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A B S T R A C T   

Efficient irrigation reduces energy and water costs, increases profit margins and delivers better environmental 
outcomes. Whilst many growers rely on weather forecasts to make decisions, few studies have sought to 
incorporate weather forecast uncertainty into the optimisation of irrigation management or to evaluate weather 
forecasts through the lens of irrigation indices. Therefore, in this study, we seek to generate and evaluate 
ensemble forecasts of irrigation indices produced by coupling numerical weather prediction (NWP) forecasts 
with a biophysical process model (APSIM). We investigate a case study application for sugarcane in northeastern 
Australia. As a first step, three and a half years of forecasts from the Australian Bureau of Meteorology’s ACCESS- 
G3 model are statistically post-processed to generate 7-day forecasts that are downscaled and calibrated to local 
climate zones. In addition, the forecast post-processor converts the deterministic forecasts into an ensemble, thus 
quantifying forecast uncertainty. The generated forecasts are then used as forcing for the APSIM crop model to 
produce ensemble forecasts of soil water deficit (SWD), crop water use (CWU) and crop stress (Stress) for a 
simulated sugarcane crop. Through cross-validation, the post-processed weather forecasts demonstrate improved 
forecast accuracy compared to naive climatology and raw NWP forecasts for daily rainfall, maximum and 
minimum temperature and solar radiation; with the added benefit of providing a reliable uncertainty estimate. 
Improvement to an even greater degree is observed for the derived irrigation indices, particularly CWU and 
Stress, for which the forecasts are also reliable. The developed irrigation indices based on NWP can be used 
directly for decision making or, alternatively, may be used further in machine learning for optimisation of 
irrigation schedules in conjunction with other remotely sensed variables.   

1. Introduction 

Irrigation efficiency gains are necessary to combat pressures on 
water availability, farm business and environmental outcomes associ-
ated with population growth, climate change, water quality (Water-
house et al., 2017) and the rising costs of energy and water (e.g. Belaud 
et al., 2020; Fader et al., 2016). Pumping less water can also save energy 
and contribute a vital step to help farmers reach net zero sooner (Rosa & 
Gabrielli, 2023). At the farm scale, more efficient irrigation can be 
achieved through improvements to irrigation technology and better 
decisions around irrigation scheduling, especially with consideration to 

the prevailing and future soil, crop, and atmospheric conditions (Gu 
et al., 2020). 

In recent years, the combination of in-field sensors and machine 
learning (ML) techniques led to the development of fully automated 
irrigation systems in smart irrigation projects (e.g. Domínguez-Niño 
et al., 2020; Gu et al., 2021; Wang et al., 2020). Typically, such systems 
rely on real-time, in-situ measurements of soil moisture and weather 
conditions but ignore oncoming changes in the weather that may bring 
increased rainfall or evapotranspiration. A counter example is Goap 
et al. (2018), who piloted an irrigation system that used ML to predict 
soil moisture using weather forecasts and to automate irrigation 
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decisions such as delaying irrigation or applying minimum water until 
rain arrives. However, the system did not consider uncertainty in the 
weather forecast. 

There is evidence that the use of weather forecasts can lead to 
improved irrigation outcomes (Wang & Cai, 2009). For example, Cao 
et al. (2019) considered a water-balance and evapotranspiration model 
in conjunction with 3-day rainfall forecasts to optimise irrigation 
scheduling for a rice-paddy application in China, finding that forecast- 
based decisions saved significant volumes of water and reduced 
drainage whilst preserving yields. Anupoju et al. (2021) and Gedam 
et al. (2023) investigated the skill of 5-day rainfall and ET0 forecasts in 
India, who also found that the use of the forecasts led to significant water 
savings and improved yields. Guo et al. (2022) considered 9-day rainfall 
forecasts to simulate outcomes of irrigation decisions for a maize field in 
Australia. A unique aspect of this study was that rainfall uncertainty was 
included by using ensemble rainfall forecasts generated by post- 
processing deterministic numerical weather prediction (NWP) fore-
casts. The rainfall ensembles were propagated through a biophysical 
model (APSIM) to generate outcomes of soil water, runoff, and drainage. 
However, the study did not post-process weather forecasts for the other 
requisite APSIM inputs of temperature and solar radiation, and instead 
used actual observations. A true forecasting system will need to include 
forecasts of all the requisite weather variables and consider their 
covariance. 

As a step towards a more complete system incorporating uncertainty, 
we investigate the post-processing of NWP forecasts of rainfall, tem-
perature, and solar radiation, plus the extension to forecasts of irrigation 
indices including soil water deficit (SWD), crop water use (CWU) and 
crop stress (Stress). The irrigation indices are produced by filtering 
weather data and forecasts through a biophysical process model 
(APSIM). 

Direct assessments of forecasts of irrigation indices will help to 
develop a fundamental understanding of the relationship between NWP 
and the accuracy and reliability and of forecast irrigation indices. 
Another benefit, as noted by Guo et al. (2022), is that a farmer may 
occasionally want to stress a crop or take other unusual action for 
operational reasons, to which end irrigation indices are a more useful 
product than an optimised schedule. An optimised schedule would also 
need to consider each farm’s individual constraints in terms of irrigation 
infrastructure, the time required to irrigate different paddocks, the 
number of blocks that can be irrigated simultaneously, and any chosen 
time-of-use energy tariffs (Wang et al., 2020). Additionally, some 
growers simply prefer a more “hands on” approach to decision making 
and appreciate a panel of information such as accumulated rainfall to-
tals, soil moisture levels and other indicators such as those generated in 
this study. Nevertheless, irrigation indices can become inputs to ma-
chine learning models, and it will be useful to understand a priori the 
skill of forecasts to identify the most appropriate indices to include in 
fully automated climate-smart irrigation systems. 

NWP models are developed on coarse grids and thus do not capture 
variability at the farm scale, whilst also being susceptible to systematic 
biases and model structural errors. For example, the Australian Bureau 
of Meteorology’s ACCESS-G3 model, which we will use, operates at a 
scale of roughly 12 km and parameterises rainfall. The spatial scale 
problem can be addressed by downscaling raw forecasts to match ob-
servations at a finer resolution for a given spatial region. Forecast cali-
bration methods can be applied to address biases and other systematic 
errors. For example, Bayesian joint probability modelling (BJP) has been 
applied to post-process daily rainfall forecasts from earlier versions of 
ACCESS-G to match hydrological catchment rainfall (Robertson et al., 
2013; Shrestha et al., 2015). As a model output statistics approach, BJP 
also samples forecast uncertainty and can be used to generate multiple 
rainfall futures in the form of ensembles. Rainfall forecasts from 
ACCESS-G have been post-processed with other methods such as quan-
tile mapping in wavelet-transformed space (Jiang & Johnson, 2023), 
spatial-mode calibration (Zhao et al., 2022) and seasonally-varying 

calibration. 
In our work, the development of forecasts for APSIM requires mul-

tiple weather variables and therefore multivariate forecast calibration 
methods are needed. Multivariate post-processing ensures each member 
in the forecast has realistic temporal, spatial and/or intervariable pat-
terns (Lakatos et al., 2023; Schepen et al., 2020c; Whan et al., 2021). 
Recent research has extended the Bayesian joint probability modelling 
approach for calibrating and downscaling multivariate seasonal fore-
casts; employing the Schaake Shuffle to connect ensemble members 
across space, lead times and climate variables; with applications to 
APSIM simulations (Potgieter et al., 2022; Schepen et al., 2020a–c). We 
adopt a similar approach to post-process NWP variables in this study. As 
such, the main objectives of this study are to: (1) establish a framework 
for generating locally-relevant ensembles of rainfall, temperature and 
solar radiation, that can be used to predict irrigation indices and 
describe the uncertainty of these predictions; and (2) verify the perfor-
mance of the weather forecasts and the corresponding irrigation indices, 
including soil water deficit (SWD), crop water use (CWU) and crop stress 
(Stress). We select a case study of an APSIM sugarcane model in 
northeastern Australia, which is representative of irrigated farms in the 
Burdekin region, a major cane growing region in Australia, situated 
adjacent to the Great Barrier Reef for which a climate-smart automated 
irrigation system is being developed (https://opticane.net). In sections 2 
we present the data and methods. Section 3 presents the results. Sections 
4 and 5 wrap up the paper with discussion and conclusions, respectively. 

2. Study area and data 

2.1. Study area 

The study area is the Burdekin sugarcane growing region in north-
eastern Australia, which surrounds the Burdekin River (Fig. 1, panel 1). 
For the purposes of this study, the extent of sugarcane cropping was 
identified from land use data made available from the Queensland land 
use mapping series (Department of Environment and Science, 2023)). 
The Burdekin catchment experiences highly seasonal rainfall, with the 
“wet” season occurring November-April and the “dry” season in the 
remaining months. Water for the irrigation of over 50,000 ha of farm-
land is managed from the upstream Burdekin Falls Dam. Whilst water 
availability is generally only a concern during significant drought, es-
timates are that demand may exceed dam capacity by 2031 (Sun Water, 
2022). Furthermore, the river discharges directly into the world heritage 
Great Barrier Reef. Therefore, the region requires efficient irrigation 
practices to reduce excess water leaving the paddock (Waterhouse et al., 
2017). 

2.2. Observed data 

Observed data for daily rainfall, minimum daily temperature, 
maximum daily temperature, and solar radiation are extracted from the 
Australia-wide SILO 5 km gridded dataset https://silo.longpaddock.qld. 
gov.au/. Silo data correspond to 9 am – 9 am intervals. These data are 
used in two ways. Firstly, to divide the Burdekin into distinct climate 
zones through a cluster analysis and secondly, as a training and verifi-
cation dataset for the forecast post-processing. For the purposes of 
climate zone identification, data from 1970 to 2010 were used. For the 
purposes of forecast post-processing, data from 2019 to 2023 are used. 
The reasons for the different periods are that the climate zone analysis 
requires a long data record whereas the forecast post-processing data 
needs to align with the available NWP dataset, which is relatively recent. 
Once the climate zones have been identified, the SILO data for the 
forecasting experiments is area-averaged within each climate zone at a 
daily time step. 
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2.3. Forecast data 

Numerical weather prediction forecasts of rainfall, temperature and 
solar radiation are sourced from the Bureau of Meteorology ACCESS-G3 
dataset hosted on the National Computational Infrastructure (https 
://dapds00.nci.org.au/thredds/catalog/wr45/ops_aps3/access-g/1/cat 
alog.html). These forecasts are highly suitable for statistical post- 
processing because they are deterministic, numeric time series and are 
free from human manipulation. ACCESS-G3 is initiated four times per 
day at 00Z, 06Z, 12Z and 18Z. For operational reasons, the 12Z dataset is 
selected, which corresponds to approximately 10 pm local time, mean-
ing that for real-time operation, the forecast has time to complete and be 
post-processed for release the following morning. The hourly NWP data 
are processed to calculate minimum and maximum temperatures and 
24-hour rainfall and solar radiation up to 7 days ahead (i.e. 1–7 days 
lead time), aligning with the 9 am to 9 am window of SILO data.The 
daily forecasts are subsequently area-averaged for each climate zone and 
paired with a SILO observation for the corresponding 24-hour period. 

2.4. Climate zones 

Local climate zones are identified within the study region using a k- 
means clustering approach on SILO rainfall, temperature and solar ra-
diation using the method developed by Sexton et al. (2017). The number 
of clusters was investigated in consultation with industry partners and a 
five-cluster solution is used (Fig. 1, panel 1). From north-west to north- 
east, the five zones are identified as Giru/Barratta, Upper Haughton/ 
Clare, Millaroo/Dalbeg, Home Hill/ Mona Park and Ayr/Brandon. The 
northern zones tend to be wetter with the north-western Giru/Barratta 
zone being the wettest region and the southern Millaroo/Dalbeg zone 
being the driest. 

3. Methods 

3.1. Overview of methodology 

A schematic of the methodological workflow is illustrated in Fig. 1. 
Historical data for each climate zone are pre-processed as described in 
section 2.2. Additionally, a set of no rainfall climatology (NRC) “fore-
casts” for comparison purposes are calculated as zero rainfall and 
monthly climatological means for temperature and solar radiation. 
These forecasts reflect an uninformative baseline forecast similar to 
what may be used in irrigation decision support tools in the region 
(Sexton et al., 2022). The NWP weather forecasts are post-processed 
under a cross-validation framework with SILO data as the target, omit-
ting 31 consecutive days surrounding the target forecast period The 
ensemble forecasts are then used as forcing for an established APSIM 
model with the irrigation indices calculated from the APSIM output 
variables. Probabilistic forecast verification techniques are then used to 
assess both the weather forecasts and the irrigation indices. Additional 
details are provided below. 

3.2. Weather forecast post-processing 

A Bayesian joint-probability model is used to model the joint dis-
tribution between raw ACCESS-G3 forecasts and SILO observations for 
each forecast day ahead (e.g. Robertson et al., 2013; Shrestha et al., 
2015; Wang, Shao, et al., 2019). Specifically, we use the Gibbs-sampler 
implementation of BJP described by Wang,Shao,et al., (2019). For each 
weather variable, the joint distribution between the raw NWP forecast 
and the corresponding observation is assumed to follow a bivariate 
normal distribution after allowing for a normalising and variance- 
stabilising transformations of the predictor and predictand variables. 
For rainfall, the log-Sinh transformation is used (Wang et al., 2012). For 
temperature and solar radiation, the Yeo-Johnson transformation is used 
(Yeo & Johnson, 2000). Transformation of each variable is done inde-
pendently as a first step using Bayesian maximum a posteriori estimation. 

Fig. 1. . Outline of study methodology for climate zone identification, forecast post-processing, irrigation index generation and forecast verification.  
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Then, the Gibbs sampler estimates the posterior distribution of the 
bivariate normal distribution parameters as a second step. In both steps, 
the prior distributions for the Bayesian inference are deliberately set to 
vague (wide or non-informative) distributions so that the parameters are 
determined mainly from the data. 

The lower bound on rainfall presents a problem in that the distri-
bution is not continuous (i.e. it has a probability mass at the lower 
bound). This problem is handled by setting a left censoring threshold. 
Censoring assumes that, theoretically, the actual value is at or below the 
censor threshold, and thus allows the use of the convenient continuous 
normal distribution instead of more complicated structures such as 
mixed-discrete distributions. We set the censoring threshold to zero. 

BJP is applied to generate 200 ensemble members for each climate 
zone for lead times from 1 to 7 days. The Schaake shuffle (Clark et al., 
2004) is then applied to inject realistic space–time and inter-variable 
correlations in the ensemble. As demonstrated by Schepen et al., 
(2020a) the Schaake Shuffle can generate suitable input series for APSIM 
by reordering the ensemble members according to the ranks of histori-
cally observed data, which will be correlated to some degree across 
space, time and variables. 

A cross-validation approach was used to ensure that data surround-
ing the forecast issue date was not influential in the forecast training. In 
this study, data for the forecast initialisation day and 15 days either side 
were left out for the model fitting. 

3.3. APSIM modelling 

For each climate zone, a sugarcane crop is simulated using the Sugar 
module (Keating et al., 1999; Lisson et al., 2000) of APSIM V7.10 
(Holzworth et al., 2018). The crop is first planted on 15 August 2019 
with a simulation end date of 15 February 2023. This represents a late 
planted crop followed by three annual ratoons (the third ratoon crop is 
not grown to end of season). To supply nutrients, the cycle is fertilized 
with 500 kg/ha of urea fertilizer one month after sowing/ratooning. For 
all climate zones, a single soil type is used. The soil is characterized as a 
silty loam and has a plant available water content of 162 mm. 

An automated irrigation cycle is implemented that applies 60 mm of 
irrigation once a week. Although standard practices will vary remark-
ably between farmers, this set-up forms a suitable baseline for estab-
lishing a framework to test the ability to use NWP to predict irrigation 
indices and measure the uncertainty of these predictions. Forecasts are 
issued daily over a 3.5-year period and therefore will cover a wide range 
of weather, soil, and crop states. A 40 mm irrigation is also applied at 
planting and ratooning to ensure that the water profile is initially full, 
and the crop does not fail to grow. Irrigation is stopped 60 days prior to 
harvesting to allow the crop to dry down before harvest. This dry down 
is often used in the region to increase sugar yields and coincides with the 
naturally dry time of year. 

The APSIM model requires rainfall, maximum and minimum tem-
perature and radiation data at a daily time step. “Observed” crop growth 
and soil parameters, for verification purposes, are taken as the simula-
tions run using observed weather data. For each forecast date, forecasts 
and observations are simulated withholding the regular irrigation. This 
is so that forecast and observed conditions are not affected by the de-
cision to irrigate and corresponds to the decision point, which is about 
timing and volume of irrigation in the next 7-day window. 

For each forecast, APSIM simulations are warmed-up with observed 
data and up to the forecast issue date, after which models were run using 
the three sets of forecasts: no rainfall climatology (NRC, uninformative 
baseline), raw NWP and post-processed ensemble forecasts. 

3.4. Irrigation decision indices 

3.4.1. Total rainfall 
Total rainfall over the next seven days is adopted as the single 

weather-based irrigation index. For each forecast model, total rainfall 

was calculated as the cumulative rainfall from the forecast date through 
to the next seven days as per equation 1. 

TPj =
∑j

i=1
Pi (1)  

where TP is total precipitation and Pi is the daily precipitation. 

3.4.2. Soil and crop indicators 
Three APSIM model outputs are adopted as irrigation indices. These 

are soil water deficit (SWD), crop water use (CWU) and crop stress 
(Stress). Soil water deficit is taken as the difference between the field 
capacity and actual volume of water in the soil. SWD was calculated at 
the start of each day using two APSIM variables as per equation 2. 

SWD = DDUL − D (2)  

where D is the actual amount of water in the soil (mm) and DDUL is the 
maximum possible amount of water at the drained upper limit (mm). 
These variables are reported by the APSIM soil water model as ‘sw_dep’ 
and ‘dul_dep’, respectively. CWU was estimated as the daily demand for 
soil water, which is directly reported by APSIM as ‘sw_demand’ (mm). 
Crop water demand in APSIM is calculated using the RUE/TE method 
(Wang et al., 2004). Crop Stress is estimated within APSIM as the effect 
of soil water stress on photosynthesis. This is reported directly by the 
APSIM sugar model as ‘swdef_photo’. We invert the default outputs so 
that the values range from 0 (unstressed) to 1 (fully stressed). 

3.5. Skill assessment methods 

Ensemble forecasts require verification with ensemble forecast 
verification measures. Here, we use the continuous ranked probability 
score (CRPS, Hersbach (2000)), a metric that combines information 
about the accuracy and reliability of ensemble forecasts. The average 
CRPS for T forecast events is defined in equation 3. 

CRPS =
1
T

∑T

t=1

∫

[Ft(y) − H(y − ot) ]
2dy (3)  

with 

H(y − ot) =

{
0 if y < ot
1 if y ≥ ot  

where y is the prediction, o is the observation and F is the forecast cu-
mulative distribution function (CDF). H is the CDF of the observation, 
characterised by the Heaviside step function. 

The CRPS is a negatively oriented score such that a CRPS of zero 
indicates no error (i.e., perfectly accurate forecasts with no ensemble 
spread). In the case of deterministic forecasts, the CRPS reduces to the 
mean absolute error (MAE) as per equation 4. 

MAE =
1
T
∑T

t=1
|yt − ot| (3) 

Reliability in the post-processed ensemble forecasts was assessed by 
analysis of the probability integral transform (PIT) (Laio & Tamea, 2007; 
Renard et al., 2010). The PIT of an observation given an ensemble 
forecast is defined as π = Ft(y = ot) where Ft(y) is the cumulative dis-
tribution function of the ensemble forecasts and ot is the corresponding 
observation for event t. For daily and total rainfall forecasts, when 
observed rainfall is zero, the cumulative probability represents a mass at 
zero. Therefore, π = Ft(0) and it is necessary to sample a pseudo-PIT 
value uniformly within the range [0, πt] (Wang & Robertson, 2011). 
Similarly, stress index values lie within a range [0, 1] and therefore a 
pseudo-PIT value is randomly selected from a range of [0,πt] for 
observed values of 0. The upper limit is slightly more complicated; when 
the observation is at the upper limit, πt = Ft(y′) where y′ is the second 
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largest value in the forecast ensemble. A pseudo-PIT is uniformly 
sampled from the range [πt, 1]. 

Calculating PITs for soil water deficit presents a new problem that we 
believe has not been addressed in the literature. In simulations, there is 
effectively a lower bound on the soil moisture associated with zero 
rainfall and which places a dynamic upper bound on the soil water 
deficit and affects both Ft and ot. This upper bound is detected compu-
tationally by checking for a probability mass at the maximum forecast 
soil water deficit value and, if the observation equals this bound, a 
pseudo-PIT is calculated in the range [πt, 1] in the same fashion as for 
the upper limit on crop stress. 

If a forecasting system is reliable, π follows a standard uniform dis-
tribution. Reliability is visually examined by plotting the set of πt(t = 1,
2,⋯,T) with the corresponding theoretical quantile of the uniform 
distribution in a QQ plot. Reliability is summarized using the α-index 
(Renard et al., 2010) as defined in equation 5. 

α = 1 −
2
T

∑T

t=1

⃒
⃒
⃒π*

t −
t

T + 1

⃒
⃒
⃒ (5) 

Where: π*
t are the πt sorted in increasing order. The α-index repre-

sents the deviation of π*
t from the matching uniform distribution quan-

tile in the QQ plot and ranges from 0 (completely unreliable) to 1 
(completely reliable). 

4. Results 

4.1. Weather forecasts 

Fig. 2 presents raw and post-processed weather forecasts for the 
Giru/Barratta region at a lead time of 3 days, along with scatter plots of 
the corresponding observations, plus the reliability of post-processed 
forecasts. The raw forecasts and observations are plotted with the 
Spearman correlation in the top row of Fig. 2. The forecasts for all four 
variables show moderate to high correlation, noting that a portion of the 
correlation is attributed to the seasonal cycle. We have not removed the 
effect of the seasonal cycle through anomaly correlation because the 
current forecast-processing does not model the seasonal cycle and the 
results are sufficient for the purpose of discerning the forecast perfor-
mance for different weather variables. Possible improvements to ac-
count for the seasonal cycle will be discussed in section 4. 

ACCESS-G3 has high raw correlation for Tmin and Tmax (correla-
tions 0.94–0.95), with radiation showing moderate correlation (0.79) 
and rainfall weaker correlation (0.58). The second row of Fig. 2 shows 
that the forecast post-processing has converted the deterministic NWP 
forecast into an ensemble forecast with a representation of uncertainty. 
The reliability of the ensemble spread is formally assessed in the bottom 
row using PIT uniform probability plots and the PIT alpha metric. By 
both measures, the forecasts are exceptionally reliable in ensemble 
spread, with PIT alpha scores between 0.94–0.98. Despite overall reli-
ability being high, the forecast and observations plots (middle row) 
suggest that the PITs may cluster depending on forecast magnitude; for 

Fig. 2. . Weather forecasts, observations, and PIT reliability plots for the Giru/Barratta region at a lead time of 3 days. Top row: Scatterplot of raw ACCESS-G3 
forecasts versus observations with the Spearman correlation. Middle row: post-processed forecast [0.25,0.75] and [0.05, 0.95] quantile ranges and observations 
plotted against forecast median. Bottom row: PIT uniform probability plots with the PIT alpha reliability metric. 
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example, for low Tmin. The problem and potential solutions are dis-
cussed further in section 4. 

Raw and post-processed forecasts for all lead times from 1 to 7 days 
ahead and for all five climate zones are verified in Fig. 3. The raw 
ACCESS-G3 forecasts exhibit substantial bias for all forecast variables 
and varying degrees of bias between climate zones. Raw Tmin is sys-
tematically overpredicted by up to 10 % whereas raw Tmax is system-
atically underpredicted by up to 10 %. Raw rainfall is systematically 
underpredicted by up to 40 % and raw radiation is systematically 
overpredicted by about 20 %. The result for radiation is discussed 
further in section 4. After post-processing, Tmin, Tmax and radiation 
show little or no bias. Post-processed rainfall exhibits small biases, 
particularly for lead times from 3 to 7 days with biases up to 5–10 %. 
Bias in rainfall is harder to eliminate due to the non-normal nature of its 
distribution. 

Forecast errors, being CRPS for the post-processed ensemble fore-
casts and MAE for the raw deterministic forecasts, show increasing 
magnitude with lead time and variance across climate zones. Post- 
processing improves forecast accuracy. Furthermore, post-processing 
reduces the spread in errors across climate zones for Tmin, Tmax and 
radiation. Forecasts for Tmin exhibit higher errors than forecasts for 
Tmax. 

Consistent with the results in Fig. 2, reliability in ensemble spread is 
high for all weather variables and climate zones. A threshold for high 
reliability is selected as PIT-alpha = 0.9, which is based on familiarity 

with the relationship between PIT uniform probability plots and PIT- 
alpha scores. It can be seen in Fig. 2 that Tmax shows a small degree 
of under confidence (increased forecast uncertainty resulting in a fore-
cast spread tending too wide) characterised by an “inverted S” shape to 
the PIT plot, which reduces the PIT-alpha to about 0.94. PIT values of 
about 0.9 or below indicate more serious problems with forecast spread 
or bias. 

4.2. Irrigation-index forecasts 

Fig. 4 presents forecasts, observations and reliability assessment of 
irrigation index forecasts at a lead time of 3 days in the Giru/Barratta 
region. Irrigation index forecasts are based on raw ACCESS-G3, a no 
rainfall climatology (NRC) weather forecast and the post-processed 
ACCESS-G3 forecasts. The observations in this case are pseudo- 
observations, that is, simulations using actual weather. The NRC-based 
forecasts (first row) show moderate to high correlation. Raw ACCESS- 
G3-based forecasts (second row) show moderate to high correlation 
amongst all irrigation indices, ranging from 0.73 for the three-day 
rainfall totals to 0.99 for soil water deficit. For crop water use and 
crop stress the raw correlations are higher than the NRC, signifying that 
the NWP forecasts add value when compared to an uninformative 
climatology-based approach. Correlation is not defined for the NRC 
three-day rainfall forecast since the NRC rainfall forecast is always zero. 
The post-processed-based forecasts (third row) show differences in 

Fig. 3. . Bias, forecast error and reliability of weather forecasts for each forecast lead time from 1 to 7 days. Blue/first boxes represent raw ACCESS-G3 forecasts and 
black/second boxes represent post-processed forecasts. The spread of the boxplots represents the range of values for the five climate zones. Whiskers are the 
minimum and maximum values, boxes are the second smallest/largest values and the line is the median value. Top row: Bias as a percentage with ideal bias (0) 
marked as a dashed line. Middle row: CRPS for ensemble forecasts and MAE for deterministic forecasts. Bottom row: PIT alpha summarising reliability with a dashed 
line at 0.9 identifying the high reliability zone (reliability applies to ensemble forecasts only). 
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uncertainty depending on the forecast variable and the magnitude of the 
forecast. For soil water deficit, the uncertainty is frequently very narrow 
around the current value, with expansions to lower SWD (presumably) 
associated with an increased probability of rainfall. Forecasts of CWU 
and Stress show consistently higher uncertainty, reflecting their more 
dynamic nature. In all cases, the forecasts of irrigation indices show high 
reliability in ensemble spread at three days lead time, with PIT-alpha in 
the range 0.95–0.96. 

Fig. 5 summarises the performance of the irrigation index forecasts 
for all five climate zones and forecast lead times. Bias (first row) and 
forecast accuracy (CRPS/MAE, second row) both show considerable 
variability between climate zones (wide boxes in boxplots). Raw rainfall 
totals consistently underpredict (except in a few cases) up to 40 % and 
NRC rainfall totals underpredict by 100 % (by definition). The under-
predictions in raw and naïve rainfall totals are associated with over-
predictions of soil water deficit, particularly in the NRC case, which 
grows into a bias of up to 20 % at day 7. Post-processed rainfall forecasts 

show limited bias with a trend towards positive bias in accumulated 
rainfall somewhat associated with a negative trend towards lower soil 
water deficit. Post-processed forecasts show little bias for crop water use 
and crop stress, whereas raw and NRC forecasts exhibit biases of up to 
20 % for crop water use and up to 40 % for crop stress. In all cases, post- 
processed forecasts demonstrate the best forecast accuracy for all lead 
times and irrigation indices (second row), with the raw forecasts 
consistently outperforming NRC forecasts. Reliability is above the 
threshold of PIT-alpha = 0.9 for all variables and lead times except for 
total rainfall at days 6 and 7. The reliability of accumulated rainfalls 
depends on the Schaake Shuffle and is discussed further in section 4. 

5. Discussion 

5.1. Improvement of post-processed weather forecasts 

Post-processed forecasts were always an improvement over both no 

Fig. 4. . Irrigation index forecasts, observations, and PIT reliability plots for the Giru/Barratta region at a lead time of 3 days. Top row: Scatterplot of raw NRC 
forecasts versus observations with the Spearman correlation. Second row: Scatterplot of raw ACCESS-G3-based forecasts versus observations with the Spearman 
correlation. Third row: Post-processed-based forecast [0.25,0.75] and [0.05, 0.95] quantile ranges and observations plotted against forecast median. Bottom row: PIT 
uniform probability plots with the PIT alpha reliability metric. 
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rainfall climatology (NRC) and raw ACCESS-G forecasts. As was ex-
pected, post-processing of the raw forecasts reduced forecast bias, in 
some cases considerably. The reduction in bias and error (CRPS) at 
longer lead times can be especially advantageous for planning of irri-
gation and other crop management decisions. The decision support tool 
Opticane (Sexton et al., 2022), co-designed with industry partners, 
shows how many farm management tasks such as spraying, harvesting, 
fertilizing as well as irrigation are dependent on weather conditions. 
Improved accuracy and reliability at longer lead times means a better 
ability to plan management decisions. This can be particularly useful for 
large farming systems that must manage a substantial number of pad-
docks, that may be spread across different climate zones. While many 
management decisions are dependent solely on weather, irrigation de-
cisions can be more nuanced, depending on the state of the soil. 

5.2. Limitations in weather forecasts 

An important consideration in assessing post-processing skill is the 
‘ground-truth’ data used. In this study SILO data were used as the ‘true’ 
representation of weather in each region. This data set is convenient, 
freely available and of high spatial resolution. However, gridded SILO 
products may systematically over- or under-estimate observations rela-
tive to weather station records in the region. For example, SILO radia-
tion used in this study is calculated predominantly from cloud cover 
with some radiometry. A prominent negative bias has developed in 
recent years in comparison with historical data and satellite estimates. 
This is due to a reduction in ground-based radiometers that SILO relied 
on. Since the conclusion of this study, SILO has been updated with sat-
ellite measurements after 1990. The impact on our study is that the 
overestimation of radiation by the raw ACCESS-G forecasts is inflated to 

some degree. Nevertheless, in post-processing to match SILO data, the 
forecasts were ‘improved’ as they better match the existing SILO records. 
Furthermore, the method presented can be applied to downscale fore-
casts to a local, on-farm, weather station, thus providing the most 
relevant forecasts for a farming enterprise. 

Despite high overall reliability of the post-processed forecasts, there 
is evidence of clustering in some PIT values for the post-processed Tmin 
and, to a lesser degree, Tmax and radiation values, which suggests that 
the use of a single transformation and post-processing model for all 
months of the year is not ideal. Possible fixes include applying the post- 
processing model to each month or season of the year independently, 
although this reduces that amount of data available for model training. 
Alternatively, incorporating a seasonal cycle into the post-processing 
model would allow use of all the training data whilst modelling the 
seasonal cycle. This would have the added advantage of making the 
forecasts approach a seasonal climatology rather than an annual 
climatology as skill reduces (e.g. Wang, Zhao, et al., 2019), which may 
improve skill and reliability further. We are currently investigating such 
a revised weather post-processing model. 

As noted in the methods, each post-processed weather forecast 
ensemble at each lead time is produced independently, meaning the 
ensemble members are not initially sequential across lead times. The 
Schaake Shuffle attempts to correct for this by imposing historical trends 
on the ensemble values, allowing us to calculate realistic cumulative 
values such as total rainfall. While post-processed reliability for total 
rainfall was lower than other weather and irrigation indices, without the 
use of the Schaake Shuffle, reliability would be much harder to achieve. 
Fig. 6 demonstrates this, with reliability unacceptable beyond 2 days 
lead time when the Schaake Shuffle is not applied. 

Fig. 5. . Bias, forecast error and reliability of irrigation index forecasts for each forecast lead time from 1 to 7 days. Blue/first boxes represent raw ACCESS-G3-based 
forecasts, red/second boxes represent naïve-based forecasts and black/third boxes represent post-processed forecasts. The spread of the boxplots represents the range 
of values for the five climate zones. Whiskers reach the minimum and maximum values. Top row: Bias as a percentage with ideal bias (0) marked as a dashed line. 
Middle row: CRPS for ensemble forecasts and MAE for deterministic forecasts. Bottom row: PIT alpha summarising reliability with a dashed line at 0.9 identifying the 
high reliability zone (reliability applies to ensemble forecasts only). 
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5.3. Impacts for irrigation decisions 

The results presented justify the use of post-processed forecasts in 
developing irrigation schedules. While previous research has shown that 
including forecasts could be used to optimize irrigation schedules (Cao 
et al., 2019; Guo et al., 2022), it is important to understand how skill and 
uncertainty in the weather forecasts affects irrigation decision indices. 
In our study, results for raw ACCESS-G forecasts suggest routine 
enhancement of value in post-processing CWU and Stress, allowing the 
decision maker to regularly adjust irrigation volumes, for example. On 
the other hand, SWD is highly predictable under a no rain scenario 
(which is usually the case), and therefore the value is associated with 
rarer large rainfall events, which allow the decision maker to entertain 
decisions such as delaying irrigation. Post-processed forecasts may also 
assist with decision making for pesticide and fertiliser application and 
burning and harvesting the cane. 

While improved forecast lead times obtained by post-processing 
forecasts is important for scheduling, the potential impact in terms of 
yield and water savings still needs to be investigated. Quantifying the 
impact of improved forecasts will need to consider the practical limi-
tations farm managers must contend with. Irrigation scheduling at 
longer lead times may only be practically advantageous when the 
infrastructure exists to effectively manage the amount and timing of 
irrigation events. For example, automated irrigation systems such as 
described by Wang et al. (2020) could incorporate forecast weather or 
decision indices to optimize irrigation schedules where irrigation events 
can be fully automated. When investigating the potential impact of 
including forecasts in irrigation scheduling, researchers should consider 
both automated and manual irrigation scenarios to develop decision 
rules that are appropriate for different systems in the study region. 
Furthermore, there may be system scale benefits where predictable 
irrigation demand allows water authorities to manage water supply 
more efficiently. 

6. Conclusion 

Improved, locally relevant short-range weather forecasts are essen-
tial to improving agricultural management decisions. While there is a 
growing body of research on the impact of incorporating weather fore-
casts into management decision support tools for decisions such as 

irrigation scheduling, there is often a lack of investigation on how skill in 
weather forecasts translates to skill in decision indices. This manuscript 
outlines a methodology for developing locally relevant post-processed 
forecasts and assesses the skill of these forecasts for weather variables 
and derived indices. Post-processed forecasts showed improved weather 
forecast skill (CRPS) relative to raw forecasts and high reliability. Raw 
forecasts of SWD and Stress indices have large biases and poor accuracy, 
especially at longer lead times. However, we show that by post- 
processing weather forecasts it is possible to provide improved 
weather forecasts and longer lead times. We also show that deterministic 
forecasts can be converted to ensemble forecasts that can be used to 
produce reliable forecasts of irrigation indices using a crop model. 
Future research can investigate the impact of optimizing irrigation 
schedules using these forecasts. However, such future research must 
consider practical constraints on irrigation systems used in the target 
region. 
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