
Ecological Informatics 82 (2024) 102698

Available online 20 June 2024
1574-9541/Crown Copyright © 2024 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Synthetic data for reef modelling 

Rose Crocker a,*, Barbara J. Robson a,b, Chinenye Ani a, Ken Anthony a, Takuya Iwanaga a 

a Australian Institute of Marine Science, 1526 Cape Cleveland Rd, Cape Cleveland, QLD 4810, Australia 
b AIMS@JCU, DB17-148, James Cook University, Townsville, QLD 4811, Australia   

A R T I C L E  I N F O   

Keywords: 
Synthetic data 
Reef modelling 
Data pipeline 
Model testing and validation 
Decision support tools 
Machine learning 
Neural networks 
Synthetic data vault 

A B S T R A C T   

Synthetic data mimics the statistical properties of real-world datasets while removing reference to sensitive or 
confidential information in the original dataset (Quintana, 2020). Synthetic data is also useful for general model 
testing and development, with many methods available for generating data from machine learning models 
(Raghunathan, 2021). Although not widely used in the context of ecological and environmental modelling, 
synthetic data can support and accelerate model testing and analyses where rightsholders are sensitive to data 
disclosure for study areas, or data collection is expensive. 

In the context of reef modelling, synthetic data can be used to support model analyses that can be published 
without referring to specific sites, reefs, or study areas. This is desirable in the context of decision support for 
restoration of the Great Barrier Reef. The Reef has many stakeholders and release of early modelling results for 
intervention scenarios for specific areas would be premature until management or intervention strategy options 
have been discussed with stakeholders and/or rightsholders. Synthetic data allows a path to publish model and 
method demonstrations to share knowledge with the reef decision support community without prematurely 
suggesting policy recommendations for reefs which are sensitive to rightsholders or stakeholders. 

We showcase a synthetic data pipeline developed for the reef decision-support system ADRIA (Adaptive Dy
namic Reef Intervention Algorithms), using methods from the Python package Synthetic Data Vault (Patki et al., 
2016) and others. The synthetic data models are developed to emulate the statistics of case-study reefs for 
publishing decision-support tool demonstrations, testing and method validation without revealing sensitive reef 
site information. This pipeline includes developing models for tabular (benthic/compositional reef data), spatial- 
temporal (wave and heat stress data) and spatial network data (coral larval connectivity). Conditional sampling 
methods which connect spatial relationships across datasets are used to develop synthetic reef data packages 
which mimic the statistical properties of the original dataset. The utility of the synthetic data is demonstrated on 
a sample reef data package, and methods used for anonymizing the data are detailed. The results are discussed in 
the context of formalizing synthetic data for reef modelling. All synthetic data code is available at ADRIA- 
synthetic-data/README.md at v0.1.0 ⋅ open-AIMS/ADRIA-synthetic-data (github.com), DOI: https://doi. 
org/10.5281/zenodo.10158323.   

1. Why synthetic data for reef modelling? 

Here we use the definition of synthetic data as data generated to 
mimic the statistical properties of real-world datasets while removing 
reference to sensitive or confidential information contained in the 
original dataset (Quintana, 2020). Synthetic data allows full exploration 
of policy-relevant datasets while allaying privacy and sensitivity con
cerns. This is desirable in the context of decision support for research 

and management domains, including restoration of the Great Barrier 
Reef (GBR). Many GBR rightsholders would opt for not revealing early 
modelling results for intervention scenarios at specific sites until a policy 
framework has been formally agreed upon. For example, Traditional 
Owners and tour operators on the Reef may wish to keep the results of 
exploratory analyses of intervention options and projected outcomes for 
their areas private until a mutually beneficial strategy has been agreed 
on. For these reasons, it is desirable to create synthetic datasets which 

Abbreviations: GBR, Great Barrier Reef; SDV, Synthetic Data Vault; GAN, Generative Adversarial Network; CNN, Convolutional Neural Network; TVAE, Tabular Vari
ational Auto-Encoder; PAR, Probabilistic Autoregressive.. 

* Corresponding author. 
E-mail address: r.crocker@aims.gov.au (R. Crocker).  

Contents lists available at ScienceDirect 

Ecological Informatics 

journal homepage: www.elsevier.com/locate/ecolinf 

https://doi.org/10.1016/j.ecoinf.2024.102698 
Received 12 December 2023; Received in revised form 18 June 2024; Accepted 19 June 2024   

https://doi.org/10.5281/zenodo.10158323
https://doi.org/10.5281/zenodo.10158323
mailto:r.crocker@aims.gov.au
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2024.102698
https://doi.org/10.1016/j.ecoinf.2024.102698
https://doi.org/10.1016/j.ecoinf.2024.102698
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2024.102698&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ecological Informatics 82 (2024) 102698

2

sufficiently represent the ecological and environmental conditions of 
reefs to demonstrate model or decision-tool functionality in publica
tions, but do not reference or disclose actual GBR reef sites. 

Further, synthetic data has utility for reef intervention and man
agement research as it can facilitate efficient decision support model 
testing and validation. Synthetic data inputs can be generated and then 
augmented such that decision support model outputs are predictable, 
and any deviation from the expected outputs indicates a bug has been 
introduced to the code base. This attribute is often capitalized on in the 
development of artificial intelligence and machine learning models, 
where there may not be enough real-world data available to evaluate the 
model validity (Nikolenko, 2021). Examples in the marine modelling 
space include Watson (2015), where synthetic data sets of sea level rise 
are built to have predictable mean signals, allowing training sea level 
rise models despite complex and largely unknown interactions between 
ocean dynamics and sea level rise. In a similar vein, Wilson et al. (2018) 
overcome limitations of collected seabed classification data by creating 
synthetic datasets to support species distribution modelling and more 
accurate representation of biogeochemistry in marine ecological 
models. Applications are also common in developing species identifi
cation models for automated species mapping, such as for generating 
larger volumes of marine acoustic trawl surveys (Allken et al., 2019), or 
underwater imagery for abundance monitoring (Mahmood et al., 2020). 
In the context of decision tools and models for restoration and man
agement of the GBR, tests of synthetic datasets with known outcomes 
will improve the robustness of validifying new iterations of the models 
and decision support tools under development. 

Finding and validating a suitable model for generating synthetic data 
can be time consuming, but once the process is automated it can afford 
time and efficiency gains in the development process. Generating reef 
data for modelling can be time consuming and expensive, both due to 
fieldwork required and/or computationally expensive models. For 
example, generating coral larval connectivity data for model runs can 
take days to weeks with the use of a high-performance computer. With a 
synthetic data generation model, this data can be generated more 
quickly from old data to create data sets for testing, validation and 
method/model demonstration in publications. 

In this paper we detail a synthetic data pipeline developed for three 
main applications:  

1. To demonstrate the functionality of a reef decision support tool 
(ADRIA) in publications without the use of potentially sensitive GBR 
datasets,  

2. To develop test data packages for ADRIA’s testing suite which 
contain a small number of sites so that tests run quickly but also 
cover relevant environmental and ecological conditions,  

3. To explore the impact of input data layers on ADRIA’s decision 
support core, investigating key questions about the sensitivity of 
restoration decision outputs to variability in input data layers. 

The intention to create synthetic reef data here is not to guide spe
cific decision or policy recommendations, but for testing, analysis, and 
validation. For example, to create a small 10-site test set for the reef 
decision support tool ADRIA, a 10-site data package was generated using 
the methods developed here. Key decision-influencing properties of 
these sites, such as the heat stress they experience in bleaching years and 
capacity for coral cover, were then adjusted up or down relative to the 
set of sites mean value so that certain sites should always be chosen for 
intervention activities by ADRIA’s site selection algorithms. A series of 
automated tests on the 10-site test set is now run whenever new changes 
are introduced to ADRIA. 

Specifically, (and as will be detailed in the following section) the 
model demonstrations, testing and analysis is not focused on an 
ecological model but on decision support algorithms which use envi
ronmental input layers (updated at each time step using an ecological 
model) as criteria to decide where to implement restoration activities. 

The data is intended for decision-algorithm validation, testing and 
publishing demonstrations where real data should not be used due to 
privacy and sensitivity concerns. Thus, the goal in generating these 
synthetic data sets is to emulate sensible environmental and ecological 
dynamics to test, demonstrate and explore these decision support 
algorithms. 

A key challenge in generating synthetic data for reef restoration 
decision support is that decision support models often require many 
different input datasets which can be challenging to create a unified 
synthetic data model for. This challenge is approached here through 
initially defining a narrow scope for the application of our models 
(testing and validation) which will be expanded as the models are iter
atively improved and key relationships between datasets (which are 
likely complex) are better understood through specialised research. This 
paper outlines the first iteration of our synthetic data models, designed 
to develop data for model testing, validation, and functionality dem
onstrations. The models developed here may not individually be the best 
available for the data set they aim to synthesize but were chosen to 
satisfy a sufficient level of statistical emulation, computational speed, 
model flexibility and compatibility to generate data packages for the 
purposes listed above. The methods used to demonstrate the utility of 
the data models (often called general utility) (Snoke et al., 2018), were 
chosen for their applicability to a range of data types (allowing com
parison across different input datasets) and high compatibility with the 
Synthetic Data Vault python package. These are discussed in further 
detail in Section V. 

2. Reef decision support model – ADRIA 

We develop synthetic input datasets for the reef modelling and 
decision-support tool, the Adaptive Dynamic Reef Intervention Algo
rithm (ADRIA). ADRIA is a decision-support tool designed to assist in the 
planning and implementation of restoration projects on the Great Bar
rier Reef (Iwanaga et al., 2024). ADRIA is informed by a parsimonious 
mathematical model of coral survival, fecundity, growth, and density- 
dependent recruitment of six species with six size classes. The coral 
model is forced by environmental drivers, ecological processes, and state 
variables, and restorative and/or protective interventions. The decision- 
support algorithms in ADRIA use these environmental and ecological 
data layers as heuristic criteria to dynamically select locations best 
suited to implement restoration activities under different ecological and 
environmental conditions. 

ADRIA’s ecological model and location-selection algorithms require 
a suite of ecological and environmental input data layers, as detailed in 
Fig. 1. To inform spatial planning in ADRIA, the reef location of interest 
is divided into a series of polygons based on benthic composition, which 
are used to designate ‘sites’ as locations at the centroids of these poly
gons. The process of site selection for a particular decision instance in 
ADRIA is illustrated in Fig. 2. First a series of data layers are selected 
based on relevance to the restoration decision. These layers are aggre
gated into criteria, so that there is a single value for each reef site for 
each criteria (a decision matrix). Examples of criteria include the mean 
heat stress a site experiences over the 5 years following intervention, the 
mean site depth, or the area available for coral growth at the site. The 
criteria are normalised and then can be used to filter sites based on 
thresholds, such as those too hot or deep to implement a restoration 
activity. Finally, the criteria are weighted according to their importance 
or the decision maker’s preference for a particular restorative inter
vention and aggregated to give a single value for each site. The sites are 
then ranked from highest value to lowest and the top N sites are chosen 
to implement the restorative activity at. 

The synthetic data sets are developed to test, demonstrate, and 
explore ADRIA’s core decision support algorithms. The goal in creating 
the synthetic input data sets is to allow demonstrations and automated 
testing of ADRIA’s decision support algorithms as criteria are added and 
other changes introduced, as well as to explore the sensitivity of the 
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rankings of sites to variations in different input data layers. The key data 
layers which become criteria and are synthesized here are detailed in the 
following paragraphs. 

The key spatial data layer for ADRIA is the ‘site data’, which details 
the latitudinal and longitudinal positions of the polygon centroids, the 
polygon areas, their maximum capacity for coral as a percentage of the 
area (k), categorical benthic composition, and other key identifying 
information. This is used for several key criteria during site selection, 
including mean site depth, site coral cover area and protection zoning 
category. Another data layer specifies the initial coral cover at each site 
for each of the 6 coral species and 6 size classes (36 categories), which is 
used to initialize ADRIA’s coral growth model. This, along with site area 
and carrying capacity from the site data, forms a criterion detailing the 
area of space available for coral to be planted (a restorative 

intervention), and another criteria describing the current area of coral 
which can be protected using solar radiation management (another 
restorative intervention). 

Key environmental data layers include time series data which specify 
the mean heat and wave stress that each of the reef sites are projected to 
experience over a time span of 100 years. These are used in site selection 
criteria which detail the average heat and wave stress a site will expe
rience over some duration of time following a restorative intervention, 
with the site selection algorithm seeking to avoid high stress sites. Heat 
stress, expressed as degree heating weeks data, and wave stress, 
expressed as mean wave height in metres, are three-dimensional data 
cubes, with dimensions year, climate replicate and site. 

Connectivity data, which describes the larval connectivity for a given 
year between each site in the region of interest, is represented as an N by 

Fig. 1. The synthetic data pipeline used to create synthetic data packages for ADRIA. Synthetic data models are created for each of the datasets and conditionalised 
on the synthetic site data to create a spatially consistent synthetic site data package. 
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N matrix, where entry (i, j) is the connectivity between sites i and j. The 
connectivity data is used in the site selection algorithms to form criteria 
which favour sites providing larvae to sites experiencing lower heat and 
wave stress. The models and assumptions used to create these original 
data layers are detailed in Appendix A and the connectivity and DHW 
data are discussed in more detail in Cresswell et al. (2023). 

3. Synthetic data generation 

As mentioned, we use the definition of synthetic data as data 
generated to mimic the statistical properties of real-world datasets while 
removing reference to sensitive or confidential information contained in 
the original dataset (Quintana, 2020). In time series analysis, such data 
may also be referred to as “surrogate data”, which reproduces statistical 
properties of an original dataset, such as autocorrelation structure. Most 
importantly, such data is generated “artificially”, by a model and/or 
process to emulate the statistical properties of another dataset. 

Use of synthetic data began as a means to allow sharing of confi
dential census data. It has gained popularity in public health, pharma
ceutical and medical research due to demand for retaining data privacy 
while releasing important study results or demonstrating new analysis 
methods (Chen et al., 2021). More recently it has become common in 
machine learning research due to demand for large training data sets 
where data is limited (James et al., 2021). Synthetic data is also useful 
for general model testing and development, with methods available for 
generating data from models ranging from simple to complex (Raghu
nathan, 2021). 

Synthetic data can be generated using a variety of methods including 
statistical methods, process-based modelling, classical machine learning 
methods and deep learning methods. The first synthetic data methods 
developed used techniques from Statistical Disclosure Control, which 
designates transformations of either some or all columns of a data set to 
obscure private and sensitive details. These techniques were then 
coupled with frequentist approaches such as confidence intervals to 
check the transformed data reasonably retained the statistical properties 
of the original data (R.J.A, Liu and Raghunathan, 2004). In a similar 
vein, statistical permutation methods can be used to create synthetic 
data sets by calculating a test statistic for the original dataset and 
randomly permuting the data points. The test statistic is then 

recalculated in the permutated sets and compared to the original to see if 
it falls within the null distribution (Berry et al., 2018). This can also be 
applied as Monte Carlo resampling, where many datasets are simulated 
via reshuffling the original data before testing the null hypothesis that 
the distribution of the shuffled data is the same as that of the original 
dataset (Ernst, 2004). Bayesian approaches treat the unsampled pro
portion of the original data as missing information and construct a 
posterior distribution for the synthetic data conditional on the observed 
data (Raghunathan, 2021). 

Synthetic data can also be generated by creating process-based or 
surrogate models for the original data. Process-based models use known 
properties of the system (e.g. physical, chemical, biological processes) to 
generate data which can then be compared to collected data via statis
tical methods. Developing process-based synthetic data models, how
ever, can be time consuming, models can be slow to run and can be 
highly sensitive to input parameters. This is certainly the case with many 
reef data sets which can be high in uncertainty, highly parameter sen
sitive and computationally expensive to model. The coral larval con
nectivity data discussed in later sections, for example, can take many 
days to weeks to generate depending on the spatial domain. Surrogate 
models are designed to mimic the behaviour of a complex process-based 
model while being computationally cheaper to run. The surrogate model 
is generally developed based on a selection of input data points and the 
complex model’s response to those data points. Surrogate models can be 
highly effective, but the data points used to build the model on must be 
sampled carefully and the surrogate model’s parameters need to be 
optimized to balance variance and bias. Surrogate models can be 
developed using reduced order approximations, such as using radial 
basis functions, through multi-fidelity models such as Kriging, which 
combine data sources of differing fidelity, or via machine learning 
methods (Alizadeh et al., 2020). 

Classical and deep learning methods are increasingly being used to 
generate synthetic data as they can perform better at emulating complex 
patterns and relationships in the original datasets, and do not require 
knowledge of prior or posterior distributions for dataset variables. 
Classical machine learning methods include regression, K-nearest 
neighbours, and support vector machines, and can perform better on 
smaller data sets and take less time to train than deep learning methods. 
Deep learning methods are based on neural networks, including 
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Fig. 2. The restoration location selection process in ADRIA (criteria illustrated are examples from a larger selection).  
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convolutional neural networks (CNN), auto encoders and generative 
adversarial networks (GAN), and are better at learning sophisticated 
patterns in data but can be more computationally expensive and require 
more data to train (Endres et al., 2022). 

Synthetic data is not widely used in conservation and environmental 
management, but its benefits are being increasingly recognized and 
capitalized upon. Watts et al. (2011) use synthetic satellite data to 
improve land-classification models for assessing carbon sequestration 
and soil quality, due to lack of cloud-free satellite data restricting model 
accuracy. Wimmer and Finger (2023) demonstrate the efficacy of syn
thetic data methods in replicating agricultural production data, recom
mending the use of synthetic data in agricultural economics studies, 
where data often has policy implications and cannot be published for 
confidentiality reasons. Fassnacht et al. (2018) use synthetic data to 
evaluate estimates of forest biomass, citing lack of available test data for 
fine-tuning and assessing method robustness. Reviews of data sharing in 
ecology have stressed the need for better access to important data sets to 
fully capitalize on the wealth of data being generated (Reichman et al., 
2011). Synthetic data offers a means to address essential environmental 
and ecological questions where collection and/or integration of addi
tional real-world data is prohibitively expensive, existing data cannot be 
made publicly available, or data collection has faced policy and funding 
challenges (Poisot et al., 2016). 

4. Synthetic data utility/validation measures 

A range of metrics were used to evaluate the statistical validity of the 
synthetic data models developed here. The metrics are computed using 
the SDMetrics library (DataCebo, 2023) and Scikit-learn, and were 
chosen to represent a range of key properties when generating synthetic 
data, including statistical similarity, coverage and uniqueness. Statisti
cal similarity metrics evaluate how well the synthetic data captures the 
distribution and correlations between variables in the original data. 
Coverage metrics evaluate how well the synthetic data captures the 
incidence of minimum and maximum values observed in the original 
data. Uniqueness metrics evaluate the uniqueness of the original and 
synthetic datasets to assure the synthetic data is not just a complete copy 
of the original, which can happen if model mode collapse occurs (Zhang, 
2021). The metrics chosen allow comparisons of success across the 
models used, and can be disaggregated into scores for individual vari
ables, allowing understanding of which variables are best represented by 
the models. Along with these measures, in section VII, ADRIA model 
outputs are compared for inputs of original and synthetic data to assess 
the suitability of the data in representing the range of outcomes repre
sented by the original dataset. As the main focus in creating the synthetic 
data sets is to test and demonstrate the reef site selection algorithms in 
ADRIA, statistical similarity was considered the primary requirement, as 
the decision algorithms use statistical aggregates of data layers as 
criteria to determine restoration decisions. The main metrics used, and 
descriptions of their calculation are summarised in Table 1 below. 

5. Data generation methods 

As the input datasets represent different data types (tabular, times
eries, relational), different synthetic data models were selected for each 
of the input types, and statistically validated using the utility measures 
described in the previous section (DataCebo, 2023). Appending geo
coordinates (latitudinal and longitudinal data) to the coral cover, DHW, 
wave and connectivity datasets during model training allow the use of 
conditional sampling to produce synthetic data packages for ADRIA that 
are spatially consistent with the synthesized site data. The synthetic 
latitudes and longitudes are then anonymised to remove any references 
to real reef sites and provide anonymity. This is done by a) sampling the 
sites in a new, user-controlled spatial configuration and b) shifting the 
entire set of sites a random distance along the latitudinal and longitu
dinal directions. The synthetic data package pipeline which has been 

Table 1 
: Data utility metrics descriptions.  

Metric Description 

χ2test For categorical variables in the datasets. Tests the hypothesis 
that the synthetic columns and original data columns are from 
the same distribution. Here the inverse value is used so that a 
high value (between 0 and 1) indicates the distributions are not 
different in a statistically significant way. 

Kolmogorov- 
Smirnov test 

For continuous variables in the datasets. Tests the overlap of the 
synthetic and original data distributions for each variable. The 
null hypothesis of the test is that a particular variable from the 
original and synthetic data follow the same distribution. The 
cumulative distributions of the original and synthetic data 
variable are estimated and if the mean distance between the 
distributions is small enough the null hypothesis cannot be 
rejected. Here the inverse value is used so that a high value 
(between 0 and 1) indicates the distributions are not different in 
a statistically significant way. 

Correlations scores For pairs of continuous variables the correlation similarity (0–1) 
tests the measures the degree to which the two variables are 
correlated in the same way in the original and synthetic data 
sets. High scores imply the pairwise Spearman correlation 
coefficient are highly similar, while low scores imply the are 
very different. The score is calculated as: 
score = 1 − 0.5

⃒
⃒SA,B − RA,B

⃒
⃒

Where SA,B is the correlation between columns A and B in the 
synthetic data and RA,B is the correlation between columns A 
and B in the real data. 
For pairs categorical variables or pairs of categorical and 
continuous variables, the contingency similarity is computed 
using the Total Variation Difference: 
TVD = 1 − 0.5

∑

α∈A

∑

β∈B

⃒
⃒Sα,β − Rα,β

⃒
⃒

Where α are the categories in column A and β are the categories 
in column B and R and S are the real and synthetic frequencies 
for those categories. For pairs of continuous and categorical 
variables, the continuous variable is discretised via binning to 
calculate the value. 

Mean data quality 
score 

A mean score combining the χ2 test for categorical variables, 
K–S test for continuous variables and pair-wise correlation 
score between variables across the synthetic and original 
datasets. The higher the percentage (between 0 and 100) the 
better the synthetic data statistically emulates the original 
dataset. For example, consider a dataset containing one 
categorical variable with inverse χ2 test score 0.7 and two 
continuous variables with inverse K–S test scores 0.8 and 0.9 
respectively. The correlation score between the two continuous 
variables is 0.85, and between the continuous and categorical 
are 0.86 and 0.89. This would give a quality score of 
(

statistical similarity mean
2

+
correlations mean

2

)

× 100 =

(
0.7 + 0.8 + 0.9

2*3
+

0.85 + 0.86 + 0.89
2*3

)

× 100 = 83.3% 

Mean data 
diagnostics 
scores 

A set of scores assessing the coverage of the data (how well does 
it cover the range of values in the original data?) and how 
unique the dataset is (i.e. is it an exact copy of the original or just 
statistically similar?). The coverage score (0–1) assesses how 
well the synthetic data covers the range of values in the original 
dataset. For continuous variables this is calculated as 

score = 1 −

[

max
(

min(s) − min(r)
max(r) − min(r)

)

+ max 
(

max(r) − max(s)
max(r) − min(r)

)]

Where r is a dimension of the real data and s the same dimension 
of the synthetic data. The score is then averaged across 
comparable dimensions in the two datasets to give the mean 
coverage score. 
The boundaries score (0–1) assesses how well the maximum and 
minimum values match those of the original dataset. It is 
computed by calculating the min and max values of the original 
data and then calculating the frequency of values in the 
synthetic data which are outside this range. A value of 1.0 
implies no synthetic data is outside the range of the original 
data. The synthesis score (0–1) assesses the uniqueness of the 
dataset compared to the original. It is calculated as score = 1 −

no.of synthetic data rows within 1%of the original
total no.of synthetic data rows 

(continued on next page) 
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developed for ADRIA is illustrated in Fig. 2 and described in the 
following sections. 

To choose the best models for each data type, several suitable models 
within the SDV package were compared in terms of their synthetic data 
quality scores (See section V) and runtime. In the case of the connec
tivity data, only one model (Gaussian Copula) had reasonable runtimes, 
so another model (a Generative Adversarial Network) from the y-data- 
synthetic package (YData, 2023) was also tested. In most cases, the 
models which gave the highest data quality scores with the shortest 
generation times were chosen. In some cases, however, where quality 
scores for two models were close, the scores for individual variables 
were used to select between models. For example, for the initial coral 
cover data the Gaussian Copula model and TVAE models performed 
similarly in their quality scores but on disaggregating the quality scores 
into variable-specific scores, the TVAE model performs better at pre
dicting the variable `cover` while the Gaussian Copula model performs 
better at predicting the variable `species`. Both models were retained as 
options in ADRIA’s synthetic data model repository as either model may 
be desirable depending on the usage, with the Gaussian Copula model 
offering faster runtimes and better representation of species relation
ships, while the TVAE model offers reasonable but longer runtimes and a 
better representation of cover. Similarly, the GAN model performs better 
than the Gaussian Copula model for generating connectivity data but is 
significantly slower. The Gaussian Copula model was also retained as an 
option alongside the GAN model in the synthetic data repository as it’s 
quality scores are still reasonable. The key results and times from these 
model comparisons are summarised in Appendix D. In the case study, 
the TVAE and GAN models are demonstrated for the coral cover and 
connectivity data respectively. 

5.1. Site data 

The site data model was developed using a Gaussian Copula model, 
as this performed best in terms of utility metrics (detailed in Table 2) and 
runtime. The model uses Gaussian copulas to fit the columns of the 
dataset to find marginal distributions and then the covariance of each 
pair of columns to learn the joint distribution. Details are available in 
(Patki et al., 2016). 

One issue with the model, however, was that it did not simulate the 
spatial clustering of reef sites which generally occurs in real reefs, as 
shown in Fig. 3. To amend the unrealistically spatially scattered sites 
generated by the original Gaussian Copula model, M sites are randomly 
selected from the synthetic data set and N site latitude and longitude 
positions are generated in randomized, constrained radii around these M 
sites. The model allows flexibility around the number of nodes to 
generate sites around and the maximum length of the randomized radii, 

Table 1 (continued ) 

Metric Description 

Principal 
Components 
comparison 

Compares the principal components of the original and 
synthetic data from a Principal Component Analysis (PCA). 
Principal components are linearly uncorrelated basis vectors for 
the data set which can be ordered according to those which 
describe the most variance in the dataset to the least. As 
synthetic data sets are often very high dimensional, calculating 
a PCA for the original and synthetic datasets and plotting the 
first two components on the same plot can give a visual 
indication (to complement other numerical measures of utility) 
of how well the original and synthetic distributions overlap. The 
first 2 components are generally used as these can be easily 
plotted. 

Correlation Matrix Correlation matrices capture the pairwise correlations between 
variables in the synthetic and original datasets. Comparing 
correlation matrices can visualise how well the synthetic data 
captures relationships between variables in the original dataset. 
Numerically, the degree to which the synthetic data captures 
correlations in the original data set is captured in the “Column 
pairs score” (see Key variable scores column in Table 2).  

Table 2 
: Data utility scores for synthetic datasets developed in the case study.  

Dataset Quality 
score 

Key variable scores Diagnostics score 

Site data Column 
Shapes: 
88.81% 
Column 
Pair 
Trends: 
90.97% 
Overall 
Quality 
Score: 
89.74% 

Column 
shapes:  

Synthesis: 1.0 
Coverage: 0.99 
Boundaries: 1.0 Latitude 91.5% 

Longitude 92.3% 
Site carrying 
capacity 

90.8% 

Median 
depth 

87.9% 

Site area 92.4% 
Column pair 
trends:  
Area and site 
carrying 
capacity 

94.3% 

Site carrying 
capacity and 
median depth 

99.0% 

Area and 
median depth 

98.6% 

Carrying 
capacity and 
longitude 

97.0% 

Carrying 
capacity and 
latitude 

96.3% 

Area and 
latitude 

97.3% 

Area and 
longitude 

97.8% 

Cover data Column 
Shapes: 
90.94% 
Column 
Pair 
Trends: 
86.55% 
Overall 
Quality 
Score: 
89.62% 

Column 
Shapes:  

Synthesis: 0.86 
Coverage: 0.94 
Boundaries: 1.0 Cover 93.1% 

Species 92.3% 
Latitude 95.7% 
Longitude 92.3% 
Column pair 
trends:  
Cover and 
latitude 

98.1% 

Cover and 
longitude 

93.2% 

Cover and 
species 

82.6% 

DHW data Column 
Shapes: 
95.34% 
Column 
Pair 
Trends: 
89.97% 
Overall 
Quality 
Score: 
92.66% 

Column 
shapes:  

Synthesis: 0.67 
Coverage:0.99 
Boundaries:0.99 DHW 93.0% 

Latitude 92.4% 
Longitude 95.9% 
Column pair 
trends:  
DHW and 
year 

98.9% 

DHW and 
latitude 

85.0% 

DHW and 
longitude 

86.0% 

Wave data Column 
Shapes: 
87.34% 
Column 
Pair 
Trends: 
86.71% 
Overall 
Quality 
Score: 
87.03% 

Column 
shapes:  

Synthesis: 0.88 
Coverage: 0.94 
Boundaries: 0.96 Ub 71.1% 

Latitude 91.5% 
Longitude 86.7% 
Column pair 
trends:  
Ub and year 95.5% 
Ub and 
Latitude 

75.2% 

Ub and 
Longitude 

90.0% 

Connectivity 
data 

Column 
Shapes: 
98.2% 
Column 
Pair 

Column shapes: 
Minimum score 94%, 
maximum 99.9% (there 
are as many columns as 

Coverage: 0.93 
Boundaries: 0.89 
(Synthesis is too 
computationally time 

(continued on next page) 
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so that the user has control over what the clustering of reef sites look 
like. As previously mentioned, the intention for the data is testing, 
exploration and demonstration of ADRIA’s decision support algorithms. 
Degree of clustering is an important characteristic for ADRIA’s site se
lection algorithms, as the algorithms can be set to use a criterion based 
on how tightly clustered sites selected for restoration are to reduce the 
risk that all selected sites are impacted by a localised disturbance 
simultaneously. The criterion is set by specifying how many of the sites 
selected for restoration are allowed within a single localised cluster, 
where clusters are defined by a k-means clustering algorithm based on a 
distances matrix. Consequently, although future work may focus on 
capturing relationships between benthic properties and site clustering, 
for this iteration of the data models this approach was sufficient to 
capture the spatial clustering criteria for testing. It is of interest to better 
understand what drives these patterns in future investigations, but this 
simple method achieved the spatial clustering necessary for testing and 
demonstrating ADRIA’s decision support core. 

The Gaussian Copula site data model is then conditionalized on the 
radially sampled latitudes and longitudes to generate a site data set for 
the clustered site positions while retaining the learnt statistics of the 
original data set. Geometries are generated for the sites by drawing 
sufficiently large circles centred on the sampled site latitudes and lon
gitudes to agree with the generated synthetic site areas. 

5.2. Initial coral cover data 

The initial coral cover model was developed using a TVAE model 
from SDV, which is based on a Variational Autoencoder model. In this 
model, an encoder maps the original data to distributions in a lower 
dimensional latent space. Data is then sampled from the latent space and 
transformed back to the original space using a decoder. In the learning 
phase the decoder learns by finding a transformation with minimal loss 
between the original and final data distributions. This loss is quantified 
using the evidence lower bound (ELBO), which transforms intractable 
inference problems into optimisation problems which can be solved 
using gradient methods (Xu et al., 2019). 

The model learns the spatially dependent distribution of cover for 
each of the six species of coral modelled in ADRIA. The radially sampled 
latitudes and longitudes from the synthetic site data set are then used to 

conditionalize the sampling of the synthetic coral cover model so that 
the synthetic data sets are spatially consistent. Finally, the conditionally 
sampled cover is distributed over the 6 size classes used in ADRIA for 
each species according to the mean proportions of cover in each size 
class for each species in the original data set. The model can also be set 
up to learn the size class distributions for each species, but was found to 
become time consuming during the spatially conditioned sampling and 
does not significantly add to the quality scores of the model. 

5.3. DHW and wave data 

The synthetic degree heating weeks and wave height data was 
generated using a Probabilistic Autoregressive model (PAR) from SDV. 
Auto-regressive models express future time states as a linear combina
tion of states at the previous time step and parameters as coefficients, 
plus a time-dependent error term (Zhang et al., 2022). The PAR model 
allows designation of ‘entity’ and ‘context’ variables, which are vari
ables in the dataset which are constant with time. In the case of the DHW 
and wave data sets for ADRIA, the entity variable was set as the site ID 
and the context variable (which is an additional variable contextualizing 
the entity variable) was set as the latitude and longitude corresponding 
to the site ID. 

The DHW and wave data is also conditionalized on the synthetic site 
data latitudes and longitudes when sampling the final synthetic datasets. 
The original wave and DHW datasets contain a ‘climate replicate’ 
dimension, representing statistical realisations of possible climate fu
tures. To represent this in the synthesized data, climate replicates were 
sampled by randomizing the original replicate the data model was learnt 
from and then conditionally sampling the time series individually for a 
specified number of replicates. The user chooses how many replicates to 
sample and how many samples there will be in the final dataset. For 
example, if 5 replicates were sampled with a final dataset of 50 repli
cates, a model will be trained for 5 replicates and 10 samples will be 
drawn for each replicate for a final set of 50 replicates. The more rep
licates which are sampled the longer that training process takes, so the 
user has flexibility in choosing a number of replicates suitable for time 
constraints while representing climate variability in the data. 

5.4. Connectivity data 

The synthetic connectivity data was generated using a Generative 
Adversarial Network (GAN) model based on the y-data-synthetic Python 
package (YData, 2023), as this model was able to replicate the sparse
ness of the original connectivity matrices best and performed best in 
terms of the utility metrics. GAN models feature a generator component, 
which learns the latent features of the data to generate a data sample, 
and a discriminator, which is a classification model which learns to 
classify real and synthetic data. Backpropagation from the discriminator 
updates the model parameters in the generator with the magnitude of 
the update depending on the success of the discriminator in classifying 

Table 2 (continued ) 

Dataset Quality 
score 

Key variable scores Diagnostics score 

Trends: 
99.9% 
Overall 
Quality 
Score: 
99.0% 

sites so not all can be 
reported here). 

consuming to calculate 
for 100 > rows)  

Fig. 3. Spatial distributions of the original (middle), synthetic (left) and sampled synthetic (right) data sets. Colours and size of points indicate site area. Note, 
sampled synthetic uses anonymized latitudes and longitudes. 
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real from fake data. This process is repeated until the discriminator is 
sufficiently unable to discriminate between real and synthetic data, 
which is determined by a minimum number of misclassifications pre
dicted by the discriminator’s classifier. 

Through consultation with a connectivity specialist, two additional 
datasets were appended to the connectivity data for model learning, a 
north-south distance matrix and an east-west distance matrix. These 
distances (formulae available in Appendix C) give a measure of the 
distance between sites in the direction of north-south and east-west 
components of tides and currents, which should impact the strength of 
connectivity between sites. Latitudes and longitudes for the receiving 
sites were also added to the dataset to allow use of nearest neighbours to 
select synthetic connectivity data consistent with the synthetic site data. 
Nearest neighbours (using the Haversine distance) had to be used in the 
connectivity data as conditional sampling with the GAN model was 
restrictively time consuming. To improve the accuracy of the nearest 
neighbours approach, a large sample is drawn with many more sites than 
the final synthetic site data before the latitudes and longitudes from the 
synthetic site data are used to find nearest neighbours in this larger 
synthetic sample. The large sample size means the sample effectively 
covers the sample space and assures the synthetic data is estimated from 
values at very nearby sites. 

6. Case study: Synthetic data for the Moore Reef Cluster 

A synthetic data package based on the Moore reef cluster is used to 
demonstrate the utility of the synthetic data models in emulating the 
statistics of the original data set. Note that in the figures comparing 
“Original”, “Synthetic” and “Sampled” data, the “Sampled” data set is a 
synthetic data set which has been conditionally sampled to be at the 
latitudes and longitudes of the sites generated in the synthetic site data, 
while “Synthetic” is generated at randomized latitudes and longitudes in 

the domain. 

6.1. Site data 

A sample of 108 sites was generated from the site data model. First a 
set of 200 sites was drawn from the unconditional model, then a set of 
site latitudinal and longitudinal centroids were sampled in randomized 
radii around 10 of the sites in the 200-site set. Finally, the con
ditionalized model is used to simulate the site data for the final 108 site 
set. The positions of the original, synthetic, and synthetic conditionally 
sampled sites are shown in Fig. 3, with the colour and size of the points 
indicating relative site area. Comparing the three figures, the model does 
not effectively replicate the spatial clustering of sites found in the 
original dataset. Clustering is better represented in the final sampled 
dataset, where positions are chosen in a randomized radius around a 
subset of the original sites, although still not a perfect representation of 
site spatial distributions. 

The distributions of key variables in the original, synthetic, and 
sampled datasets are compared in Fig. 4, including the site area (m2), 
percentage of the site area available for coral cover (k) and the median 
site depth (m). The synthetic site data achieves a mean quality score of 
90%, as summarised in Table 2. The breakdown of this quality score in 
Table 2 shows that the model best captures the distributions of area, k, 
median depth, latitude, and longitude. From Fig. 4, the synthetic data 
generally captures the bi-modality of variables such as k and mean 
depth, although sites with very high k are underrepresented in the 
synthetic data, while sites with medium k are slightly over represented. 
Table 2 also details the diagnostics scores for the synthetic site data. The 
high synthesis and boundaries scores show that the data captures the 
range of values present in the original dataset well while being 
adequately synthetic (not being an exact copy of the original data). The 
quality and diagnostics scores suggest the synthetic data adequately 

Fig. 4. Histograms comparing key variables in the site data set for the original, synthetic and sampled synthetic site data sets.  
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represents the statistics of the original dataset and would demonstrate a 
desirable range of environmental conditions for the purpose of model 
and method demonstrations and testing. 

6.2. Cover data 

A breakdown of the distributions of the cover data by species for the 
original, synthetic, and synthetic sampled datasets is shown in Fig. 5. 
Generally, the synthetic data emulates the species proportions effec
tively. The model does tend to overestimate species 4 and underestimate 
species 2, although this could be due to spatial distributions of the 
species coming into play. Histograms of the distribution of cover are 
shown in Fig. 6, suggesting the range of cover magnitudes and shape of 
the distribution is well captured, although covers above 0.03 are slightly 
underrepresented. The synthetic cover data gives a mean quality score of 
90% in Table 2, with key variables cover and species scoring in the 
89–90% range. The cover data also performs well in the diagnostics 
scores, rating highly on both coverage and boundaries in Table 2. The 
score for synthesis is lower, but still suggests the data is adequately 
synthetic for testing and method demonstration purposes. 

6.3. DHW and Wave data 

The original and synthetic DHW trajectories over time are compared 
in Fig. 7. On inspection, although the distribution of DHW values is a lot 
smoother for the sampled synthetic data, the range and spread of values 
is reasonably well captured, with the median DHW growing from around 
2.5 at 2025 to around 15 in 2099. The maximum values are also similar, 
ranging from around 7 in 2025 to around 22 in 2099. The DHW data 
gives a mean quality score of 93%, with scores greater than 90% for 
DHW, latitude and longitude and greater than 85% for the column pairs 
DHW and year, DHW and latitude and DHW and longitude. The DHW 
data also performs generally well in the diagnostics scores, with high 
coverage and boundaries scores. The synthesis value is lower than the 
other datasets, suggesting high similarity to the original dataset. This is 
not so much an issue for the DHW data, as, unlike having a highly similar 
site data set, with anonymised geographical locations the DHW data 
should not be easily connected to the original despite high similarity. 

The original and synthetic wave trajectories over time are compared 
in Fig. 8. Here again, the sampled and synthetic wave trajectories are a 
lot smoother than the original data set and the median is slightly lower 
for the synthetic datasets in later years than the original, although this 
could be a spatial effect. The range of the synthetic and sampled data 
sets also differ, with the synthetic data hitting the maximum value of 2 m 
with lower frequency. The data quality mean score is 87%, which is 

mostly reduced by the shape of the Ub (significant wave height) distri
bution poorly capturing the maximum values of the original data set. 
The data quality is fine for the current purpose of model testing and 
demonstration purposes, but the synthetic model could be improved by 
further refinement of training parameters. The Ub data performs well in 
the diagnostics scores, achieving high coverage, boundaries, and syn
thesis scores. The high boundaries score seems to contradict the plot of 
the synthetic Ub data, but this is because although the Ub data covers the 
range of values in the original data, the maximum values of the original 
data do not occur as frequently in the synthetic data. This could be due 
the synthetic data having half the number of sites as the original and also 
a different spatial configuration. 

6.4. Connectivity data 

The original and synthetic connectivity data are more difficult to 
compare due to being a relational data set. The quality score in Table 2 is 
listed for a comparison of an un-conditionalised sample of the connec
tivity data (sampled at the original site positions), because the columns 
of the original and synthetic data set must match for this metric. Due to 
this the quality ratings are particularly high for the connectivity data set, 
which would normally not be desirable as it would suggest a lack of 
model generalization. The sampled synthetic connectivity data (in the 
new synthetic site positions) is also evaluated using a visual comparison 
of pairwise correlations, in Fig. 9, and a visual comparison of correlation 
matrices in Fig. 10. 

From Table 2, the synthetic data sampled at the original data site 
positions performs very well on the quality scores, both in terms of 
correlation relationships and capturing the distributions of individual 
sites connectivity with other sites. From the plotted PCA components in 
Fig. 9, the synthetic data components look like a slightly rotated version 
of the original data’s components, which can be attributed to the first 
feature having greater weight in synthetic data, while the first three 
components are more equally weighted in the original data. Fig. 10 
compares pairwise correlations across columns for the original, syn
thetic, and sampled connectivity data, showing that correlation re
lationships are well captured for both the synthetic un-conditionalized 
and synthetic conditionalized data set. The model overall captures the 
correlations and distribution of the data well while having some bias 
towards primary components of the data in the principal component 
analysis. 

6.5. Case study outputs 

Although the main purpose of the synthetic data developed here is to 

Fig. 5. Stacked bar cart comparing the proportional coral cover for each of the 6 species summed over size classes in the original, synthetic and synthetic 
sampled datasets. 
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Fig. 6. Histograms comparing the distribution of coral cover across sites and species.  

Fig. 7. Timeseries plots of the original (top) and synthetic sampled (bottom) DHW datasets. Red lines are the median across sites, with shading indicating the 25th, 
50th and 75th quantiles. 
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Fig. 8. Timeseries plots of the original (top) and synthetic sampled (bottom) wave height (Ub) datasets. Red lines are the median across sites, with shading indicating 
the 25th, 50th and 75th quantiles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Plots of first 2 PCA components for the original, synthetic and synthetic sampled datasets.  
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test, develop and analyse ADRIA’s site selection algorithms, we would 
expect the unaugmented synthetic data to display a similar magnitude 
and range of coral cover outcomes to the original data when run over 
many stochastic scenarios (with key ecological and environmental pa
rameters sampled from their distributions). Fig. 11 shows comparisons 
of the total absolute coral cover over time output from the ADRIA model 
for 4096 scenarios using the original Moore domain and the synthetic 
datasets. As can be seen, the synthetic data captures the range and 
spread of outcome trajectories generally well. The synthetic data does 
demonstrate less variation, but this is likely because the synthetic data 
was based on 10 samples of 5 DHW replicates, rather than the full 50 
replicates, which could reduce observed variability. The original data 
also has a higher initial coral cover, but this is due to the smaller number 
of sites in the synthetic data set. 

6.6. Adding relationships between datasets 

The datasets simulated here may have relationships between them 
which are difficult to capture when simulating each dataset with a 
different model. The challenge of simulating all the datasets together is a 

difficult statistical problem to address as the potential relationships 
between datasets are largely unknown and may be highly complex and 
non-linear. Fully investigating these relationships should be the focus of 
another study, however, some relationships may be easily integrated 
into the models as they are. Some relationships which are likely 
important include that between connectivity and coral cover, and be
tween DHWs and cover. Here, we add these variables as predictors in the 
initial coral cover model and examine the results for improvement. 

Connectivity, as summed incoming connectivity, and the mean DHW 
at each site at the start year were appended to the coral cover data 
during model training. These variables from the synthetic connectivity 
and DHW data were then used to conditionally sample the synthetic 
coral cover data, along with the synthetic latitudes and longitudes. This 
gave an overall quality score of 85.26% with column shapes score of 
86.89% and column pair trends score of 83.63%, a reduced columns 
shapes score, and column pair trends score relative to training the model 
without these additional variables. On assessing the breakdown of the 
column pair trends score, the new model does capture correlations be
tween connectivity and cover well (the correlation similarity score is 
0.997), but captures the shape of the connectivity distribution poorly, 

Fig. 10. Pairwise correlation matrices for the original (left), synthetic (middle) and synthetic sampled (right) datasets. Note the right most plot appears sparser 
because the synthetic data set contains half as many sites as the original. 

Fig. 11. Plots of coral cover (m2) over time for 4096 randomized scenarios in ADRIA, using the original data inputs (left) and synthetic (right). Note the difference in 
magnitude is due to the synthetic data set having half as many sites as the original. 
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with an individual column shape score of 0.771. The correlations be
tween DHWs and cover are also well captured (the correlation similarity 
score is 0.968), as well as the distribution shape of DHWs (the individual 
variable score is 0.961). However, the individual column shape score for 
cover is reduced (93.2% vs 88.0%), suggesting the data selected are not 
ideal for representing spatial relationships with coral cover. The model 
also took 2.5 h to run, which is 16 times that of the first model, due to the 
computational expense of conditionally sampling an additional two 
variables over ~100 sites. 

This does not necessarily suggest that adding additional variables to 
inform spatial relationships with coral cover is unhelpful but that 
additional investigations into which relationships should be captured is 
needed. For example, we did not have access to hindcasted DHWs for 
this investigation and so instead used those for the first year of simu
lation, but past DHWs would probably best explain the spatial variations 
of the coral cover on the first year of simulation. Similarly, connectivity 
data is highly variable (both on a year to year and day to day scale), and 
so it is likely more informative to use some time integrated measure of 
strongest connections and variability of connections to capture re
lationships with spatial variations in cover. In both cases implementing 
improved representations of DHWs and connectivity for model training 
will take further investigation and may form further studies. For the 
purpose of testing and validation of the site selection algorithms, the 
models developed serve their purpose, but for other uses of the synthetic 
data better representation of spatial relationships between variables in 
different data sets is being investigated for future studies. 

7. Discussion/conclusions 

The synthetic data models developed here create a pipeline for 
generating synthetic reef data for the ADRIA decision support tool, 
suggesting approaches to create fit-for-purpose synthetic data pipelines 
for reef decision support applications. The data generally performs well 
in the case study against a variety of diagnostics, while also suggesting 
improvements for the synthetic data models. 

The spatial distribution of the synthetic sites could be improved in 
several ways, such as by allowing sampling of sites across randomized 
arcs in the spatial domain, rather than circles. General correlations be
tween benthic properties such as depth and features such as “reef slope”, 
“reef flat” etc. are learnt by the model for the synthetic site data, 
although perhaps a separate model should be trained for learning re
lationships between the spatial clustering of reefs and benthic infor
mation, which would allow spatial clustering patterns to be generated 
based on these properties. For the current purpose of creating test data 
for and demonstrating the ADRIA decision support tool, however, this 
additional complexity is not necessary. 

The PAR model for wave data also does not capture the frequency of 
extremes of the wave height dataset well, suggesting that the model 
simulation and sampling parameters may need to be further optimized 
to generate better synthetic wave data. This could be done by testing 
different pre-learning data transformations and refining the model 
constraints based on the original data maximum and minimum values. 
The wave data quality is fine for the purpose of site selection testing and 
demonstrations but would need to be improved if it was to be used for a 
purpose which required higher fidelity to the physical dynamics, such as 
for sensitivity analysis. 

As a first conceptual framework for a synthetic reef data pipeline the 
models developed here serve their purpose in facilitating decision sup
port tool testing and demonstrations during development, although 
alternative models could be investigated to reduce the time taken to 
create some of the synthetic datasets and improve fidelity to the 
ecological dynamics if needed for other applications. Machine learning 
and neural network-based models are ideal for fitting models to a wide 
range of data sets but can take time for model training. The models for 
site data, coral cover and connectivity all show reasonable runtimes, but 
the PAR environmental data model’s runtime could be improved upon 

(it takes around 2.3 mins for one climate replicate for 200 sites). This is 
largely because a new model is trained for each climate replicate of the 
data and so with 20 climate replicates, the runtimes can be up to an 
hour. This is better than the original model the data comes from, which 
can take days, but would be desirable to improve if possible. Several 
alternative synthetic models were investigated during the development 
of the synthetic data repository for ADRIA, including y-data-synthetic’s 
TimeGAN and DoppleGANger models (YData, 2023), and pyunicorn’s 
time series surrogate models (Donges et al., 2015), however, the PAR 
model was settled upon as it was the only timeseries synthetic data 
model reviewed which offered conditional sampling. Although these 
alternatives don’t offer conditional sampling, interpolation methods 
could possibly be used in place of conditional spatial sampling if the 
outputs perform sufficiently well in replicating the statistics of the 
original data and offer significant runtime reductions. 

A pertinent question which arises is “does the full set of synthetic 
input data sets successfully represent the full set of original data sets?”. 
This is a gnarly statistical problem which is usually approached in the 
context of synthetic data for machine learning problems via a prediction 
success rate (e.g. (Boyeau et al., 2024)). This this context, a model is 
trained on the synthetic data and the success of the model in predicting 
what it is designed to predict is evaluated. The same is repeated for the 
real data and prediction success rates are compared. In the case of our 
decision support tool, however, small differences in initial coral cover, 
DHW data and connectivity can have a significant impact on the 
ecological model’s output trajectory, so even for a set of data which may 
be statistically similar to the original data set, the outcomes may be quite 
different. We would, however, expect a similar spread and shape in the 
temporal trajectory of absolute coral cover, which we have compared 
here in the case study in section VI. 

It is important to reiterate here that the synthetic data is not intended 
to be used for policy purposes or particular instances of reef manage
ment decision making. The original data will always be used for decision 
making as when a policy has been decided upon the real data will be 
published according to official release processes. Also, management 
decisions are highly dependent on spatial context and it would be 
inappropriate to use synthetic data in this capacity. The synthetic data 
pipeline developed here is intended for testing, validating and demon
strating ADRIA’s decision support tool functionality, particularly in the 
case of supporting publications demonstrating the model’s decision 
support capability without prematurely revealing results of an actual 
reef dataset which could have implications for partners, rightsholders 
and stakeholders. In line with this purpose, sufficient emulation to 
demonstrate and test the ADRIA decision support tool is the goal, not 
perfect emulation of the original dataset down to the exact ecological, 
biophysical, and dynamical conditions. The data would not yet, how
ever, be suitable for use in sensitivity analyses of model outcomes to 
input data layers, which is an eventual goal of the synthetic data. For the 
data to be suitable for such an application, further investigations into 
relationships between datasets, such as the impact of connectivity on 
coral cover and vice versa should be investigated and attempted to be 
represented in the synthetic data generators. Due to the complexity and 
non-linearity of such relationships this would require its own in-depth 
study involving connectivity and DHW specialists and, although will 
pursued in further publications, is outside the scope of this paper. 

Despite the drawbacks discussed, a data pipeline for producing on- 
demand synthetic data packages for methods testing, validation and 
publishing demonstrations for the reef decision support tool ADRIA is 
developed. Using the accessible and flexible synthetic data libraries SDV 
and y-data-synthetic, we demonstrate that synthetic data for a reef de
cision support tool can be developed for decision support tool datasets 
without requiring building models from the ground up for each dataset. 
With the push for embracing big data in ecological and environmental 
modelling, synthetic data for reef decision support tools offers a means 
of fully capitalising on big data models and building a rigorous testing, 
development, and publication pipeline where data is scarce or sensitive. 
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Appendix A. Descriptions of original dataset creation 

A.1. Connectivity data 

Larval connectivity data represents how coral larvae travel between different locations on a reef due to ocean currents and other factors. Con
nectivity is determined by a variety of factors, including ocean currents, larval development rates, mortality, and settlement. The larval connectivity 
data used here is generated using a particle tracking simulator, called OceanParcels (Van Sebille et al., 2020) with outputs from a hydrodynamic 
marine model implemented using RECOM (The Great Barrier Reef Authority, 2022) within a lower (1 km) resolution hydro-dynamic model of the GBR 
(version 2.0 of the eReefs hydrodynamic model for the GBR (Steven et al., 2019), an implementation of SHOC (Herzfeld and Rizwi, 2019). Nesting the 
RECOM within a lower resolution model allows particles which travel outside the higher resolution model’s boundaries and then return to still be 
tracked. Details of the creation of ADRIA’s connectivity dataset’s can be found in (Ani et al., 2023). 

A.2. DHW data 

Degree Heating Weeks (DHWs) are a measure of the cumulative heat stress experienced by corals over a time period. Degree heating weeks are 
calculated by comparing temperatures predicted by RECOM with average water temperature for each location and summing the integrated deviation 
above the climatological value over a 12-week period. This running 12-week integral is calculated over the course of each October to February model 
run, and the maximum value is calculated from the resulting time series for each grid cell. Two climatology data sources allow for calculation of two 
alternative DHW products from the same RECOM run. These are the methods developed and tested for the GBR by Langlais et al. (2021) and by Wijffels 
et al. (2018). Only surface DHW is used by the ADRIA model, and coral bleaching responses are adjusted as a function of depth. 

A.3. Wave data 

Routine wave exposure is modelled by forcing a near-shore numerical wave model (UQ SWAN) with wind data through a high-resolution rep
resentation of bathymetry to define the three-dimensional underwater reef structures and surrounding depth profile. Maps of exceedance probabilities 
are then generated from the model runs to show the wave heights that would be expected not to be exceeded in each of several percentages of the time. 
ADRIA’s wave height data uses the 90th percentile (Callaghan et al., 2015). 

Appendix B. Data variable descriptions  

Dataset Variable descriptions 

Site data Site id: A unique identifier for a particular area of reef. Each reef or group of reefs is split up into polygons and each polygon is given an ID. 
K: The percentage of the total site area which can foster coral growth (also called the carrying capacity). 
Area: The area of the site polygon in m2. 
Zone: The GBRMPA zone to which the site belongs (Great Barrier Reef Marine Park Authority, 2022) 
Coral algae: Proportion of the site covered with coral algae. 
Rock: Proportion of the site covered with rock. 
Habitat: ‘Crest’, ‘Outer Flat’, ‘Sheltered Slope’ or ‘Slope’, describing the site habitat. 
Rubble: Proportion of the site covered with rubble. 
Sand: Proportion of the site covered with sand. 
Depth median: Median depth of sites in m. 
Depth mean: Mean depth of sites in m. 
Depth standard deviation: Standard deviation of depth across each site.  
Site polygons: Describe the geometry of each site as polygon of latitudinal and longitudinal coordinates. The centroids of these polygons are used to train the 
synthetic site data model. 

Initial coral 
cover 

Site: Integer corresponding to a site id. 
Species: Integer from 1 to 36 designating the size and species of coral. 
Coral cover: Proportion of coral cover on each site at the initial time step of the model. 

DHW data Site: Integer corresponding to a site id. 
Year: Datetime from 2025 to 2099. 
DHW: Degree heating weeks for each year and site. One DHW is equivalent to one week of sea surface temperature 1 degree Celsius above the expected 
climatological value (the long-term mean of the maximum value for that month of the year). One week at 2 degrees above the climatological value would accrue 2 
DHWs. DHWs are cumulative over a 12-week summer period for each year (National Oceanic and Atmospheric Association, 2023) 

Wave data Site: Integer corresponding to a site id. 
Year: Datetime from 2025 to 2099. 
Ub: 90th percentile significant wave heights (the height expected not to be exceeded 90% of the time). 

(continued on next page) 
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Dataset Variable descriptions 

Connectivity 
data 

Connectivity: The biophysical connection between a set of sites. In the context of coral larval connectivity, this is expressed as a sparse matrix representing the 
probability of larvae released a from each site reaching each other site.  

Appendix C. Tidal distance formula 

North-south and East-west tidal distances were appended to the connectivity data when training the synthetic connectivity data model as it was 
found to perform better in terms of capturing spatial relationships in the connectivity data. 

The formula used for tidal distance between each pair of sites is: 

d = R
(

2arctan
( ̅̅̅

a
√

,
̅̅̅̅̅̅̅̅̅̅̅̅
1 − a

√ ) )
,

where 

a =

(

sin
b1 − b2

2

)2

,

and 

b1 = πl1 /180, b2 = πl2 /180.

R is the radius of the Earth. For the East-West tidal distance, l1 and l2 are the longitudes of the pair of sites, while for the North-South tidal distance 
l1 and l2 are their latitudes. This gives two matrices of size (number of sites) by (number of sites). 

Appendix D. Model comparisons  

Data Model Type Quality scores Total time (s) Time per site (s) 

Site data Gaussian Copula with default distribution = Normal Overall Quality Score: 85.56% 
Column Shapes: 83.15% 
Column Pair Trends: 87.98% 

53.06 0.27 

Gaussian Copula with default distribution = Gaussian KDE Column Shapes: 88.81% 
Column Pair Trends: 90.97% 
Overall Quality Score: 89.74% 

68.77 0.34 

TVAE Overall Quality Score: 85.13% 
Column Shapes: 82.33% 
Column Pair Trends: 87.93% 

85.76 0.43 

CTGAN Overall Quality Score: 79.33% 
Column Shapes: 79.94% 
Column Pair Trends: 78.72% 

102.6 0.51 

CopulaGAN Overall Quality Score: 72.86% 
Column Shapes: 69.34% 
Column Pair Trends: 76.39% 

110.93 0.55 

Coral cover data Gaussian Copula with default distribution = Normal Overall Quality Score: 86.71% 
Column Shapes: 86.91% 
Column Pair Trends: 86.51% 

69.98 0.35 

Gaussian Copula with default distribution = Gaussian KDE Overall Quality Score: 90.84% 
Column Shapes: 91.9% 
Column Pair Trends: 89.78% 

88.60 0.44 

TVAE Overall Quality Score: 90.7% 
Column Shapes: 92.8% 
Column Pair Trends: 88.59% 

492.31 2.46 

CTGAN Overall Quality Score: 82.55% 
Column Shapes: 83.23% 
Column Pair Trends: 81.86% 

523.07 2.61 

CopulaGAN Overall Quality Score: 79.11% 
Column Shapes: 79.19% 
Column Pair Trends: 79.03% 

614.19 3.07 

DHW data PAR Model Column Shapes: 95.34% 
Column Pair Trends: 89.97% 
Overall Quality Score: 92.66% 

145.28 (for each climate replicate) 0.72 

Wave data PAR Model Column Shapes: 87.34% 
Column Pair Trends: 86.71% 
Overall Quality Score: 87.03% 

145.62 (for each climate replicate) 0.73 

Connectivity data GAN Column Shapes: 98.2% 
Column Pair Trends: 99.9% 
Overall Quality Score: 99.0% 

165.37 0.83 

Gaussian Copula with default distribution = Normal Overall Quality Score: 91.2% 
Column Shapes: 85.25% 
Column Pair Trends: 97.14% 

22.19 0.11 

(continued on next page) 
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Data Model Type Quality scores Total time (s) Time per site (s) 

Gaussian Copula with default distribution = Gaussian KDE Overall Quality Score: 91.82% 
Column Shapes: 86.25% 
Column Pair Trends: 97.39% 

48.94 0.24  
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