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A B S T R A C T

Methods that are used to characterise microbiomes and antimicrobial resistance genes (ARGs) in wastewater are
not standardised. We used shotgun metagenomic sequencing (SM-Seq), RNA sequencing (RNA-seq) and targeted
qPCR to compare microbial and ARG diversity in the influent to a municipal wastewater treatment plant in
Australia. ARGs were annotated with CARD-RGI and MEGARes databases, and bacterial diversity was charac-
terised by 16S rRNA gene sequencing and SM-Seq, with species annotation in SILVA/GreenGenes databases or
Kraken2 and the NCBI nucleotide database respectively. CARD and MEGARes identified evenly distributed ARG
profiles but MEGARes detected a richer array of ARGs (richness = 475 vs 320). Qualitatively, ARGs encoding for
aminoglycoside, macrolide-lincosamide-streptogramin and multidrug resistance were the most abundant in all
examined databases. RNA-seq detected only 32 % of ARGs identified by SM-Seq, but there was concordance in
the qualitative identification of aminoglycoside, macrolide-lincosamide, phenicol, sulfonamide and multidrug
resistance by SM-Seq and RNA-seq. qPCR confirmed the detection of some ARGs, including OXA, VEB and EREB,
that were identified by SM-Seq and RNA-seq in the influent. For bacteria, SM-Seq or 16S rRNA gene sequencing
were equally effective in population profiling at phyla or class level. However, SM-Seq identified a significantly
higher species richness (richness = 15,000 vs 3750). These results demonstrate that SM-Seq with gene annotation
in CARD and MEGARes are equally sufficient for surveillance of antimicrobial resistance in wastewater. For more
precise ARG identification and quantification however, MEGARes presented a better resolution. The functionality
of detected ARGs was not confirmed, but general agreement on the putative phenotypic resistance profile by
antimicrobial class was observed between RNA-Seq and SM-Seq.

1. Introduction

The dissemination of antibiotics and antibiotic resistance genes
(ARGs) into aquatic ecosystems is a major global concern, as it promotes
the selection of antibiotic resistant bacteria (ARB) within complex mi-
crobial populations (Guo et al., 2017; Tiwari et al., 2022; Bonetta et al.,
2023). Wastewater treatment plants (WWTPs) are a well characterised
point of convergence of antibiotics, bacteria and ARGs, and their sub-
sequent dissemination into aquatic ecosystems (Adekanmbi et al., 2020;
Hendriksen et al., 2019; Liu et al., 2019a; Muurinen et al., 2017; Wang
et al., 2014). Currently, many different molecular techniques are used to

quantify as well as describe qualitative features of bacteria and ARGs in
WWTPs, but there is no standardised approach and cross-validation of
methods is rarely done (Gholipour et al., 2024). This makes it difficult to
qualitatively and quantitatively compare, or validate results from
different studies. Customised primers in polymerase chain reactions
(PCR) or quantitative PCR (qPCR) are commonly used to to detect and
quantify specific ARGs at low copy numbers thus providing very high
sensitivity (Rocha et al., 2019; Liu et al., 2019a). However, PCR and
qPCR assays can take time to optimise and the scope of ARG detection is
usually limited by experimental design or primer sets provided on
commercial arrays (Gaviria-Figueroa et al., 2019; Muurinen et al.,

* Corresponding author.
E-mail address: Robert.kinobe@jcu.edu.au (R. Kinobe).

Contents lists available at ScienceDirect

Journal of Microbiological Methods

journal homepage: www.elsevier.com/locate/jmicmeth

https://doi.org/10.1016/j.mimet.2024.107069
Received 28 December 2023; Received in revised form 1 October 2024; Accepted 15 November 2024

Journal of Microbiological Methods 228 (2025) 107069 

Available online 17 November 2024 
0167-7012/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:Robert.kinobe@jcu.edu.au
www.sciencedirect.com/science/journal/01677012
https://www.elsevier.com/locate/jmicmeth
https://doi.org/10.1016/j.mimet.2024.107069
https://doi.org/10.1016/j.mimet.2024.107069
https://doi.org/10.1016/j.mimet.2024.107069
http://creativecommons.org/licenses/by/4.0/


2017).
By contrast, sequencing of the 16S ribosomal ribonucleic acid (16S

rRNA) gene and, shotgun metagenomic DNA sequencing (SM-Seq) ap-
proaches have been used to identify entire microbiomes or a much wider
array of ARGs in experimental samples (Christgen et al., 2015; Guo
et al., 2017; Majeed et al., 2021). SM-Seq or RNA sequencing and
probing of known DNA or RNA libraries of ARG databases is the method
of choice for the global surveillance of markers for antimicrobial resis-
tance in sewage and other environmental matrices (Hendriksen et al.,
2019; Larsson and Flach, 2022). SM-Seq is now readily available since
the cost has declined through economy of scale and it is a robust and
efficient method because all major steps of the process can be auto-
mated. SM-Seq can also be used to retrospectively analyse archived
samples to identify novel ARGs or ARG mutations (Boolchandani et al.,
2019; Christgen et al., 2015; Guo et al., 2017; Majeed et al., 2021).
Nonetheless, some limitations to the applicability of SM-Seq for ARG
detection still exist. Highly technical knowledge and expertise is
required for several steps involved in SM-Seq approaches, and detection
of ARGs using this method is limited by the scope of reference ARG
sequences in probed databases such as the Comprehensive Antibiotic
Resistance Database (CARD), Antibiotic Resistance Gene-ANNOTation
(ARG-ANNOT), an antimicrobial resistance database for high
throughput sequencing (MEGARes), and an open online resource for
identification of antimicrobial resistance genes in next-generation
sequencing data (ResFinder) (Hendriksen et al., 2019). In addition,
neither DNA sequencing nor PCR/qPCR provides a direct link to the
functional nature of identified genetic determinants unless it is coupled
with other forms of identification such as culture and sensitivity testing
or transcriptomic analyses (Boolchandani et al., 2019; Gaviria-Figueroa
et al., 2019). For example, in a comparative study targeting specific
ARGs against defined antimicrobial classes in faecal coliforms, qPCR
data strongly correlated with culture based evaluations in wastewater,
recycled water and tap water (Rocha et al., 2019). Likewise, high
concordance was observed between three different SM-Seq approaches
for ARG or virulence detection, and phenotypic expressions in culture-
based methods (Mason et al., 2018). However, data validation based
on bacterial culture is only effective for specific target ARGs and bac-
terial isolates. Its application to validate data for samples from complex
environmental matrices, with a diverse bacterial population, and amuch
bigger ARG pool is not practical. As such, robust molecular methods
including qPCR, SM-Seq and RNA sequencing are more likely to be used
for high throughput screening of complex environmental samples, but
direct information on agreement in different molecular methods is
scarce. The primary objective of this study was to compare qPCR, SM-
Seq and RNA sequencing in the detection and relative quatification of
ARGs, and the associated bacterial population in the influent to a
metropolitan WWTP. Influent samples are ideal for these comparisons
because of the likely accurate representation of microbial and ARG di-
versity, free of wastewater processing influences such as biological
treatment reactions and chemical additions.

2. Materials and methods

2.1. Study site and sampling

Samples of influent were obtained from the Cleveland Bay Sewage
Treatment plant (CBSTP), Queensland, Australia, with the help of the
Townsville City Council (TCC). The city of Townsville lies on the eastern
coast of Australia adjacent to the boundary of the Great Barrier Reef
Marine Park (GBRMP). The CBSTP is a membrane bioreactor plant that
discharges processed effluent directly into the Queensland State Marine
Park and within the general use zone of the GBRMP located at
− 19.288744118517624 and 146.8551011782239. The CBSTP is
Townsville’s largest municipal sewage treatment plant, and currently
services up to approximately 110,000 equivalent persons and it utilises
the largest membrane bioreactor in the southern hemisphere. The

catchment for the influent into the CBSTP includes commercial, indus-
trial, and domestic sources as well as a multitude of medical and vet-
erinary sources all of which may influence the ARG and ARB load.
Samples of CBSTP influent were collected daily over 18 consecutive days
and then used to create a composite sample that captures any short-term
temporal fluctuation in the influent. Samples were collected in sterile
one litre containers using an autosampler and then transported to the
laboratory within 1 h at 5 ◦C for further processing.

2.2. Nucleic acid extraction and preservation

Samples (1–2 mL aliquots) were centrifuged at 10,000 ×g for 2 min
at 25 ◦C. The supernatant was then discarded, and the pellet was pre-
served with 750 μL of DNA /RNA shield. The pelleted 2mL aliquots were
pooled into two composite samples and DNA or RNAwas extracted using
ZymoBIOMICS™Miniprep kits (Zymo Research Corp., Irvine, CA, USA)
according to the manufacturer’s instructions. The concentration and
purity of DNA or RNA was determined using a NadoDrop™ ND-2000c
spectrophotometer (Thermo Fisher Scientific Inc., MA USA). Extracted
nucleic acids were stored at − 20 ◦C (DNA) or − 80 ◦C (RNA) until
further analyses. As environmental based nucleic acids are notoriously
difficult to extract at workable quantities, extracted DNA and RNA was
considered suitable for downstream applications at a concentration ≥

10 ng/μL. All samples had acceptable quality for DNA and RNA; theses
were a 260/280 nm ratio = 1.80 ± 0.2 and 2.00 ± 0.2 respectively, and
a 260/230 ratio≥ 2 for both DNA and RNA. Extracted DNA was used for
qPCR, 16S rRNA gene sequencing, and SM-Seq, while extracted RNA
was subjected to RNA sequencing for transcriptomic analysis.

2.3. Using qPCR to detect and quantify ARGs in pooled influent samples
for a WWTP

Extracted DNA was pooled into two composite samples for these
analyses. Microbial DNA qPCR analysis for ARGs was done using cus-
tomised arrays (cat. No. 330261 BAID-1901ZRA, Qiagen, Valencia, CA
USA). These arrays provide a high-throughput profiling of 83 genes that
represent major classes of ARGs including aminoglycosides, beta-
lactams, fluoroquinolones, macrolides-lincosamides-streptogramins,
tetracyclines, vancomycin, and other drug classes (Supplementary
Table 1). Thermal cycling was performed on an applied Biosystems™
QuantStudio™ 3 Real-Time PCR System thermocycler (Waltham, MA,
USA). Five nanograms of template DNA was used with a Hot Start Taq
DNA polymerase and an initial PCR activation at 95 ◦C for 10 mins
followed by 40 cycles consisting of denaturation for 15 s at 95 ◦C and
annealing and extension for 2 min at 60 ◦C. A threshold cycle (CT) value
of 37 was used and baselines were manually set for cycles 8–20 with a
threshold fluorescence setting of 0.24 and 0.35 respectively for each
duplicate. qPCR array data was evaluated according to the manufac-
turer’s criteria and as previously published (Adekanmbi et al., 2020; Liu
et al., 2018; Liu et al., 2019a; Looft et al., 2012; Muurinen et al., 2017).

2.4. Shotgun metagenomic DNA or RNA sequencing to determine
bacterial population and ARG profiles

DNA extracted from 18 samples based on 18 days of sampling was
pooled into a composite sample and then subjected to SM-Seq at the
Australian Genome Research Facility (AGRF), Melbourne Australia. Li-
brary preparation and SM-Seq was performed according to AGRF’s
methodology. Briefly, the Shotgun library was constructed by using
Illumina Nextera XT DNA library preparation kit (San Diego, CA, USA).
DNA was fragmented to a size of 150 bp, and the fragments were then
ligated with index barcode sequences, end-polished, A-tailed and ligated
with adaptors for Illumina sequencing. The library was sequenced using
Illumina NovaSeq S4 sequencing platform (San Diego, CA, USA) with a
single lane for this sample. The raw read sequences were processed
through Trim Galore (version 0.6.5) and cutadapt (V2.10) to identify
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and remove sequencing adapters and low-quality stretches of base
quality below 30 as outlined previously (Kruerger, 2015; Martin, 2011).
The Kraken2-built script tool in Kraken2 package (version 2.0.8) (Wood
et al., 2019), and Bracken (version 2.5) (Lu et al., 2017) were applied to
profile the composition of microbial communities using NCBI genome
and nucleotide (nt) database (downloaded 15/04/2021). Gene fraction
was defined as the minimum proportion of nucleotides in a reference
sequence that had to be aligned by at least one read to be considered as
‘identified’ in the sequenced data. A threshold of 80 % was used to
minimize potential false classifications and removing accessions with
sparse alignment and functional profiles were generated using
HUMAnN2 (version 2.8.1).
ARGs were identified from SM-Seq data using two separate analysis

pipelines as outlined in Fig. 1. AMR++ 3.0 was used for quality
assessment of raw reads, followed by filtering, trimming and adapter
removal as previously described (Bonin et al., 2023). This pipeline also
facilitated the removal of human DNA. Two separate databases were
then probed to identify ARGs. Using AMR++ 3.0 facilitated the probing
of MEGARes database using bwa-mem as described previously (Bonin
et al., 2023). ResistomeAnalyzer was then applied to process the align-
ments using a minimum gene fraction threshold of 80 %. Further ARG
analysis was also completed using the CARD resistance gene identifier
(RGI) (version 6.0.2) (Alcock et al., 2023). CARD-RGI aligned short DNA
sequences in FASTQ format using KMA (version 1.3.4) and then the
FASTQ sequences were aligned to curated reference sequences and in
silico predicted allelic variants in the CARD database (version3.2.6)
(Clausen et al., 2018). This alignment of the CARD database sequences
was done using the BWT function and both strict and perfect alignment
paradigms in CARDI RGI. For the aligned read data, gene fraction
threshold was set at 80 % to minimize potential false classifications.
Finally, a resistome matrix was built using the two databases to get final
results. These two databases were selected based on their comprehen-
siveness of ARG coverage, frequency of maintenance and update, and
being publically accessible. MEGARes contains approximately 9000
ARGs and the CARD database contains 5010 ARG reference sequences,
and this is updated regularly (Alcock et al., 2023; Bonin et al., 2023).
RNA was extracted from a composite sample comprising of 18 days

of sampled influent, corresponding to the same 18 days used for DNA
analysis described above. The extracted RNA composite sample was

then subjected to RNA sequencing at the AGRF. Library preparation and
sequencing was performed according to AGRF’s methodology. Briefly, a
library was created using Illumina Stranded Total RNA with Ribo-Zero
Plus kit (San Diego, CA, USA) using 150 ng input, 16 PCR cycles and a
0.8× bead ratio for the final library clean-up.
The quality of the library was assessed using the LabChip GX Touh II

DNAHigh Sensitivity Assay (Perkin Elmer, Hamburg, Germany), and the
concentration of the library was determined using NEB’s qPCR kit and
sequenced on Illumina’s NovaSeq 6000 (San Diego, CA, USA) on a lane
of an S4 300 flow cell. Data was processed through AMR++3.0 for
identification of functional ARGs in the sample as described previously
(Bonin et al., 2023).

2.5. 16S rRNA gene sequencing to determine the bacterial population

16S rRNA gene sequencing was performed according to AGRF’s
methodology. Briefly, the V3-V4 hypervariable region of the 16S rRNA
gene was amplified using universal primers 341-Forward
(5’CCTACGGGNGGCWGCAG) and 806-Reverse (5’ GGAC-
TACHVGGGTWTCTAAT). DNA quality control screening was done via
PCR and indexed using fluorometry prior to diversity profiling of the 16S
rRNA primer targets. Amplicons were sequenced on the Illumina MiSeq
platform (San Diego, CA, USA) for the production of a 300 bp paired end
run. Diversity profile analysis was performed with QIIME 22019.7
(Bolyen et al., 2019). The demultiplexed raw reads were primer trimmed
and quality filtered using the cutadapt plugin followed by denoising and
removal of chimeras via q2-dada2 as previously described (Callahan
et al., 2016). Taxonomy was assigned from the SILVA database (version
138.1) (Quast et al., 2012) and GreenGenes database (version 13.5)
(Desantis et al., 2006) to amplicon sequence variants using the q2-
feature-classifier (Bokulich et al., 2018), and sequence variant set at
97 % identity.

2.6. Data analysis

2.6.1. Analysis of ARG expression by qPCR
The criteria for qPCR data analysis were: (1) the sample was iden-

tified as positive for a gene if the CT was below 34, (2) detection for a
gene was inconclusive if the CT value was between 34 and 37, and (3)

Fig. 1. A simplified overview of different methods and analyses that were used. This outlines the workflow from sampling to the final qualitative or quantitative
results including antibiotic resistance gene copy numbers and microbiome identification and distribution.
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the sample was identified as negative for a gene if the CT value was
greater than 37. These guidelines were based on the CT values obtained
with the negative control sample prepared with molecular grade water.
The CT value for each positively identified gene was converted to gene
copy number using Eq. (1) as previously described (Adekanmbi et al.,
2020; Liu et al., 2018; Liu et al., 2019a; Looft et al., 2012; Muurinen
et al., 2017).

Relative Gene Copy = 10
(34− CT)÷

(
10
3

)

(1)

Where CT refers to number of cyles required to exceed background
fluorescence for each probed gene, 34 refers to the detection limit, and
10/3 refers to the 10-fold difference in gene copy numbers (GCN) at 100
% efficiency.

2.6.2. Analysis of ARG expression by shotgun metagenomic DNA and RNA
sequencing
Cumulative read counts of each ARG were normalized to gene length

as reads per kilobase (RPK) as outlined previously (Honda et al., 2023).
The relative proportion of each ARG in the sample was evaluated as the
ratio of RPK for each ARG to the sum of RPK for all ARGs. Data were
processed and presented using the “ggplot2” package version 3.4.1
(Wickham, 2011). Statistical analysis of diversity and richness of ARG
expression was assessed using the “Phyloseq” package version 3.16
(Mcmurdie and Holmes, 2012). Alpha diversity of ARGs included the
evaluation of Richness and Eveness. Differences in detection methods for
relative ARG expression in the composite sample were also analysed by a
correlation coefficient model (R software version 4.1.1) and Z-scores.

2.6.3. Analysis of bacterial population profiles
The microbiome composition identified by probing the NCBI nucle-

otide database using SM-Seq Kraken2 software, and two 16S rRNA
sequence databases (GreenGenes and SILVA) were also compared using
R software (v4.1.1) as previously described (Odom et al., 2023). Read
counts of 16S rRNA gene were also normalized as RPK and the relative
proportions of different classes of bacteria was evaluated as the ratio of
RPK for each class to the sum of RPK for the sample and presented as bar
plots using “ggplot2” package version 3.4.1 (Wickham, 2011). “Phylo-
seq” package (version 3.16) was used for alpha diversity assessments as
outlined above.

3. Results

3.1. Characterisation of the ARG profile by a customised microbial DNA
qPCR array

Bacterial phosphoenolpyruvate carboxylase gene (PPC) was used as a
positive control for each qPCR array and it was amplified within the
recommended CT of 22 ± 2 for the duplicate assays. Duplicate DNA
qPCR arrays identified a similar ARG profile in the composite sample.
The averages of CT values from duplicate arrays showed that 45 out of 83
individual ARGs and variants were positively expressed while the
expression of 10 genes was categorised as inconclusive and 28 gene were
not expressed (Supplementary Table 1). For the 45 ARGs and variants
expressed in the composite influent sample, there was no difference in
duplicate CT values from two separate assays. The average difference in
CT values was 0.42 with a range of 0.04 (for CCRA gene) to 1.17 (for
QNRB-1 gene). Average CT values were used to determine gene copy
number as outlined in (Eq. (1)). Of the 83 ARGs screened in duplicate
qPCR assays, 10 were represented multiple times either as specific
variants of the same gene e.g., CTX-1, CTX-8 and CTX-9, or sequences of
the same gene with reference to different bacterial strains of origin e.g.,
SHV(238G240E) and SHV(238G240K) (Supplementary Table 1). Copy
numbers of variants of the same gene were aggregated and represented
as a single gene and the type of resistance it encodes for. The 10 most

abundant ARGs were OXA (31.0 %), ERMB (19.1 %), GES (15.2 %),
MEFA (15.0 %), VEB (4.6 %), TETA (4.0 %), AADA1 (3.9 %), AAC6 (2.6
%),QNRS (1.3 %) andMOX (0.8 %), collectively making up 97.5 % of all
detected ARGs (Fig. 2). Resistance genes associated with beta-
lactamases had the highest percentage of GCN (53 %) and this may be
attributable to high representation (28 out of 50) ARG primer sets to
probe the expression of beta-lactamases. In contrast, the combined GCN
for five ARGs encoding for resistance against macrolides, lincosamides
and streptogramins (MLS) accounted for 35% of all detected GCN. Other
represented antimicrobial classes were fluoroquinolones, tetracyclines
and aminoglycosides.

3.2. ARG characterisation by illumina sequencing and probing of
annotated datases

3.2.1. DNA sequencing and ARG annotation in MEGARes database
The MEGARes database identified 184 ARGs out of 487,068 reads

and each ARG sequence matched at least 80 % of the individual gene
fraction (GF) in the database. ARGs encoding for resistance against the
aminoglycosides class of antimicrobials were the most abundant repre-
senting 33 %, but other major antimicrobial classes including MLS (31
%), biocides (11 %), beta-lactams (6 %), fluoroquinolone (4 %), and
tetracyclines (7 %) were also represented (Fig. 3). To provide context,
genes encoding for aminoglycoside resistance represented 19 % of all
ARGs in MEGARes database while ARGs against MLS represented less
than 5 % of ARGs in the database. A single gene, A16S encoding for an
aminoglycoside-resistant 16S ribosomal subunit protein accounted for a
large proportion (17 %) of the total ARGs in the composite influent
sample. Similarly, MLS23S encoding for macrolide resistance 23S rRNA
mutation accounted for 16 % of the total ARGs in the composite influent
sample.

3.2.2. DNA sequencing and ARG annotation in CARD database
The CARD database identified 317 unique ARG sequences from a

total of 53,411 reads, and all ARG sequences matched 80–100 % of the
individual GF. In this database, genes encoding for multi-drug resistance
represented the highest fraction (~40 %) of all ARGs identified in the
composite influent sample (Fig. 4). In the distinct antimicrobial classes,
resistance against MLS represented the highest fraction (15 %) of all
identified ARGs and resistance against other major antimicrobial classes
was represented by aminoglycosides (10 %), sulfonamides (7 %), beta-
lactams (5 %) and tetracyclines (4 %). Interestingly, this database also
identified genes encoding for resistance against disinfectants and anti-
septics representing ~11 % of ARGs in CARD and noted herein as drug
and biocide resistance (Fig. 4). The ACRB gene that encodes for a cell
membrane drug antiporter and multi-drug resistance was significantly
more abundant representing 32% of ARG sequences and others included
SUL1 (a sulfonamide resistant dihydropteroate synthase), SAT4 (strep-
tothricin acetyltransferase) and QACG (quaternary ammonium com-
pound gene) representing 6.4 %, 6.0 % and 4 % of total ARGs
respectively.

3.2.3. Comparison of qPCR and shotgun metagenomic DNA sequencing for
ARG detection
The qPCR array was customised to probe a total of 83 ARGs; out of

this, 46 ARGs were in the MEGARes database and 47 ARGs were in the
CARD database. Only 3 ARGs (AAC6, AACC and APHA1, encoding for
aminoglycoside resistance), were not in the MEGAREs and CARD data-
bases at the time of analysis. Out of all the 46 ARGs that were identifi-
able by qPCR, MEGARes and CARD, 10 ARGs were detected by qPCR
and MEGARes, while 9 ARGs were detected by qPCR and CARD (Fig. 5).
Interestingly, the ERMA gene that encodes for MLS resistance was
detected by MEGARes and CARD at a relatively high abundance but it
was not detected by qPCR. The three methods based on SM-Seq and
qPCR yielded markedly different GCN, but GCN normalisation using Z-
scores showed very good agreement in ARG detection and relative
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quantification by MEGARes, CARD and qPCR (Fig. 5). For instance, all 3
methods indicate that OXA, GES and MEFA were some of the specific
ARGs with the highest relative abundance in respective datasets. Very
limited discordance was observed for some ARGs that had very low
GCN. The TETB andMOX genes for example, were detected by qPCR but
not via either SM-Seq database (along with an additional 14 ARGs),
while ERMA and SMEwere detected by one or both SM-Seq methods and
not the qPCR array (Fig. 5).
Qualitatively, SM-Seq and gene annotation in MEGARes or CARD

identified a similar distribution of ARGs against the major antimicrobial

classes albeit at different relative abundance (Fig. 6A). For example,
genes encoding for multi-drug resistance represented the highest pro-
portion of ARGs detected in CARD, while genes encoding for amino-
glycoside and MLS represented the highest proportion of ARGs detected
in MEGARes (Fig. 6A). These observations were also supported by
further indepth analysis of ARG distribution in MEGARes and CARD
databases (Fig. 6B). Expressed ARGs were more evenly distributed in the
CARD database than the MEGARes database (Evenness = 0.32 vs 0.25
respectively). In contrast, MEGARes presented a richer distribution of
ARGs than CARD (observed richness = 475 vs 320 ARG sequences

Fig. 2. Average gene copy number of antibiotic resistance genes represented on a qPCR array. DNA was extracted from 18 samples of influent to a wastewater plant.
The samples were pooled into a composite sample and assayed in duplicates on two different arrays.
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respectively).

3.2.4. Comparison of RNA sequencing and ARG annotation in MEGARes
database
A total of 59 ARGs were identified from RNA sequencing followed by

probing of MEGARes in the composite influent sample. This represented
32 % of the total number of ARGs identified by DNA sequencing and
gene annotation inMEGARes. All 59 ARGs identified by RNA sequencing
were also detected in the DNA sample but the relative proportion of
matched reads in RNA for each ARG was generally lower (Fig. 7A). The
distribution of all 59 specific ARGs that were identified by sequencing

and gene annotation of both DNA and RNA is illustrated in (Fig. 7B).
ARGs with the highest abundance in both RNA and DNA sequences were
MLS23S and A16S, encoding for resistance against MLS and amino-
glycosides respectively. The magnitude of differences in relative abun-
dance for ARGs expressed in RNA and DNA sequences was illustrated
using visualised model coefficients (Fig. 8). These data also show that
some uncommon ARGs including P16S encoding for pactamycin resis-
tance, and P23S encoding for pleuromutilin resistance were represented
by a high proportion in RNA sequences as compared to their expression
in the DNA sequences. By contrast however, there was no significant
difference in the relative abundance between RNA and DNA sequences,

Fig. 3. Distribution of ARGs stratified by antimicrobial class against which they encode resistance after SM-Seq and gene annotation for ARGs in MEGARes data-
bases. This graph denotes ARGs and corresponding antimicrobial classes common to MEGARes and CARD databases for comparison. DNA was extracted from 18
influent samples and then pooled into a composite sample that was analysed by SM-Seq.

Fig. 4. Distribution of ARGs stratified by antimicrobial class against which they encode resistance after SM-Seq and gene annotation in the CARD database. This
graph denotes ARGs and corresponding antimicrobial classes common to MEGARes and CARD databases for comparison. DNA was extracted from 18 influent
samples, pooled into a composite sample, and then analysed by SM-Seq.
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for genes encoding for phenicol, sulfonamide and multi-drug resistance
(Figs. 7 and 8).

3.3. Profiling the microbiome by 16S rRNA and shotgun metagenomic
sequencing using Kraken2

Profiling of the 16S rRNA amplicon in SILVA database identified
1471 bacterial species while the GreenGenes database identified 1460
bacterial species in the composite influent sample (Fig. 9A). The distri-
bution and relative abundance of bacterial classes was similar for
SILVA_16S and GreenGenes_16Smethods and this was further illustrated
by evaluated alpha diversity for observed population richness and
evenness (Fig. 9B). In comparison, a SM-Seq approach coupled with
bacterial species profiling in the NCBI nucleotide database using
Kraken2 software (SM-Seq_Kraken2) yielded more mapped reads
(17,560,817) and bacterial taxonomic sequences (36,255). The relative
proportion of some of the most prevalent bacterial classes including
Betaproteobacteria, Actinobacteria, Deltaproteobacteria, Fibrobacteria
and Flavobacteria was higher in the sample analysed by SM-Seq fol-
lowed by profiling in Kraken2 (Fig. 9). This difference was also high-
lighted by profiling bacterial population diversity where SM-
Seq_Kraken2 had a markedly higher observed richness of bacterial
species (richness = 15,000 for SM-Seq_Kraken2 vs 3750 for 16S rRNA
gene metabarcoding). The observed evenness in bacterial species dis-
tribution were 0.865 for 16S rRNA gene metabarcoding versus 0.765 for
SM-Seq_Kraken2. Further analysis of the 18 individual samples that
constituted the composite sample revealed a similar microbial profile as
detected in the composite sample using the SILVA_16S rRNA gene
metabarcoding approach (Fig. 10). Bacteriodia, Clostridia, Gammapro-
teobacteria and Synergistia were the bacterial classes with highest
abundance across all 18 days of sampling albeit in different proportions.
The biggest variation in individual days was in the sample collected on
day 15 in which Gammaproteobacteria constituted more than 80 % of
the identified species. Analysis of the 18 individual samples as well as
the composite sample by a non-parametric, permutational multivariate
analysis (PERMANOVA) revealed no significant differences (P = 0.941),
in the microbial composition of all samples.

4. Discussion

In this study, influent samples into a cosmopolitan wastewater
treatment plant (WWTP) were collected over 18 consecutive days,
pooled into a composite sample, and then used to compare molecular
methods for detection and relative quantification of antimicrobial
resistance genes (ARGs). The influent was considered because it is likely
to represent the diversity in ARGs and microbiome from individual
contributors to the WWTP without the complications of the biological
treatment process itself, or the addition of treatment plant chemicals. In
addition, it has been shown that pooling microbiome samples before
DNA amplification and metagenomic sequencing is a viable approach to
evaluating diversity in population-level association studies (Ray et al.,
2019). We also show that the bacterial populations detected in indi-
vidual influent samples could be accurately predicted by the composite
pooled sample. The other main observations was that SM-Seq and qPCR
yielded markedly different gene copy number (GCN) for ARGs, but
normalisation of these data using z-scores demonstrated very good
concordance in ARG detection and relative quantification by the two
approaches. RNA sequencing identified only 32 % of specific ARGs
detected by SM-Seq, and these ARGs were identified at a lower
sequencing depth than that for DNA. However, when the distribution of
ARGs detected by RNA sequencing were stratified by antimicrobial class
against which resistance is encoded, the putative phenotypic AMR
profile was not different from that determined by SM-Seq. This is
because specific ARGs detected via RNA sequencing may be functional
with the predicted phenotypic expression matching that of similar ARGs
detected via SM-Seq in the composite DNA sample. Based on this limited
dataset though, it is also apparent that a larger portion of ARGs identi-
fied via SM-Seq were possibly not transcribed into RNA transcripts at the
time of sample collection.
Antimicrobial resistance gene qPCR arrays with customised ampli-

fication conditions can detect target genes with very low copy numbers
(Rocha et al., 2019). This may explain the relatively higher GCN for
ARGs detected by qPCR compared to SM-Seq or RNA sequencing in this
study. In addition, 16 ARGs that are detectable in CARD and 18 ARGs
that are detectable in MEGARes were identified by qPCR arrays in the

Fig. 5. Z-score for normalized gene copy numbers of ARGs identified by qPCR (blue) and SM-Seq followed by gene annotation in the MEGARes (orange) and CARD
(grey) databases. Bars represented by lighter, faded colours indicate Z-scores equal to zero actual abundance. DNA was extracted from 18 influent samples, pooled
into a composite sample, and then analysed by qPCR and the respective metagenomic DNA sequencing approaches. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Distribution of ARG sequences stratified by antimicrobial class against which they encode resistance after SM-Seq and gene annotation in the CARD and
MEGARes database. (A) Relative ARG sequence abundance by antimicrobial class and (B), Alpha diversity measure of observed richness and evenness of ARG
distribution as stratified by antimicrobial class.
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Fig. 7. Distribution of ARG sequences stratified by antimicrobial class against which they encode resistance after SM-Seq, and RNA-Seq with gene annotation in the
MEGARes database. (A) Relative ARG abundance stratified by antimicrobial class in DNA and RNA sequences, (B) Relative abundance of specific ARGs in DNA and
RNA sequences.
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composite sample, but were not detected by the respective SM-Seq ap-
proaches. The specific cause of this qPCR versus SM-Seq mismatch is not
known. It is possible this represents false positive identification of un-
known origin in qPCR since all affected ARGs were expressed at a
relatively low GCN. Conversely, two ARGs including ERMA encoding for
MLS resistance and SME encoding for carbapenem resistance were

detected in the composite sample by SM-Seq and gene annotation in
CARD or MEGARes but not via qPCR. Although not confirmed, a plau-
sible explanation for this mismatch is that qPCR assays are highly spe-
cific with an ability to detect gene variants in a manner that is dependent
on the targeted nucleotide sequences via specifically designed primers.
This implies that ARG variants with subtle differences in nucleotides are

Fig. 8. Visualised model coefficients to illustrate differences in relative ARG expression in DNA compared to RNA (A) and, the antimicrobial class against which
resistance is encoded (B). Values above zero indicate relatively higher abundance in DNA than RNA, and values below zero indicate relatively higher abundance in
RNA than DNA.
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Fig. 9. A comparison of the distribution and relative proportion for classes of bacteria constituting the top 100 genera following 16S rRNA gene sequencing with
taxonomic annotation in GreenGenes and SILVA, and after SM-Seq with taxonomic annotation using Kraken2 and the NCBI nucleotide database (A), and alpha
diversity measure of observed richness and evenness (B). DNA was extracted from 18 influent samples, pooled into a composite sample, and then analysed.
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Fig. 10. Relative abundance and distribution of bacterial class in 18 individual samples and the pooled composite sample following 16S rRNA gene sequencing and
bacterial class annotation using SILVA.
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easily detected by reference gene sequences in metagenomic databases
but could be missed by qPCR. In the MEGARes database for example, the
ERMA gene is linked to five separate DNA sequences (Bonin et al., 2023).
Furthermore, it is well known that DNA extracted from environmental
samples may contain qPCR inhibitors (Stults et al., 2001). For the
composite WWTP influent sample studied here however, inhibition of
qPCR was unlikely because the same DNA template for ARG detection
and qPCR positive controls had the same amplification efficiency.
Collectively, these data show that qPCR arrays used in the current study
had a limited selection of detectable ARGs, but the arrays were suitable
for identification, relative quantification of ARGs in the composite
influent sample. In contrast, SM-Seq provided a more comprehensive
coverage of ARG detection and these methods were well suited for
screening and prediction of antimicrobial resistance profiles.
Currently available databases for ARG secreening were created and

are curated differently with many fundamental differences in the type
and proportional representation of ARGs, gene variants or mutations
(Papp and Solymosi, 2022). This study sought to compare SM-Seq and
ARG annotation using either the CARD or MEGARes databases. In the
composite WWTP influent sample examined here, multi-drug resistance
and MLS resistance had the highest proportion of ARGs in CARD while
MLS and aminoglycoside resistance had the highest proportion of ARGs
in MEGARes. This is likely due to inherent differences in composition of
specific ARGs in the gene pool provided in the two databases. The
original CARD database was built around an ontology-driven framework
which allows for only one version of an ARG sequence to exist in the
database to minimize ARG allele network problem, though this could
create bias for ARGs present in clinical pathogens, because of the reli-
ance on published literature (Alcock et al., 2023). This constraint to the
database may limit the identification of ARGs in environmental samples
such as the CBSTP wastewater influent studied here. Furthermore, the
CARD github repository (https://github.com/arpcard/rgi/blob/mast
er/docs/rgi_bwt.rst) provides caveats that use in silico predicted allelic
variants that are available in the CARD resistome. This implies that
variants and prevalence data may be impacted by this network problem.
Conversely, MEGARes may have multiple sequences associated with the
same gene or sub-group of gene, which may be reflected in the observed
higher ARG richness in the MEGARes dataset in the current study.
Furthermore, AMR++ utilises bwa-mem to facilitate the read mapping
of sequences which may exacerbate the network problem through
redundancy in tied alignments, whereas CARD employs KMA which
shows higher accuracy in bacterial genome datasets (Clausen et al.,
2018). However, AMR++ utilises a cyclic form of gene annotation to
minimize false identification and linking of the same gene with resis-
tance to multiple classes of antimicrobial compounds (Papp and Sol-
ymosi, 2022; Bonin et al., 2023). Based on these differences, it is
conceivable that CARD could provide a more even distribution of ARG
sequences while MEGARes would provide a more comprehensive
assessment of ARGs within the sample. Detailed bioinformatic analysis
of the contribution of these network and pipeline differences in ARG
annotation in our samples may be warranted, but this was beyond the
scope of the current study.
Qualitatively, results from the current study indicate that ARG

annotation in CARD or MEGARes identified different proportions of an
overlapping set of ARGs that code for similar resistance patterns across
the major antimicrobial classes. This is because many different bacterial
genes can code for resistance against multiple antimicrobial classes
creating different gene-antimicrobial class permutations that may
manifest as phenotypic antibiotic resistance. A relevant example of this
combination is the ACRB gene that codes for a multi-drug efflux pump
against tetracyclines, phenicols, MLS, rifampicin and fluoroquinolones
(Hobbs et al., 2012). Collectively therefore, these data suggest that
CARD and MEGARes are equally suited for surveillance of known ARGs
in environmental samples. For large scale studies aimed at specific ARG
identification and elucidation of molecular mechanisms for AMR how-
ever, a direct comparison of CARD and MEGARes is not recommended.

Furthermore, for comparative validation of detailed metagenomic ana-
lyses for ARG expression, the choice of ARG database and accompanying
bioinformatic tools to be considered should be consistent.
The ARG profile identified by MEGARes and CARD databases in this

composite WWTP influent sample was consistent with SM-Seq assess-
ments of WWTP influents in some previous studies (Honda et al., 2023.,
Shi et al., 2023; Tiwari et al., 2024). These studies demonstrated that
WWTP influents were dominated by ARGs that encode for resistance
against macrolides, aminoglycosides, tetracyclines, beta-lactams, and
multiple antimicrobial classes. It is worth noting however, that marked
variation in the relative abundance of specific ARGs is observed across
different studies and this may be attributed to qualitative differences in
WWTP influent sources. The type and volume of antibiotic usage, and
the presence of other factors such as the co-selection for resistance
induced by metals and biocides are among the important factors that
determine the microbiome and specific ARGs in WWTP influents. In the
current study, a relatively high proportion of specific ARGs including
AAC6, OXA, VEB, QNRVC were identified and these encode for resis-
tance against aminoglycosides (AAC6), beta-lactam drugs (OXA and
VEB), and fluoroquinolones (QNRVC). These antimicrobial classes are
commonly used in healthcare facilities in the catchment area for the
studied WWTP influent.
RNA sequencing was done to assess the putative expression and

functionality of detected ARGs using the MEGARes database. MEGARes
was considered for this comparison because it presented a higher ARG
richness in its database compared to CARD. Fifty-nine ARGs were
identified via RNA sequencing of the composite influent sample exam-
ined in this study. This however, only represented 32 % of the total
number of ARGs identified by DNA sequencing and the relative abun-
dance of genes expressed in RNAwas low. This observation concurs with
some previous studies. In three wastewater treatment systems in South
Africa, the fate of pathogens that dominated the influent metagenomes
and transcripts was found to vary markedly (Conco et al., 2022). Simi-
larly, while resistance to most antimicrobial classes was represented in
metagenomes and transcripts in activated sludge from wastewater in
Taiwan, only 66 % of identified ARGs in metagenomes showed putative
transcriptional activity and, some highly transcribed ARGs e.g., APH(3),
were not predominant in metagenomes (Liu et al., 2019b). This DNA-
RNA sequencing mismatch is a common phenomenon (Pitt et al.,
2020; Jia et al., 2021; Arroyo Mühr et al., 2021) and may be attributable
to many factors. Primarily, RNA is composed of ribose sugars instead of
deoxyribose and this makes RNA unstable compared to DNA; prone to
degradation in environmental samples, by biochemical and physical
elements. Degradation of messenger RNA by endonucleases and exo-
nucleases is an important process for controlling gene expression in
bacteria. It is possible that the standard protocol for nucleic acid
extraction used in this study may not have sufficiently prevented RNA
degradation. Secondly, RNA sequencing is only likely to represent
actively expressed RNA transcripts for ARGs with a concurrent exposure
to sub-lethal concentrations of corresponding antibiotics, heavy metals
or nutrients at the time of sampling. For example, the level of ARG
transcript abundance in wastewater effluent was found to fluctuate over
time and this strongly correlated with the level of antibiotics in the
effluent (Rowe et al., 2017). In E. coli harbouring tetracyline resistance
genes, mRNA gene expression for TETA and TETR was tightly regulated
by the concentration of tetracycline (Moller et al., 2016). Herein we
show that the relative abundance of tetracycline resistance genes was
markedly lower in RNA compared to the DNA, but determination of
qualitative and quantitative features of antibiotics in samples was
beyond the scope of this study. The chemical composition of the com-
posite sample evaluated in this study may also explain why some un-
common ARGs including P16S encoding for pactamycin resistance, and
P23S encoding for pleuromutilin resistance were markedly upregulated
in RNA sequences. Whenever feasible therefore, real-time correlations of
antimicrobial composition and concentrations with ARG transcriptomic
evaluations should be considered (Drane et al., 2024; Liguori et al.,
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2022). All these factors notwithstanding, ARGs with the highest abun-
dance in both RNA and DNA sequences were MLS23S and A16S,
encoding for resistance against MLS and aminoglycosides respectively.
MLS23S facilitates a targeted alteration of 23S rRNA within the large
ribosomal subunit, a target site for macrolides (Vester and Douthwaite,
2001), while A16S facilitates a targeted alteration of 16S rRNA within
the ribosomal subunit, a target site for aminoglycosides (Lioy et al.,
2014). While it is possible that the identification of MLS23S and A16S
may be impacted by improper read alignment to 16S and 23S ribosomal
subunits, the absence of both genes within the CARD database precluded
a comparison to other alignment methods in this study. To our knowl-
edge, these respective mutations in the 16S and 23S ribosomal subunits
can occur universally and are not confined to specific organisms, and
MEGARes detects these mutations. Similarly, there was no difference in
the relative abundance between RNA and DNA sequences, for some
ARGs encoding for phenicols, sulfonamides and multi-drug resistance.
This suggests concordance in the characterisation of resistance against
these specific antimicrobial classes. Similar results were observed via
metagenomic and transcriptomic analyses of activated sludge from
wastewater processing previously (Liu et al., 2019b).
Two methods were used to characterise the microbiome associated

with the ARG profile described above; these were sequencing of 16S
rRNA gene paired with bacterial class annotation in GreenGenes or
SILVA databases and, SM-Seq of bacterial DNA coupled with class
annotation using Kraken2 bioinformatics pipeline. Sequencing of the the
16S rRNA gene is a conventional method because it is cost effective and
has large reference databases (Requeira-Iglesisa et al., 2023). This
approach utilises defined operational taxonomic units that are more
accurately analysed at phyla and class level but less pricisely at species
level. For the composite influent sample considered here, GreenGenes
and SILVA bioinformatics pipelines yielded similar microbial profiles
with no differences in observed eveness or richness in the bacterial
population. In contrast, SM-Seq coupled with bacterial species annota-
tion using Kraken2 pipeline identified more bacterial classes and at
much higher relative abundance with a significantly higher measure of
richness in the bacterial population. This is likely due to deeper
sequencing and species identification provided by SM-Seq, though
considerations should be given to previous instances of taxa over-
expression via this tool (Cooper et al., 2024). These data and the work
elucidated by others (Durazzi et al., 2021; Lin and Liu, 2023), indicate
that 16S rRNA sequencing or SM-Seq could effectively be used for bac-
terial population profiling at phyla and class level in surveillance
studies. For more accurate speciation of bacteria in more diverse pop-
ulations and identification of bacterial genes, SM-Seq would be a rec-
ommended approach. In the composite influent sample examined here,
Proteobacteria, Bacteriodia and Clostridia were the predominant classes
identified by both 16S rRNA sequencing and SM-Seq. This profile is very
similar to that documented in influents into WWTPs in other cosmo-
politan cities in the United Kingdom, Japan and China (Chau et al.,
2023; Honda et al., 2023; Shi et al., 2023). This strongly suggests that
influents into WWTPs in urban settings are likely to be dominated by
enteric anaerobic bacteria.
There are some limitations to this study that are worth noting. Our

analyses did not include an influent sample with a defined ARG and
bacterial composition. As such, parameters relating to accuracy, relative
sensitivity and specificity, as well as limits of detection for each of the
methods was not determined. This should be considered in future studies
for method standardisation. qPCR data presented here was acquired
using proprietary arrays and as such, we were unable to acquire and
match qPCR primers to nucleotide sequences for corresponding gene
alleles detected by SM-Seq. Thus, it is not apparent whether this qPCR
assay was able to detect multiple ARG alelles. While RNA sequencing
may correlate with phenotypic expression of antimicrobial resistance
under specific sampling conditions, bacterial culture and antimicrobial
susceptibility tests that would have confirmed phenotypes were beyond
the scope of this study. In addition, analysis of the composite sample was

done once for MS-Seq with CARD and also once for MS-Seq with MEG-
ARes, not replicates. This was primarily because of logistical constraints
imposed by the COVID-19 pandemic when this study was conducted.

5. Conclusions

Methods that are commonly used for surveillance of the microbiome
and ARGs in environmental samples are not standardised; very limited
data on comparative robustness exists. We compared qPCR, SM-Seq and
RNA sequensing for the qualitative and the relative quantitative detec-
tion of ARGs and bacteria in WWTP influent. SM-Seq coupled with ARG
annotation in two known databases (CARD and MEGARes) provided
comprehensive ARG detection that is well suited for surveillance and
mapping of antimicrobial resistance profile to different antimicrobial
classes. However, the detection and relative quantification of specific
ARGs by this approach is limited by the size and quality of the probed
ARG database. Thus, a direct comparison of CARD and MEGARes may
not be recommended. It was also apparent that gene amplification using
pre-selected qPCR arrays was adequate for identification, relative
quantification and validation of ARGs represented in the CARD or
MEGARes database. RNA sequencing identified only 32 % of the ARGs
that were recognised by DNA sequencing followed by gene annotation in
MEGARes. This emphasises the need to undertake phenotypic charac-
terisations to validate AMR data determined by SM-Seq. Interestingly,
all ARGs detected by RNA-seq were also detected via SM-Seq albeit at
varying relative proportions. There was concordance in the detection
and relative quantification of some ARGs encoding for resistance against
aminoglycosides, MLS, phenicols, and sulfonamides, providing a quali-
tative indication of AMR patterns from RNA or DNA sequencing. Lastly,
we show that sequencing of the 16S rRNA gene or SM-Seq could effec-
tively be used for general bacterial population profiling at phyla or class
level. However, SM-Seq identified more bacterial classes and at much
higher relative abundance with a significantly higher measure of rich-
ness in the bacterial population. For comprehensive and precise speci-
ation of bacteria in complex environmental samples therefore, SM-Seq
would be a recommended approach.
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