3.18) 

 

where PS denotes the position of S peaks, and PQ denotes the position of Q peaks. 

ST voltage measures the voltage of ECG pf ST segment as in (3.19). 

 

 VST=ECG(PT0), (3.19) 

 

where PT0 denotes the onset of T peaks located in the middle of the ST segment. 

T voltage measures the voltage of ECG in the T peak as in (3.20). 

 

 VT=ECG(PT), (3.20) 

 

where PT denotes the position of T peaks. 

3.3.2.5 ECG Abnormal Patterns 

Table 3.13 Clinical description definitions. 

ECG Abnormalities mean IQT mean IQRS min VT min VST max VST 

ST depression    < -0.1  

ST elevation     > 0.1 

Prolonged QRS interval  > 0.12    

Short QRS interval  < 0.1    

Prolonged QT interval < 0.375     

T wave inversion   < 0   
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From the ECG, we extracted six abnormal ECG patterns: normal sinus rhythm, ST depression, ST 

elevation, sinus tachycardia, sinus bradycardia and atrial fibrillation. Table 3.13 shows how ECG 

signals can be classified into each type of abnormal heart rhythm. 

ST depression and ST elevation suggest angina and myocardial infarction. ECG signals of ST 

depression have VST voltage values that are less than -0.1mV. ECG signals of ST elevation have VST 

voltage values that are greater than 0.1. 

Prolonged QRS interval and short QRS interval suggest cardiomyopathy. The prolonged QRS 

interval is the average QRS interval over 120ms, and the short QRS interval is the average QRS 

interval over fewer than 100ms. 

The prolonged QT interval is the average QT interval over fewer than 375ms. This value is 2 

Sigma away from the average QT interval of healthy subjects. 

T wave inversion suggests myocardial infarction. T wave inversion is determined by the voltage of 

the T wave peak. Normal T wave in lead II is upward and has a positive voltage. A negative voltage 

suggests an inverted T wave. To detect an ECG recording with at least one inverted T wave, we 

calculated the minimum voltages of T peaks.  

3.3.2.6 Semantic Searching 

Embedding is a vector projection space, commonly used for comparing semantic similarity in NLP. 

For example, phases that have similar meanings such as “breath” and “respiratory” have similar 

values in embedding. The previous approach (Y. Huang & Song, 2019), used the SOWE to represent 

the disease by calculating the SOWE of the BOW. The problem with using SOWE is that BOW does 

not contain word series information, so it does not fully represent the full semantic information of the 

sentence. Compared with SOWE, SBERT dynamically updates the integration of frame-based word 

pieces to learn the full semantic information of the sentence. 

However, the conventional approach uses BERT as a cross-encoder to predict each pair of 

statements. This is not suitable for semantic search because there are too many pairs of combinations 

to calculate. SBERT is a modified BERT for Semantic Text Similarity (STS) work and is intended to 

address this issue. Unlike BERT, SBERT converts a statement to a fixed-length integration by 

applying a pooling layer to the output of the last level. The embedding of search queries and 

documents is calculated independently, allowing semantic searches using simple cosine similarities. 

In our study, we use existing SBERT models for the semantic search of clinical descriptions as 

online documents for search queries. A pre-trained binary encoder is used to encode each article for 

semantic search. Each search query is encoded as a sentence embedding and related documents are 

searched. For each query, the 10 most relevant documents are retrieved and ranked based on the 

similarity of their sentence embedding and search query sentence embedding. After that, a pre-trained 

cross-encoder reorders the results with better quality. The utility function that measures whether a 
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document is relevant is based on whether the document mentions the disease names associated with 

the clinical description. 

3.3.2.7 Evaluation Metrics 

 

Figure 3.20 Process of Result Evaluation. 

 

Figure 3.20 shows how we evaluated our results. In the PTBDB dataset, ECGs were labelled with 

disease names. The articles of each disease name were collected. The clinical descriptions generated 

from ECG were used to rank the collected articles. The articles ranked in top 1, top 3, top 5 and top 10 

were retrieved as search results. After that, a utility function was used to evaluate the retrieved article. 

The utility function measures whether a document is relevant based on whether that document refers 

to the patient’s disease name. Finally, the precision of the search result was calculated as (3.21). 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝑆
, (3.21) 

 

where TP denotes the number of retrieved documents that are correct, FP denotes the number of 

irreverent retrieved documents, and S denotes the total number of search results.  

The recall rate measures the percentage of retrieved articles taken from the n-ranking of all correct 

articles. Since there were more than 10 articles related to each disease, we only calculated the recall 

rate of the top 10 search results. The recall rate is calculated as (3.22). 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝑁
, (3.22) 

 

where TP denotes the number of retrieved documents that are correct, FN denotes the number of 

reverent documents that failed to be retrieved, and N denotes the total number of reverent documents. 
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3.3.3 Results 

 

Figure 3.21 Percentage of ECG abnormality in each disease. 

Figure 3.21 shows the percentage of ECG abnormality detected by CardioVec for each disease. We 

found that a change in T wave could detect most cardiomyopathy, myocardial infarction and heart 

failure. T wave inversion and ST depression usually indicate heart failure. From Figure 3.21, we 

found that all the ECG abnormalities detected by CardioVec had crucial information for further 

diagnosis and information retrieval of each disease. 

Table 3.14 Precision of Predicting Diseases. 

Name of Disease Top 1 Precision Top 3 Precision Top 5 Precision Top 10 Precision 

Total 79.14% 55.61% 48.56% 46.84% 

angina 66.67% 77.78% 73.33% 56.67% 

myocardial infarction 75.34% 51.83% 45.34% 46.23% 

heart failure 66.67% 44.44% 53.33% 56.67% 

cardiomyopathy 97.14% 70.48% 59.43% 47.71% 

 

Table 3.14 shows the searching precision of CardioVec. The search results achieved more than 

79.14% of the top one precision of all ECGs. CardioVec achieved 79% top-one precision for all ECG, 

75% top-one precision for ECG with myocardial infarction, and 97% top-one precision for ECG with 

0 0.2 0.4 0.6 0.8 1

ST depression

ST elevation

Prolonged QRS interval

Short QRS interval

Prolonged QT interval

T wave inversion

Percentage of ECG Abnormality in each 
Disease

Cardiomyopathy Angina

Myocardial infarction Heart failure
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cardiomyopathy. We noted that heart failure and angina were found in a small number of samples 

(five in total), and CardioVec still achieved a good performance in detecting those diseases with more 

than 66% precision for the top one search result. The reason for this performance is that instead of 

supervised training, CardioVec classified the disease based on physiological measurement and 

knowledge online. 

Table 3.15 Recall rate of predicting diseases. 

Name of Disease Recall Rate 

cardiomyopathy 26.51% 

myocardial infarction 51.37% 

angina 40.48% 

heart failure 31.48% 

 

Table 3.15 shows the average recall rate of documents related to different heart diseases. The 

search results achieved a recall rate of more than 50% each when searching documents for ECG with 

myocardial infarction. In a real scenario, a recall rate of 50% means that half the potentially useful 

documents can be searched by using clinical descriptions. With the huge amounts of data available on 

HSNs and the internet, CardioVec can provide users with rich information about their health. 

3.3.4 Conclusion 

This section introduces CardioVec, a framework designed for searching and indexing ECG data in 

HSNs and solves research question RQ1.3 and hypothesis H1.3. This section addresses the challenge of 

enabling the semantic search of text-based content from HSNs using ECG data from the IoT in 

healthcare. The challenge involves developing methods to convert biosignal data into clinically 

interpretable descriptions that can be used as keywords to search for relevant health information 

within HSNs. 

This study aims to convert ECG data into interpretable clinical measurements that describe 

physical measurement abnormalities, thus providing keywords for semantic search within HSNs. To 

achieve this, we propose CardioVec, a system that utilises statistical analysis of specific physiological 

measurements extracted from the ECG. These measurements are then processed to generate human-

readable keywords that can be used for searching for relevant information or connecting with other 

users on HSNs. 

CardioVec allows users to obtain useful information about their cardiovascular health by 

generating human-readable keywords from the ECG. These keywords are generated using an 

evidence-based approach and can be used to search for relevant articles on the internet. The clinical 

descriptions are encoded as vectors to facilitate searching for relevant information. Our proposed 

CardioVec system improves the effectiveness and usefulness for patients with cardiovascular diseases 

who wish to learn about their potential health risks. Moreover, the vast amount of data available in 
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HSNs can be used to train the model and predict additional conditions, allowing users to 

automatically receive more information based on biomarkers without the need for manual searches. 

The framework developed in this study can be extended and customised for automatic early 

diagnosis and mass cardiovascular health monitoring in both hospital and home settings. This can be 

combined with visualisation of cardiovascular physiological measurements, which can help trained 

physicians and parents track the cardiovascular health of term infants. 

The contribution of this research is the development of CardioVec, which enables semantic search 

in HSNs by utilising clinically interpretable descriptions derived from ECG data. This improves 

search efficiency and enhances the trustworthiness of the reasoning process. 

One limitation of this study is that the clinical descriptions generated by CardioVec are not 

exhaustive. They do not include subjective patient descriptions and other anomalies that were not 

covered in the mapping function. Future research could explore other measures of cardiovascular 

physiology to enable more effective and usable cardiovascular HIoT applications. 

Additionally, it is important to note that the search results are currently evaluated based on whether 

the retrieved articles mention the disease name. In a real-world scenario, users would require more 

information than just the disease name. Further tests are needed to evaluate the performance of the 

search results and ensure their usefulness in practical applications. 
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4 Integrated HSN for Respiratory Diseases 

4.1 Remote Diagnosis of Respiratory Conditions 

4.1.1 Introduction 

Acute respiratory infections, including pneumonia, are a major contributor to child mortality 

worldwide, particularly in developing countries (Ruuskanen, Lahti, Jennings, & Murdoch, 2011). In 

rural and remote areas, the challenges of a high patient-per-doctor ratio and limited access to 

advanced medical equipment further compound the difficulties in managing these respiratory diseases 

(B. Lei et al., 2014; Puustjärvi & Puustjärvi, 2011; I. Song, 2015). The use of IoT technology has the 

potential to overcome these challenges by enabling remote monitoring and diagnosis of respiratory 

health, providing valuable health-related information to patients (Azariadi et al., 2016). Therefore, 

remote diagnosis using Health IoT plays a critical role in respiratory disease management, particularly 

in remote areas. It not only reduces the need for unnecessary emergency department admissions but 

also has the potential to improve patient outcomes.  

 

Table 4.1 State-of-The-Art of Diagnosing biosignal with Deep Learning. 

Application Date Type Approach Performance 

Classification of wheeze and 

crackle (Acharya & Basu, 2020)  

Respiratory 

sound 

CRNN 57.91% Macro F1-score, 

66.38% Micro F1-Score 

COVID-19 detection (Imran et al., 

2020) 

Cough sound CNN 89.52% F1-score  

COVID-19 detection (Laguarta et 

al., 2020) 

Cough sound CNN 0.95 AUC 

 

Deep learning approaches provide an end-to-end solution for breath sound diagnosis. Table 4.1 

illustrates the state-of-the-art in diagnosing breath sounds using deep learning. CNNs are particularly 

efficient for signal processing tasks due to their ability to leverage local relationship prior knowledge 

and compose lower-level elements into higher-level entities. CNNs have been widely employed in 

respiratory sound classification tasks, including wheeze and crackle detection (Acharya & Basu, 

2020), as well as COVID-19 diagnosis (Imran et al., 2020; Laguarta et al., 2020; Subirana et al., 

2020). On the other hand, LSTM utilises a memory block structure to establish long-distance 

relations, making them the most common RNN approach. In a study by Acharya and Basu (2020), a 

respiratory sound classification model for normal, wheeze, crackle, and combined (wheeze and 

crackle) sounds were proposed using CRNN-based on LSTM and CNN. 

However, conventional deep learning methods, such as CNN and RNN, have limitations in 

modelling varying spatial relations and long sequences due to their inability to find relations with 
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long or varying distances (Vaswani et al., 2017). RNN possesses certain limitations when it comes to 

effectively modelling diverse spatial relations and handling long sequences, primarily due to issues 

such as gradient exploding or vanishing. CNNs encounter limitations when dealing with features that 

have varying distances, as they rely on fixed aggregation weights for spatially neighbouring input 

features (Hu et al., 2019).  

Transformers excel in establishing connections between all nodes in an input sequence through a 

fully connected graph, facilitating the representation of flexible spatial and temporal distributions 

(Vaswani et al., 2017). This capability arises from the attention mechanism employed by 

Transformers, which learns the relationships among input timesteps independently of their positions. 

Consequently, Transformers exhibit adaptability to diverse feature distributions and mitigate the risk 

of overfitting. 

To enhance the performance of the vanilla Transformer and its attention mechanism, researchers 

have proposed ALBERT and UT (Dehghani et al., 2018; Lan et al., 2019). ALBERT introduces 

parameter reduction techniques to enable faster training and improved utilisation of computational 

resources. On the other hand, the Universal Transformer extends the standard Transformer model by 

allowing dynamic computation during both the encoding and decoding stages, leading to enhanced 

representational power and higher accuracy. These advancements in Transformer-based models have 

demonstrated improved performance in various domains, such as NLP, document classification and 

machine translation. 

In contrast, local relation approaches adopt a different strategy by calculating attention within a 

specific aggregation window, capturing local attention energy among inputs. This approach 

introduces an information bottleneck similar to CNN, which has proven effective for feature learning 

in CV tasks (Hu et al., 2019). LR-Net replaces the convolutional layers in ResNet with local relation 

layers, enabling the extraction of local relations within the image. Building upon LR-Net, the Swin 

Transformer has been proposed and has achieved state-of-the-art performance in image classification 

tasks (Liu et al., 2021). Its innovative architecture and attention mechanisms have contributed to 

significant advancements in the field of CV. 

In addition, previous deep learning approaches for respiratory diagnosis were based on lung 

sounds collected with a microscope attached to the chest, which is not suitable for diagnosing children 

due to the requirement of trained medical professionals and the need for immobility during diagnosis 

(B. Lei et al., 2014; I. Song, 2015). Compared with lung sounds, breath sounds can be easily collected 

from the mouth and nose with a handheld microphone, making them suitable for non-invasive and 

contactless diagnosis (Lei, 2014; Song, 2015).  

This research aims to develop a novel deep-learning algorithm for the non-invasive diagnosis of 

specific respiratory diseases, such as asthma or pneumonia, using breath sounds collected with mobile 

devices. The objective is to develop a deep learning algorithm that combines the advantages of CNN, 
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RNN and Transformer, to improve the accuracy of respiratory disease diagnosis, mitigate overfitting 

and overcome the limitations of current approaches. 

This study proposes a novel deep learning algorithm called Recurrent Local Attention Transformer 

Encoder Classifier (ReLATEC), which utilises relative positional encoding, multi-head local 

attentions and recurrent encoder blocks for non-invasive diagnosis of respiratory diseases using 

sounds collected with mobile devices. In this study, we evaluate ReLATEC by comparing it with 

conventional CRNN and Transformer models using 1,144 breathing sounds recorded remotely using 

contactless non-invasive methods. ReLATEC achieved an AUC of 81.9% in accurately detecting the 

presence of respiratory health conditions in patients. Moreover, ReLATEC achieved AUC values of 

0.77, 0.82, 0.83, and 0.68 for accurately detecting specific disease types: cold, flu, pneumonia and 

bronchitis, respectively. ReLATEC demonstrated a sensitivity of 86.98% and a specificity of 70.41% 

in predicting pneumonia, and a sensitivity of 80.38% and a specificity of 70.57% in predicting flu. 

The results achieved in flu and pneumonia detection have the potential to contribute to the effective 

control of infectious respiratory diseases. In comparison to CRNN, ReLATEC effectively mitigates 

overfitting and yields robust results for the diagnosis of respiratory health conditions based on 

biosignals. 

To our knowledge, this is the first time that relative positional encoding, multi-head local attention 

and recurrent encoder block have been combined. In doing so, it has reduced overfitting, memory 

usage and training time, leading to better overall performance by 5.2% over the Transformer in 

detecting respiratory problems using breath sounds collected remotely. The results show that 

respiratory health conditions including pneumonia can be detected remotely, non-invasively. and at a 

low cost. It further shows that respiratory health diagnosis can be done using breathing sounds 

collected from the mouth and nose through any mobile phone. 

The contribution of this study is introducing ReLATEC as a novel deep learning algorithm 

specifically designed for non-invasive diagnosis of respiratory diseases using breath sounds collected 

with mobile devices. The algorithm combines the advantages of CNN, RNN and Transformer models, 

leveraging their strengths in feature composition, temporal modelling, and flexible spatial relations. 

The evaluation of ReLATEC against CRNN and vanilla Transformer demonstrates its superior 

performance and reduced overfitting, highlighting its potential for accurate and efficient respiratory 

disease diagnosis. 

4.1.2 Method 

4.1.2.1 Dataset 

Table 4.2 Data Source. 

Dataset Cold Flu Pneumonia Bronchitis Healthy Total 

DK1 40 15 29 32 61 130 
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DK2 342 341 23 322 172 653 

NS 334 7 182 167 21 361 

Villages 36 21 0 0 346 403 

Total 752 384 234 521 600 1144 

Total % 48.61% 24.82% 15.13% 33.68% 38.78% 100% 

 

 

Figure 4.1 Examples of normal breath sound and sick breath sound. 

The dataset that we used comprised breath sounds from 1,144 patients in Bangladesh as part of Bill 

Gates’ Global Health Challenge initiative project. The sounds were collected from infants and child 

patients (aged 0.6 months to 7 years) having one or more of the following respiratory health 

conditions: pneumonia, bronchitis, cold and flu (Table 4.2). Figure 4.1 displays two examples from 

our dataset. The upper plot represents a healthy breath sound, while the lower plot depicts an example 

of a breath sound associated with common cold and bronchitis. In this example, breath sounds with 

common cold, and bronchitis are more frequent and deeper in nature. The sounds were collected using 

microphones placed near the nose or mouth of patients without touching. DK1 and DK2 datasets were 

collected from two separate hospitals in Dhaka. NS dataset was collected from a hospital in Narsingdi. 

DK1, DK2, and NS data are collected using digital sound recorders (SONY ICD-UX523F). The 

village dataset was collected from the Bhola district as a pilot test data using Nokia cell phones and 

mobile messages.  
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The sampling rate of clinical data (DK1, DK2, NS) collected at hospitals was 44.1kHz (I. Song, 

2015), whereas the sampling rate of the pilot study data (Village) was 22kHz. We labelled the 

collected sounds with a specific diagnosis of the patients by trained doctors at the hospitals. We also 

labelled the starts and ends of exhales and inhales of the breathing cycles.  

To test whether our prediction models would work on the sounds collected at different recording 

conditions, we resampled the original sound data at four different sampling rates (8kHz, 11.025kHz, 

16kHz and 22.05kHz). The resampled sound data were then resampled to 44.1kHz to generate 

standard prediction models that can be used for breath sounds collected at any sampling rate. 

Table 4.3 Total numbers of segments divided dataset to rebalanced data. 

Dataset Cold Flu Pneumonia Bronchitis Disease Healthy Total 

Test 691 316 169 417 790 442 1232 

Training 2241 1114 778 1654 2791 1437 4408 

Validation 232 117 68 169 307 183 490 

Total 3164 1547 1015 2240 3888 2242 6130 

Total % 51.6% 25.2% 16.6% 36.5% 63.4% 36.6% 100.0% 

 

The dataset was divided into three sets: a training set, a validation set, and a testing set, each 

serving different purposes. To ensure the integrity of the data, we allocated 20% of the individual 

records per patient to the test dataset. The remaining records were then split into the training set and 

validation set, with 80% assigned to the training set and 20% to the validation set. This division 

guarantees that no patient data appears in both the training and validation sets, as well as the test set. 

We selected multiple sound segments with a duration of 10 seconds for each breath sound, 

ensuring that each segment contained at least three breathing cycles. Table 4.3 provides the final 

count of sound segments for patients with cold, flu, pneumonia, bronchitis, healthy individuals, and 

those categorised as “sick” (meaning they had at least one of the four conditions) for data 

argumentation. It is worth noting that some patients may have multiple labels, which is why the total 

number of segments for the four disease categories may exceed the number for the sick or total patient 

groups in each dataset. To extract features, we generated the power spectrogram of the sound, 

comprising 128 channels with a window size of 50ms and a window step of 20ms. 

4.1.2.2 Recurrent Local Relation Transformer Encoder Classifier 

(ReLATEC) 

Deep learning approaches provide an end-to-end solution for analysing breath sound: including 

feature selection feature engineering, and prediction. CNN and RNN were the most common deep-

learning models for biosignal processing tasks. CNN has been widely used in respiratory sound 

classification tasks, such as wheeze and crackle detection (Acharya & Basu, 2020) and COVID-19 

diagnosis(Imran et al., 2020; Laguarta et al., 2020; Subirana et al., 2020).  
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However, conventional deep learning methods, such as CNN and RNN, have limitations in 

modelling varying spatial relations and long sequences due to their inability to find relations with long 

or varying distances (Vaswani et al., 2017). To address these limitations, the Transformer model was 

introduced, which can relate all nodes in the input sequence with a fully connected graph, enabling 

flexible spatial and temporal distributions (Vaswani et al., 2017). The Transformer’s attention 

mechanism learns the relations among input timesteps independently of their positions, making it 

adaptable to different feature distributions and preventing overfitting. LR-Net (Hu et al., 2019), 

ALBERT (Lan et al., 2019), and UT (Dehghani et al., 2018) have been further proposed to improve 

upon the vanilla Transformer and achieve better performance. 

 

Table 4.4 Comparison of different models. 

Model 
Relation 

Type 

Relation 

Range 

Cross-Layer 

weight sharing 

Risk to gradient 

vanish or 

exploding  

ReLATEC Dynamic Local Yes Low 

ALBERT / UT  (Dehghani 

et al., 2018; Lan et al., 2019) 

Dynamic Global Yes Low 

LR-Net  (Hu et al., 2019) Dynamic Local No Low 

Transformer (Vaswani et 

al., 2017) 

Dynamic Global No Low 

CNN Static Local No Low 

RNN Dynamic Global No High 

CRNN Mixed Mixed No Medium 

 

Therefore, for diagnosing respiratory diseases, we developed a new deep-learning algorithm called 

ReLATEC that utilises a customised Transformer Encoder network. This study proposes a novel deep 

learning algorithm named Recurrent Local Relation Transformer Encoder Classifier (ReLATEC) that 

utilises relative positional encoding, multi-head local attentions and recurrent encoder blocks to 

diagnose respiratory diseases non-invasively using sounds collected with mobile devices. We evaluate 

the performance of ReLATEC against LR-Net, UT, CRNN and vanilla Transformer and show that 

ReLATEC outperforms these methods, demonstrating better performance and reduced overfitting. 

Table 4.4 compares the key features of ReLATEC, UT, Transformer and the other conventional 

deep learning approaches. ReLATEC combines the local relation from LR-Net and the Recurrent 

encoder block from UT. The combination of the methods showed significantly better performance and 

reduced overfitting compared with CRNN and vanilla Transformer in our evaluations. Furthermore, 

ReLATEC uses relative positional encoding instead of global positional encoding to remove the 

absolute positional information, which is not meaningful in modelling biosignals. 
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Transformer significantly improves the performance on NLP, audio and CV tasks. However, to our 

best knowledge, the Transformer utilising both recurrent structures with local attention has not yet 

been used for diagnosing breath sound. Therefore, we propose ReLATEC that combines recurrent 

encoder block and local relation.  

ReLATEC is a modified Transformer for biosignal processing to replace CNN or RNN, based on 

the evidence of high performance and the potential of different types of self-attention-based 

approaches. Furthermore, the ideas of cross-layer weight sharing from ALBERT and windowed 

attention from LR-Net are combined in ReLATEC. 

 
Figure 4.2 Comparison of vanilla Transformer (a) and ReLATEC (b). 

Figure 4.2 compares the procedures of ReLATEC and Transformer. The difference between 

ReLATEC and Transformer is highlighted with bold red font. Firstly, ReLATEC uses relative 

positional encoding instead of global positional encoding. Secondly, ReLATEC uses a local relation 

instead of global relations to generate contextualised features using a local aggregation window of the 

input. Thirdly, ReLATEC uses a recurrent encoder block instead of multiple individual encoder 

blocks to reduce model parameters.  

The entrance blocks of ReLATEC and Transformer are the same. Raw input is first converted into 

a spectrogram with the shape of N×D. N is the spectrogram frame number and D is the channel 

number. The spectrograms are then used as input feature maps of Transformer or ReLATEC. After 

that, a linear layer is used as an embedding layer to convert the frames into embeddings N×D, which 

is like converting tokens into embeddings. The embeddings are then input to the Transformer blocks 

or the ReLATEC block. The outputs of the Transformer blocks and the ReLATEC block have the 

same shape as N×D. Finally, a global pooling layer reduces the output of the model to the shape of 

1×D.  
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ReLATEC combines the advantages of local relations and recurrent structure. Local relations 

focus on contextual features in local scales to improve the performance in audio-related tasks. The 

introduction of the recurrent structure is equivalent to cross-layer weight sharing, which minimises the 

parameter while improving its performance. 

To process audio signals with ReLATEC, we first convert time series biosignal data into 2D-

spectrograms. The spectrogram is then input into the entry block as (4.1). 

 

 𝐸 = 𝑓 (𝑛2 (𝑊2𝑃𝑜𝑜𝑙2 (𝑓(𝑛1(𝑊1𝑋 + 𝑏1))) + 𝑏2)) + 𝑃, (4.1) 

 

where X denotes the input; W, b denotes the weight and bias of each layer; P denotes positional 

encoding; f is Gaussian Error Linear Units (GeLU) as the activation function; n is layer normalisation 

function; Pool2 is the pooling function with window size and stride size of two. In the entry block, a 

linear layer extracts features for each time step from the spectrogram. A max-pooling layer with a size 

of two is used to down sample the time sequence. The down sample features are further converted 

into embedding vectors. To represent position information, positional embedding is added to the 

embedding sequences. After that, output E feeds into the ReLATEC layer six times recursively. 

Finally, the last output of the ReLATEC transforms into a vector with a dimension of output.  

ReLATEC learns local relations of features rather than global relations of features as in 

Transformer. The local relation in ReLATEC is constraining the aggregation window of self-

attention.  

We hypothesise that using windowed attention is crucial for feature learning in the audio analysis 

resulting in improved performance with less risk of overfitting. 

ReLATEC learns local relations of features rather than global relations of features as in 

Transformer. The local relation in ReLATEC is constraining the aggregation window of self-

attention. We hypothesise that using windowed attention is crucial for feature learning in audio 

analysis resulting in improved performance with less risk of overfitting. 

In windowed self-attention, only the time steps inside the sliding aggregation window are used to 

calculate the attention energy. The localised attention function LA shown below replaces the attention 

function defined in (4.2-4.3): 

 

 𝐿𝐴(𝑄, 𝐾, 𝑉) = 𝑚𝑎𝑠𝑘 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
))𝑉, (4.2) 

 𝑚𝑎𝑠𝑘(𝐸𝑖,𝑗) = {𝐸𝑖,𝑗, |𝑖 − 𝑗| <
𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒

2
+ 10, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (4.3) 
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where Q, K and V are query, key and value, respectively; dk is the dimension of the key, i, j is the 

index of query and key; E is attention energy. In our approach, we test the length of the sliding 

window of 11 and 15. 

To represent positional information in Transformer, positional embedding is appended to the 

output of the entry block as illustrated in Equation (4.1) above. The positional encoding is calculated 

as (4.4) and (4.5): 

 

 (𝑝, 2𝑖) = 𝑠𝑖𝑛 (
𝑝

𝑏

2𝑖
𝑑𝑘

), (4.4) 

 (𝑝, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑝

𝑏

2𝑖
𝑑𝑘

), (4.5) 

 

where p is the position, b is a constant, i is the dimension number, and dk is the total dimension 

number of the key. In the original Transformer approach, the base b is set to 10000. However, the 

positional encoding of the vanilla Transformer contains absolute position information.  

  
Figure 4.3 Conventional local positional encoding in Transformer. 

Figure 4.3 shows the positional encoding when the sequence is long. When the time step is below 

200, the encodings for those positions are very different and may cause overfitting. The higher 

dimension contains absolute position information since it does not repeat its pattern periodically. On 

the other hand, the lower dimension has a repeating pattern. The complete information is an 

interference in our approach since breath sound is not a sentence and only the local position 

information is useful. Thus, those absolute positional encoding leads to overfitting. 

 

Figure 4.4 Customised local positional encoding in ReLATEC. 
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Figure 4.5 Dot-product between encoding in different positions. 

Therefore, we used a novel local positional encoding that contains local information to prevent the 

overfitting problem caused by absolute position. To remove this absolute positional information, the 

base is set to 2. The value of the higher dimension in the positional encoding with the base of 2 is 

equal to the value of the lower dimension in the positional encoding with the base of 10000. Figure 

4.4 shows the pattern of the modified positional encoding. The pattern is now repeating itself in a 

period for all dimensions. Figure 4.5 shows the dot-product between the encoding. With a window 

size of 11 for the windowed attention, only the dot-product between 5 is calculated. In this range, the 

dot-product similarity gradually decreases. 

ReLATEC has only one Transformer Encoder block which is iterated six times. This recurrent 

structure is based on previous approaches such as UT {Dehghani, 2018 #359} and ALBERT (Lan et 

al., 2019). UT and ALBERT outperform vanilla Transformers in different tasks. 

Like ALBERT, ReLATEC has only one encoder block that computes contextual features 

iteratively. The following (4.6), (4.7), and (4.8) show the forward step of a ReLATEC block. 

 

 𝑋𝑖 = 𝑅𝑒𝐿𝐴𝑇𝐸𝐶𝑙𝑎𝑦𝑒𝑟(𝑋𝑖−1), (4.6) 

 𝑅𝑒𝐿𝐴𝑇𝐸𝐶𝑙𝑎𝑦𝑒𝑟(𝑋𝑖) = 𝐹𝐹𝑁(𝑋𝑖 + 𝐿𝐴(𝑋𝑖, 𝑋𝑖 , 𝑋𝑖)), (4.7) 

 𝐹𝐹𝑁(𝑋𝑖) = 𝑛2(𝑋𝑖 + 𝑓(𝑛1(𝑊1(𝑊0𝑋𝑖 + 𝑏0))) + 𝑏1), (4.8) 

 

where Xi is output from iteration i; W and b denote learnable parameters; n is layer normalisation 

function; f is GeLU activation function; FFN is a feed-forward network containing two linear layers; 

LA is multi-head localised self-attention in (6.2). The multi-head attention is used as self-attention, 

where query, key and value are all input. The multi-head self-attention uses local attention in 

equations (3) and (4). 

4.1.2.3 Experiment Parameters 

Table 4.5 Layer configuration of CRNN. 

Block Layer Type Kernel Output Channel  

Entry Block Linear GeLU 64 
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Pooling 2 - - 

Residential Block x3 Residential Layers x3 GeLU 64 

Pooling 2 - - 

RNN BiLSTM - 128 

LSTM (last output) - 128 

Classification Linear GeLU 64 

Linear Sigmoid 1 

 

Table 4.6 Layer configuration of Transformer-based models. 

Block Layer Type Kernel Output Channel  

Entry Block Linear GeLU 64 

Pooling 2 - - 

Linear GeLU 128 

Positional Encoding  128 

Transformer Encoder Block Attention Layer - 128 

Linear GeLU 64 

Linear Linear 128 

Classification Adaptive Pooling - - 

Linear Sigmoid 1 

 

We compared ReLATEC with other benchmark approaches for performance in binary classification 

tasks. To test the effectiveness of local relation and cross-layer weight sharing in ReLATEC, the 

benchmark criteria included other architectures of Transformer. The approaches were: ReLATEC 

(Transformer with local relation and cross-layer weight sharing); Recurrent Transformer (Transformer 

with cross-layer weight sharing); One Layer Transformer (Transformer with one Transformer 

Encoder block only); vanilla Transformer (original Transformer with six independent Transformer 

Encoder blocks) and CRNN. We tried two different window sizes of ReLATEC local attention. Table 

4.5 and Table 4.6 show the layer configuration and structure of the CRNN and Transformer-based 

models. The Feed-Forward layer in the Transformer Encoder block had 32 hidden units to reduce 

overfitting by feature selection. The layer configuration of CRNN was based on a previous study 

(Acharya & Basu, 2020), which was also a respiratory sound classification approach and optimised 

with trial-and-error to achieve the best performances. The models were implemented with PyTorch 

and trained on Nvidia GeForce RTX 2080. We trained the ReLATEC model and other benchmark 

models using a training configuration of 50 epochs and batch sizes of 32. The models were trained 

using the AdamW (Adam with Weight Decay) optimizer with an initial learning rate of 0.0001 and L2 

normalization factor of 0.005. The learning rate was adjusted using a step decay learning rate 
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scheduler, which reduced the learning rate by 20% after each epoch. Additionally, early stopping was 

implemented with a patience of 5 epochs to prevent overfitting. 

We conducted experiments using CRNN, Transformer, Recurrent-Transformer, and ReLATEC 

models for both binary classification and multiple label classification tasks. For binary classification, 

the models were trained to distinguish between two outcomes: sick or healthy, based on the presence 

or absence of any medical condition. Cross entropy loss was utilized during the training process for 

binary classification. On the other hand, multi-class models were trained to handle the complexity of 

categorizing data into multiple distinct diseases. Binary Cross Entropy (BCE) was used for binary 

classification. 

4.1.2.4 The Evaluation Matrices 

The evaluation matrices of our experiments are Sensitivity, Specificity, Accuracy, Precision, and 

AUC of Receiver Operator Characteristics (ROC). Precision is calculated as: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑃𝑟𝑒𝑑
, (4.9) 

 

where TP is the number of true positives; Pred is the number of cases predicted as positive cases. 

AUC is calculated as the area of the ROC curve. 

4.1.3 Result and Analysis 

4.1.3.1 Single Label Classification 

  
Figure 4.6 ROC of and ReLATEC (window size 11) for binary classification of disease from healthy. 
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Figure 4.7 AUC of different approaches (in percentages). 

 

 
Figure 4.8 Number of trainable parameters of different approaches. 

 

 
Figure 4.9 Time spent in seconds for all approaches. 
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To validate the effectiveness of recurrent structure and local relation of ReLATEC, we compared 

different approaches in terms of classification performance, number of trainable parameters and time 

spent in training steps. Figure 4.6 illustrates ROC of and ReLATEC for binary classification of 

disease from healthy. Figure 4.7 compares the AUC values of ROC curves of ReLATEC and the other 

benchmark approaches. ReLATEC significantly outperformed CRNN with AUC values of 81.9% and 

64.1% for ReLATEC and CRNN, respectively. Figure 4.8 compares the number of trainable 

parameters of different approaches. Transformers with one encoder block, including recurrent 

Transformer and ReLATEC, significantly reduce memory usage compared to vanilla Transformer and 

CRNN. Although vanilla Transformer significantly outperforms CRNN, it requires 1.206 million 

trainable parameters, while CRNN only requires 0.323 million parameters. On the other hand, 

ReLATEC only has 0.215 million parameters. Figure 4.9 compares the time spent on one single epoch 

of training different models. ReLATEC only requires around 13 seconds, while Transformer requires 

16 seconds, and CRNN requires 20 seconds. ReLATEC and recurrent Transformer take less time for 

training. Compared to CRNN and vanilla Transformer, ReLATEC achieved better performance with 

fewer parameters and shorter training time. 

We should note that the one-layer Transformer did not perform better than the recurrent 

transformer and the vanilla transformer indicating that multiple encoder blocks are necessary for the 

Transformer to achieve good performance, regardless of weight sharing. Furthermore, the recurrent 

Transformer outperformed the vanilla Transformer indicating that multiple encoder blocks with cross-

layer weight sharing of recurrent Transformer and ReLATEC can result in improved performances. 

Recurrent Transformer Encoder significantly reduces the number of parameters without impacting the 

performance negatively. With a reduced number of parameters, the risk of overfitting is minimised. 

ReLATEC is a further improvement of Recurrent Transformers by using local relations rather than 

global relations. Local relation improves the AUC by up to 81.9 with a window size of 11. These 

results show that constraining the aggregation window of self-attention improves performance. By 

combining recurrent structure and local relation, our proposed ReLATEC greatly improves the AUC 

over CRNN and vanilla Transformer.  

  
Figure 4.10 Training loss (blue) and validation loss (orange) of ReLATEC. 
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Figure 4.11 Training loss (blue) and validation loss (orange) of CRNN. 

  
Figure 4.12 Validation loss of ReLATEC (blue), Transformer (orange), and CRNN (green). 

Now we look at how ReLATEC solves overfitting. Figures 4.10 and 4.11 show the training loss 

(blue) and validation loss (orange) of ReLATEC and CRNN. The training rate and L2 normalisation 

factor of both approaches are 0.0001 and 0.005, respectively. CRNN shows a serious overfitting 

problem after 10,000 iterations and eventually emerged unusable. ReLATEC and Transformer had a 

minimal overfitting problem, and validation loss did not increase. ReLATEC and Transformer did not 

memorise and specialise training data as CRNN does. Figure 4.12 compares the validation loss of the 

CRNN, vanilla Transformer and ReLATEC. Transformer-like approaches, including ReLATEC, 

significantly reduced overfitting. Using cross-weight sharing and local relation, ReLATEC further 

reduced the overfitting problem compared with the vanilla Transformer. ReLATEC has a slight 

advantage in overcoming the overfitting problem and converging speed. Although early stopping was 

applied in all approaches, ReLATEC outperforms CRNN and Transformer in validation loss. This 

difference in validation loss indicates that ReLATEC overcomes the overfitting problem as expected. 
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Figure 4.13 Line chart of AUC for ReLATEC, Transformer and CRNN with varying lengths of the input sound. 

 

Figure 4.14 AUC of ReLATEC with varying test sampling rates. 

ReLATEC was stable with varying lengths and quality of audio input. Figure 4.13 shows the 

performance of the classifiers when the length of the input sound is shorter than the required 10 

seconds, as the models are trained with 10-second length segments. Both Transformer and ReLATEC 

outperformed CRNN. Even with two seconds of sound, ReLATEC achieved the AUC of 79.5 

demonstrating its robustness to input data quality. Figure 4.14 shows the AUC of ReLATEC with 

varying test sampling rates. ReLATEC was more robust to different sound recording conditions than 

other approaches. It provided robust performance across the input sounds recorded at different 

simulated sound sampling rates.  

Table 4.7 Performance with over 95% sensitivity using 8k sampling rate. 

Model AUC Sensitivity Accuracy Precision Specificity 

ReLATEC 81.9% 95% 72.3% 65.3% 49.5% 
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Transformer 77.7% 95% 70.4% 63.5% 45.0% 

CRNN 68.3% 95% 57.6% 54.3% 19.91% 

 

Table 4.7 shows the cost-saving by using a ReLATEC classifier, which was configured to achieve 

95% sensitivity (recall rate). Given an infection rate of 10%, ReLATEC reduces painful and costly 

RT-PCR-based tests by 44.5% since the specificity is 49.5%. Only 49.5% of the 90% healthy 

population needs further testing. 

Table 4.8 Performance with over 95% sensitivity using 8k sampling rate. 

Application Date Type Feature Approach Performance 

Classification of wheeze and 

crackle (Acharya & Basu, 2020)  

Respiratory 

sound 

Mel-

spectrogra

m 

CRNN 57.91% Macro F1-

score, 66.38% Micro 

F1-Score 

COVID-19 detection (Imran et 

al., 2020) 

Cough sound MFCC CNN 92.64% Accuracy  

COVID-19 detection (Laguarta et 

al., 2020) 

Cough sound MFCC CNN 95.0% AUC 

Respiratory insufficiency 

detection in COVID-19 (Gauy & 

Finger, 2021) 

Speech MFCC Transforme

r 

96.38% Accuracy 

Classification of wheeze and 

crackle (Moummad & Farrugia, 

2022) 

Lung Sound Mel-

spectrogra

m 

CNN 57.55 Score (Means of 

sensitivity and 

specificity) 

Diagnosis of respiratory diseases 

(Basu & Rana, 2020) 

Lung Sound MFCC RNN 

(GRU) 

95.67% 

Ours Breath sound  Mel-

spectrogra

m 

CRNN 64.1% AUC 

Ours Breath sound  Mel-

spectrogra

m 

ReLATEC 81.9% AUC 

 

Table 4.8 presents the state-of-the-art in diagnosing respiratory sounds using deep learning 

techniques. CNN has been employed for the diagnosis of COVID-19 using cough sounds (Imran et 

al., 2020; Laguarta et al., 2020). Acharya and Basu (2020) proposed a respiratory sound classification 

method using CRNN, a combination of CNN and RNN, to classify normal, wheeze, crackle and both 

wheeze and crackle sounds. Transformers have also been utilised for the diagnosis of COVID-19 

using speech sounds, achieving an accuracy rate of 96.38%. The most common features in deep 

learning-based approaches are the Mel-spectrogram and MFCC. State-of-the-art approaches involve 



110 

 

 

 

 

the use of Transformers and CNN on lung sounds, and we conducted a comparative analysis using 

these approaches on our dataset. Currently, there is no existing approach that specifically diagnoses 

respiratory diseases in children using non-contact breath sounds. The CRNN-based method 

demonstrates lower performance compared with the state-of-the-art approaches, as indicated by lower 

accuracy rates or other relevant metrics. The quality of the signal and the characteristics of the 

population group pose barriers to diagnosis performance. In comparison to the existing approaches, 

our proposed ReLATEC method is non-invasive and achieves similar performance to the state-of-the-

art approaches. 

4.1.3.2 Multiple Label Classification 

  
Figure 4.15 ROC of cold, flu, pneumonia and bronchitis prediction. 

 

Table 4.9 Performance of multiple Label Classification. 

Model AUC Accuracy Precision  Sensitivity Specificity 

cold 77.33% 69.41% 69.66% 68.76% 70.06% 

flu 82.74% 75.47% 73.20% 80.38% 70.57% 

pneumonia 83.48% 78.70% 74.62% 86.98% 70.41% 

bronchitis 68.68% 60.79% 63.24% 51.56% 70.02% 

 

In this section, we present the performance of ReLATEC in conducting multiple label classification 

for predicting various diseases. Figure 4.15 displays the ROC curves for each disease classification, 

while Table 4.9 provides information on AUC, accuracy, precision, sensitivity and specificity for each 

disease.  

The outcomes for flu and pneumonia prediction were exceptional, with both achieving an AUC of 

more than 80% and sensitivity exceeding 80%. Notably, the model demonstrated a sensitivity of 

86.98% and a specificity of 70.41% for pneumonia prediction. These results highlight the cost 

efficiency and effectiveness of our model in predicting pneumonia and flu from breath sounds. The 
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model’s performance has the potential to assist patients in confirming their health concerns promptly 

and can potentially save up to 70% of unnecessary costs. 

4.1.4 Discussion 

The proposed ReLATEC utilises local attention and recurrent structure on the Transformer framework 

for sound-based diagnosis tasks, demonstrating more robust results compared with conventional 

approaches. Local attention calculates attention energy within a fixed-sized window, resulting in 

linear spatial complexity, in contrast to the original Transformer’s O(n^2) spatial complexity. This 

combination of methods has shown significantly improved performance, reduced memory usage, 

training time and overfitting compared with CRNN, Recurrent Transformer and vanilla Transformer 

models. However, further work is still needed to test ReLATEC on a larger dataset and deploy this 

study for real-world applications, specifying the specific objectives or goals of this deployment. 

The proposed ReLATEC, with its combination of local attention and recurrent structure, is to 

significantly improve the performance of diagnosing respiratory diseases using breath sound, 

outperforming the vanilla Transformer and conventional CRNN models. ReLATEC has exhibited 

relatively good performance for infectious diseases such as flu and pneumonia. Furthermore, since 

breath sound collection only requires a mobile phone and does not necessitate well-trained medical 

professionals, our proposed approach shows the potential to provide fast, non-invasive and low-cost 

pervasive respiratory health screening for children. 

4.1.5 Conclusion 

This section introduces a novel deep learning algorithm named ReLATEC, which addresses research 

question RQ2.1 and hypothesis H2.1. The research question and hypothesis being addressed by 

ReLATEC should be briefly explained for better clarity. The section focuses on the challenge of 

developing an efficient deep-learning model that effectively combines CNNs, RNNs and 

Transformers for the analysis of breath sounds. Specifically, RNNs face limitations in modelling 

diverse spatial relations and long sequences due to issues of gradient exploding or vanishing. In 

contrast, CNNs excel at composing lower-level elements into higher-level entities, making them well-

suited for signal processing tasks. However, CNNs struggle to model features with varying distances 

due to the fixed aggregation weights in their convolutional kernels for spatially neighbouring input 

features. The specific challenges or limitations posed by gradient exploding or vanishing and fixed 

aggregation weights in CNNs should be elaborated for better clarity. 

To address these challenges, we propose a deep learning model called ReLATEC for diagnosing 

respiratory diseases from breath sounds collected with mobile devices. ReLATEC combines CNNs, 

RNNs and Transformers to analyse breath sounds and leverages local attention and recurrent structure 

on the Transformer model. This approach has shown more robust results compared with conventional 

methods. 
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The combination of these methods in ReLATEC leads to significant improvements in 

performance, memory usage, training time and overfitting compared to CRNN, Recurrent 

Transformer and vanilla Transformer models. ReLATEC outperforms both the vanilla Transformer 

and conventional CRNN approaches. 

Our contribution lies in the design of ReLATEC, which enables precise diagnosis of respiratory 

diseases using breath sounds captured from mobile devices. By leveraging the strengths and 

addressing the weaknesses of CNNs, RNNs and Transformers, we enhance the accuracy of respiratory 

disease diagnosis. 

4.2 Searching Health Information Using Breathing Sounds 

4.2.1 Introduction 

IoT applications for breath sounds have great potential to provide fast, low-cost, contactless and non-

invasive monitoring of respiratory health problems. Respiratory sounds, or breath sounds, contain 

important indicators of respiratory illness (B. Lei et al., 2014; Marshall & Boussakta, 2007). Breath 

sounds can be non-invasively collected by handheld microphones (Bokov et al., 2016; I. Song, 2015). 

Previous studies using automatic breath sound diagnosis focused on detecting abnormal breath sounds 

including wheezes (Bahoura, 2009; Bokov et al., 2016; Naves et al., 2016; Taplidou & 

Hadjileontiadis, 2007a, 2007b), crackle (İçer & Gengeç, 2014; Naves et al., 2016) and rhonchi (İçer & 

Gengeç, 2014). Other studies focused on classification of medical conditions (Charleston-Villalobos 

et al., 2011; B. Lei et al., 2014; Sánchez Morillo, Astorga Moreno, Fernández Granero, & León 

Jiménez, 2013; I. Song, 2015). 

However, the current approaches lack interpretable breath pattern abnormality analysis for further 

understanding of respiratory conditions. This hinders effective searches for health-related information 

within HSNs, requiring manual interpretation and monitoring by trained medical professionals 

(Manogaran et al., 2018).  

To address the challenges of interpreting breath sounds and facilitating targeted information 

retrieval, we aim to transform breath sounds into interpretable clinical measurements that represent 

specific physical abnormalities. These clinical measurements will be used as search keywords within 

the HSNs, improving search capabilities and enabling targeted information retrieval. 

PhysioVec consists of three modules: (1) LRT for biosignal segmentation, which performs the 

segmentation of biosignals; (2) Multivariate Radial-Basis Logistic Interpreter (MLI) for the 

physiological description of patients, which provides clinical descriptions based on vital respiratory 

physiological measurements; and (3) SBERT (Reimers & Gurevych, 2019) for semantic search of 

online content, which enables the searching of online documents. Breath sound recordings are 

collected non-invasively using a common mobile phone or digital recorder. The advantages or 

benefits of this non-invasive approach should be briefly explained. From the segmented breathing 
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sounds three types of vital respiratory physiological measurements, namely breath rate, breath pitch 

and breath depth, are extracted. MLI estimates five types of respiratory abnormalities, including 

tachypnea, hyperpnea, hypopnea, wheeze, and dyspnea, from vital respiratory physiological 

measurements. The clinical descriptions obtained are then used for searching online documents, 

providing valuable insights or information. Finally, SBERT, a pre-trained NLP model, is applied to 

convert both online documents and clinical descriptions into vectors for enhanced semantic searching.  

LRT achieved a segmentation IoU of 77.0%, which was 24.0% higher than the conventional 

Transformer’s performance of 62.1%. Additionally, it achieved Pearson scores of 91.71%, 72.10%, 

and 88.15% in estimating three physiological measurements: breath rate, breath pitch and breath 

depth, respectively. The predicted breathing abnormalities (disease) had an average sensitivity of 

62.9% and an average specificity of 94.1%. In online searching tasks, the top-one search results 

achieved precision rates of 100%, 59.8%, 92.2%, and 100% for common cold, influenza, pneumonia 

and bronchitis, respectively. The precision of the top one for all conditions is 0.903. PhysioVect 

successfully integrated IoT with HSNs allowing patients and doctors to directly search relevant health 

information using breathing sounds. It also provides interpretable physiological and pathological 

information about underlying respiratory health conditions. It not only predicts the disease but also 

provides rich information to patients for them to better understand their health conditions with more 

clarity.  

The major contributions of our approach are: (1) We proposed a novel LRT combining local 

attention and recurrent Transformer to reduce overfitting and improve performance in the 

segmentation of breathing sounds; (2) interpret breath pattern abnormality by extracting physiological 

measurements; and (3) PhysioVect successfully integrated IoT with HSNs allowing patients and 

doctors to directly search relevant health information using breathing sounds. 
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4.2.2 Method 

4.2.2.1 Overall Process 

 

Figure 4.16 Overall Process of the proposed PhysioVec. 

Figure 4.16 illustrates the overall process of the proposed PhysioVec system. Breath sounds are 

collected non-invasively using common IoT or digital recorders. Next, the system generates a 

prediction of the segmentation annotation for the breath sound. From the segmented breath sound, 

physiological measurements are extracted. These measurements are then converted into clinical 

descriptions by MLI based on statistics and existing knowledge. Finally, the clinical descriptions, 

along with online documents, undergo vector conversion using SBERT. The resulting vectors enable 

semantic searching, facilitating the retrieval of relevant information. 
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4.2.2.2 Dataset 

The breath sound recordings were collected from 1,144 patients from hospitals and clinics in 

Bangladesh (I. Song, 2015). The data were labelled with health conditions (cold, flu, bronchitis, and 

pneumonia), age and exhale cycles. Each exhale cycle was labelled with the beginning and ending 

time. 

Data were divided into training sets; validation sets and test sets. The test set was selected with 

20% random sampling. The training set and validation set were further selected with a proportion of 

80%. After that, a 30-second-long segment was extracted from each case which contained at least 

three exhale cycles.  

In this study, we aimed to collect information on four common respiratory diseases: the common 

cold, influenza, pneumonia, and bronchitis. To collect data, we searched for each disease name on 

Google and manually collected the results on the first page. We then used the physiological 

descriptions of each disease as search queries to locate relevant articles. In total, we collected 35 

articles from various reputable sources on the internet. 

The articles collected were thoroughly examined to extract information on the pathophysiology, 

symptoms, diagnosis, treatment, and prevention of each disease. We ensured that the articles collected 

were up-to-date and published within the past few years to ensure the validity and reliability of the 

information collected. We also made sure to include articles from various sources to ensure a 

comprehensive understanding of each disease. 

4.2.2.3 Local Relation Transformer (LRT) 

In our work, we developed and trained LRT, a customized Transformer model specifically designed 

for breath sound segmentation. In comparison to the conventional Transformer model, LRT 

incorporates both local attention and a Recurrent encoder block. These modifications were 

implemented to address overfitting issues and enhance the overall performance of the model. 
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Figure 4.17 Comparison of vanilla Transformer (a) and ReLATEC (b). 

Figure 4.17 provides a comparison of the breath sound segmentation procedures using both LRT 

and Transformer models. The input feature maps for both models are spectrograms, which are derived 

from raw audio data. The entry block in the models serves as a simple feed-forward network. To 

enhance the robustness of the segmentation results, the hidden layer is configured with a dropout rate 

of 50% during training. The major difference between LRT and Transformer models is visually 

emphasized with bold red styling. Firstly, LRT utilizes a local relation approach to generate 

contextualized features, employing a local aggregation window of the input and a learnable local 

positional embedding, as opposed to relying on global relations. This allows for more localized 

feature generation. Additionally, LRT incorporates a recurrent encoder block to reduce memory 

usage, replacing the use of multiple individual encoder blocks. Finally, a linear layer is employed to 

convert the output features into the segmentation output. 

The concept of local relation was initially introduced in LR-Net (Hu et al., 2019), an image deep-

learning model that utilizes sliding window attention to extract contextual features based on the local 

relations of input features. The findings from LR-Net demonstrated that the incorporation of local 

relation introduces an information bottleneck to the feature learning process, which has proven to be 

crucial in computer vision tasks and leads to improved performance. Building upon this, we 

hypothesize that this information bottleneck effect of local relation can also enhance performance in 

the analysis of breath sound. Furthermore, the adoption of local attention reduces spatial complexity, 

allowing the model to effectively process longer sequences. In contrast, the Vanilla Transformer 

model calculates attention energy between all input nodes, resulting in a many-to-many relation. 

Given an input size of n, the Vanilla Transformer model exhibits a spatial complexity of O(n2) when 
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storing attention energy. However, with local attention, the attention energy is only calculated within 

a fixed-sized window, resulting in a complexity of O(n). Multi-head local attention is computed using 

the method described in equations (4.10-4.12). 

 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄(𝐾+𝑃)𝑇

√𝑑𝑘
)𝑉, (4.10) 

 𝑀𝐻𝐴(𝑄,𝐾, 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑0, … ℎ𝑒𝑎𝑑ℎ), (4.11) 

 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑞
, 𝐾𝑊𝑖

𝑘 , 𝑉𝑊𝑖
𝑣), (4.12) 

 

where dk denotes the number of embedding dimensions, W denotes learnable weights, P denotes 

learnable positional embedding, and i denotes the head number. 

To address the issue of overfitting and enhance performance, we introduced a recurrent encoding 

block in our approach. Previous studies, such as UT and ALBERT, have provided evidence of the 

superiority of this strategy over vanilla transformers (Dehghani et al., 2018; Lan et al., 2019). In our 

LRT approach, rather than utilizing multiple independent layers, we iteratively apply a single encoder 

block six times, as shown in equations (4.13) and (4.14). 

 

 𝑋𝑖 = 𝐿𝑅𝑇(𝑋𝑖−1), (4.13) 

 𝐿𝑅𝑇(𝑋𝑖) = 𝐹𝐹𝑁(𝑋𝑖 +𝑀𝐻𝐴(𝑋𝑖, 𝑋𝑖 , 𝑋𝑖)), (4.14) 

 

where Xi is output from iteration i; W and b denote learnable parameters; FFN is a feed-forward 

network with a hidden layer; MHA is multi-head local self-attention. The multi-head attention is used 

as self-attention, where query, key, and value are all input. 
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Figure 4.18 Local Attention Implementation in Our Approach. 

Figure 4.18 illustrated the implementation of multi-head local attention in our approach.  The input 

size is N×D, where N represents the length of the input sequence, and D denotes the dimension of the 

input feature. Sliding windows of size W are generated from the input, alongside the utilization of the 

dimension N for key and value associations. Through linear layers without bias, query, key, and value 

are obtained. Query, key, and value are then split into H heads. The energy is calculated as the dot 

product of the query and key, incorporating dimension d. The Softmax of scaled energy is then 

calculated, to build attention with a local aggression window for each head. Finally, the values for 

each head are computed as the dot product with dimension d, and then concatenated to form the 

output. 

The loss function to train the model is frame-wise cross-entropy. Since some samples of the 

collected breath sounds are not fully annotated, the loss after the last annotated exhale cycles is set to 

zero. We trained the LRT and Transformer using a training configuration of 50 epochs and batch sizes 

of 64. The models were trained using the AdamW optimizer with an initial learning rate of 0.0001 and 

a weight decay of 0.0001. The learning rate was reduced by 20% after each epoch. Additionally, early 

stopping was implemented with a patience of 5 epochs to prevent overfitting. 
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4.2.2.4 Respiratory Phycological Measurements 

Respiratory physiological measurements are extracted from the longest continuous exhale cycles of 

each breath sound recording. To find the continuous exhale cycles, we detect the outliers of 

inspiratory cycles with Tukey’s Fence algorithm as (4.15). 

 

 𝑇 = 𝑄3 + 1.5(𝑄3 − 𝑄1), (4.15) 

 

where Q3 and Q1 denote the upper quarter and lower quarter of the sample. Inspiratory cycle outliers 

are longer than T. A group of continuous exhale sounds does not contain an outlier inspiratory cycle. 

Then the longest continuous exhalation cycles are selected.  

 

Figure 4.19 Plot of physiological measurements of breath sounds: breath rate, frequency (pitch), and power 

(depth). Healthy sounds are in blue and abnormal sounds are in orange. 

After that, we extracted four respiratory measurements from the segmentation of breath sounds: 

breath rate, breath depth and spectral centroids. Figure 4.19 plots the breath rate, frequency, and 

power of healthy (blue) and diseased (orange) breath sounds. Compared with healthy breath sounds, 

diseased breath sounds have lower power, higher pitch and higher breath rate.  

Breath rate was calculated as (4.16): 

 

 𝐵𝑟𝑒𝑎𝑡ℎ𝑟𝑎𝑡𝑒 =
𝑆𝑛−𝑆1

𝑛−1
, (4.16) 

 

where S denotes the start of an exhale sound in the recording, i denotes the exhale sound number, and 

n denotes the total number of exhale sounds. 

Mean breath depth is measured with the power of the audio recording, which was calculated as 

(4.17-4.19). 

 

 𝑝𝑡 = √𝑋𝑡
2, (4.17) 
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 𝑝𝑖 = ∑ 𝑃𝑡
𝐸𝑖+𝑆𝑖
𝑡 , (4.18) 

 𝑃 =
∑ 𝑝𝑖
𝑛
𝑖

𝑛
, (4.19) 

 

where X denotes the spectrogram of the sound, S denotes the start of the exhale sound in the 

recording, E denotes the end of the exhaling sound in the recording, i denotes the exhale sound 

number, and n denotes the total number of exhale sounds. 

The pitch of a breath sound can be determined by analysing the mean exhale spectral centroid. 

Wheezing is characterised by a high-pitched breath sound, which often indicates a narrowing of the 

windpipe. Spectral centroid is calculated as (4.20).  

 

 𝐶𝑡 =
∑ 𝑓𝑖𝑋𝑡𝑖
𝑛
𝑖

∑ 𝑋𝑡𝑖
𝑛
𝑖

, (4.20) 

 

where X denotes the spectrogram of the sound, i denotes the spectrogram number, .Xti denotes the 

energy in i frequency and t time of the spectrogram, fi denotes the frequency of channel i of the 

spectrogram. 

The average pitch of breath sound is calculated as (4.21) and (4.22) 

 

 𝑐𝑖 = ∑ 𝐶𝑡
𝐸𝑖+𝑆𝑖
𝑡 , (4.21) 

 𝐶 =
∑ 𝑐𝑖
𝑛
𝑖

𝑛
. (4.22) 

 

where S denotes the start of the exhaling sound in the recording, E denotes the end of the exhaling 

sound in the recording, i denotes the exhaling sound number, and n denotes the total number of 

exhaling sounds. 

Table 4.10 Normal Range for each Respiratory Physiology Measurement in Different Age Groups. 

Age Group 
Breath Rate (Breathing 

Per Minutes) 
Pitch (Hz) Breath Depth (db) 

<1 24-60 1160-2359 0.218-0.788 

1-2 24-40 1160-2359 0.349-1.466 

3-5 22-34 1160-2359 0.419-1.932 

6 18-30 1160-2359 0.427-2.238 

 

The measurements are converted into abnormal breathing patterns using a mapping function, a 

combination of Gaussian radial-basis, and logistic functions. Clinical normal distribution parameters 

are calculated from the healthy subjects in the training set. Clinical normal distribution parameters are 
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used to initialise the functions. Table 4.10 shows the normal range of each breath rhythm respiratory 

physiology measurement. Measurement within the normal range is considered normal. We use 1.65 

Sigma to determine the normal range of breath sound, which is the decision boundary of abnormal 

values for balanced sensitivity and specificity.  

Table 4.11 Definitions of Breath Rhythm Clinical Descriptions based on Respiratory physiology measurement. 

Medical Term of 

Breathing Abnormality 

Commonly used 

Synonym 
Rate Depth Pitch 

tachypnea rapid breath High   

hyperpnea deep breathing  High  

hypopnea shallow breathing  Low  

wheeze wheeze   High 

dyspnea Shortness of Breath High Low  

 

Abnormal breath patterns can be determined with a logistic function according to the Sigma of 

physiological measurements. The logistic function uses the definition of abnormal breathing patterns 

based on previous studies (Table 4.11). From the breath sounds, we extracted seven abnormal 

breathing patterns. The commonly used synonyms of those abnormal breathing patterns are used as 

keywords for searching since the synonyms are more common on the internet.  

Since both shallow breath (hypopnea) and tachypnea suggest loss of lung volume, we use 

shortness of breath to represent when a patient has both tachypnea and hypopnea. 

4.2.2.5 Evaluation Metrics 

We evaluated the performance of our proposed model using Intersection over Union (IoU) calculated 

as (5.6). 

 

 𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
, (5.6) 

 

where TP is the number of correctly detected exhale frames, FP is the number of detected exhale 

frames that are not correct, and FN is the number of exhaling frames that are not detected. 

We evaluated the performance of our proposed model to generate the physiological measurement 

using percentage Root Mean Square Error (RMSE), and Pearson product-moment correlation 

coefficients. RMSE and percentage MSE were calculated as (5.7) and (5.8). 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑝𝑖)

2𝑛
𝑖=0 , (5.7) 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑒𝑎𝑛(𝑦)
, (5.8) 
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where i denotes the number of samples, y denotes ground truth and p denotes the predicted value. 

Pearson correlation coefficients are calculated as (5.9). 

 

 𝜌𝑥,𝑦 =
𝑐(𝑥,𝑦)

𝜎𝑥𝜎𝑦
, (5.9) 

 

where c is the covariance; x and y are two sets to be compared; σ is the standard deviation. 

We evaluate the search results with a utility function that detects whether the searched articles 

mention the disease name of the breath sound. We should notice that the search queries are only 

descriptions of breathing patterns (Table 5.14). Thus, this utility function evaluates the effectiveness 

of the clinical descriptions since we do not train any model to detect disease names directly.  

 

Figure 4.20 Process of evaluating the search results. 

Figure 4.20 shows the process of evaluating the search results. In the dataset, each biosignal is 

labelled with disease names. We also collect relevant articles for each disease. The clinical description 

is used to search among the collected articles. Articles ranked in the top 1, top 3, top 5 and top 10 will 

be retrieved as search results. After that, the utility function is used to evaluate the retrieved article.  

We evaluate our search results based on accuracy and recall rates. Recall rate measures the 

percentage of correct articles ranked n retrieved from all correct articles. Given that we had more than 

five articles for each disease, we only calculated recall rates for the first 10 results.  

4.2.3 Results 

4.2.3.1 Breath Sound Segmentation 

Table 4.12 Percentage RMSE of respiratory clinical physiological measurements prediction. 

Performance Measurements  Transformer LRT 

IoU (%) 0.621 0.770 

Model Size (Megabyte) 1.950 0.124 

Feed-Forward Memory Usage (Megabyte) 331.6 132.1 

 

Table 4.12 presents the percentage RMSE of respiratory clinical physiological measurements 

prediction in the melt-down experiment. Even though LRT has lower feed-forward memory usage 
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(132.6M) than a normal vanilla Transformer (331.6M), LRT has overall better segmentation 

performance compared to the vanilla Transformer. 

4.2.3.2 Respiratory Physiology Measurement Prediction Result 

Table 4.13 shows the percentage RMSE of predicting respiratory physiology measurement with 

vanilla Transformer, and our proposed LRT. Table 4.14 shows Pearson product-moment correlation 

coefficients. 

Table 4.13 RMSE of respiratory clinical physiological measurements. 

Respiratory Measurements Transformer LRT 

breath rate (in seconds) 0.259 0.178 

pitch 0.226 0.419 

breath depth 0.376 0.402 

 

Table 4.14 Pearson correlation coefficients of Respiratory Clinical Physiological Measurements. 

Respiratory Measurements Transformer LRT 

breath rate (in seconds) 84.17% 91.71% 

pitch 78.09% 72.10% 

breath depth 85.01% 88.15% 

 

Despite the pitch prediction being lower than the vanilla Transformer, the overall performance for 

predicting the breath rate and breath depth of the proposed LRT is outstanding. The reason for pitch 

having a lower correlation from the ground truth could be that the continuous exhale cycles for 

calculating pitch were different in predicted cycles and ground truth. 

4.2.3.3 Clinical Description Prediction 

Table 4.15 Performance of predicting clinical description. 

Name of abnormality Accuracy Sensitivity Specificity 

tachypnea 89.80% 88.10% 90.50% 

hyperpnea 92.80% 33.30% 100.00% 

hypopnea 88.30% 90.90% 87.90% 

wheeze 74.50% 100.00% 63.50% 

dyspnea 89.30% 90.00% 89.20% 

average 86.94% 80.46% 86.22% 

 

Table 4.15 presents the accuracy, sensitivity and specificity for predicting clinical descriptions based 

on predicted respiratory physiology measurements. In our study, we generated predicted abnormal 

respiratory patterns using the predicted respiratory physiology measurements. These predicted 
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patterns were then compared with the abnormal respiratory patterns obtained from the ground truth 

data. Our model achieved an average sensitivity of 80.5% and an average specificity of 86.2% for 

predicting seven different abnormalities.  

4.2.3.4 Semantic Searching Result 

Table 4.16 displays the precision of PhysioVec in searching for correct documents for specific breath 

sounds. The search results achieved top-one precision percentages of 100.00%, 59.80%, 92.20%, and 

100.00% for breath sounds associated with the common cold, influenza, pneumonia and bronchitis, 

respectively. The overall top-one precision for all breath sounds is 90.30%. Notably, the results for 

pneumonia and the common cold demonstrate exceptional outcomes, with 100% precision for the first 

search results. These findings suggest that the semantic searching capability of PhysioVec provides 

potentially useful search results to users, despite using only a few disease descriptions as search 

queries. 

Table 4.16 Precision of predicting diseases. 

Name of Disease Top 1 Precision Top 3 Precision Top 5 Precision Top 10 Precision 

all 90.30% 66.50% 64.30% 60.40% 

pneumonia 100.00% 67.60% 66.70% 68.90% 

bronchitis 59.80% 43.10% 36.80% 40.90% 

influenza 92.20% 67.30% 63.10% 39.20% 

cold 100.00% 76.20% 84.80% 82.20% 

 

Table 4.17 Recall rate of predicting diseases. 

Name of Disease Recall Rate 

cold 35.70% 

influenza 30.20% 

pneumonia 38.30% 

bronchitis 40.90% 

 

Table 4.17 shows the recall rate of documents of each disease. The search results achieved above 

30% recall rate in searching documents for common cold, influenza, pneumonia and bronchitis, 

respectively. In a real scenario, a 30% recall rate means 30% of potentially useful online documents 

can be searched by clinical description. With the huge amount of data on the internet and HSNs, users 

can obtain sufficient information for their health conditions. 

4.2.4 Conclusion 

This section introduces PhysioVec, a multistage deep-learning framework for indexing breath sounds 

through searching HSNs directly using biosignals and solves research question RQ2.2 and hypothesis 
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H2.2. PhysioVec addresses the challenge of enabling the semantic search of text-based content from 

HSNs by converting biosignal data into clinically interpretable descriptions. These descriptions serve 

as keywords for searching relevant health information within HSNs. The main objective of this 

research is to develop methods that can effectively convert breath sounds into interpretable clinical 

measurements, describing abnormalities in physical measurements and providing keywords for 

semantic search within HSNs. PhysioVec employs the LRT to segment breath sounds, extract patterns 

and process biosignals to derive specific physiological measurements. By statistically analysing these 

measurements, PhysioVec generates human-readable keywords for semantic searching, improving 

search efficiency within HSNs. The contribution of this research is the development of PhysioVec, 

which enables semantic search of text-based content in HSNs using clinically interpretable 

descriptions derived from breath sounds. Furthermore, PhysioVec is extendable and customisable, 

facilitating automatic early diagnosis, comprehensive respiratory health tracking and visualisation of 

respiratory physiology measurements. Future research may explore incorporating additional 

respiratory physiology measurements, such as ECG data, patient description text and body 

temperature readings, to further enhance the effectiveness and usability of respiratory Health IoT 

applications. 
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5 Integrated HSN for Gastrointestinal Diseases  

5.1 Bowel Sound Analysis with Bowel Sounds Sensor in Term Newborns 

5.1.1 Introduction 

Gastrointestinal problems such as diarrhoea, feeding intolerance, and Necrotising Enterocolitis (NEC) 

are major health threats to term newborn infants who are often cared for in the NICU. Currently, there 

are no known automated bowel activity monitoring systems available to detect potential health risks of 

term newborn infants resulting mortality rates of thousands per year in Australia alone.  

In addition, disparities in accessing healthcare services between rural and urban areas contribute to 

limited treatment options. In developing countries, it has been reported that only 39% of children with 

diarrhoea receive the recommended treatment as per the guidelines set by the World Health 

Organization (WHO) (UNICEF & Diarrhoea, 2012). This lack of access to healthcare further 

exacerbates the issue, leaving many individuals in rural areas undiagnosed and untreated for 

gastrointestinal issues (B. Lei et al., 2014; I. Song, 2015). 

However, the lack of affordable methods for collecting biosignals poses a challenge in detecting 

bowel diseases in newborns within the NICU. Currently, there is no known method for continuous 

monitoring of gastrointestinal health in term newborn infants at the NICU. In addition, locating and 

detecting intestinal sounds from digital recordings remains a challenge due to the irregular patterns 

and occurrence of intestinal sounds (Ranta et al., 2004; Sazonov et al., 2010). Nonstationary 

characteristics of bowel sounds in duration and amplitude variations make recognising bowel sounds 

difficult, especially for physicians (Hadjileontiadis & Rekanos, 2003). 

 

Figure 5.1 Miniature BoSS. 

To address the challenges, we aim to achieve real-time, non-invasive monitoring and diagnosis of 

gastrointestinal problems in newborn infants by automating the monitoring and detection of bowel 

activities. The goal is to develop cost-effective methods for collecting bowel sounds from newborn 



127 

 

 

 

 

and term infants within the NICU, extract clinical measurements from the bowel sounds, and perform 

subsequent exploratory data analysis. 

Therefore, we developed an innovative miniature Bowel Sounds Sensor (BoSS), and automated 

detection and alert system of bowel sound (Figure 5.1). The 3D-printed micro stethoscope of BoSS 

allows continuous monitoring of bowel sounds of newborn infants with minimal discomfort. This 

non-invasive method reduces patient pain and does not require a trained physician (Y. Huang & Song, 

2019; Y. Huang et al., 2017; I. Song, 2015). 

We have collected a total of 240 bowel sounds from two NICU hospitals. We report on the data 

collected and physiological measurements that can be obtained from the bowel sound records done by 

BoSS. In this study, we annotated bowel sound events in newborn infants. Based on the annotation, 

we further perform bowel clinical analysis for term newborn infants. The result of this study is that we 

identified bowel sound physiological measurements that can be used for the diagnosis of 

gastrointestinal health. 

In our study, we categorised bowel sounds into two distinct categories: ticks, which are 

characterised by short bursts, and grumbles, which are characterised by long bursts. To analyse these 

bowel sounds, we calculated physiological measurements for each recording, considering the labels of 

ticks and grumbles. 

The physiological measurements were calculated using two different approaches: global and local. 

Global measurements were derived from the entire audio recording, while local measurements were 

obtained by considering the arithmetic median of sliding windows within each recording. The use of 

local measurements proved to be advantageous as it removed the silent portions of the recording, 

resulting in better quality measurements. 

We conducted a thorough analysis by plotting and comparing the distribution of measurements 

across various factors such as gender, disease, age, and pre-feed/post-feed status. We aimed to 

demonstrate the feasibility of continuous monitoring of gastrointestinal health in term newborn 

infants. 

In Section 8.5, Figure 5.17 presents a box plot illustrating the relationship between tick duration 

and conditions. The plot reveals that sick infants have lower tick durations compared with healthy 

infants. The average tick durations for healthy and sick infants are 0.177±0.0305 and 0.0998±0.0272, 

respectively. These differences are statistically significant at the 5% significance level. Similarly, in 

Section 8.5, Figure 5.18 displays a box plot of tick power versus conditions. The plot indicates that 

sick infants have lower tick power than healthy infants. The average tick power values for healthy and 

sick infants are 0.0991±0.0289 and 0.196±0.0294, respectively, and the differences are statistically 

significant at the 5% significance level. Furthermore, in Section 5.1.4, Figure 5.19 exhibits a box plot 

depicting grumble duration across different conditions. The plot demonstrates that sick infants have 

higher grumble durations compared with healthy infants. The average grumble durations for healthy 
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and sick infants are 0.0803±0.0161 and 0.131±0.0179, respectively, and the differences are 

statistically significant at the 5% significance level. 

The results revealed clear differences in specific measurements between sick and healthy infants. 

Specifically, we observed significant differences (P=0.05) in tick rates, tick energy and tick durations. 

Sick infants exhibited lower tick (short burst bowel sound) activities and higher grumble (longer burst 

bowel sound) activities compared with their healthy counterparts. 

Furthermore, the disparity between sick and healthy infants was more significant than the 

difference between pre-feed and post-feed conditions. For instance, the average values of tick 

durations were 0.177±0.0305 and 0.0998±0.0272 for healthy and sick infants, respectively. These 

differences were found to be statistically significant (P=0.05). Additionally, both pre-feed and post-

feed tick duration and power were higher in the healthy group compared with the sick group. 

Notably, there was a significant difference observed in grumble power between healthy and sick 

infants. The average values of grumble durations were 0.0991±0.0289 and 0.196±0.0294 for healthy 

and sick infants, respectively. Similarly, the average values of grumble power were 0.0803±0.0161 

and 0.131±0.0179 for healthy and sick infants, respectively. These differences were found to be 

statistically significant with a significance level of 5%. These findings indicate that sick infants have 

longer and more powerful grumble activities compared with healthy infants. 

The results of our study indicate that there are statistically significant differences (P=0.05) in 

several measurements between sick and healthy infants. Specifically, we observed significant 

differences in bowel sound rates, bowel sound energy and bowel sound durations. Sick infants 

exhibited lower levels of tick activities, which are characterised by short bursts of bowel sounds. On 

the other hand, sick infants demonstrated higher levels of grumble activities, which are characterised 

by longer bursts of bowel sounds. These findings suggest that there are distinct patterns in bowel 

sound activities between sick and healthy infants. 

The main contributions of this study are as follows. First, this is the first time researchers have 

recorded bowel sounds of newborn infants during pre-feed and post-feed using miniature IoT sensors 

continuously. Second, we measure five clinical bowel activities and classify their types into short 

bursts (ticks) and long bursts (grumbles). Thirdly, we use an arithmetic median (median without 

duplicates) for filtering the physiological measurements of bowel sound activities for hospital 

environments and sensor misplacement and alignments. Fourthly, we find five physiological 

measurements that are significantly different between sick and healthy infants: tick rate, tick duration, 

tick power, grumble duration and grumble power. 
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5.1.2 Background 

 

Figure 5.2 Examples of (a) short burst bowel sound and (b) long burst (grumble) bowel sound. 

Bowel sounds are usually high-pitched, so the diaphragm of a stethoscope should be used. Bowel 

sounds can be classified as normal, hyperactive or hypoactive. In this study, we identify two types of 

bowel sounds, short burst and long burst. Figure 5.2 shows examples of the two types of sounds. Short 

bursts have a higher pitch, shorter duration and sharp shape, which are also known as tickles, and 

clicks. On the other hand, grumble sounds have a lower pitch and longer duration, which are also 

known as clusters and grumble. In this study, we use the terms “tickle” and “grumble” to represent 

these two types of bowel sounds. 

Previous studies have analysed bowel sounds by extracting jitter and shimmer for non-invasive 

bowel activity (K. S. Kim et al., 2011) monitoring and have compared similarities between bowel 

sounds (Y. Huang et al., 2017). There have also been studies focusing on bowel sound detection for 

long-term monitoring of gastrointestinal motility (Goto et al., 2015; Yin et al., 2018). Automated 

diagnosis based on biosignals has been applied to bowel diseases such as irritable bowel syndrome 

(Dimoulas et al., 2008) and abnormal bowel sounds (Y. Huang et al., 2017). Furthermore, bowel 

sound detection has been used to measure the frequency of bowel sounds (Sazonov et al., 2010; Yin et 

al., 2018). Mamun and McFarlane (2016) proposed an integrated bowel sound detection system using 

a hardware approach, which achieved a detection rate of 85%. This approach utilises a compact 

device for detection and offers faster processing due to its hardware-based implementation. 

5.1.3 Data Collection 

5.1.3.1 Recording 

Table 5.1 Clinical Characteristics of the Study Patients. 

Age in days, range 0-14 

Data source  

KK 191 

Townsville 49 

Gender  

Male 115 

Female 125 
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Pre-feed or Post-feed  

Pre-feed 128 

Post-feed 112 

Health Condition  

Sick 155 

Healthy 85 

Detailed Bowel Health Conditions  

Surgical condition 14 

Congenital anomaly 41 

IUGR 18 

LGA 20  

TTS 0 

APH 0 

Cord Prolapse 0 

Gastroschisis 0 

Oesophageal atresia 2 

Bowel obstruction 11 

Bowel resection  0 

 

The present study aimed to investigate the clinical characteristics of infants aged 0-14 days (Table 

5.1). The data for this study was collected from two hospitals, namely KK Women’s and Children’s 

Hospital in Singapore and Townsville Medical Centre in Australia. The doctors and nurses of the 

hospitals were responsible for data collection. Over a period of five months, a total of 240 patients 

were included in the study. The gender distribution of the cohort was relatively balanced, with 115 

males and 125 females. Bowel sound recordings were collected during pre-feed and post-feed in 

separate sessions for each baby. Most of the infants were sick (n=155) as opposed to healthy (n=85). 

Among the sick infants, the most common detailed bowel health conditions were congenital anomaly 

(n=41), bowel obstruction (n=11), and surgical condition (n=14), whereas Intrauterine Growth 

Restriction (IUGR) (n=18), Large for Gestational Age (LGA) (n=20), and oesophageal atresia (n=2) 

were less frequent. Notably, no cases of Twin Transfusion Syndrome (TTS), Antepartum 

Haemorrhage (APH), cord prolapse or gastroschisis were observed. The pre-feed and post-feed status 

of the infants was recorded, with 128 infants categorised as pre-feed and 112 as post-feed. These 

results provide valuable insight into the clinical characteristics of a relatively large cohort of 

newborns, which may inform clinical decision-making and guide future research efforts.  

 

Table 5.2 Patient Statistics Sick/Healthy vs Pre/Post Feed. 
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Dataset Pre-feed Post-feed Total 

sick 84 69 155 

healthy 44 43 85 

total 128 112 240 

 

Table 5.2 presents the patient statistics according to the health status and feeding status of the 

cohort. The data reveal that among the sick infants, 84 were pre-feed and 69 were post-feed, while 

among the healthy infants, 44 were pre-feed and 43 were post-feed. Overall, most infants were sick 

and pre-feed (n=84), followed by sick and post-feed (n=69), healthy and pre-feed (n=44), and healthy 

and post-feed (n=43). The total number of pre-feed infants was 128, while the total number of post-

feed infants was 112. 

5.1.3.2 Data Labelling 

A total of nine Masters in IT students specializing in this field from James Cook University were 

involved in annotating the bowel sounds. These students were trained on different types of bowel 

sounds, including both real and simulated samples, without knowledge of the patients' health 

conditions to avoid bias in labelling. 

The annotation process involved two stages. In the first stage, a group of five students performed 

the initial labelling of the bowel sounds, followed by cross-verification and reclassification to ensure 

accuracy. In the second stage, the remaining four students independently revalidated the labels to 

further enhance the reliability of the annotations. 

During the annotation process, the start and end time locations of bowel activities were manually 

marked, and each bowel sound was classified into two types: short bursts (ticks) and long bursts 

(grumbles). Short bursts were characterized by higher pitch, shorter duration, and sharp shape, while 

grumble sounds had a lower pitch and longer duration. 

 

Table 5.3 Dataset after removed bowel sounds less than 10 ticks and without grumbles. 

Dataset Pre-feed Post-feed All 

sick 43 39 82 

healthy 31 26 57 

total 74 65 139 

 

To analyse bowel activities related to ticks and grumbles, we filtered out recordings with fewer 

than 10 ticks or recordings without grumbles. The resulting dataset (Table 5.3) includes bowel sounds 

that meet the specified criteria. 
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5.1.4 Physiological Measurements 

We selected five physiological measurements to measure bowel activities: tick rate, tick duration, tick 

power, grumble duration and grumble power. The tick rate is calculated for two types of segments: 

global and local. Global segment refers to the entire duration of a record. Local segment refers to a 

sliding window of a fixed size. In our study, the length of the sliding windows is 10 seconds.   

We selected three features to measure bowel activities, which are tick rate, tick duration, tick 

power, grumble duration and grumble power. The tick rate is calculated as (5.1). 

 

 𝑅𝑡 =
𝑁𝑡

𝑇
, (5.1) 

 

where Rt is the tick rate, Nt is the number of ticks and T duration of the selected segment. 

Tick duration is calculated as (5.2). 

 

 𝐷𝑡 =
∑𝐸𝑖−𝑆𝑖

𝑇
, (5.2) 

 

where Dt is tick duration, Si and Ei are the start and end time of i-th tick, and T is the duration of the 

selected segment. 

Grumble duration is calculated as (5.3). 

 

 . 𝐷𝑔 =
∑𝐸𝑖−𝑆𝑖

𝑇
, (5.3) 

 

where Dg is grumble duration, Si and Ei are the start and end time of i-th grumble, and T is the 

duration of the selected segment 

Tick power is calculated as (5.4). 

 𝑃𝑡 =
∑𝑃𝑖

𝑇
, (5.4) 

where Pt is tick power, Pi is the energy of i-th tick, and T is the duration of the selected segment. 

Grumble power is calculated as (5.5). 

 

 . 𝑃𝑔 =
∑𝑃𝑖

𝑇
, (5.5) 

 

where Pg is grumble power, Pi is the energy of i-th tick and T is the duration of the selected segment. 

In our study, we calculated physiological measurements using two different approaches: global 

and local measurements. In the global measurements, the duration of the selected segment was 
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determined as the length of the entire bowel sound record. On the other hand, in the local 

measurements, the duration of the selected segment was fixed at 10 seconds. 

To obtain the final local measurements, we calculated the medians of the local measurements. The 

use of medians helped filter out outliers and noises that could arise from sensor misplacements and 

other environmental factors. Additionally, for the median calculation, we employed a method called 

arithmetic median, which involves calculating the median without including duplicate values. 

By employing this approach, we aimed to obtain more robust and reliable measurements that 

accurately represent the physiological characteristics of bowel sounds. 

Recording noise posed a challenge in capturing every bowel event during the recordings, while the 

non-stationary nature of bowel sounds made it difficult to record all events accurately. To address 

this, we employed the calculation of arithmetic median values for local clinical measures to overcome 

these challenges. 

Calculating arithmetic median values for local clinical measures addresses the challenge of 

recording noise and the non-stationary nature of bowel sounds. It filters out extreme values caused by 

noise and focuses on relevant segments within the recordings. This approach provides more reliable 

measurements that accurately represent the physiological characteristics of bowel activities. 

To calculate arithmetic median values for local clinical measures, we employed an automated 

process using sliding windows. For each subject, regions of interest (ROIs) within the bowel sounds 

were identified using sliding windows with a window size of 10 seconds and a stride of 0.1 seconds. 

The clinical measures within these ROIs were then used to calculate the arithmetic median as the local 

values. 

To obtain the arithmetic median, any duplicate values from the sliding windows were removed. 

This step helped eliminate redundant or repeated measurements. Finally, the median was calculated 

based on the remaining values without duplication. The following figures plot the local values of the 

physiological measurements. The following figures plot the local values of the physiological 

measurements. 
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Figure 5.3 Local tick rate of a bowel sound recording. 

Figure 5.3 illustrates the local tick rate of an example recording. In this recording, the median tick 

rate is 18, the global tick rate is 20, and the arithmetic median is 30. However, the initial part of the 

audio contains insufficient bowel sound data, which cannot accurately represent the actual bowel 

activity. After approximately one and a half minutes, the arithmetic median approaches an average 

tick rate of around 30 per minute. 

5.1.5 Results 

 

Figure 5.4 Global tick rate for all subjects.  
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Figure 5.5 Local tick rate calculated with median.  

 

 

Figure 5.6 Median of local tick rate for all subjects after removing duplicated values.  

We now compare the global tick rate with the local tick rate. Figure 5.4 displays the global tick rate, 

which exhibits a high number of cases near zero. To address this, we remove the instances with zero 

values and retain the peak values observed around 30-40 ticks per minute. Figure 5.5 depicts the 

histogram of the local rate, which shows no significant difference compared with the global tick rate. 

The use of median values does not effectively eliminate the silence parts, as they typically account for 

more than half of our recordings. Figure 5.6 illustrates the local tick rate after removing duplicated 

values from sliding windows. Most cases demonstrate tick rates ranging from 15-40 ticks per minute, 

and the histogram exhibits a bell-shaped distribution pattern resembling a normal distribution. 
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Figure 5.7 Local tick rate for healthy pre-feed. 

 

Figure 5.8 Local tick rate for healthy post-feed. 

 

Figure 5.9 Local tick rate for diseased pre-feed. 
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Figure 5.10 Post-feed sick local tick rate.  

Figures 5.7 and 5.8 illustrate the local tick rate for healthy subjects before and after feeding. It is 

observed that healthy individuals tend to have higher tick rates before feeding. On the other hand, 

Figures 5.9 and 5.10 display the local tick rate of sick bowel sounds before and after feeding. In the 

case of sick individuals, the tick rates vary significantly, with some recordings having too few or too 

many ticks. Despite having a larger number of recordings, the histogram for sick bowel sounds does 

not exhibit a bell-shaped distribution like the healthy group, especially in the pre-feed recordings. 

This suggests that bowel disorders can affect tick-related activity in different ways compared with 

pre-feed bowel sounds in healthy individuals. 

 

Figure 5.11 Pre-healthy tick power. 
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Figure 5.12 Pre-sick tick power. 

Power is another measurement of bowel activities. Compared with the rate which measures the 

frequency of bowel activity, power also indicates the intensity of bowel activity. Figures 5.11 and 

5.12 show the histogram of the local power of healthy pre-feed bowel sound and sick pre-feed bowel 

sound. Sick bowel sounds have significantly less powerful tick sound or no tick sound. 

 

Figure 5.13 Grumble power for all. 
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Figure 5.14 Grumble power for healthy pre-feed.  

 

Figure 5.15 Grumble power for sick pre-feed.  

Figures 5.13, 5.14, and 5.15 show the grumble power for all recordings, healthy prefeed and sick 

prefeed. Since grumble is not usually seen in our dataset, some of the subjects have few grumbles, 

especially healthy subjects. By contrast, sick subjects have much more grumble. As a result, grumble 

could be a significant biomarker of sickness. 
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Figure 5.16 Box plot of local tick rate vs condition. 

 

Figure 5.17 Box plot of tick duration vs conditions. 
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Figure 5.18 Box plot of tick power vs conditions. 

 

Figure 5.19 Box plot of grumble duration vs condition. Sick infants have higher grumble durations than 

healthy infants.  
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Figure 5.20 Box plot of grumble power. 

 

Table 5.4 Confidence intervals local measurements of pre and post-feeds of sick and healthy infants. The 

differences between sick and healthy are significant with P=0.05. 

 Healthy Pre-

feed 

Healthy Post-

feed 

Sick Pre-feed Sick Post-feed Significant 

(P=0.05) 

Tick rate 32.8±3.83 32.4±2.81 28.0±1.87 28.8±2.94 Y 

Tick duration 0.173±0.0371 0.182±0.0507 0.0998±0.0272 0.0884±0.0275 Y 

Tick power 0.133±0.0260 0.142±0.0369 0.0860±0.0186 0.0789±0.0204 Y 

Grumble 

duration 

0.111±0.0403 0.0856±0.0416 0.196±0.0294 0.196±0.0418 Y 

Grumble 

power 

0.0823±0.0236 0.0780±0.0220 0.131±0.0179 0.129±0.0248 Y 

 

Table 5.5 Confidence interval of merged local physiological measurements (pre and post-feed measurements 

are merged with weighted average) (P=0.05). 

 Healthy 

minimum 

Healthy 

maximum 

Sick 

minimum 

Sick 

maximum 

Significant 

(P=0.05) 

Tick rate 30.2 35.0 26.2 29.9 Y 

Tick duration 0.146 0.208 0.0725 0.130 Y 

Tick power 0.115 0.159 0.0674 0.105 Y 

Grumble 

duration 

0.0702 0.128 0.167 0.226 Y 
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Grumble 

power 

0.0642 0.0964 0.113 0.149 Y 

 

Table 5.6 Another view of Table 8.4. Confidence interval of merged local physiological measurements (pre and 

post-feed measurements are merged with weighted average) (P=0.05). 

 Healthy  Sick  

Tick rate 32.6±2.41 28.0±1.87 

Tick duration 0.177±0.0305 0.0998±0.0272 

Tick power 0.137±0.0219 0.0860±0.0186 

Grumble duration 0.0991±0.0289 0.196±0.0294 

Grumble power 0.0803±0.0161 0.131±0.0179 

 

We then further analyse tick characteristics in different groups. Table 5.4 shows the confidence 

intervals of local physiological measurements in these groups. Sick infants have shorter tick durations 

compared with healthy infants. Figures 5.16 to 5.18 depict box plots of local tick rate, tick duration 

and tick power with the condition. They reveal that sick bowel sounds have a lower tick frequency, 

while post-feed bowel sounds have a slightly lower tick frequency. Furthermore, Figure 5.17 indicates 

that being sick is associated with both a lower tick frequency and weaker tick sounds. The mean of 

sick tick power is lower than the confidence interval (P=0.05) of healthy in both post-feed and pre-

feed. The difference between sick and healthy is more significant than the difference between pre-feed 

and post-feed. The mean of sick grumble power is higher than the confidence interval (P=0.05) of 

healthy in both post-feed and pre-feed. 

Table 5.5 and Table 5.6 show the confidence intervals of the merged local physiological 

measurements after merging the pre-feed and post-feed measurements using a weighted average. The 

average values of tick durations are 0.177 ± 0.0305 seconds and 0.0998 ± 0.0272 seconds for healthy 

and sick infants, respectively. Tick duration and power for healthy infants are higher than those in the 

sick group in both pre-feed and post-feed conditions. Notably, the minimum and maximum values for 

the healthy and sick groups are shown in bold font to emphasize that they do not overlap. Figure 5.19 

displays a box plot of grumble duration vs condition. The average values of grumble durations are 

0.0991 ± 0.0289 seconds and 0.196 seconds ± 0.0294 seconds for healthy and sick infants, 

respectively. There is a significant difference in grumble power between healthy and sick infants. 

Figure 5.20 shows a box plot of grumble power vs condition. The average values of grumble power 

are 0.0803 ± 0.0161 dBm s-1 and 0.131 ± 0.0179 dBm s-1 for healthy and sick infants, respectively. 

The results indicate that sick infants have longer grumble durations and higher grumble power 

compared to healthy infants (P=0.05). 
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Figure 5.21 Local tick rate in different ages.  

 

 

Figure 5.22 Local tick duration vs age.  
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Figure 5.23 Local tick power vs age.  

 

Figure 5.24 Local grumble duration vs age.  
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Figure 5.25 Local grumble power vs age. 

Figures 5.21 to 5.25 show scatter plots depicting the relationship between each measurement and 

age. Blue marks represent healthy pre-feed subjects, green marks represent healthy post-feed subjects, 

red marks represent healthy post-feed subjects, and yellow marks represent sick post-feed subjects. 

Most healthy subjects are around one day old and exhibit a tick rate of 30-50 ticks per minute. 

However, there is significant overlap among the groups, and the tick rates do not vary significantly 

with age. 

In contrast to the local tick rate, the duration of local ticks shows a more significant difference 

between the healthy and sick groups. Therefore, local tick duration provides a better measurement for 

assessing bowel activity, which is related to the ticking sound. Furthermore, the duration exhibits a 

decreasing trend as age increases. 

Power is another measurement of bowel activity that considers both the amount and intensity of 

the tick sounds. Compared with duration, the power values for pre-feed healthy subjects tend to be 

similar. Most recordings from the post-feed healthy group show a significant decrease in grumble 

duration, while most recordings from the sick group have a significantly longer grumble duration. 

However, grumble duration does not exhibit a significant trend with age. Power exhibits a decreasing 

trend across all groups with age, with the healthy pre-feed and post-feed groups being closer in 

values. 
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Figure 5.26 is the scatter plot between tick rate and tick duration. 

 

Figure 5.27 Scatter of tick power and duration. 

Figures 5.26 and 5.27 illustrate the relationship between tick rate, tick power and tick duration. 

Tick duration is highly correlated with tick rate, as most disease group subjects exhibit longer 

durations for the same tick rate. Since calculating tick duration does not require splitting ticks that are 

too close together, it can serve as a good replacement for tick rate as a measurement of bowel activity. 
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Additionally, there is a strong correlation between power and duration, indicating that ticks have 

stable power levels. Therefore, power can be used as an alternative measurement for bowel activity, 

as it is less sensitive to the precise duration of ticks. 

 

Figure 5.28 Scatter between grumble duration and grumble power. 

Figure 5.28 shows that grumble power is also strongly correlated to grumble duration. Grumble 

power is correlated to duration and can be used as a more robust measurement since calculating power 

needs less requirement on accurately locating the start and end time of grumble.  

 

 

Figure 5.29 Scatter of grumble power and tick power: blue (healthy pre-feed), green (healthy post-feed), red 

(sick pre-feed), yellow (sick post-feed). 
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In Figure 5.29, the scatter plot depicts the relationship between grumble power and tick power. 

The plot demonstrates that the healthy group exhibits lower grumble power and higher tick power in 

both the pre-feed and post-feed groups. However, the difference between the pre-feed and post-feed 

groups is not significant in the population. 

5.1.6 Conclusion 

This section presents a novel approach that offers affordable biosignal collection methods for 

integrating bowel sounds into HSNs provides valuable insights into the detection of bowel diseases in 

newborns, solves research question RQ5.1 and proves hypothesis H5.1. In this section, we address the 

challenge of collecting bowel sounds to detect bowel diseases in newborns within the NICU. This 

research aims to develop cost-effective methods for collecting and extracting important information 

from bowel sounds in the NICU to detect bowel diseases in newborns. Our approach involves using a 

miniature Bowel Sounds Sensor (BoSS) specifically designed for this purpose. These collected bowel 

sounds are then processed to extract relevant physiological measurements. The subsequent analysis of 

these measurements provides valuable information for diagnosing and monitoring bowel conditions in 

newborns. 

The contribution of this research is the development of the BoSS, a miniature sensor designed to 

detect bowel diseases in newborns, thereby improving early detection within NICUs. We extract and 

analyse physiological measurements from bowel sounds to identify gastrointestinal issues in 

newborns. This study represents the first collection and analysis of bowel sounds in term newborns, 

addressing the need for continuous monitoring methods. 

To calculate physiological measurements, we utilised the labels of ticks and grumbles for each 

bowel sound recording. We determined the most representative values of local physiological 

measurements by employing the arithmetic median of the sliding windows. This approach ensures 

that the local measurements offer better quality than the global measurement, as it eliminates the 

silent parts of the recording. 

Analysis of these physiological measurements reveals that sick infants exhibit reduced tick 

activities and increased grumble activities, indicating potential bowel health issues. We selected local 

tick power and local grumble power as representative measurements of bowel activities associated 

with ticks and grumbles. By calculating the most representative values of these local physiological 

measurements using the arithmetic median of the sliding windows, we gain valuable insights into the 

bowel health of newborns. 

5.2 Pervasive Monitoring of Gastrointestinal Health of Newborn Infants 

5.2.1 Introduction 

Infants needing intensive care are at risk of developing gastrointestinal problems, such as feed 

intolerance and NEC. NEC occurs in nearly 10% of premature infants, and accounts for 1-5% of 
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NICU admissions (Thompson & Bizzarro, 2008). Due to the rapid progression of NEC, early 

diagnosis of NEC remains challenging (Gregory, DeForge, Natale, Phillips, & Van Marter, 2011). 

Monitoring, early detection and prevention of bowel diseases in newborns may improve outcomes. 

Bowel sound monitoring provides a non-invasive clinical diagnosis (Sheu, Lin, Chen, Lee, & Lin, 

2015). The absence of bowel sound often indicates NEC (Thompson & Bizzarro, 2008). 

However, currently, there are no known approaches that can provide real-time, visual monitoring 

of bowel functions of newborn infants. Diagnosis of NEC is currently made manually using a 

stethoscope which is often uncomfortable and invasive for young children (Y. Huang & Song, 2019; 

Y. Huang et al., 2017; I. Song, 2015). Furthermore, due to the irregular pattern and occurrence of 

bowel sounds, locating and detecting bowel sounds from digital recordings of bowel sounds remains a 

challenge (Ranta et al., 2004; Sazonov et al., 2010). Manually annotating and analysing bowel sounds 

is time-consuming, especially when noise exists. Even doctors can only identify a few random events 

(Ranta et al., 2004). 

 

 

Figure 5.30 Overall procedure of proposed approach. 

To solve the problems, we aim to develop deep learning models that accurately segment and detect 

bowel sounds to improve the diagnosis of gastrointestinal problems, despite the challenges presented 

by the irregular pattern of bowel sounds. 

Figure 5.30 illustrates how BoSS and ReLATEC are used to solve the problems. BoSS 

continuously records the bowel sounds of newborn infants using the micro stethoscope sensor. The 

bowel sound locations are then labelled for training the bowel sound detector. The labels are 

converted into weak labels with a lower temporal resolution because it is difficult for human listeners 

to identify all bowel sounds accurately due to hospital environmental noises. A ReLATEC model is 

then trained to detect the locations and two types of bowel sounds: short bursts and long bursts. The 

trained detector then provides real-time annotation of bowel sounds with locations, types, and 

statistics of bowel sound activities. 

In our study, ReLATEC demonstrated a sensitivity of 91% and specificity of 71% in detecting 

short-burst bowel sounds, as well as a sensitivity of 97% and specificity of 72% in detecting long-

burst bowel sounds. Despite being trained with weak labels, the model reliably identified most of the 

bowel sound locations labelled by human listeners and discovered new bowel sound locations. 
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The main contributions of our work are as follows. For the first time, we developed a miniature 

BoSS for preterm infants at NICUs for continuous real-time monitoring of bowel functions. A total of 

171 bowel sounds of newborn infants were successfully recorded from 113 newborns at two different 

NICUs, and 1,267 bowel activities were successfully identified and labelled from the recordings. A 

new novel deep-learning approach was developed to detect the locations and types of bowel sound 

activities automatically.  

5.2.2 Method 

5.2.2.1 Data Processing 

Table 5.7 The weak labels of short bursts generated for training and testing. 

Dataset Split Positive Negative Total 

Training set 1319 4731 6050 

Testing set 477 1048 1525 

Total 1796 5779 7575 

 

Table 5.8 The weak labels of long bursts generated for training and testing. 

Dataset Split Positive Negative Total 

Training set 599 5451 6050 

Testing set 105 1420 1525 

Total 704 6871 7575 

 

Table 5.9 Mean durations of bowel activities marked manually. 

Measurement Mean Duration (seconds) 

Prefeed (short burst) 0.1810 

Postfeed (short burst) 0.1803 

Prefeed (long burst) 0.2383 

Postfeed (long burst) 0.3759 

 

As an initial step of weak labelling, ROIs that contained bowel sounds were manually selected. Five 

Master of Information Technology students from James Cook University participated in the data 

labelling process. They received training on different types of bowel sounds, including both real and 

simulated bowel sounds. The first group of four students performed the initial labelling, which was 

then followed by cross-verification and reclassification. The remaining student later revalidated the 

labels. A total of 592 ROIs were selected from the 171 recordings by the first group, with each ROI 

containing three to four bowel activities. In total, 1,267 bowel activities were marked, including 971 

for short bursts and 296 for long bursts (Table 5.7). Not all bowel activities could be identified by 
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human listeners due to background noises and the length of the recordings. Bowel activities often last 

for less than a second. Therefore, we adopted a weak labelling approach, where the labelling is not 

complete, but all identified bowel activities are considered correct. 

To generate weak labels, we first generated positional one-hot labels using the marks. The one-hot 

labels were further segmented using a 0.75-second maximum pulling sliding window. Each segment 

was then labelled as one or zero, whereas one means there is a bowel sound at that location. This 

generated 7575 weak labels for each type of bowel sound. The total number of positive weak labels 

indicating the presence of any short bursts at the location is 1,796 and the total number of positive 

weak labels indicating the presence of any long bursts at the location is 704 (Table 5.8).  

For training and testing, we have divided the ROIs into 10 seconds of input segments. Each input 

segment was then converted into a spectrogram feature data. Corresponding label data were also 

generated for each feature data. A total of 303 feature and label data pairs were generated: 242 for 

training and 61 for testing.  

A single model was trained for both types of bowel sounds. For evaluation, we divided the dataset 

into the training dataset (80%) and the testing dataset (20%). Table 5.9 shows the mean durations of 

bowel activities that are manually labelled. It shows that durations of long bursts are longer than short 

bursts. The durations of post-feed long bursts are longer than per-feed long bursts. 

 

5.2.2.2 Segmentation of Bowel Sound with ReLATEC 

 

Figure 5.31 Comparison of (a) Vanilla Transformers and (b) ReLATEC. 
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Figure 5.31 illustrates the comparison between Vanilla Transformers and ReLATEC in detecting the 

location and types of bowel sounds (bowel activities) from an audio stream. The input and output data 

have a length of 10 seconds. The input feature data is first embedded using a linear layer, followed by 

a pooling layer and another linear layer. Next, positional encoding is applied to encode the time 

locations of the feature values. The position values and the embedded feature data are then used to 

calculate attention. The resulting attention data is utilised to generate the output. The up sampling 

layer is employed to generate a 10-second length of data corresponding to the input data. The output 

values represent the probability of the existence of bowel activities at the respective locations in the 

output data. 

We trained the ReLATEC model and other benchmark models using a training configuration of 50 

epochs and batch sizes of 64. The models were trained using the AdamW optimizer with an initial 

learning rate of 0.0001 and a weight decay of 0.0001. The learning rate was adjusted using a step 

decay learning rate scheduler, which reduced the learning rate by 20% after each epoch. Additionally, 

early stopping was implemented with a patience of 5 epochs to prevent overfitting. 

5.2.3 Result 

5.2.3.1 Bowel Sound Segmentation 

Table 5.10 Percentage RMSE of respiratory clinical physiological measurements. 

Performance Measurements  Transformer ReLATEC 

IoU (%) 0.621 0.770 

Model Size (Megabyte) 1.950 0.124 

Feed-Forward Memory Usage (Megabyte) 331.6 132.1 

 

Table 5.10 shows the melt-down experiment. Even though ReLATEC has lower feed-forward 

memory usage (132.6M) than a normal vanilla Transformer (331.6M), ReLATEC has overall better 

segmentation performance compared to the Transformer. 

5.2.3.2 Bowel Activity Location Prediction 

Table 5.11 Performance Results of Predicting Bowel Activities Using Different Approaches. 

Approach Long Burst Short Burst 

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

RNN 88.47% 71.56% 76.85% 90.48% 71.69% 72.98% 

Transformer 85.53% 70.04% 74.89% 95.24% 72.82% 74.36% 

Recurrent 

Transformer 

88.26% 70.04% 75.74% 96.19% 72.96% 74.56% 

ReLATEC 90.99% 70.90% 77.18% 97.14% 72.25% 73.97% 
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Table 5.11 shows that ReLATEC archived 90.99% sensitivity and 70.90% specificity for short bursts 

while it achieved 97.14% sensitivity and 72.25% specificity for long bursts.  

To see whether ReLATEC performs better than existing approaches, we fixed the specificity to 

70% by adjusting the decision boundary threshold and compared sensitivity values. ReLATEC 

achieved significantly higher sensitivity compared with existing approaches. Especially for short burst 

activities, it showed a 6.66% improvement. Figure 5.32 shows the ROC curves of short-burst and 

long-burst detections. ReLATEC achieved the highest AUC. The AUC for detecting long bursts was 

93.1%, and the AUC for detecting short bursts was 88.5%. ReLATEC was superior to the 

conventional RNN baseline, Vanilla Transformer and recurrent Transformer.  

 

Figure 5.32 ROC of different models to classify (a) short burst and (b) grumble locations. 

 

Figure 5.33 Segmentation visualisation of (a) short burst and (b) grumble. 

Figure 5.33 shows the raw signal, spectrogram, ground truth and prediction of short bursts and 

grumbles. The orange lines indicate labels by human listeners, and the blue lines indicate predictions. 

ReLATEC detected almost all bowel sounds (bowel activities) marked by human listeners. 
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Furthermore, ReLATEC also discovered and detected bowel sound activities that human listeners did 

not initially detect. 

5.2.3.3 Clinical Statistics 

Table 5.12 Physiological Measurements Calculated from ReLATEC Prediction. 

Measurement Mean Rate (per 

minute) 

Std. Rate Mean duration 

(seconds) 

Mean gap 

(seconds) 

Prefeed (burst) 2.0413 1.6095 0.2130 1.7597 

Postfeed (burst) 3.1754 3.8070 0.2248 1.6668 

Prefeed (grumble) 1.5280 0.8269 0.2517 2.1221 

Postfeed (grumble) 1.9666 0.9137 0.2955 2.1579 

 

Table 5.12 shows physiological measurements of the bowel activities based on ReLATEC 

predictions. Like the measurements done using the manual labels in Table 5.9, the mean durations of 

long-burst bowel activities are larger than the short-burst bowel activities. The mean rates of short-

bust bowel activities are higher than the post feed rates. However, due to high variance, the 

differences are not significant. 

5.2.4 Conclusion 

This section introduces a new approach that detects bowel sounds using ReLATEC and solves 

research question RQ5.2 and hypothesis H5.2. The main challenge in our study involves using deep 

learning models to accurately segment bowel sounds. The irregular pattern of bowel sounds poses 

difficulties in locating and detecting bowel activities, limiting the effectiveness of conventional deep-

learning models in diagnosing gastrointestinal problems. This research aims to develop deep learning 

models that accurately segment and detect bowel sounds, despite the challenges posed by their 

irregular pattern. Our approach involves collecting bowel sounds of newborn infants using BoSS and 

training ReLATEC with novel weak annotations. This enables the model to accurately segment and 

detect bowel sounds, thereby improving the diagnosis of gastrointestinal problems in newborns. Our 

contribution lies in enhancing the ReLATEC model by training it with bowel sound data, resulting in 

improved diagnosis of gastrointestinal issues in newborns. This enhancement facilitates the extraction 

of meaningful information from biosignals, leading to improved healthcare decision-making 

processes. 

The main contributions of our work are as follows: Our proposed method provides non-invasive 

bowel activity detection and classification. The miniature BoSS successfully recorded bowel sounds 

and activities in two different NICUs, demonstrating its innovation. The 3D-printed micro stethoscope 

was designed for comfortable and continuous monitoring of bowel functions in newborn infants. Our 

novel deep-learning approach, ReLATEC, significantly improves the distinction and detection of 
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bowel activities, even in the presence of hospital environmental noises. It provides reliable and 

accurate boundaries for the two types of bowel activities with high sensitivity. Furthermore, 

ReLATEC successfully detects bowel sound activities that human listeners initially failed to detect. 

The model can be trained with noisy labels and provides predictions with higher accuracy. The 

combination of recurrent natures such as RNN and self-attention from Transformer in ReLATEC 

achieves superior performance compared with RNN and Transformer alone. Despite the limitations of 

imbalanced data, the model produces good specificity values and robust ROC curves, with AUCs of 

0.87 and 0.91 for short bursts and long bursts, respectively, indicating its reliability and suitability for 

medical applications. 

5.3 Searching Health Information Using Bowel Sounds 

5.3.1 Introduction 

Gastrointestinal problems such as diarrhoea, feeding intolerance, and NEC are major health threats to 

term newborn babies who are often cared for in the NICU. Currently, there are no known automated 

bowel activity monitoring systems available to detect potential health risks of term newborn babies 

resulting in thousands of mortality rates per year in Australia alone.  

HSNs and IoT provide solutions for remote diagnosis to enable remote diagnosis. HSNs are 

patient-driven communities that provide rich information to patients and caregivers (Song & Marsh, 

2012). While medical professionals and offline resources are the foundation of healthcare, people still 

need to share knowledge on social networks. HSNs have become an important source of information 

for patients and physicians to make informed decisions. In recent years, many automatic 

recommendation systems for social networks have been developed (Song & Marsh, 2012). For 

example, 20% of adults have found similar health problems from others online, and most of them 

have benefited from HSNs (Fox, 2011). On the other hand, the IoT provides a potential solution for 

objectively describing health conditions with clinical measurements. IoT sensors could collect bowel 

sounds to provide pervasive, low-cost, and autonomous remote gastrointestinal health monitoring. 

Bowel sounds are non-stationary audio signals that may carry physiological information of 

gastrointestinal health. Previous studies performed non-invasive monitoring of intestinal sounds by 

extracting jitter and shimmer (K. S. Kim et al., 2011), and compared the similarity of bowel sounds 

(Y. Huang et al., 2017). There are also studies on long-term monitoring of gastrointestinal motility by 

bowel sound detection (Goto et al., 2015; Y. Huang & Song, 2019; Yin et al., 2018). 

However, both HSNs and IoT have limitations. Finding relevant information remains a challenge 

because data from HSNs is too large to be processed manually (Alimova & Tutubalina, 2017; 

Miftahutdinov et al., 2017). Processing health-related information from HSNs is expensive, time-

consuming, and not reliable (Achrekar et al., 2013; Alimova & Tutubalina, 2017; Cheng et al., 2017; 

Coppersmith et al., 2014; Elena Tutubalina & Nikolenko, 2017). In contrast, users without expertise 
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often encounter challenges when trying to locate relevant information. HSNs rely on users inputting 

keywords to index data. However, due to their lack of experience, these users may struggle with 

inconsistencies or errors when attempting to find appropriate search terms, which leads to 

misinformation. 

Current automated bowel sound analysis approaches lack interpretable bowel sound pattern 

analysis for further understanding of bowel conditions. However, the current approaches lack 

interpretable bowel pattern abnormality analysis for further understanding of bowel conditions. This 

hinders effective searches for health-related information within HSNs, requiring manual interpretation 

and monitoring by trained medical professionals (Manogaran et al., 2018). Consequently, the current 

approach still necessitates the manual interpretation of bowel sounds and the search for relevant 

information on gastrointestinal health within HSNs. 

To overcome these problems, we aim to convert bowel sounds into interpretable clinical 

measurements that represent specific physical abnormalities analysed in Section 5.1. These 

measurements will include characteristics such as hypoactive bowel sounds, and hyperactive bowel 

sounds and will serve as keywords for semantic search within HSNs. This conversion process will 

enhance the search capabilities of the HSNs and facilitate targeted information retrieval. 

PhysioVec is a multistage deep learning framework for analysing the stream of bowel sound data 

for automated annotation and searching. It generates human interpretable clinical descriptions of 

patients from bowel sounds and uses it to automatically search HSNs. PhysioVec consists of three 

modules: LRT for bowel segmentation, MLI for generating clinical description, and SBERT module 

for the semantic search of online content. 

We collected 240 bowel sounds from two NICU hospitals using an innovative miniature BoSS, 

that continuously monitors neonatal bowel sounds with minimal discomfort (Figure 5.1). It comprises 

a digital micro stethoscope, signal amplifiers specifically designed for the bowel sound frequency 

spectrum, and an IoT interface to send captured signals to mobile devices for recording and analysis. 

This non-invasive approach reduces pain for patients and does not require a trained physician (Y. 

Huang & Song, 2019; Y. Huang et al., 2017; I. Song, 2015). 

Bowel sounds are classified into two types: ticks (short bursts) and grumbles (long bursts). We 

calculated clinical measurements of each bowel sound recording for each type of bowel sound. 

Clinical measurements are calculated in two different ways: global and local. Global measurements 

are calculated as the average values of the entire audio of a recording session of a patient, while local 

measurements are calculated as the arithmetic median of the measurements for several sliding 

windows of the entire audio. Local measurements showed that it is effective in removing the silent 

and noisy part of the record. We selected local tick power and local grumble power to represent the 

intestinal activity associated with ticks and grumble. 
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The main contributions of this method are as follows: (1) detection and segmentation of bowel 

sounds into two different types of bowel activities using the LRT that combines local attention and 

recurrent transformer to reduce overfitting and improve the performance of bowel sound 

segmentation; (2) extracting human interpretable physiological information through intestinal sound 

pattern; (3) automatically searching relevant physiological information of bowel activities with 

extracted physiological information on the internet. LRT achieved 0.850 and 0.792 AUC for tick and 

grumble segmentation. Pearson scores were 0.519 and 0.580 for estimating tick power and grumble 

power, respectively. PhysioVec achieved 100.00% precision in the top-one search results for bowel 

sounds with both vomiting and bowel obstruction. PhysioVect successfully integrated the IoT with 

HSNs, allowing patients and doctors to search for relevant health information directly from bowel 

sounds. It also provides interpretable physiological and pathological information about underlying 

respiratory health conditions. It can not only predict diseases but also provide patients with a wealth 

of information so that they can better understand their health status. Our proposed PhysioVec avoids 

the misinformation caused by inconsistencies or errors from the lack of expertise of users. 
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5.3.2 Method 

5.3.2.1 Overall Process 

 

Figure 5.34 The overall process of PhysioVec. 

Figure 5.34 shows the overall process of the proposed PhysioVec. Bowel sounds are collected non-

invasively using common IoT or digital recorders. Then the segmentation annotation of bowel sounds 

is generated using an LRT trained on bowel sounds with the same hyperparameters as described in 

Chapter 4, Section 4.2. After that, physiological measurements are extracted from segmented bowel 

sound. The physiological measurements are then converted into clinical descriptions by MLI based on 

statistics and existing knowledge. Finally, the clinical descriptions are used for searching online 
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documents. SBERT is applied to convert both online documents and clinical descriptions into vectors 

for semantic searching.  

5.3.2.2 Bowel Sound Physiological Descriptions 

Table 5.13 Healthy tick and grumble range. 

 healthy (pre-feed) healthy (post-feed) 

Tick Rate Local (s-1) 20.214 - 46.478 24.146 - 42.126 

Tick Dur Local 0.052 - 0.289 0.026 - 0.360 

Tick Power Local (dBm s-1) 0.049 - 0.214 0.032 - 0.273 

Grumble Dur Local 0.000 - 0.242 0.000 -0.188 

Grumble Power Local (dBm s-1) 0.006 -0.151 0.008 -0.143 

 

Table 5.13 outlines the health range of bowel sound measurements for ticks and grumbles before and 

after feeding. In the “healthy (pre-feed)” section, low tick power is indicative of hypoactive bowel 

sounds, while high tick power suggests hyperactive bowel sounds. Similarly, high grumble power 

signifies abnormal grumbles. The “healthy (post-feed)” section follows a similar pattern, where low 

tick power suggests hypoactive bowel sounds, high tick power indicates hyperactive bowel sounds 

and high grumble power points to abnormal grumbles. These measurements provide valuable insights 

into the variability of bowel sound characteristics in healthy subjects, aiding in the identification and 

assessment of bowel sound abnormalities. 

Table 5.14 Definitions of Bowel Rhythm Clinical Descriptions based on Bowel Physiology Measurement. 

Medical Term of Bowel 

Abnormality 

Tick 

Power 

Grumble 

Power 

Hyperactive Bowel Sound High  

Hypoactive Bowel Sound Low  

Abnormal Bowel Sound  High 

 

Table 5.14 presents a comprehensive elucidation of clinical descriptions of bowel rhythm 

abnormalities, predicated on meticulous measurements of bowel physiology. In our study, we 

identified three types of bowel abnormalities: hyperactive bowel sound, hypoactive bowel sound and 

abnormal bowel sound. The first category, hyperactive bowel sound, is characterised by an elevated 

tick power. This indicates a higher frequency or intensity of bowel sounds compared with those in 

healthy individuals. The second category, hypoactive bowel sound, is distinguished by a heightened 

tick power. This suggests a lower frequency or intensity of bowel sounds compared with those in 

healthy individuals. Lastly, the abnormal grumble sound category is manifested by higher values for 

grumble power. 
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5.3.2.3 Evaluation Metrics 

We evaluate the search results with a utility function that detects whether the searched articles 

mention the disease name of the bowel sound. We should notice that the search queries are only 

descriptions of bowel sound patterns (Table 5.14). Thus, this utility function evaluates the 

effectiveness of the clinical descriptions since we do not train any model to detect disease names 

directly.  

 

Figure 5.35 Process of evaluating the search results. 

Figure 5.35 shows the process of evaluating the search results. In the dataset, each bowel sound is 

labelled with disease names. We also collect relevant articles for each disease. The clinical description 

is used to search among the collected articles. Articles ranked in the top 1, top 3, top 5 and top 10 will 

be retrieved as search results. After that, the utility function is used to evaluate the retrieved article.  

We evaluate our search results based on accuracy and recall rates. Recall rate measures the 

percentage of correct articles ranked n retrieved from all correct articles. Given that we had more than 

five articles for each disease, we only calculated recall rates for the first 10 results.  

5.3.3 Results 

Table 5.15 Percentage RMSE of Clinical Physiological Measurements (batch size=64, Sequence Length=300). 

Performance Measurements Transformer LRT LRT-Large 

Tick AUC 0.750 0.850 0.851 

Grumble AUC 0.821 0.792 0.840 

Model Size (Megabyte) 1.950 0.141 0.446 

Feed-Forward Memory Usage (Megabyte) 4054.067 593.739 2591.846 

 

Table 5.15 presents the results of the melt-down experiment. Transformer, LRT and LRT-Large were 

trained under the same configuration and on the same training set. LRT exhibits significantly lower 

feed-forward memory utilisation (0.594GB) compared with vanilla Transformer (4.054GB), and it 

demonstrates better overall segmentation performance. LRT-Large outperforms vanilla Transformer 

in both Tick and grumble detection, achieving AUC values of 0.851 and 0.840 respectively. 

Furthermore, LRT-Large maintains lower feed-forward memory utilisation (2.591GB). 

Table 5.16 Pearson Correlation Coefficients of Bowel Clinical Physiological Measurements. 
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Measurements Transformer LRT LRT-Large 

Local Tick Duration 0.462 0.543 0.584 

Local Tick Power 0.393 0.519 0.549 

Local Grumble Duration 0.462 0.387 0.418 

Local Grumble Power 0.478 0.580 0.558 

 

Table 5.16 presents the Pearson product-moment correlation coefficient of the proposed LRT in 

predicting bowel respiratory clinical physiological measurements. While LRT exhibits a lower AUC 

in grumble segmentation and a lower Pearson score in grumble duration estimation, it still 

demonstrates a superior Pearson score in grumble power estimation. The strong performance in 

grumble power prediction suggests that LRT focuses on the more significant and influential aspects of 

the grumble, which are critical for power measurement. Considering the overall good performance of 

LRT in both tick power and grumble power prediction, we select LRT as the model for generating 

physiological measurements for semantic searching. 

Table 5.17 Precision of predicting diseases with predicted physiological measurement. 

Name of Disease Bowel Obstruction Vomiting 

Top 1 Precision 100.00% 100.00% 

Top 3 Precision 96.97% 100.00% 

Top 5 Precision 92.73% 100.00% 

Top 10 Precision 87.27% 100.00% 

Recall Rate 62.34% 66.66% 

 

Table 5.17 shows the accuracy of PhysioVet to find the correct literature for each bowel sound. 

We should also notice that bowel obstruction and vomiting are not in the training set, and we did not 

fine-tune the SBERT models. This prediction is based on zero-shot learning. The search results 

achieved 100.00% top-one precision in searching documents for bowel sounds with both vomiting 

and bowel obstruction, respectively. Semantic search performance suggests that most of the search 

results provided by PhysioVec are potentially helpful to users. The recall rates of vomiting and bowel 

obstruction were 72.73% and 90.91%, respectively. With a high recall rate and precision, users can 

get enough health information through the internet and massive data on HSNs. 

5.3.4 Conclusion 

This section introduces PhysioVec, a multistage deep-learning framework for indexing bowel sounds 

through searching HSNs directly using biosignals and solves research question RQ5.3 and hypothesis 

H5.3. In conclusion, this research addresses the challenge of enabling the semantic search of text-based 

contents from HSNs using bowel sounds from Health IoT. The proposed framework, PhysioVec, 

offers a solution by converting biosignal data into clinically interpretable descriptions that serve as 

keywords for semantic search within the HSNs. By utilising semantic segmentation techniques and 
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statistical analysis, PhysioVec extracts specific physiological measurements from bowel sounds and 

generates human-readable keywords for retrieving relevant health information. 

The main contribution of this research is the enhancement of the ReLATEC model through 

training with bowel sound data, improving the diagnosis of gastrointestinal issues in newborns. This 

contribution enhances the understanding and extraction of meaningful information from biosignals, 

thereby improving healthcare decision-making processes. 

The proposed framework is extendable and customisable, allowing for automatic early diagnosis 

and mass respiratory health monitoring in both hospital and home settings. The inclusion of 

visualisation of respiratory physiological measurements further aids interpretation and analysis. 

However, it is important to acknowledge the limitations of this study. The generated clinical 

descriptions are not exhaustive, as they do not include patients’ subjective descriptions and other 

abnormalities not covered in the mapping function. Future work could involve collecting bowel sound 

data in conjunction with other modalities, such as ECG, patient description text and body temperature 

readings, to train a model that provides more detailed and accurate descriptions of health conditions. 

Additionally, the evaluation of search results is currently based on whether the retrieved articles 

mention the disease name. To address real-world scenarios where users require more information than 

just the disease name, further testing is needed to evaluate the performance of the search results. 

In summary, this research presents a feasible solution that bridges health sensor-derived insights 

with online literature through the semantic integration of bowel-based physiological data. The 

framework, PhysioVec, provides an optimal first step towards intuitive respiratory monitoring by 

automating interpretation from captured sounds and streamlining the accessibility of relevant health 

information through biosignal-driven queries. Future extensions could include expanding the 

supported vital signs, searching clinical terminologies and patient forums, or incorporating domain 

adaptation techniques. Overall, this research contributes to the advancement of healthcare technology 

and decision-making processes in the field of respiratory Health IoT applications. 
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6 Conclusion and Discussion 

The main contribution of this thesis is the integration of HSNs and IoT through the interpretation of 

biosignals to enable effective searching within HSNs. This thesis comprises a collection of published 

or accepted research papers. The results of the performance evaluation demonstrate that our proposed 

methods successfully interpret biosignals, enabling them to be utilised for effective searching within 

HSNs. 

6.1 Summary of Contributions 

This thesis aims to address the challenges in integrating HSNs with IoT devices by utilising biosignals 

and making them searchable in HSNs. Through a comprehensive literature review, gaps were 

identified in utilising various biosignals, such as ECG, breath and bowel sounds, for remote diagnosis 

and online medical information retrieval. 

Eight research questions were formulated to guide the investigation. These questions focused on 

topics such as matching individuals to online support groups based on biosignals from IoT sensors, 

enabling semantic searching of health data in HSNs, developing deep learning models for biosignal 

analysis, and extracting interpretable patterns from biosignals. Corresponding hypotheses were 

proposed for each research question, providing a framework for testing and evaluation. 

The research questions were systematically addressed in 3 technical chapters, which employed 

various methodologies and techniques. Key contributions of this thesis include the development of 

novel techniques such as Gaussian Hamming Distance, a Keyword-based Integrated HSN of Things 

framework, CardioVec, Recurrent Local Relation Transformer Encoder Classifier, PhysioVec, a 

compact Bowel Sound Sensor, and bowel sound detection models. 

Evaluation results confirmed the validity of the hypotheses and demonstrated the improved 

performance of the developed techniques compared to existing methods. The techniques showed 

promising results in tasks such as disease prediction, sound segmentation, clinical description 

generation and information retrieval. 

In conclusion, this thesis successfully addressed the research questions through rigorous 

experimentation and validation. The integration of HSNs and IoT through interpretable biosignals has 

been achieved, offering potential benefits for remote healthcare and telemedicine. 

6.2 Future Work 

In the conclusion section of this thesis, we have successfully demonstrated the integration of HSNN 

and the IoT to enhance the accessibility and accuracy of health information for patients and 

caregivers. Through the development of innovative frameworks and algorithms, we have made 

significant strides in the realm of remote healthcare and telemedicine. However, there are limitations 

and challenges in applying these research findings in actual health management settings that must be 

acknowledged and addressed. 
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One of the primary limitations is the reliance on large models for data interpretation and analysis. 

While these models have shown promise in controlled environments, their scalability and robustness 

in real-world scenarios, where data may be noisy or incomplete, remain a concern. Additionally, the 

integration of these models into existing healthcare infrastructure requires significant investment in 

terms of both resources and training for healthcare professionals. 

Furthermore, the current research primarily focuses on the technical aspects of data collection and 

analysis, with less emphasis on the ethical considerations and patient privacy concerns that are 

integral to healthcare settings. Ensuring that the implementation of these technologies respects patient 

autonomy and maintains the confidentiality of sensitive health data is a challenge that must be met. 

Another challenge is the generalizability of the findings across diverse populations. The research 

conducted herein may not be representative of all patient groups, and further studies are needed to 

validate the effectiveness of these models across different demographic and geographic contexts. 

In terms of future work, there is a need to expand the scope of the research to include longitudinal 

studies that can track the long-term impact of these technologies on health outcomes. Additionally, 

exploring the integration of these models with EHR and other healthcare databases could provide a 

more comprehensive picture of patient health and inform more personalized treatment plans. 

In summary, while this thesis presents a promising approach to leveraging HSNs and IoT for 

healthcare, it is crucial to recognize the limitations and challenges in its practical application. Future 

research should focus on addressing these issues, ensuring that these technologies can be effectively 

and responsibly integrated into the complex landscape of health management. This thesis proved that 

useful and interpretable physiological measurements can be extracted from biosignals for searching 

online health data. Our approach can be further improved for an end-to-end solution, by collecting 

biosignal that is associated with HSN data. 

6.2.1 End-to-End Online Health Information Recommender System 

Our proposed PhysioVec and other approaches are trained using existing data, which lacks biosignal 

data associated with online health data. This absence of online health data linked to biosignals poses a 

significant barrier to our study. One possible reason for this limitation could be the limited utilisation 

of Health IoT and HSNs at the current stage. In the future, it may be possible to develop an end-to-end 

recommender system by automatically collecting user actions in HSNs along with biosignals. This 

approach would involve training biosignals directly into word embeddings for comparison with 

document embeddings of SBERT, eliminating the need for extracting physiological measurements. 

Compared with our current approach, the end-to-end framework offers two major advantages: (1) 

reduced cost for identifying clinical descriptions; and (2) the potential for the model to learn to 

identify clinical abnormalities based on a vast amount of data once Health IoT becomes widely 

adopted. 
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6.2.2  Online Health Question Answering System 

Based on the search results obtained from PhysioVec or the future recommender system, the 

implementation of a question-answering system becomes a viable option. An extractive question-

answering system utilising a large language model such as ChatGPT can be deployed to aggregate and 

condense the search results. For instance, the question answering system could identify relevant 

diseases based on user-reported symptoms by analysing the extensive set of search results.  

The potential application of the proposed PhysioVec framework in RAG tasks presents an 

exciting avenue for exploration. PhysioVec's capability to analyse and interpret biosignals from IoT 

devices could be instrumental in enhancing the quality of generated responses in RAG tasks. By 

utilizing the rich, clinically interpretable descriptions derived from biosignals, PhysioVec could 

contribute to the creation of more accurate and contextually relevant outputs in healthcare-related 

natural language processing tasks. 

Moreover, the integration of PhysioVec with RAG could lead to the development of advanced 

healthcare decision support systems. These systems would be capable of not only retrieving relevant 

medical information but also generating new insights based on the analysis of biosignals and patient 

histories. This synergy between PhysioVec and RAG could significantly improve the efficiency and 

effectiveness of healthcare services, providing medical professionals with valuable tools for diagnosis, 

treatment planning, and patient education. 

As we move forward, it will be essential to conduct extensive testing and validation to ensure that the 

integration of PhysioVec with RAG tasks meets the rigorous standards required in healthcare. This 

will involve iterative refinement of the models, as well as careful consideration of the ethical 

implications and data privacy concerns associated with handling sensitive health data. The future 

development of PhysioVec for RAG tasks holds promise for transforming the way healthcare 

information is managed and utilized, ultimately leading to improved patient outcomes and more 

informed clinical decision-making.  
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