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A B S T R A C T

Image classification is a crucial task in modern weed management and crop intervention technologies.
However, the limited size, diversity, and balance of existing weed datasets hinder the development of deep
learning models for generalizable weed identification. In addition, the expensive labeling requirements of
mainstream fully-supervised weed classifiers make them cost- and time-prohibitive to deploy widely, for new
weed species, and in site-specific weed management. To address these challenges, this paper proposes a novel
method for Weed Contrastive Learning through visual Representations (WeedCLR), that uses class-optimized
loss with Von Neumann Entropy of deep representation for weed classification. WeedCLR leverages self-
supervised learning to learn rich and robust visual features without any labels and applies a class-optimized loss
function to address the class imbalance problem in real-world long-tailed weed datasets. WeedCLR is evaluated
on two public weed datasets: CottonWeedID15, containing 15 weed species, and DeepWeeds, containing 8
weed species. WeedCLR achieves an average accuracy improvement of 4.3% on CottonWeedID15 and 5.6% on
DeepWeeds over previous methods. It also demonstrates better generalization ability and robustness to different
environmental conditions than existing methods without the need for expensive and time-consuming human
annotations, which could reduce deployment time from days to hours. This is fundamental in reducing weed
impacts, which can grow and spread very rapidly further affecting crops and reducing yield. These significant
improvements make WeedCLR an effective tool for weed classification in real-world scenarios and allow for
more rapid and widespread deployment of site-specific weed management and crop intervention technologies.
1. Introduction

Weed management is a critical issue in agriculture, as weeds com-
pete with crops for resources and can significantly reduce crop yields
(Rai et al., 2023; Xu et al., 2023). Existing weed management relies
heavily on broadcast application of herbicides to entire paddocks to
control weeds, including in areas of paddocks which do not contain
weeds. This over-application of herbicide has both negative economic
and environmental effects that could be minimized with site-specific
weed control. In the past two decades, new approaches for site-specific
weed management have been developed to detect weeds and only
apply herbicide where it is needed. WeedIT1 and WeedSeeker2 uses
near-infrared (NIR) sensing technology to detect weeds which are
limited to weed control in-fallow application, or green-on-brown spray-
ing. While deep learning based approaches have shown promise for
in-crop application (Arsa et al., 2023; Dang et al., 2023), or green-
on-green spraying. The latter approaches are on the cusp of achieving
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1 https://www.weed-it.com/.
2 https://ag.trimble.com/weedseeker2.

significant uptake in the commercial arena (Coleman et al., 2022).
However, supervised learning is the predominant deep learning method
for these approaches, which requires human involvement to annotate
the presence of weeds within each image. This annotation process,
being highly time-consuming, stands as a formidable barrier to the
widespread adoption of these approaches. In addition, the need for
annotation significantly slows down the development and deployment
of weed classification techniques, which in turn could lead to a wider
spread of weeds and a higher impact on crops. Furthermore, the spe-
cialized knowledge required for accurately identifying weed species in
images, particularly within specific cropping systems, makes it imprac-
tical to outsource this work to online paid annotation platforms. This
is underscored by the fact that even among trained plant consultants,
a noteworthy 12% error rate has been reported (Dyrmann et al.,
2016). Self-supervised learning techniques have the ability to group
clusters within datasets without the need for human annotation. There
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is limited research on their use for weed recognition (Coleman et al.,
2022).

Another challenge for deep learning approaches is that the ideal
use case for site specific weed management is when weed pressure is
low, which maximizes the reduction in herbicide usage. Consequently,
a small proportion of target weed species creates a small sample of
target images in the dataset, otherwise known as long-tailed datasets.
This class imbalance is an obstacle that must be overcome. Below,
we explain how we extend the state-of-the-art to develop WeedCLR to
address the two aforementioned challenges.

The possibility for aligning the embedding vectors of enhanced
representations of a given training sample has been demonstrated using
self-supervised learning techniques. One such technique is contrastive
learning (Chen et al., 2020a), which treats every training sample as a
eparate class and compares them. The InfoNCE contrastive loss (Oord

et al., 2018) is commonly used to do this, pushing representations
of negative pairs of instances further away in the embedding space
while bringing representations of positive pairs of examples closer
together. It is recognized that this method necessitates a high number of
negative samples. On the other hand, non-contradictory approaches do
not depend on specific negative samples. Examples of these approaches
are redundancy reduction techniques (Zbontar et al., 2021), clustering-
based techniques (Caron et al., 2020), and approaches that make use
f specialized architecture design (Grill et al., 2020; Xie et al., 2022).

These approaches have yielded encouraging results in a variety of
applications and remain an active field of research.

Several self-supervised techniques modify the input data in order
o derive a supervised signal in the form of a task that has been pre-
esigned (pretext). One such task of particular interest is the jigsaw
uzzle task, which has been encoded as an invariant for contrastive

learning. In contrast to this approach, we have used a multi-crop
strategy that simply samples multiple random crops of the input image,
having two distinct sizes — a larger and a smaller one. This makes
it possible to learn representations and cluster assignments simultane-
ously in an end-to-end manner, offering a more effective and efficient
technique for self-supervised learning.

Self-supervised learning has demonstrated efficacy in learning ap-
ropriate features and has surpassed supervised learning in certain
ubsequent transfer learning criteria. The theoretical study of self-
upervised learning has sought to explain the underlying dynamics
f these systems (Chen et al., 2020a). Despite their success, the me-

chanics of these techniques remain relatively obscure and not properly
understood. Several studies have provided theoretical evidence that
representations learned via contrastive learning are useful for down-
stream tasks (Tosh et al., 2021; Lee et al., 2020; Arora et al., 2019b).
Additionally, it has been explained by Tian et al. (2021) why non-
contrastive learning methods such as SimSiam (Xie et al., 2022) and

YOL (Grill et al., 2020) work, the prevention of total collapse being
largely dependent on its input correlation matrix’s and the predictor’s
eigenspace alignment.

In a linear neural network scenario, gradient descent has been
shown to theoretically lead adjacent matrices to align in terms of im-
plicit regularization (Ji and Telgarsky, 2019). Gradient descent has the
bility to produce nuclear-norm minimization solutions, provided that
here are aligned matrices (Gunasekar et al., 2018). Arora et al. (2019a)
as expanded this idea to deep linear networks, and provides empirical
nd theoretical support for the ability of deep linear networks to extract
ow-rank solutions. Neural networks that are too parametrized typically

discover steeper local minima (Saxe et al., 2019; Neyshabur et al., 2019;
Barrett and Dherin, 2021). In this study, we employ Von Neumann
ntropy (VNE) of deep representation as a regularization technique.
n addition to VNE, this regularizer may also successfully regulate
ther qualities that are conceptually related, such as decorrelation and
ank. Our approach takes into account the autocorrelation matrix’s
igenvalue distribution, which characterizes the relationship between

he representation’s various properties.

2 
The main objective of this study is to develop an efficient and ef-
ective weed classification method by employing our above-mentioned
eep learning contributions in self-supervised learning and regular-
zation. To achieve this objective, we developed WeedCLR, for weed
lassification in long-tailed datasets using a self-visual features learn-
ng approach. WeedCLR uses a class-optimized loss function to im-
rove classification accuracy and leverages the power of self-supervised
earning to extract meaningful visual features from images of weeds
ithout the need for any human annotation (Magistri et al., 2023;

Espejo-Garcia et al., 2023). These features are then used to train
a classifier that can accurately distinguish between different weed
species. We evaluate our method on two public weed datasets: Cot-
tonWeedID15 (Chen et al., 2022) and DeepWeeds (Olsen et al., 2019),
nd demonstrate its effectiveness in improving classification accuracy

compared to state-of-the-art self-supervised learning approaches.
Our approach includes the use of Von Neumann Entropy (VNE)

to optimize the representation space, which helps us to achieve a
ore desirable representation that avoids dimensional collapse and
roduces more useful embeddings. We also introduce a regularization
hat encourages the model to assign labels uniformly across all classes,

preventing degenerate solutions where all labels are assigned to a single
class. Additionally, by maximizing the likelihood of the correct class
while balancing the probabilities of the wrong classes, our approach
tries to optimize the model behavior for classes other than the cor-
rect class. This helps us to achieve better classification accuracy and
improve the performance of our model in practical long-tailed weed
datasets.

Specifically, our approach is a straightforward yet powerful single-
tage end-to-end self-supervised classification and representation learn-
ng method for classifying weeds. Unlike prior unsupervised classi-
ication studies, it does not need any kind of pre-training, pseudo-
abeling, expectation–maximization technique, or external clustering
Chen et al., 2020a; Caron et al., 2020). In contrast to other unsu-

pervised representation learning studies, our method does not need a
stop-gradient operation, external clustering, a memory bank, a second
network, or negative pairings (Chen et al., 2020b; Grill et al., 2020;
Caron et al., 2021).

Our main contributions are summarized as follows:

1. We present WeedCLR, to the best of our knowledge, the first self-
supervised weed classification technique for long-tailed weed
datasets.

2. WeedCLR advances state-of-the-art weed detection technology
in practical production agriculture in three ways; (i) Managing
long-tailed unbalanced datasets, which is a real-world problem
in weed datasets. (ii) Improving the accuracy of the state-of-
the-art by approximately 5%, which is fundamental for practi-
cal weed management practices. (iii) Significantly reducing the
development and deployment time, which is essential for the
timely containment of weeds and reducing their impact on crops.

3. WeedCLR achieves its power by incorporating several novel
deep learning contributions namely (i) Leveraging the power of
multi-crop strategy with self-supervised learning. (ii) Utilizing a
class-optimized loss function to improve classification accuracy
in long-tailed datasets. (iii) Using the Von Neumann Entropy
(VNE) to optimize the representation space; (iv) Introducing a
regularization that encourages the model to assign labels uni-
formly across all classes. And (v) optimizing the model behavior
for classes other than the correct class by increasing the prob-
ability of the right class and decreasing the probability of the
wrong classes.

4. We evaluate WeedCLR on two public weed datasets: CottonWee-
dID15 (Chen et al., 2022) and DeepWeeds (Olsen et al., 2019),
and demonstrate its effectiveness in improving classification
accuracy compared to state-of-the-art self-supervised learning
approaches.
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The rest of this paper is organized as follows: Section 2 presents our
roposed WeedCLR approach in detail. Section 3, presents the experi-

mental setup and implementation details of WeedCLR. Section 4 evalu-
ates the performance of our approach on two benchmark datasets and
compares it to several state-of-the-art methods. Section 5 investigates
the effect of different factors on the DeepWeeds and CottonWeedID
datasets. Section 6 discusses the limitations of our approach and future

ork. Finally, Section 7 summarizes the main findings of this paper and
utlines the potential impact of our work.

2. Method

Despite the recent successes of self-supervised learning (SSL) meth-
ods, they are not as effective when dealing with unbalanced datasets.
This is because many SSL methods rely on a hidden uniform prior,
which distributes the data uniformly in the representation space. As
a result, in a particular mini-batch, the model learns the most dis-
criminative features. Class-specific features are the most discriminative
ones that the model will learn when the input is uniformly distributed
across classes. However, when using unbalanced data, the class may no
onger be the most discriminative feature inside the mini-batch; instead,
dditional low-level information may be present, which will decrease
erformance on downstream classification tasks.

The most common practice for pretraining SSL models is to use
urated datasets such as ImageNet and PASS, which are usually class-
alanced and contain images with a single object prominently featured
n the center. However, these datasets are not always representative
f the data found in the wild, such as weed datasets, which are often
nbalanced.

In this section, we present our WeedCLR method for training a
lassifier that can accurately classify two distinct augmented views of
he same image sample. Our goal is to train a classifier that can classify
he two views similarly while avoiding degenerate solutions. By doing
o, we aim to improve the performance of SSL methods on unbalanced
eed datasets. However, our proposed technique can be applied to any
ther image datasets, especially unbalanced ones.

A straightforward approach to this problem would be to minimize
a cross-entropy loss function, as shown in Eq. (1).

𝓁(𝑥1, 𝑥2) = −
∑

𝑦∈[𝐶]
𝑝(𝑦|𝑥2) log 𝑝(𝑦|𝑥1), (1)

where 𝑝(𝑦|𝑥) represents the probability of class 𝑦 given input 𝑥, calcu-
lated as a row softmax of the matrix of logits  in one-hot encoded
epresentation. This matrix is produced by our model (encoder +

classifier), see Fig. 1, for all classes (represented by columns) and batch
samples (represented by rows).

However, without additional regularization, this approach quickly
onverges to a degenerate solution, (i.e., the network predicts a con-
tant 𝑦 regardless of the input 𝑥). To address this issue, we propose
ptimizing our model’s representation space by incorporating Von Neu-
ann Entropy (VNE), and introducing a novel loss function called
lass-optimized Loss (COL), as shown in Fig. 1. In the following subsec-
ions, we will explain the Representation Space Optimization and our
roposed Class-optimized Loss (COL) in more detail.

2.1. Representation space optimization

Self-supervised learning techniques learn valuable representations
by minimizing the distances between embedding vectors from aug-
mented images (Fig. 1). This would lead to a collapsed solution in
which the generated representation remains constant in the absence
of further regularization (Fig. 2c). However, certain contrastive tech-
iques limit total collapse by the use of a negative term that shifts
he embedding vectors of distinct input images from one another
Chen et al., 2020b; Grill et al., 2020; Caron et al., 2021). Although
ontrastive techniques avoid complete collapse, they nevertheless suffer
3 
a dimensional collapse when the embedding vectors span a subspace of
a lower dimension than their dimension. (Fig. 2b).

To achieve the ideal representation space (Fig. 2a), we propose a
method that uses Von Neumann Entropy (VNE), as shown in Fig. 1, to
control the eigenvalue distribution of the autocorrelation matrix (Kim
t al., 2023). By optimizing the representation space using VNE, we
an achieve a more desirable representation that avoids dimensional
ollapse and produces more useful embeddings.

Von Neumann Entropy (VNE) is a mathematical formulation used to
manipulate representation properties and is a measure of the diversity
or spread of the eigenvalues of the autocorrelation matrix, which is
an important property of a representation. By regularizing the VNE
of the representation, the eigenvalue distribution can be effectively
manipulated to refine the quality of the representation.

The representation’s autocorrelation matrix, defined as auto, is a
mathematical construct that describes the correlation between different
components of a representation. The properties of the autocorrelation

atrix are closely related to various representation properties, such as
ecorrelation, and rank. Decorrelation refers to the process of remov-
ng the correlation between different components of a representation,
hich can improve the quality of the representation. Rank is a mea-

ure of the dimensionality of the representation, which can affect its
xpressiveness and generalization ability. The representation matrix for
 given mini-batch of 𝑁 samples is 𝑯 = [𝒉1,𝒉2,… ,𝒉𝑁 ]𝑇 ∈ R𝑁×𝑑 ,
here 𝑑 is the representation vector’s size. As in previous studies (Kim
t al., 2023), we assume 𝐿2-normalized representation vectors satisfy-

ing ‖𝒉𝑖‖2 = 1. This assumption is important because it ensures that
he representation vectors have a consistent scale and are not affected
y differences in magnitude. By normalizing the vectors in this way,

the method can focus on the distribution of the vectors rather than
their absolute values. The representation’s autocorrelation matrix is
then defined as:

auto ≜
𝑁
∑

𝑖=1

1
𝑁

𝒉𝑖𝒉𝑇𝑖 = 1
𝑁

𝑯𝑇𝑯 , (2)

where 𝒉𝑖 is a set of vectors, 𝑖 ranges from 1 to 𝑁 .
The autocorrelation matrix in Eq. (2) is denoted by auto, and is

calculated by taking the outer product of each vector with itself, and
then averaging over all 𝑁 vectors. The outer product of a vector 𝒉𝑖 with
itself is given by 𝒉𝑖𝒉𝑇𝑖 , where 𝒉𝑇𝑖 denotes the transpose of 𝒉𝑖. The sum
of all such outer products is then divided by 𝑁 to obtain the average.

Alternatively, the expression for auto can be written in terms of the
atrix 𝑯 , where each column of 𝑯 corresponds to a vector 𝒉𝑖. Specif-

ically, auto can be written as 𝑯𝑇𝑯∕𝑁 , where 𝑯𝑇 denotes the trans-
pose of 𝑯 . This expression is useful for computing the autocorrelation
matrix efficiently using matrix multiplication.

In the extreme case where auto → 𝑐 ⋅ 𝐼𝑑 , where 𝑐 is an adequate
ositive constant, 𝐼𝑑 a diagonal matrix, auto eigenvalue distribution

achieves full uniformity. This means that each feature in the repre-
entation contributes equally to the overall variance, which can be

beneficial for self-supervised contrastive learning methods. The con-
stant 𝑐 is chosen to be an adequate positive value, which ensures that
he matrix remains positive definite and invertible. This results in a full-
ank representation and can prevent dimensional collapse in contrastive
earning. Regularizing auto is important because it permits a simple
ethod to implement as a penalty loss.

The Shannon entropy across the eigenvalues of auto is the defini-
tion of VNE of autocorrelation, as the following equation illustrates:

𝑆(auto) ≜ −
∑

𝑗
𝜆𝑗 log 𝜆𝑗 . (3)

where, 𝑆 denotes the Shannon entropy, which is a measure of the
mount of uncertainty or randomness in a representation space. The

subscript 𝑗 represents the 𝑗th eigenvalue of the autocorrelation matrix,
denoted by 𝜆 . The equation calculates the sum of the product of each
𝑗
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Fig. 1. Illustration of the architecture of our proposed WeedCLR model, which is designed for visual representation learning. The WeedCLR architecture uses a shared network
consisting of a classifier (e.g., projection MLP + linear classification head) and an encoder 𝑓𝜃 (e.g., CNN) to analyze two augmented views of the same image. The eigenvalue
distribution of the two views (Representations) is optimized using Von Neumann Entropy (VNE) to avoid dimensional collapse. By maintaining a uniform prior to class predictions,
the Class-Optimized Loss (COL) is minimized to encourage similar class prediction while preventing degenerate solutions. The corresponding model performs an end-to-end,
single-stage, unsupervised learning of representations and the underlying classes, allowing for efficient and effective classification of images in an unsupervised manner.
Fig. 2. Illustration of the representation collapse problem. (a) Ideal representation space (b) Dimensional collapse (c) Complete collapse. The embedding vectors for dimensional
collapse only span a lower dimensional space. For complete collapse, the embedding vectors collapse to the same point.
eigenvalue and its natural logarithm, which is then multiplied by −1 to
obtain the Von Neumann Entropy.

Implementing VNE regularization is simple. When training our
model, we subtract 𝛼 ⋅ 𝑆(auto) from the main loss .

opt =  − 𝛼 ⋅ 𝑆(auto),

where opt is the loss function that is being optimized,  is the original
loss function without any regularization, 𝛼 is a hyperparameter that
controls the strength of the regularization, 𝑆

(

auto
)

is the Von Neu-
mann Entropy of the autocorrelation matrix auto of the learned repre-
sentation. The regularization term −𝛼 ⋅𝑆

(

auto
)

encourages the learned
representation to have a more structured eigenvalue distribution, which
can improve its quality.

In the following subsection, we will explain our proposed Class-
optimized Loss (COL) function.

2.2. Class-optimized Loss (COL)

Our Class-Optimized Loss (COL) is composed of two components:
The Uniform Prior Loss for the correct class and the Optimized Loss for
the incorrect classes.
4 
2.2.1. The uniform prior loss
The first component of our Class-Optimized Loss (COL) is the mod-

ified cross-entropy loss for the correct class and is derived by applying
Bayes theorem and the law of total probability, resulting in Eqs. (4)
and (5), which are used to compute the probability of a label given an
augmented sample.

𝑝(𝑦|𝑣2) =
𝑝(𝑦)𝑝(𝑣2|𝑦)

𝑝(𝑣2)
=

𝑝(𝑦)𝑝(𝑣2|𝑦)
∑

𝑦̃∈[𝐶] 𝑝(𝑣2|𝑦̃)𝑝(𝑦̃)
, (4)

𝑝(𝑦|𝑣1) =
𝑝(𝑦)𝑝(𝑦|𝑣1)

𝑝(𝑦)
=

𝑝(𝑦)𝑝(𝑦|𝑣1)
∑

𝑣1∈𝐵1
𝑝(𝑦|𝑣̃1)𝑝(𝑣̃1)

, (5)

where 𝐶 is the number of classes, such that two augmented views
(𝑣1, 𝑣2) of the same sample are classified similarly, 𝐵 represents a batch
of 𝑁 samples, with 𝐵1 denoting the first set of augmentations for the
samples in 𝐵. The term 𝑝(𝑣|𝑦) refers to a column softmax of the matrix
of logits  mentioned earlier.

In Eq. (4), the probability of 𝑦 given 𝑣2 is computed using Bayes
theorem. It is equal to the product of the prior probability of 𝑦 and
the likelihood of 𝑣2 given 𝑦, divided by the evidence or marginal
probability of 𝑣2. The evidence is calculated by summing the product of
the likelihood of 𝑣2 given each possible label and the prior probability
of each label over all possible labels. In Eq. (5), the probability of 𝑦
given 𝑣1 is also computed using the Bayes theorem. It is equal to the
product of the prior probability of 𝑦 and the likelihood of 𝑦 given 𝑣 ,
1
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divided by the prior probability of 𝑦. The prior probability of 𝑦 cancels
out in the numerator and denominator, so it is not necessary to compute
it explicitly. The likelihood of 𝑦 given 𝑣1 is calculated by summing the
product of the probability of 𝑦 given each possible value of 𝑣1 and the
probability of each value of 𝑣1 over all possible values of 𝑣1.

Assuming a uniform prior for 𝑝(𝑦) and a uniform distribution for
(𝑣1), the proposed loss function is mathematically equivalent to the
aive cross-entropy loss under the assumption of uniform 𝑝(𝑦) and 𝑝(𝑣).

Our proposed loss function, shown in Eq. (6), takes into account the
prior probabilities of the classes and samples.

𝓁(𝑣1, 𝑣2) = −
∑

𝑦∈[𝐶]

𝑝(𝑣2|𝑦)
∑

𝑦̃ 𝑝(𝑣2|𝑦̃)
log

(

𝑁
𝐶

𝑝(𝑦|𝑣1)
∑

𝑣̃1
𝑝(𝑦|𝑣̃1)

)

, (6)

where 𝑝(𝑦) and 𝑝(𝑦̃) cancel out in Eq. (4), and 𝑝(𝑦)∕𝑝(𝑣̃1) becomes 𝑁
𝐶

in Eq. (5).
This cancellation occurs in Eq. (4) because both terms represent the

probability of the same label for two different augmented views of the
same sample. In Eq. (5), the ratio of 𝑝(𝑦) and 𝑝(𝑣̃1) is simplified to 𝑁

𝐶 ,
here 𝑁 is the total number of samples and 𝐶 is the number of classes.

This simplification is possible because 𝑝(𝑣̃1) represents the probability
f the augmented view of the sample, which is assumed to be uniformly
istributed across all samples. Therefore, 𝑝(𝑣̃1) can be approximated as
1
𝑁 , and the ratio 𝑝(𝑦)

𝑝(𝑣̃1)
becomes 𝑁 𝑝(𝑦). Since the loss function is defined

as the negative log-likelihood of the predicted labels, this simplification
esults in a term of − log

(

𝑁
𝐶

)

in the loss function. This term acts as
a regularization that encourages the model to assign labels uniformly
cross all classes, preventing degenerate solutions when a single class

is allocated to all labels. This means that a solution with an equal
istribution of data among all classes by asserting a uniform prior on
he conventional cross-entropy loss function is considered an optimal
olution.

In practice, we employ a symmetric variant of this loss, as shown
n Eq. (7). Empirical evidence suggests that this variant yields better

results.

 = 1
2

(

𝓁(𝑣1, 𝑣2) + 𝓁(𝑣2, 𝑣1)
)

. (7)

While our Uniform Prior Loss (Eq. (6)) has shown improved results
in avoiding degenerate solutions (see Section 5), it primarily exploits
information from the correct class and largely ignores information from
ncorrect classes. This can be attributed to the fact that predicted prob-
bilities other than 𝑦̃ are zeroed out during the dot product calculation
ith one-hot encoded 𝑦. As a result, model behavior for classes other

han the correct class is not explicitly optimized (see Fig. 3 left graph).
Instead, their predicted probabilities are indirectly minimized when 𝑦̃
is maximized, given that probabilities must sum to 1. This effect is
more pronounced in datasets with imbalanced class distributions. To
address this limitation, an optimized loss for incorrect classes has been
proposed as an additional regularization to our cross-entropy variant.

2.2.2. The optimized loss
The second component of our Class-Optimized Loss (COL) aims

to explicitly optimize the model behavior for classes other than the
correct class, by maximizing the likelihood of the correct class while
neutralizing the probabilities of the incorrect classes.

The Optimized Loss 𝑂(⋅) is defined as the average of sample-wise
entropies over incorrect classes in a mini-batch, as shown in Eq. (8).

𝑂(𝐲̂𝑐 ) = 1
𝑁

𝑁
∑

𝑖=1
(𝐲̂𝑖 ̄𝑐)

= − 1
𝑁

𝑁
∑

𝑖=1

𝐾
∑

𝑗=1,𝑗≠𝑔
(

ŷ𝑖𝑗
1 − ŷ𝑖𝑔

) log(
ŷ𝑖𝑗

1 − ŷ𝑖𝑔
)

(8)

where 𝐲̂𝑐 is the predicted probabilities of the incorrect classes, (⋅) is
the entropy function, 𝐲 is one-hot vector representing the label of the
𝑖
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𝑖th sample, 𝐲̂𝑖 is the predicted probability for each class for the 𝑖th
ample, 𝑔 is the index of the correct class, y𝑖𝑗 or ŷ𝑖𝑗 is the 𝑗th class
element) of 𝐲𝑖 or 𝐲̂𝑖, 𝑁 and 𝐾 are the total number of samples and the
otal number of classes.

Eq. (8) calculates the Optimized Loss, 𝑂(⋅), using a set of predicted
probabilities, 𝐲̂𝑐 . The entropy function is denoted as (⋅), which is a
measure of the uncertainty or randomness of a probability distribution.
The sample-wise entropy is calculated by considering only the incorrect
classes other than the correct class 𝑔. This means that the entropy is
calculated based on the predicted probabilities of all classes except the
correct class for a given sample. The predicted probability for each
class, denoted by ŷ𝑖𝑗 , is normalized by one minus the correct probability
(i.e., 1 −ŷ𝑖𝑔). This normalization ensures that the predicted probabilities
um up to one.

The term ŷ𝑖𝑗
1−ŷ𝑖𝑔

can be interpreted as the predicted probability of
observing class 𝑗 for the 𝑖th sample, given that the correct class 𝑔
does not occur. Optimizing on the incorrect entropy reduces ŷ𝑖𝑗 to
(1−ŷ𝑖𝑔 )
(𝐾−1) , where 𝐾 is the total number of classes. This is because entropy
s maximized when events have an equal chance of occurring. This

fundamentally neutralizes the predicted probability of incorrect classes
s 𝐾 grows large. Maximizing the incorrect entropy ‘‘flattens’’ the
redicted probabilities of incorrect classes 𝑦̂𝑗≠𝑔 . This means that the
redicted probabilities of incorrect classes are reduced, making it less
ikely for the neural net ℎ𝜃 to make incorrect predictions (see Fig. 3

right graph).
We hypothesize that when the predicted probabilities of incorrect

lasses are neutralized, the neural net ℎ𝜃 generalizes better. This is
because the likelihood of an incorrect class having a high enough
predicted probability to ‘‘challenge’’ the correct class is reduced. In
other words, by maximizing the incorrect entropy and ‘‘flattening’’ the
predicted probabilities of incorrect classes (see Fig. 3), the neural net
is able to make more accurate predictions and generalize better to new
ata.

2.3. WeedCLR model

WeedCLR is a novel approach to self-supervised end-to-end classifi-
cation learning that simultaneously learns representations and labels
n a single stage, end-to-end manner, as shown in Fig. 1. This ap-

proach optimizes for same-class prediction of two augmented views
of the same sample and employs a variant of the cross-entropy loss
with a uniform prior coded on the predicted labels to prevent all
labels from being assigned to the same class. WeedCLR explicitly op-
timizes model behavior for classes other than the correct class by

aximizing the likelihood of the correct class while neutralizing the
robabilities of the incorrect classes. WeedCLR is scalable and simple
o use. It does not require negative pairs, pre-training, expectation–
aximization, external clustering, stop-gradient operation, second net-
orks, or pseudo-labeling, in contrast to other common unsupervised

lassification learning techniques.
Algorithm 1 describes a training procedure for our WeedCLR model,

lso illustrated in Fig. 1. The algorithm takes as input a training dataset
𝐃 and outputs the model parameters 𝜽. The training process consists
of several steps, which are repeated for a specified number of training
steps 𝑛𝑡𝑟𝑎𝑖𝑛_𝑠𝑡𝑒𝑝𝑠.

First, a mini-batch of data 𝐗 is obtained from the training dataset
𝐃 (line 3). This mini-batch is then augmented to produce two sets of
data, 𝐯 and 𝐯̂ (line 4). These augmented data are then passed through
an MLP encoder to extract features 𝐳 and 𝐳̂ (line 5). These features are
optimized by VNE which is calculated using Eq. (3) (line 6). These
eatures are then classified using a CLF function (classifier) to produce
redicted class probabilities 𝐲𝑐 , 𝐲̂𝑐 (line 7).

Next, the COL loss term COL is calculated using Eq. (10) (line 8).
he final loss is then calculated as the sum of the VNE and COL loss

terms (line 9), and the model parameters are updated using this final
loss and an optimizer (line 10).
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Fig. 3. Illustration of the top-5 predicted probabilities ŷ from two training paradigms for a sample image from the CottonWeedID15 (Chen et al., 2022) dataset, with the
ground-truth class being ‘‘Ragweed’’. The model used is ResNet-50. The left graph shows the predicted probabilities from the model trained with The Uniform Prior Loss only,
while the right graph shows the predicted probabilities from the model trained with our proposed Class-optimized Loss (COL), which includes both The Uniform Prior Loss and
The Optimized Loss. Compared to the right graph, the model in the left graph is confused by other classes such as ‘‘Nutsedge’’ and ‘‘Eclipta’’, implying that it might be more
vulnerable to adversarial attacks and limitations with generalization.
Algorithm 1: Training WeedCLR
input : Training dataset, 𝐃 = {𝐗𝑖,⋯ ,𝐗𝑛}𝑁𝑖=1
output: Model parameters, {𝜃1, ⋯, 𝜃𝑛𝑙 𝑎𝑦𝑒𝑟𝑠}

1 initialization;
2 for 𝑡 ← 1 𝐭 𝐨 𝑛𝑡𝑟𝑎𝑖𝑛_𝑠𝑡𝑒𝑝𝑠 do
3 𝐗 ← mini_batch(𝐃, 𝑡);
4 𝐯, 𝐯̂ ← augmentation(𝐗);
5 𝐳, 𝐳̂ ← MLP(encoder(𝐯, 𝐯̂));
6 VNE ← −𝛼 ⋅ 𝑆(auto). ⊳ Eq. (3);
7 𝐲𝑐 , 𝐲̂𝑐 ← CLF(𝐳, 𝐳̂);
8 COL ← (𝐲𝑐 , 𝐲̂𝑐 ) + 𝛽 𝑂̃(𝐲̂𝑐 ) ⊳ Eq. (10);
9 𝐟 𝐢𝐧𝐚𝐥_𝐥𝐨𝐬𝐬 ← COL + VNE ⊳ Eq. (11);
10 optimizer.step(𝐟 𝐢𝐧𝐚𝐥_𝐥𝐨𝐬𝐬);

As shown in Algorithm 1, this work combines the Uniform Prior
oss and the Optimized Loss with a single entropy during the training
rocess (see line 8 in Algorithm 1). To balance the Uniform Prior Loss,
q. (7), and the Optimized Loss, Eq. (8), a coefficient 𝛽 is introduced
o the Optimized Loss, as shown in Eq. (9).

=
𝜸

𝐾 − 1 (9)

here 𝛾 is a modulating factor, and 𝐾 is the number of classes.
This equation calculates the coefficient 𝛽 as the ratio of the mod-

lating factor 𝛾 to the total number of classes minus one (𝐾 − 1).
he modulating factor 𝛾 should be tuned to decide the amount that
ptimizes the Uniform Prior Loss, for example, 𝛾 = −1 (𝛾 < 0).
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The proposed loss, named Class-optimized Loss (COL), is defined in
Eq. (10).

COL = (𝐲𝑐 , 𝐲̂𝑐) + 𝛽𝑂̃(𝐲̂𝑐 ) (10)

This equation calculates COL as the sum of the Uniform Prior Loss
(𝐲𝑐 , 𝐲̂𝑐) and the product of the coefficient 𝛽 and the Optimized Loss
𝑂̃(𝐲̂𝑐).

The final loss is then calculated by combining COL Eq. (10) and VNE
loss Eq. (3), as shown in equation Eq. (11).

COL +VNE (11)

This approach allows for explicit optimization of model behavior
for both correct and incorrect classes while taking into account infor-
mation from both. To visualize the effect of our Class-Optimized Loss
(COL), Fig. 4 shows the embeddings for DeepWeeds and CottonWee-
dID15 (Chen et al., 2022) test images obtained from two self-supervised
training paradigms. On the left, the embeddings were obtained by
training with cross-entropy only, while on the right, the embeddings
were obtained by training with our COL. The model used is ResNet-50,
and the embeddings represent the vector representation before feeding
to the MLP and classification heads. The embeddings were projected to
2D vectors using t-SNE for visualization purposes. Compared to the left
images, the clusters of each class in the right images are small in terms
of intra-cluster distance. Furthermore, the boundaries of the clusters
in the right images are distinct and clear, which contributes to more
reliable and accurate classification outcomes.
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Fig. 4. The embeddings for DeepWeeds and CottonWeedID15 test images obtained from two self-supervised training paradigms. On the left, the embeddings were obtained by
training with cross-entropy only, while on the right, the embeddings were obtained by training with our COL. The model used is ResNet-50, and the embeddings represent the
vector representation before feeding to the MLP and classification heads. The embeddings were projected to 2D vectors using t-SNE for visualization purposes.
3. Experiments

This section first briefly overviews the experimental setup and
implementation details and then presents experimental results demon-
strating the effectiveness of our proposed method for weed classifica-
tion in long-tailed datasets. We conducted experiments on two datasets
of weed images, comparing the performance of our method to several
baseline approaches.

3.1. Datasets

The first dataset used in our experiments is the DeepWeeds dataset
(Olsen et al., 2019), which consists of 17,509 images capturing eight
different weed species native to Australia in situ with neighboring flora.
The images were collected from weed infestations in eight rangeland
environments across northern Australia. The second dataset is the Cot-
tonWeedID15 dataset (Chen et al., 2022), which consists of 5187 RGB
images of 15 weeds that are common in cotton fields in the southern
U.S. states. These images were acquired by either smartphones or hand-
held digital cameras, under natural field light conditions and at varied
stages of weed growth in 2020 and 2021. Fig. 5 compares the number
of images per class for the two imbalanced datasets, CottonWeedID15
(left) and DeepWeeds (right). Both datasets have a long-tailed distribu-
tion, with some weed species being much more common than others.
These datasets provide a valuable resource for the development and
evaluation of self-supervised learning methods for weed identification.
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3.2. Architecture

In our experiments, we employed a ResNet-50 architecture, a com-
monly utilized backbone in self-supervised learning studies. We also
experimented with ResNet-9 and ResNet-18 architectures. The ResNet-
(9, 18, 50) backbones were initialized randomly. The projection heads
used in the experiments were two-layer MLPs with sizes of 4096 and
one-layer with sizes of 128, respectively, and included batch normaliza-
tion, leaky-ReLU activations, and 𝓁2 normalization after the last layer.
Four classification heads were placed on top of the projection head
MLPs, corresponding to 0.5𝐾, 1𝐾, 1.5𝐾, and 2𝐾 classes, respectively.
Without an additional bias term, each classification head was a simple
linear layer. The temperature 𝜏𝑟𝑜𝑤 was set to 0.1 for the row-softmax
and 𝜏𝑐 𝑜𝑙 for the column-softmax. The evaluation for unsupervised clas-
sification was conducted using two different classification heads. For
linear probe evaluation, the MLP was removed and replaced with a
single linear layer of 15 and 9 classes for CottonWeedID and Deep-
Weeds datasets, respectively. A schematic diagram of the architecture
is depicted in Fig. 1.

3.3. Image augmentations

In our experiments, we employed the data augmentations of Sim-
CLR (Chen et al., 2020a), including color jittering, Gaussian blur, and
random flips. We also utilized a multi-crop strategy, with two global
views of size 128 × 128 and four local views of size 64 × 64, as well
as nearest neighbor augmentation, with a queue set to 200. The multi-
crop strategy involves creating multiple crops of different sizes from
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Fig. 5. Comparison of the number of images per class for two imbalanced datasets: CottonWeedID15 (Chen et al., 2022) (left) and DeepWeeds (Olsen et al., 2019) (right).
Fig. 6. Multi-Crop Augmentation: This process transforms a single image into V+2 distinct views, comprising two global perspectives and V small resolution zoomed perspectives.
By doing so, it introduces a higher level of diversity into the training data, thereby enhancing the robustness and generalization ability of the trained model.
the same image for training a model, see Fig. 6. This approach was
introduced in the SwAV (Caron et al., 2020). In SwAV, instead of using
a fixed size for cropping images, a multi-crop strategy is employed
where two larger crops and up to four smaller crops are taken from
the same image. This has been shown to boost the performance of the
model compared to other approaches that use a fixed crop size. The
proposed approach is simple, yet efficient, and can be used in several
self-supervised methods to consistently improve performance.

3.4. Experimental setup

We used an SGD optimizer (You et al., 2017) with a learning rate
of 4.8 and weight decay of 10−6 for unsupervised pre-training and
classification. For the first 10 epochs, the learning rate was scaled up
linearly from 0.3. After that, it was reduced using a cosine scheduler
for 390 epochs, ending at 0.0040, for a total of 400 epochs. We used a
batch size of 256 on a single NVIDIA GeForce RTX 2080 Ti GPU.

We measured the quality of our WeedCLR model representations
using two approaches. The first approach involves using the k-nearest
neighbors (KNN) classifier, which makes classifications based on prox-
imity to other data points. The second approach, known as linear
probing, involves using the pre-trained model as a feature extractor.
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Given labeled examples (𝑋 , 𝑌 ), the model is applied to 𝑋 to produce
features 𝑓𝑋 . A linear classifier is then trained on (𝑓𝑋 , 𝑌 ). Linear probing
is based on the idea that effective features should linearly separate the
classes in transfer tasks. This approach helps to distinguish between the
quality of features and the complexity of the model architecture.

For the linear probe evaluation, we used a similar experimental
approach to KNN and used an SGD optimizer (You et al., 2017) with
a learning rate of 0.1 and no weight decay. A cosine scheduler for 100
epochs was used to decrease the learning rate. Our NVIDIA GeForce
RTX 2080 Ti GPU was used with a batch size of 256.

3.5. Online training accuracy

In this section, we compare the performance of our WeedCLR
method with other state-of-the-art self-supervised learning methods on
the DeepWeeds and CottonWeedID15 datasets during training. Fig. 7
shows that WeedCLR learns faster, reaching higher online KNN accu-
racy in fewer epochs than the other methods. With an increased ResNet
from 9 to 18 and more epochs, WeedCLR still achieves high accuracy
and maintains its advantage over the other methods. Our approach’s ef-
fectiveness is demonstrated by these results in improving classification
accuracy compared to state-of-the-art self-supervised learning methods.
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Fig. 7. Performance comparison of our WeedCLR method with other state-of-the-art self-supervised learning methods on the DeepWeeds and CottonWeedID15 datasets. Our results
show that WeedCLR learns faster, reaching 76% online KNN accuracy in just 50 epochs, while SwaV (Caron et al., 2020) requires 200 epochs to achieve the same level of accuracy.
With an increased ResNet from 9 to 18 and more epochs, WeedCLR achieves 89% accuracy on DeepWeeds and 73% accuracy using no momentum encoder, a small batch size,
and fewer stored features. These results demonstrate the effectiveness of our approach in improving classification accuracy compared to state-of-the-art self-supervised learning
methods. The figure may be better viewed online where you can zoom in for more detail.
The following section quantitatively compares our method with other
state-of-the-art methods in more detail.

4. Results

In some studies, an alternative approach to our utilized linear probe
evaluation or KNN may be employed to measure the quality of repre-
sentations. This involves fine-tuning the pre-trained model for image
classification tasks. The process includes adding a small classification
head to the model and adjusting all weights accordingly. However, it is
important to note that during fine-tuning, one model may outperform
another not necessarily because of superior pre-training, but possibly
because its architecture is more compatible with the downstream task
at hand. Therefore, we did not use fine-tuning as a representation
quality metric in our study. Accordingly, our approach consists of a
pre-training stage followed by a linear probe and a KNN classifier.
In pre-training, we explore three variants of the ResNet architecture
(ResNet-9, 18, 50) as a backbone.

In our experiments, similar to the online training accuracy test we
performed, we evaluated the performance of our approach, WeedCLR,
against other self-supervised learning methods using both KNN classi-
fier and linear probe evaluations on the DeepWeeds and CottonWeedID
datasets. Our results, presented in Tables 1, 2, 3, and 4, demonstrate
that WeedCLR outperformed other methods in terms of top-1 and top-5
accuracy for all three variants of the ResNet architecture (ResNet-
9,18,50). Moreover, Fig. 8 compares the performance of our approach,
WeedCLR, against other self-supervised learning methods using both
KNN classifier and linear probe evaluations using ResNet-50.

4.1. DeepWeeds dataset

The results of the KNN classification and linear probing experiments
are shown in Tables 1 and 2, respectively. WeedCLR achieved the best
top-1 and top-5 accuracies for all three ResNet architectures on both
9 
evaluation metrics. Our method, WeedCLR, outperformed the second-
best model across all metrics and ResNet architectures. This superiority
can be attributed to WeedCLR’s ability to learn more discriminative
features, which is crucial for accurate classification.

When compared to the supervised model, WeedCLR shows compet-
itive performance. This is particularly noteworthy given that WeedCLR
is a self-supervised method, which typically has a harder task as it does
not have access to label information during training.

Interestingly, the top-5 accuracy of WeedCLR is very close to that
of the supervised model. This suggests that while the top-1 predictions
might differ, the set of top-5 predictions between the two models are
quite similar. This could be due to both models learning similar feature
representations for the classes, leading to similar predictions among the
top-5 classes.

In conclusion, these results demonstrate the effectiveness of Weed-
CLR in learning discriminative features for weed classification, even in
a self-supervised setting.

4.2. CottonWeedID dataset

The results of the KNN classification and linear probing experi-
ments are shown in Tables 3 and 4, respectively. WeedCLR consis-
tently outperforms other methods in most of the evaluations, demon-
strating its robustness and effectiveness. It is particularly noteworthy
that WeedCLR achieves the best top-1 and top-5 accuracy across all
three backbones using the KNN classifier. This suggests that the fea-
tures learned by WeedCLR are highly discriminative, enabling accurate
nearest neighbor classification.

In the linear probing evaluation, WeedCLR continues to show strong
performance, achieving the best results in 5 out of 6 tests. The only ex-
ception is for ResNet-9 backbone for Top-5 accuracy, where WeedCLR
comes second. This could be due to the lower capacity of ResNet-9 com-
pared to the other architectures, which might limit the effectiveness of
the learned representations.
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Fig. 8. Performance comparison of our approach, WeedCLR, against other self-supervised learning methods using both KNN classifier and linear probe evaluations on the DeepWeeds
and CottonWeedID datasets. Our results demonstrate that WeedCLR outperformed other methods in terms of top-1 and top-5 accuracy for both datasets and accuracy metrics. For
more details, please see Tables 1, 2, 3, and 4. The figure may be better viewed online where you can zoom in for more detail.
Overall, the results of our experiments demonstrate that WeedCLR
is a powerful self-supervised learning method for plant classification.
Our approach can be used to learn high-quality representations that
are capable of distinguishing between different plant species. In ad-
dition to our quantitative results, we also conducted qualitative ex-
periments in the next section to visualize the feature representations
learned by WeedCLR. These experiments showed that WeedCLR learned
discriminative features that can effectively separate different plant
species.

4.3. Qualitative results

In this section, we present qualitative results from our experiments
with WeedCLR. These results provide a visual representation of the ef-
fectiveness of our approach in learning semantically meaningful classes
without the use of labels. Figs. 9 and 10 show sample images of
classes predicted with high accuracy by our WeedCLR method on the
DeepWeeds (Olsen et al., 2019) and CottonWeedID15 (Chen et al.,
2022) validation sets, respectively. The images shown are randomly
selected from each predicted class. The variety of backgrounds and
weeds in the predicted classes demonstrates the ability of our WeedCLR
method to learn high-quality representations for plant classification.

5. Ablation study

This ablation study investigates the effect of different factors on the
top-1 accuracy of KNN and linear classifiers on the DeepWeeds and
10 
CottonWeedID datasets. The factors considered are the loss function
generality, batch size, softmax temperature, and MLP architecture.

5.1. Loss function generality

The loss function generality refers to the ability of the loss function
to handle imbalanced datasets. The baseline model uses the cross-
entropy loss function, which is not as robust to imbalanced datasets
as other loss functions. The VNE is optimizing the representation space
that can achieve a more desirable representation that avoids dimen-
sional collapse and produces more useful embeddings. The COL loss
function is our proposed variant of the cross-entropy loss function that
is more robust to imbalanced datasets.

The results shown in Table 5 demonstrate that the VNE and COL loss
functions consistently and significantly improve the top-1 accuracy of
the KNN and linear classifiers on both datasets. The (VNE + COL) loss
function achieves the best results, with a top-1 accuracy of 91.21% on
the DeepWeeds dataset and 83.84% on the CottonWeedID dataset.

5.2. Batch size

The term ‘batch size’ denotes the quantity of samples that are
processed during each iteration of the training algorithm. The baseline
batch size is 32. The other batch sizes are 64, 128, and 256. The results
shown in Table 6 demonstrate that the accuracy of the top-1 of the
KNN and linear classifiers increases with the batch size. It is clear that
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Table 1
k-nearest neighbors classifier evaluation on DeepWeeds (Olsen et al., 2019).

Method ResNet-9 ResNet-18 ResNet-50

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Supervised (Olsen et al., 2019) 97.51 99.92 97.64 99.93 97.34 99.92

BYOL (Grill et al., 2020) 64.66 98.69 69.94 99.03 69.08 98.50
BarlowTwins (Zbontar et al., 2021) 75.76 99.46 75.39 99.34 74.72 98.41
DCL (Yeh et al., 2022) 84.80 99.80 87.02 99.89 86.39 99.04
DCLW (Yeh et al., 2022) 84.77 99.77 86.42 99.77 85.73 98.78
DINO (Caron et al., 2021) 71.33 99.23 78.58 99.49 77.89 98.68
FastSiam (Pototzky et al., 2022) 83.95 99.71 83.30 98.79 82.78 97.79
Moco (Chen et al., 2020b) 83.49 99.74 84.57 99.74 83.63 99.03
NNCLR (Dwibedi et al., 2021) 85.95 99.71 85.13 99.14 84.36 98.28
SMoG (Pang et al., 2022) 82.95 99.71 82.31 98.82 81.38 98.06
SimCLR (Chen et al., 2020a) 74.33 99.46 78.64 99.60 77.80 99.00
SimSiam (Xie et al., 2022) 81.95 99.71 81.03 98.83 80.36 98.32
SwaV (Caron et al., 2020) 81.66 99.80 83.37 99.74 82.49 98.82
TiCo (Zhu et al., 2022) 73.25 99.06 76.95 99.34 76.45 98.52

WeedCLR (ours) 92.21 99.86 91.93 99.77 91.21 99.76
Table 2
Linear probe evaluation on DeepWeeds (Olsen et al., 2019).

Method ResNet-9 ResNet-18 ResNet-50

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Supervised (Olsen et al., 2019) 94.17 99.73 94.84 99.83 95.70 99.33

BYOL (Grill et al., 2020) 65.32 98.15 67.17 98.60 66.59 97.97
BarlowTwins (Zbontar et al., 2021) 76.61 98.92 74.81 99.00 73.89 98.03
DCL (Yeh et al., 2022) 80.41 98.86 79.89 98.49 78.89 97.79
DCLW (Yeh et al., 2022) 77.78 98.89 81.72 99.26 81.11 98.38
DINO (Caron et al., 2021) 63.41 98.60 75.07 98.83 74.14 98.29
FastSiam (Pototzky et al., 2022) 74.20 98.85 73.58 98.19 72.91 97.23
Moco (Chen et al., 2020b) 74.67 98.80 76.70 99.14 76.01 98.43
NNCLR (Dwibedi et al., 2021) 73.20 98.42 72.69 97.71 71.93 97.03
SMoG (Pang et al., 2022) 70.20 98.55 69.34 97.65 68.38 97.05
SimCLR (Chen et al., 2020a) 70.56 98.97 76.70 99.29 76.03 98.46
SimSiam (Xie et al., 2022) 71.20 98.67 70.22 98.17 69.32 97.32
SwaV (Caron et al., 2020) 80.26 99.26 80.98 99.17 80.38 98.56
TiCo (Zhu et al., 2022) 72.65 98.92 74.33 99.03 73.51 98.06

WeedCLR (ours) 85.97 99.34 87.22 99.49 86.63 99.33
Table 3
k-nearest neighbors classifier evaluation on CottonWeedID (Chen et al., 2022).

Method ResNet-9 ResNet-18 ResNet-50

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Supervised (Chen et al., 2022) 96.14 99.15 97.32 99.68 98.01 99.21

BYOL (Grill et al., 2020) 39.98 89.07 40.94 90.12 40.05 89.55
BarlowTwins (Zbontar et al., 2021) 45.93 91.37 42.19 90.03 41.57 89.31
DCL (Yeh et al., 2022) 76.89 97.32 79.67 97.03 78.88 96.27
DCLW (Yeh et al., 2022) 76.51 97.60 77.66 96.84 76.98 96.20
DINO (Caron et al., 2021) 37.87 84.18 41.51 87.15 40.78 86.50
FastSiam (Pototzky et al., 2022) 53.95 96.71 53.15 95.96 52.31 95.26
Moco (Chen et al., 2020b) 69.51 96.36 72.29 96.93 71.54 96.02
NNCLR (Dwibedi et al., 2021) 55.95 92.71 55.10 91.97 54.36 91.33
SMoG (Pang et al., 2022) 62.95 91.71 62.20 90.81 61.23 90.19
SimCLR (Chen et al., 2020a) 56.47 94.25 63.18 96.07 62.35 95.09
SimSiam (Xie et al., 2022) 61.95 92.71 61.30 91.82 60.64 90.89
SwaV (Caron et al., 2020) 58.29 95.01 65.77 95.88 65.20 95.04
TiCo (Zhu et al., 2022) 49.95 92.71 49.95 91.18 49.21 90.21

WeedCLR (ours) 86.00 98.18 84.66 98.47 83.84 97.52
t
c

the most significant improvement in top-1 accuracy for both KNN and
inear classifiers occurs when the batch size is increased from 128 to
56. This is true for both the DeepWeeds and CottonWeedID datasets.

This substantial improvement could be attributed to the fact that
a larger batch size allows the model to estimate the gradient more
accurately during training. However, it is also important to note that
using a larger batch size requires more memory, which might not
always be feasible depending on the hardware constraints.

In conclusion, while our method shows robust performance across
different batch sizes, using a larger batch size of 256 leads to the best
11 
performance in terms of top-1 accuracy. Future work could explore
he impact of even larger batch sizes on performance, given sufficient
omputational resources.

5.3. Softmax temperature

The softmax temperature is a hyperparameter that controls the
degree of confidence in the predicted probabilities assigned to each
class. A higher temperature results in a softer probability distribution,
where the predicted probabilities are more evenly distributed among
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Table 4
Linear probe evaluation on CottonWeedID (Chen et al., 2022).

Method ResNet-9 ResNet-18 ResNet-50

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Supervised (Chen et al., 2022) 95.32 99.15 96.31 99.68 98.14 99.34

BYOL (Grill et al., 2020) 49.57 90.41 45.06 90.22 44.46 89.53
BarlowTwins (Zbontar et al., 2021) 25.41 51.87 15.15 46.02 14.22 45.13
DCL (Yeh et al., 2022) 72.77 94.97 74.22 95.12 74.03 94.33
DCLW (Yeh et al., 2022) 74.02 96.07 73.06 95.45 72.35 94.26
DINO (Caron et al., 2021) 39.02 83.89 43.43 86.67 42.45 85.78
FastSiam (Pototzky et al., 2022) 63.20 92.14 62.26 91.46 61.72 90.90
Moco (Chen et al., 2020b) 57.81 92.04 61.27 93.48 60.42 92.51
NNCLR (Dwibedi et al., 2021) 53.20 91.14 52.24 90.42 51.58 89.60
SMoG (Pang et al., 2022) 61.20 91.14 60.37 90.52 59.44 89.96
SimCLR (Chen et al., 2020a) 57.33 92.23 63.95 94.82 63.25 93.94
SimSiam (Xie et al., 2022) 58.20 93.14 57.24 92.32 56.47 91.44
SwaV (Caron et al., 2020) 59.44 93.19 66.25 94.63 65.30 94.10
TiCo (Zhu et al., 2022) 51.20 92.14 48.42 90.80 47.47 90.23

WeedCLR (ours) 75.07 95.11 75.55 95.59 75.04 94.64
Fig. 9. Classes predicted with high accuracy by our WeedCLR on the DeepWeeds (Olsen et al., 2019) validation set, which was not seen during training. The images shown are
randomly selected from each predicted class, namely from the top left: Chinee apple, Lantana, Parkinsonia, Parthenium, Prickly acacia, Rubber vine, Siam weed, Snake weed and
Negatives. The variety of backgrounds and weeds in the predicted classes demonstrates that the WeedCLR is able to learn semantically meaningful classes without the use of labels.
the classes, while a lower temperature results in a sharper probability
distribution, where the predicted probabilities are more concentrated
on the most likely class.

The results shown in Table 7 demonstrate that the top-1 accuracy
of the KNN classifier increases with the softmax temperature. The most
12 
significant improvement in top-1 accuracy for the KNN classifier occurs
when the softmax temperature is increased from 0.03 to 0.05. This
is true for both the DeepWeeds and CottonWeedID datasets. These
results suggest that a higher softmax temperature can lead to improved
performance of the KNN classifier in this context.
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Fig. 10. Classes predicted with high accuracy by our WeedCLR on the CottonWeedID15 (Chen et al., 2022) validation set. The images shown are randomly selected from each
predicted class, namely from the top left: Carpetweeds, Crabgrass, Eclipta, Goosegrass, Morningglory, Nutsedge, PalmerAmaranth, Prickly Sida, Purslane, Ragweed, Sicklepod,
SpottedSpurge, SpurredAnoda, Swinecress, Waterhemp.
Table 5
Loss function generality - Top-1 accuracy.

Parameter DeepWeed CottonWeedID

KNN Linear KNN Linear

Baseline 54.35 55.13 45.78 45.42
Baseline + COL 84.76 82.84 72.63 67.89
Baseline + VNE 87.68 84.32 79.51 71.48
Baseline + COL + VNE 91.21 86.63 83.84 75.04
13 
Table 6
Batch size - Top-1 accuracy.

Batch size DeepWeed CottonWeedID

KNN Linear KNN Linear

32 82.24 77.31 76.82 70.34
64 85.17 79.48 77.92 70.27
128 87.34 80.27 79.61 72.98
256 91.21 86.63 83.84 75.04
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Table 7
Softmax temperature — KNN classifier Top-1 accuracy.
𝜏𝑐 𝑜𝑙 𝑢𝑚𝑛 𝜏𝑟𝑜𝑤

DeepWeed CottonWeedID

0.07 0.1 0.07 0.1

0.03 90.78 91.04 82.45 82.78
0.05 91.08 91.21 83.25 83.84

Table 8
MLP architecture — KNN classifier Top-1 accuracy.

MLP hidden layer(s) MLP output layer

DeepWeed CottonWeedID

128 256 128 256

1 × 4096 90.78 89.01 82.27 81.65
2 × 4096 91.21 90.34 83.84 82.61
2 × 8192 90.32 88.98 82.78 81.64

5.4. MLP architecture

The architecture of a Multilayer Perceptron (MLP) is defined by the
number of hidden layers it has and the number of units present in each
f these hidden layers. The baseline MLP architecture has one hidden

layer with 4096 units. The other MLP architectures have two hidden
layers with 4096 units each and two hidden layers with 8192 units
ach.

The results shown in Table 8 demonstrate that the architecture with
two hidden layers of 4096 units each provides slightly higher top-1
accuracy for the KNN classifier compared to the baseline architecture
(one hidden layer with 4096 units). This suggests that adding an
additional layer might help the model capture more complex patterns
in the data, leading to improved performance.

However, it is important to note that increasing the size of the
idden layers (from 4096 to 8192 units) in a two-layer architecture
oes not lead to further improvements. This could be due to overfitting,
here the model becomes too complex and starts to fit the noise in

he training data rather than the underlying patterns. In our results
resented above, we have used the architecture with two hidden layers
f 4096 units each, as it provided the best performance in the ablation
tudy.

6. Discussion

In this paper, we presented a novel method for weed classification in
long-tailed datasets using a self-visual features learning approach. Our
method, called Weed Contrastive Learning through visual Represen-
tation (WeedCLR), utilizes a class-optimized loss function to improve
classification accuracy. We demonstrated the effectiveness of our ap-
proach on two datasets of weed images, achieving state-of-the-art
performance.

Our results show that the proposed method is able to effectively
learn discriminative visual features for weed classification without
the use of any annotations even in the presence of long-tailed data
distributions. This has significant implications for the development
of automated weed management systems (Arsa et al., 2023; Dang
t al., 2023). By removing the requirement of human labeling, this
elf-supervised approach could reduce the time and cost burden of

existing fully supervised approaches. For example, Calvert et al. (2021)
eports a time requirement of one hour to label 2000 images for weed
lassification. For their 58,153 image dataset, approximately 29 h of

labeling by domain experts and the equivalent labor cost could be
avoided, while achieving a similar or better classification accuracy.
This increased efficiency also has a second advantage allowing for deep
learning based approaches to be more rapidly deployed on-farm when

targeting a new weed or crop scenario. Currently, the time it takes from

14 
dataset collection to field implementation is strongly influenced by the
ime to annotate images. With the removal of this annotation time,
he window from dataset collection to implementation is shortened
llowing for more timely and effective weed control on new target weed
rop scenarios. As such, WeedCLR can help to overcome a major hurdle
f data annotation for widespread adoption of deep learning based site
pecific weed management approaches.

One limitation of our approach is that it relies on the availability of
large and diverse datasets for training. While our method is effective
in classifying weeds in long-tailed datasets, its performance may be
limited by the size and diversity of the available data. In future work,
it would be interesting to explore methods for data augmentation
or transfer learning to improve the performance of our approach in
scenarios where data is limited.

Another limitation of our approach is that it is currently designed
for weed classification in long-tailed datasets. While our method shows
romising results in this specific application, it remains to be seen
ow well it generalizes to other classification tasks with different data
istributions. In future work, it would be interesting to evaluate the
erformance of our approach on other classification tasks and explore
ethods for adapting it to different data distributions.

Another potential direction for future work is to explore the inte-
gration of our method with other components of an automated weed

anagement system, such as robotic platforms for weed management
hat our team has previously developed (Calvert et al., 2021). Addition-

ally, further research could investigate the use of our method in other
domains such as medical imaging where long-tailed data distributions
are common.

7. Conclusions

This paper introduced Weed Contrastive Learning through visual
epresentation (WeedCLR), a novel method for weed classification in

ong-tailed datasets, which leverages self-supervised learning to extract
eaningful visual features from images of weeds. The utilization of
 class-optimized loss function with Von Neumann Entropy of deep
epresentation significantly improved classification accuracy.

The findings from this study have advanced the current state-of-the-
rt by demonstrating WeedCLR’s ability to discern visual characteristics
rucial for weed identification, even in the presence of long-tailed
ata distributions and without the requirement for laborious human
nnotation of images. This has substantial implications for the field of
utomated weed control systems, as it unlocks self-supervised learning
or weed recognition, reducing reliance on manual labor and increasing
he speed of implementation in new weed and crop scenarios for site
pecific weed management.

The current findings suggest potential new research directions in im-
roving the accuracy and efficiency of weed classification tasks under
arying environmental conditions. They also open up possibilities for
ntegrating WeedCLR into existing automated weed control systems and
xploring its effectiveness in different agricultural contexts. This study
ontributes to the body of knowledge by providing a promising new
ethod for weed classification in long-tailed datasets, thereby paving

the way for more effective and efficient weed management systems.

7.1. CO2 emission related to experiments

Experiments were conducted using a private infrastructure, which
as a carbon efficiency of 0.432 kgCO2eq/kWh. A cumulative of 850 h
f computation was performed on hardware of type RTX 2080 Ti (TDP
f 250 W). Total emissions are estimated to be 91.8 kgCO2eq of which

0 percent was directly offset. Estimations were conducted using the
Machine Learning Impact calculator presented in Lacoste et al. (2019).
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