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Abstract: Integrated bioinformatics tools have created more efficient and robust methods to overcome
in vitro challenges and have been widely utilized for the investigation of food proteins and the
generation of peptide sequences. This study aimed to analyze the physicochemical properties and
bioactivities of novel peptides derived from hydrolyzed milkfish (Chanos chanos) protein sequences
and to discover their potential angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase-4
(DPPIV)-inhibitory activities using machine learning-based tools, including BIOPEP-UWM, PeptideR-
anker, and the molecular docking software HADDOCK 2.4. Nine and three peptides were predicted
to have ACE- and DPPIV-inhibitory activities, respectively. The DPPIV-inhibitory peptides were
predicted to inhibit the compound with no known specific mode. Meanwhile, two tetrapeptides
(MVWH and PPPS) were predicted to possess a competitive mode of ACE inhibition by directly
binding to the tetra-coordinated Zn ion. Among all nine discovered ACE-inhibitory peptides, only
the PPPS peptide satisfied the drug-likeness analysis requirements with no violations of the Lipinski
rule of five and should be further investigated in vitro.

Keywords: ADME analysis; bioactive peptides; in silico; molecular docking; antihypertension; antidiabetic

1. Introduction

Hypertension and diabetes are interconnected comorbidities. The major cause of mor-
bidity and mortality in diabetes is cardiovascular disease, which is exacerbated by hyperten-
sion [1]. Hypertension is twice as frequent in patients with diabetes compared with those
who do not have diabetes. In 2019, diabetes was the direct cause of 1.5 million deaths, and
48% of all these deaths occurred before the age of 70 years. This problem is amplified by the
increasing number of adults with hypertension, predicted to reach 1.56 billion in 2025 [2], and
the nearly 7 times higher mortality rate of patients with diabetic hypertension [3]. While there
are a few different medications to treat hypertension and diabetes, bioactive peptides have
shown promising applications and have been developed as treatments for both conditions.

The growing number of studies of bioactive peptides have attracted the attention of
many researchers due to their potential application as therapeutic medications, functional
food ingredients, and nutraceuticals [4]. It is known that bioactive peptides exhibit many
beneficial activities that can modulate physiological responses, resulting in positive health
benefits [5,6]. Many bioactive peptides derived from food sources have been identified as
containing antimicrobial, antihypertensive, antioxidant, anticoagulant, antidiabetic, and
other beneficial bioactivities [7,8]. Antihypertensive peptides target mainly angiotensin-I-
converting enzyme (ACE), which, through the renin–angiotensin system (RAS), plays a
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crucial role in regulating blood pressure and the electrolyte balance in the human body [9].
Antidiabetic peptides mainly target the dipeptidyl-peptidase 4 (DPPIV) enzyme, which
degrades GLP-1, which can, in turn, promote insulin secretion by up to 60% of the total
insulin from pancreatic β cells, thereby regulating postprandial blood glucose [10].

Certain procedures are needed to acquire bioactive peptides from food sources; one of
them is the hydrolysis of proteins. In discovering bioactive peptides, enzymatic hydrolysis
is preferred due to its technical simplicity and environmental friendliness. The enzymatic
hydrolysis process is simple, robust, and standardized. The procedure can provide high
yields of good-quality bioactive peptides, whereas the biological activities of peptides de-
pend predominantly on their specific structural properties, such as amino acid composition,
sequence, chain length, hydrophobicity, and net charge [11].

Recent developments in bioactive peptide research have produced bioinformatics
tools to virtually simulate hydrolysis or proteolysis, where it is possible to predict peptide
sequences from specific proteins. The advancement of bioinformatics and the enormous
number of databases of bioactive peptides have helped to overcome challenges and have
been widely utilized for the investigation of proteins and the production of known and
novel sequences of peptides from food proteins [12]. The use of these in silico tools is time-
saving and more efficient than conventional methods and avoids the expense of laboratory
time and reagents [6].

Marine-derived food sources such as fish have been extensively studied for sources
of bioactive peptides. Research conducted by Abuine et al. [13] shows that fish-skin-
derived peptides have a high content of hydrophobic amino acids, which contribute to the
antioxidant and angiotensin-converting enzyme-inhibitory activities. Another study [14]
discovered bioactivities of peptide sequences from sturgeon skin hydrolysates, such as ACE-
inhibitory activity and DPPIV-inhibitory activity. In silico studies of bioactive peptides from
marine-derived food sources are still emerging and can greatly help in the development of
marine-based bioactive products.

Milkfish (Chanos chanos) is one of many aquatic organisms with the potential for
further bioactive peptide discovery. Milkfish is a brackish-water fish characterized by
silver color, cultured in shallow coastal water areas, and capable of living in low-salinity
water. A study reported the bioactivity of milkfish collagen peptides, which demonstrated
anti-inflammatory activities by reducing lipoxygenase activity and nitric oxide (NO) [15].
Despite several studies describing bioactive peptides from various food sources [16–19], no
study specifically reports the bioactivities of peptides derived from milkfish muscle proteins.
The muscle proteins in fish are classified into myofibrillar, sarcoplasmic, and stromal forms,
of which myofibrillar proteins make up 50–60% [20]. Myofibrillar proteins, including
myosin, actin, tropomyosin, and troponin, are involved in the contraction of the muscle
and are attractive substrates to produce hydrolysates due to their rich protein content [21].
Therefore, milkfish muscle protein sequences are compelling for in silico studies of bioactive
peptides. Molecular docking and computational drug design approaches were used to
discover potential ACE-inhibitory and DPPIV-inhibitory peptides.

2. Materials and Methods
2.1. Protein Extraction and Profiling of Milkfish Muscle Tissue

Muscle tissue samples were taken from the center of the fillet of a whole milkfish
specimen and stored at −80 ◦C until further use. Proteins were extracted in phosphate-
buffered saline from both raw and heated tissues, followed by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis profiling and the detection of collagen, parvalbumin,
and tropomyosin in quantitative immunoblots, as described previously. In brief, proteins
were transferred onto a nitrocellulose membrane and, after blocking with casein, incubated
with a collagen (ab23730 from Abcam [22]), parvalbumin (in-house-generated [23]), or
tropomyosin-specific (in-house-generated [24]) polyclonal antibody, followed by detec-
tion with an infrared-labeled antibody (DyLight anti-rabbit 4xPEG by Thermo Scientific,
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Waltham, MA, USA), visualized with an Odyssey Clx system (LI-COR® Biosciences, Mul-
grave, VIC, Australia).

2.2. Protein Sequence Selection from the Database

Eight full-length sequences from milkfish muscle proteins (myosin heavy chain, colla-
gen alpha-1, myoglobin, hemoglobin, parvalbumin, troponin T, tropomyosin, calponin, and
actin: A0A6J2VHL7, A0A6J2VX00, B9A9V0, A0A6J2WNB3, A0A6J2VB81, A0A6J2WNF1,
A0A6J2UQU6, A0A6J2VD67, and A0A6J2VUG0, respectively) were taken from the UniProt
(https://www.uniprot.org/ accessed on 6 June 2023) database for in silico analysis.

2.3. Identification of Protein Physicochemical Properties and Amino Acid Distribution

Protein physicochemical property identification was carried out by using ExPASy’s
ProtParam (https://web.expasy.org/protparam/ accessed on 7 June 2023) to determine a
large number of physicochemical properties of all the protein sequences identified from
milkfish muscle proteins, including the molecular weight, theoretical isoelectric point (pI),
total number of negatively charged (Asp + Glu) and positively charged (Arg + Lys) amino
acids, total amino acid and atomic composition, extinction coefficient, estimated half-life,
and grand average of hydropathicity (GRAVY).

2.4. In Silico Proteolysis and Peptide Profiling

In silico proteolysis was performed by utilizing BIOPEP-UWM [25] enzyme action
tools with three plant proteases, namely, ficin (EC 3.4.22.3), papain (EC 3.4.22.2), and stem
bromelain (EC 3.4.22.32). Proteolysis was independently performed based on each protease
enzyme. The theoretical hydrolysis degree was also analyzed. The calculation of theoretical
hydrolysis used the following equation, where d is the number of hydrolyzed peptide
bonds, and D is the total number of peptide bonds in a protein chain:

DHt =
d
D

× 100%

The sum of peptides produced from protein proteolysis in BIOPEP-UWM by using the
three types of enzymes was considered. The peptides resulting from the enzyme cleavage
of each protein by different enzymes were collected, excluding dipeptides and single amino
acids. Active peptides released from in silico proteolysis by using different enzymes in the
BIOPEP-UWM database were further processed by clustering the frequencies of bioactive
peptides with specific activities, such as antioxidant, ACE-inhibitory, DPPIV-inhibitory,
anti-amnesic, renin-inhibitory, and antithrombotic activities. The frequency of the release
of peptides by a specific protease was calculated based on the following equations (AE and
W, respectively):

AE =
d
N

‘d’ denotes the number of peptides released from the sequence of a protein by a specific
protease, and N is the number of residues of amino acids present in the protein sequence.
The relative frequency of released peptides by specific protease was calculated based on
the equations:

W =
AE
A

2.5. Novel Peptides’ Bioactivities

Peptides with unknown bioactivity produced from the in silico proteolysis process
were processed by predicting the bioactivity using PeptideRanker [26] (http://distilldeep.
ucd.ie/PeptideRanker/ accessed on 13 June 2023). Predicted peptides with a threshold
above or equal to 0.7 were considered as potentially bioactive peptides. Peptides that have
a value of less than 0.7 were discarded. Bioactivity screening was performed by using
MultiPep [27] (https://agbg.shinyapps.io/MultiPep/ accessed on 24 June 2023) to predict

https://www.uniprot.org/
https://web.expasy.org/protparam/
http://distilldeep.ucd.ie/PeptideRanker/
http://distilldeep.ucd.ie/PeptideRanker/
https://agbg.shinyapps.io/MultiPep/
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the specific bioactivities of peptides. MultiPep utilizes a machine learning approach to rank
peptides based on their specific bioactivity. Peptides with a specific activity value of 0.5 or
more can be considered as potential bioactive according to the specific activity.

2.6. Peptide Structure Modeling and Docking

Peptides with five or more residues were predicted by using Alphafold [28], while
tetrapeptides were designed by using Discovery Studio Visualizer 3.0 software (Accelrys
Software, Cambridge, UK). The crystallographic structure of human ACE-I (PDB ID: 1O86)
was obtained from the Protein DataBank (https://www.rcsb.org/ accessed 18 July 2023). The
structure of the DPP-IV enzyme complex with piperidine-constrained phenethylamine was
obtained from the PDB (PDB ID: 2OQV). Both receptors were prepared by removing the water
molecules and bound ligands from the active site residues. The peptide’s active sites were
predicted by Pepsite 2 [29] (http://pepsite2.russelllab.org/ accessed on 18 July 2023).

Molecular docking was performed by using the HADDOCK 2.4 cloud server [30].
The docking of peptides with the prepared receptor was performed separately by using
default parameters for protein and peptide interactions. The active residues of the receptors
were obtained from the literature, while the active residues of the designed peptides were
found by using Pepsite 2 (http://pepsite2.russelllab.org/ accessed on 18 July 2023). The
passive residue area of the receptors was set to 5 Å from the active residue. Clusters
produced from the docking process with the best HADDOCK score and a root-mean-square
deviation (RMSD) less than 4 Å were further evaluated for the best pose. The best pose
was discovered by evaluating the molecular interactions between the peptides and binding
sites in each cluster. HADDOCK scoring uses the sum of terms whose weights depend on
the stage of the HADDOCK protocol:

it0 : 0.01EvdW + 0.1Eelec + 1.0Edesolv–0.01BSA + 0.01EAIR
it1 : 1.0EvdW + 1.0Eelec + 1.0Edesolv–0.01BSA + 0.1EAIR
itw : 1.0EvdW + 1.0Eelec + 1.0Edesolv + 0.01EAIR

The binding affinity was subsequently predicted from the selected best pose by enter-
ing the model into protein binding energy prediction tools (PRODIGY) [31]. The protein–
peptide binding affinity was predicted by using the following equation:

∆Gpredicted = −0.09459 ICscharged
charged − 0.10007 ICscharged

apolar

+0.19577 ICspolar
polar − 0.22671 ICspolar

apolar
+0.18681%NISapolar + 0.3810%NIScharged − 15.9433

ICs stands for interfacial contacts in a protein–protein complex and NIS for non-
interacting surfaces. The dissociation constant was calculated by using the Gibbs free
energy based on the following equation:

∆G = RT lnKd

where R is the ideal gas constant (in kcal K−1mol−1), T is the temperature (in K), and
∆G is the predicted free energy. By default, the temperature is set at 298.15 K (25.0 ◦C).
The interactions between the peptides and the binding sites were evaluated by using
Maestro software version 2023-2 (Schrödinger, LLC, New York, NY, USA, 2023) using a
two-dimensional ligand–receptor interaction map with an area of 4 Å surrounding the
peptide. A drug-likeness analysis of the peptides was performed with the ADMETlab
2.0 cloud server [32] (https://admetmesh.scbdd.com/ accessed on 29 August 2023) as a
systematic evaluation of ADMET properties, as well as some physiochemical properties
and medicinal chemistry friendliness.

https://www.rcsb.org/
http://pepsite2.russelllab.org/
http://pepsite2.russelllab.org/
https://admetmesh.scbdd.com/
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3. Results
3.1. Protein Profiling and Identification

The total protein profiles of raw and heated milkfish muscle extracts were analyzed
and are shown in Figure 1. Bands at 10–12 kDa are the most prominent in both raw
and heated extracts and consist of parvalbumin, as demonstrated by immunoblotting.
In heated extracts, collagen at ≥100 kDa and tropomyosin at 35 kDa were identified by
immunoblotting, which are the most abundant soluble and heat-stable muscle proteins
after parvalbumin, as also previously demonstrated for catfish and salmon, suggesting
high yields after hydrolysis [33].
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Figure 1. Coomassie-stained total protein profiles of raw and heated milkfish muscle extracts (A) and
detection of collagen (B), tropomyosin (C), and parvalbumin (D) in the latter utilizing antibodies in
immunoblotting analyses.

3.2. Protein Physicochemical Properties and Amino Acid Distribution

The FASTA sequences of nine proteins obtained from the UNIPROT database were
analyzed. Expasy’s Protparam tool was used to compute the parameters to analyze the
physicochemical properties of the retrieved proteins. Parameters such as negatively charged
residues, positively charged residues, instability index, aliphatic index, grand average of
hydropathy (GRAVY), and molecular weight were calculated. The results are shown in
Table 1.

Table 1. Physicochemical properties of proteins selected for this study.

Protein a −R (Asp + Glu) b +R (Arg + Lys)
Instability

Index
Aliphatic

Index
c GRAVY Molecular

Weight (Da) Accession ID

Myosin heavy chain 277 47 44.15 81.96 −0.646 182,253.3 A0A6J2VD67
Collagen alpha-1 195 60 40.81 49.3 −0.778 180,196.21 A0A6J2VX00

Hemoglobin 14 7 25.69 90.07 −0.044 15,644.13 A0A6J2WNB3
Myoglobin 15 17 10.36 102.31 0.095 15,667.24 B9A9V0

Tropomyosin 79 4 45.54 81.9 −1.032 32,984.17 A0A6J2VHL7
Troponin T 76 65 85.2 58.93 −1.525 33,986.17 A0A6J2VB81

Parvalbumin 20 13 27.35 79.91 −0.043 11,613.04 A0A6J2UQU6
Calponin 36 34 41.9 61.77 −0.728 34,072.12 A0A6J2WNF1

Actin 50 37 34.36 82.81 −0.221 41,974.92 A0A6J2VUG0

a −R is the symbol for negatively charged residues, b +R is the symbol for positively charged residues, c GRAVY
is an abbreviation for the grand average of hydropathy.
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Of the nine analyzed proteins, most contain a higher number of negatively charged
residues compared to positively charged residues, ranging from 50 to 277 residues, and
only one protein (myoglobin) showed a higher number of positively charged residues. The
instability index ranged from 10 to 46, with the highest value found in tropomyosin and
the lowest found in myoglobin. The aliphatic index ranged from 49 to 102, with the highest
value found in myoglobin and the lowest found in collagen alpha 1. The grand average
of hydropathy value of the nine proteins ranged from −1 to 0, and the heaviest molecular
weight was found in the myosin heavy chain.

Charged residues in a protein are known to confer the specificity of interactions,
as opposite charges attract, whereas like charges repel each other. The interactions of
charged residues with polar groups, particularly in the form of hydrogen bonds, reinforce
interaction specificity, whereas charge–charge interactions can be strong even at a distance
(e.g., of 5–10 Å) [34]. Such interactions may have a role in determining the constant rate of
protein binding with its ligand or macromolecular counterpart [35]. The instability index is
used to predict whether the proteins can be considered stable or unstable. Proteins with
an instability index value of over 40 are considered unstable [36]. From the data above,
it is known that only four proteins can be considered stable (hemoglobin, myoglobin,
parvalbumin, and actin). The instability index is correlated with the in vivo half-life of
the protein molecules. Proteins that have an in vivo half-life of less than 5 h have been
shown to have an instability index of more than 40, whereas those that have an in vivo
half-life of more than 16 h have an instability index of less than 40 [37]. The stability
of proteins during the process of expression and purification (experiments) is one of the
crucial and challenging issues because many recombinant proteins are unstable under the
conditions in which they are expressed and lose their correct folding or undergo proteolytic
digestion [38].

The aliphatic index can be defined as the relative volume of a protein occupied by
its aliphatic side chains. A higher aliphatic index indicates that the proteins are more
thermally stable over a wide temperature range, and it is also noted that aliphatic amino
acids are hydrophobic in nature [39,40]. In this study, the aliphatic index of proteins ranges
from 49 to 102, where the lowest can be found in collagen alpha 1. Collagen is known to
be highly stable at high temperatures [22], but its aliphatic index tended to be the lowest
among the nine proteins of interest in this study.

The low value of the aliphatic index for collagen alpha-1 is attributed to the low
number of aliphatic amino acids in the sequence. In the case of collagen’s thermostability, it
should be considered that the hydroxyproline in collagen plays a significant role in thermal
stability [41,42]. An increased hydroxyproline (Hyp) content in the collagen structure model
was beneficial in improving the thermal resistance of the structure. Thermal unfolding did
not occur simultaneously along the entire molecule but started in the regions with lower
Hyp content, as the Hyp residue can create additional hydrogen bonds between collagen
chains to increase the thermal stability of collagen molecules [43].

The hypothetical and conserved proteins in this study had GRAVY indexes ranging
from −1 to 0.095. This low GRAVY range indicates the possibility of being a globular
(hydrophobic) protein rather than membranous (hydrophilic). GRAVY values in the range
of −2 to +2 are indicative of the proteins being more hydrophobic [36]. Positive GRAVY
values indicate hydrophobicity, while negative values mean hydrophilicity [44]. Myosin
heavy chain is the heaviest protein, with a molecular weight (MW) of 182 kDa, while
parvalbumin is the lightest, with a molecular weight of 11 kDa. The MW of a protein can
be calculated based on its amino acid (AA) composition [45]. The longer the amino acid
sequence of a protein, the higher the molecular weight.

The amino acid distribution was also analyzed using Expasy’s Protparam tool. Twenty
amino acids were evaluated in each protein; each amino acid was clustered based on its
properties, such as negatively charged (glutamic acid and aspartic acid), positively charged
(lysine and arginine), non-polar (valine, proline, methionine, leucine, isoleucine, glycine,
and alanine), polar (threonine, serine, glutamine, asparagine, histidine, and cysteine), and
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aromatic amino acids (tyrosine, tryptophan, and phenylalanine). The properties of amino
acids are important for the bioactivities of peptides, as the composition and sequence
determine the activities of the peptides once they are released from the precursor protein in
which they are incorporated [46].

3.3. Peptide Frequency

The number of peptides generated was observed. The criteria for summed peptides
were tripeptides and above, while dipeptides were excluded. The produced peptides were
collected from virtual protein cleavage and are visualized in a dot chart in Figure 2.
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Figure 2. A dot chart of the peptide frequency after enzymatic hydrolysis. The peptide frequency
was calculated from all possible peptides generated after the hydrolysis of proteins using bromelain
(blue dots), ficin (yellow dots), and papain (gray dots). Only peptides with more than two amino
acids were considered.

The number of produced peptides ranges from 9 to 294, with papain producing
the highest number of peptides among the nine selected proteins. The production of
peptides is correlated with the hydrolysis degree of the proteolytic process, as an enzymatic
proteolysis process is often quantified as the degree of hydrolysis (DH), which represents
the percentage of peptide bonds cleaved compared to the initial number of peptide bonds
of the protein [47]. A higher hydrolysis degree results in more peptide bonds being cleaved
by the enzyme. DH comparisons are visualized in Figure 3.

The DH ranges from 29 percent as the lowest to 57 percent as the highest. A higher
hydrolysis degree results in the generation of more peptides by the enzyme. The highest
number of peptides is known to be from the papain enzyme, but the hydrolysis degree of
papain tends to be lower compared to the other two enzymes (see Figure 3). Such phenom-
ena can be attributed to the criteria used for the sum of produced peptides. Bromelain and
ficin may produce more dipeptides or even single amino acid residues than papain through
enzyme cleavage, but single amino acid residues and dipeptides were excluded from the
analysis. The degree of hydrolysis can be defined as how much the protein is hydrolyzed
and is measured by the number of peptide bonds cut, which is then divided by the total
number of peptide bonds in a protein and multiplied by 100 [48]. Hence, the higher the
hydrolysis degree is, the shorter the produced peptides tend to be.
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3.4. Profiling of Bioactive Peptides

The bioactive peptides produced from enzyme cleavage were observed. Bioactivities
such as antioxidative, ACE-inhibitory, DPPIV-inhibitory, anti-amnesia, and renin-inhibitory
activities were identified from the nine proteolyzed proteins. The bioactive peptides were
automatically identified from the BIOPEP-UWM database after the proteolysis process
had occurred. The overall bioactivity potentials (∑AE) of the peptides released from the
proteins after enzymatic hydrolysis are shown in Table 2.

Table 2. Released bioactive peptides by three different enzymes.

Enzyme
∑AE

Antioxidative ACE
Inhibitor

DPPIV
Inhibitor

Anti-
Amnesia

Renin
Inhibitor Antithrombotic

Papain 0.0343 0.5563 0.667 0.0237 0.0211 0.0231
Bromelain 0.033 0.5585 0.5983 0.0484 0.0377 0.0484

Ficin 0.0694 2.2332 3.2131 0.0371 0.0644 0.0365
∑AE: The frequency of the release of fragments with a given activity.

The AE values of six bioactivities from three enzymes are the highest for ACE-
inhibitory and DPPIV-inhibitory activities. The result of released bioactive peptides from
milkfish proteins is also supported by the number of studies regarding the ACE- and DPPIV-
inhibitory activities from fish or marine organisms. A study conducted by Hong et al. [49]
successfully discovered two peptides extracted from the silver carp swim bladder with
good inhibition of soluble DPP-IV and insulin secretion promotion. A review study also
showed the potential of ACE-inhibitory biopeptides extracted from several fish species [50].
Meat and fish proteins offer considerable potential as novel sources of bioactive peptides,
as many of the studies conducted to date have focused on the production and identification
of DPP-IV-inhibitory and ACE-inhibitory peptides from protein hydrolysates from different
food systems [20,51].

3.5. Novel Peptide Bioactivity Screening

Peptides from the virtual proteolytic process with the three enzymes whose bioactivi-
ties were not identified by the database were collected and evaluated by PeptideRanker
and MultiPep for their potential bioactivities. From the 2132 peptides collected in this study,
75 peptides with a threshold score for general bioactivities of more than or equal to 0.7
were identified by PeptideRanker. The 75 peptides were further evaluated for their ACE-
and DPPIV-inhibitory activities by using MultiPep. Twelve novel peptides with promising
ACE- and DPPIV-inhibitory activities were identified and are listed in Table 3.
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Table 3. Novel peptides’ specific bioactivity scores.

No. Peptide ACE-Inhibitory Score Antihypertensive Score Antidiabetic Score DPPIV-Inhibitory Score

1 PMNPPK 0.977 − − −
2 VNPYKWL 0.663 − − −
3 AAPNF 0.51 − − −
4 PPPPV 0.582 − − −
5 PMIPG − 0.818 − −
6 YPPPT − 0.837 − −
7 AMYF 0.528 0.903 − −
8 PPPS 0.591 0.957 − −
9 MVWH 0.612 0.936 − −
10 AAWMIY − 0.778 0.574 −
11 AWMIYT − 0.517 0.519 −
12 MQML − − 0.813 0.594

(−) denotes scores below the threshold (0.5).

Of all evaluated peptides, seven peptides are known to specifically exhibit ACE-
inhibitory activity, and one peptide specifically exhibits DPPIV-inhibitory activity, while
some peptides only fulfill criteria for being antihypertensive or antidiabetic. Nevertheless,
these peptides (PMIPG, YPPPT, AAWMIY, and AWMIYT) were also tested in this study,
regardless of their low scores, to evaluate their possible ACE- or DPPIV-inhibitory activity.
The terms antihypertensive and antidiabetic can refer to mechanisms of action other than
ACE and DPPIV inhibition. The antihypertensive peptides in Table 3 may involve mecha-
nisms of action such as renin inhibition, calcium channel blocking, angiotensin II receptor
blockers (ARBs), etc. [9]. Meanwhile, the antidiabetic peptides may involve mechanisms
such as α-amylase or α-glucosidase inhibition [52].

3.6. Molecular Docking Analysis

The twelve potential peptides from the previous analysis were collected for molecular
docking modeling. Prior to the molecular docking process, each peptide structure was modeled
by using two different applications. Pentapeptides and above were designed by using Al-
phafold 2, while the smaller tetrapeptides were designed by using Discovery Studio. Molecular
docking was carried out by using HADDOCK 2.4 separately, as multi-ligand docking is not
recommended for the docking tool used. The docking result is shown in Table 4.

Table 4. Results from docking modeling with HADDOCK.

No Peptide HADDOCK Score Cluster RMSD (Å) Z-Score

1 MQML −52.7 +/− 1.7 2 0.7 +/− 0.1 −1.4
2 AAPNF −53.5 +/− 10.4 7 1.0 +/− 0.1 −1.8
3 PPPPV −62.2 +/− 4.8 7 0.5 +/− 0.1 −2.4
4 YPPPT −65.5 +/− 1.9 4 0.9 +/− 0.1 −1.8
5 PMNPPK −66.0 +/− 2.2 4 0.2 +/− 0.1 −2.2
6 PPPS −67.6 +/− 1.9 2 0.3 +/− 0.2 −1.9
7 PMIPG −72.8 +/− 0.5 2 0.3 +/− 0.2 −1.9
8 AWMIYT −82.2 +/− 2.6 1 0.6 +/− 0.1 −1
9 AAWMIY −89.4 +/− 1.9 1 0.5 +/− 0.2 −1.6
10 VNPYKWL −90.4 +/− 4.6 1 0.2 +/− 0.1 −2.5
11 AMYF −92.9 +/− 2.0 4 0.7 +/− 0.0 −1.7
12 MVWH −97.0 +/− 1.2 13 0.1 +/− 0.1 −2

RMSD is an abbreviation of ‘root-mean-square deviation’ from the overall lowest-energy structure.

The HADDOCK scores obtained range from −97 to −50; RMSD ranges from 0 to 1,
and the values of Z-scores are less than one. The HADDOCK score value cannot directly
imply whether the docking result is successful or not but rather determines the best clusters
from the molecular docking process. The RMSD value indicates the average distance
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between the best four models of the specified cluster and the best-scoring model generated
by HADDOCK. It provides information about how much the best four models of specified
clusters deviate compared to the best-scoring model. The z-score represents how many
standard deviations by which the HADDOCK score of a given cluster is separated from the
mean of all clusters, meaning the lower the z-score, the better [30]. The Z-score corresponds
to the HADDOCK score, as the lowest HADDOCK score means the lowest Z-score obtained.
Overall, the selection of the best cluster from the docking process by using HADDOCK
should mainly be based on the HADDOCK score itself. Further validation, such as binding
affinity prediction, can also be performed to enhance the docking prediction.

The binding affinity of docked peptides according to HADDOCK was predicted by
using the PRODIGY tool. The binding affinity can be defined as the strength of the interac-
tion between the receptor and the ligand and can also be translated into physicochemical
terms as the dissociation constant (Kd), which is an experimental measure that determines
whether an interaction will occur in solution or not [53]. The binding affinity predictions
for the novel peptides are shown in Table 5.

Table 5. Results from PRODIGY.

Peptides Activity Binding Affinity ∆G (kcal mol−1) Kd (M) at 25 ◦C

VNPYKWL ACE-I −9.6 8.80 × 10−8

PMNPPK ACE-I −9.9 5.60 × 10−8

PPPPV ACE-I −12.3 9.30 × 10−10

PMIPG ACE-I −10.6 1.60 × 10−8

YPPPT ACE-I −10.4 2.20 × 10−8

AAPNF ACE-I −8.5 5.60 × 10−7

AMYF ACE-I −10.9 1.00 × 10−8

MVWH ACE-I −11 8.00 × 10−9

PPPS ACE-I −8.8 3.60 × 10−7

AWMIYT DPPIV-I −9.7 7.60 × 10−8

AAWMIY DPPIV-I −9.1 2.20 × 10−7

MQML DPPIV-I −8.6 4.80 × 10−7

ACE-I and DPPIV-I in the activity column represent ACE-inhibitory and DPPIV-inhibitory activities, respectively.

The binding affinities of all studied peptides range from −12.3 to −8.5 kcal/mol. The
binding affinity prediction is designed to provide the most accurate estimate of the strength
with which a molecule binds to a macromolecular target [54]. Hence, a lower value of
binding affinity means that a more stable complex is formed [55]. However, a molecular
interaction analysis of the complexes should be performed to see whether the interaction
targets the specified active sites of both ACE and DPPIV.

3.7. ACE-Inhibitor Molecular Interaction

The nine discovered peptides have been demonstrated to exhibit ACE-inhibitory
activity; six peptides consisted of 5 to 7 residues (VNPYKWL, PMNPPK, PPPPV, PMIPG,
YPPPT, and AAPNF), and the other three peptides are classified as tetrapeptides (AMYF,
MVWH, and PPPS). The docked peptides need to be further analyzed by evaluating the
interacting residues on the receptor. The receptor was derived from the crystal structure
of the human angiotensin-converting enzyme, which was obtained from the PDB (PDB
id: 1O86) and composed of 589 amino acids sequences. This enzyme is classified as a
metalloprotease and is also well known for its dual actions in converting inactive Ang I
to active Ang II, which plays an important role in the control of blood pressure [56]. As
a metalloprotease, the zinc ion in ACE plays a vital role in the catalytic process. ACE
has three active pockets: S1 (Ala 354, Glu 384, and Tyr 523), S2 (Gln 281, His 353, Lys
511, His 513, and Tyr 520), and S1′ (Glu 162) [57]. The molecular interactions between
each peptide and the receptor play an important role in the ACE-inhibitory activity of
the peptides, as more interactions with the ACE active sites may result in potent activity
against ACE. The two-dimensional protein–peptide interaction diagrams are visualized
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in Figure 4. The molecular interactions observed in Figure 4 are non-covalent, such as
hydrogen bonds (purple-colored lines), salt bridge interactions (red-blue colored lines),
and pi stacking (green-colored lines). Interactions at active sites play an important role in
the inhibition of ACE, as they may disrupt the catalytic activity. The interacting residues of
nine ACE-inhibitory peptides are displayed in Table 6.
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All docked ACE-inhibitory peptides interact with active sites located within the
pockets (S1, S2, and S1′), with the exception of two peptides (PMIPG and PMNPPK).
Peptides composed of five or more residues only interact with a few active sites, and some
(PMIPG and PMNPPK) do not show any interactions with the given active sites. The
peptide AAPNF establishes two hydrogen bonds and one salt bridge interaction with three
active sites in S1: Ala 354, Tyr 523, and Glu 284, respectively. The other peptides, such
as VNPYKWL, YPPT, and PPPPV, also display hydrogen bond interactions with active
residues, but only VNPYKWL and PPPPV also display salt bridge interactions with the
same residue (GLU 162).
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Table 6. ACE-inhibitory peptide–residue interactions.

ACE-Inhibitory
Peptide

Interacting Residue
and Position Active Site Pocket Interaction Type

VNPYKWL Glu 162 S1′ HA, SB
Glu 376 HA, SB
Asp 377 SB
Thr 372 HA
Cys 370 HA
Asn 285 HA

YPPPT Lys 511 S2 HD
Thr 166 HD
Asn 374 HA, HD

PPPPV His 353 S2 HA
Glu 162 S1′ HA, SB
Asn 285 HD
Thr 302 HD

PMIPG Glu 376 SB
Asn 285 HA
Ser 284 HA
Lys 449 HD

AAPNF Glu 376 HA
Asn 374 HD
Ala 354 S1 HD
Glu 384 S1 SB
Tyr 523 S1 HA

PMNPPK Lys 449 HD
Glu 376 HD, SB
Asp 453 HA, SB
Thr 282 HA
Ser 284 HA

MVWH Gln 281 S2 HD
Asp 377 HA, HA, SB
Lys 511 S2 HD
His 383 Tetra-coordinated Zn Pi
Glu 384 S1 HA
His 353 S2 Pi

AMYF Asp 453 HA
His 353 S2 HD

PPPS Glu 384 S1 HA, SB
Glu 411 Tetra-coordinated Zn SB
Tyr 523 S1 HA
Ala 354 S1 HD

Notes: HA, HD, SB, and Pi are abbreviations for hydrogen bonds where the receptor residue is the acceptor (HA),
hydrogen bonds where the receptor residue is the donor (HD), a salt bridge interaction (SB), and a Pi-Pi stacking
interaction, respectively.

It should be noted that both hydrogen bonds and salt bridges play a role in binding
stabilization. Hydrogen bond interaction forces play the most important role in stabilizing
the docking complex and enzyme catalytic reaction [58]. The salt bridge interaction,
on the other hand, is the strongest non-covalent interaction in nature and is known to
participate in protein folding, protein–protein interactions, and molecular recognition [59].
The mentioned peptides (VNPYKWL, YPPT, PPPPV, AAPNF) may exhibit good inhibitory
effects against ACE based on the interaction analysis.

Of all predicted ACE-inhibitory peptides, the two peptides PMIPG and YPPPT do not
meet the threshold score, yet YPPPT shows interaction with the active site (Lys 511), while
PMIPG does not show any interaction. The MultiPep tool utilizes convolutional neural
networks to predict the peptide class to which a peptide belongs and can classify peptides
into zero or more bioactivity classes based on their intrinsic amino acid patterns [27]. It
is possible that the system could not recognize the patterns of both peptides to be ACE-
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inhibitory. Additionally, the value is probabilistic rather than binary; therefore, such
phenomena may be expected. Predictions below the threshold might still indicate that
given peptides have properties associated with a certain class [27].

Another interesting case was found with PMNPPK. The peptide PMNPPK possesses
the highest ACE-inhibitory score, but it does not show any interactions with known active
sites. A similar finding was reported in a study [60] on trypsin hydrolysates of salmon
bone proteins, where a peptide (FCLYELAR) with ACE-inhibitory activity did not interact
with any active sites (S1, S2, S1′) of ACE during molecular docking simulations. The
study suggested that the peptide exhibits an uncompetitive mode of inhibition. Therefore,
based on these findings, the peptides PMNPPK and PMIPG may possess a similar mode of
inhibition. However, an in vitro assay is required to validate this claim.

In contrast, the tetrapeptides (MVWH, AMYF, and PPPS) show far more satisfactory
results. The MVWH and PPPS peptides interacted with the tetra-coordinated zinc ions of
two residues (His 383 and Glu 411). The zinc ion has a tetra-coordinate formation with
three ACE residues (His 383, His 387, Glu 411), where the distortion or disruption of
the tetrahedral geometry can cause ACE-inhibitory activity [61]. By directly interacting
with tetra-coordinated zinc, the peptides MVWH and PPPS have a higher probability of
exhibiting a competitive mode of inhibition. The relationships between ACE-inhibitory
activity and peptide structure have not been fully elucidated; it is possible to conclude
that the inhibitory potential of the peptide depends on its structural and compositional
characteristics [62]. It is suggested that hydrophobic, branched-chain, or aromatic amino
acids are important components of ACE-inhibitory peptides, as they would be compatible
with the ACE active site [19,63]. The amino acid composition as a whole seems only to
affect the smaller peptides, while the inhibitory effect of peptides with longer residues has
been related to C-terminal amino acids [62,64].

3.8. DPPIV-Inhibitor Molecular Interaction

Three potential peptides with DPPIV-inhibitory activity were discovered through
virtual screening. Two peptides are composed of six amino acid residues (AWMIYT and
AAWMIY), and one peptide is a tetrapeptide (MQML). The receptor is based on the crystal
structure of Human Dipeptidyl Peptidase IV (DPP4) (PDB ID: 2OQV). DPPIV is classified
as a serine protease with a serine, histidine, and aspartic acid catalytic triad of amino acids
and has the potential to cleave peptide bonds to form a penultimate proline residue and
release proline-containing dipeptides from the N-terminus of the polypeptide chain [65].

DPPIV has three binding pockets/active sites (S1, S2, and S3) [66–68]. S1 consists of
Tyr 547, Ser 630, Tyr 631, Val 656, Trp 659, Tyr 662, Tyr 666, Asn 710, Val 711, and His 740,
all of which are involved in strong hydrophobic interactions. The residues Ser 630, Asp 708,
and His 740 form the catalytic triad [69]. S2 is the cavity near Arg 125, Glu 205, Glu 206, and
Tyr 662. S3 consists of Ser 209, Arg 358, and Phe 357. The interaction of DPPIV-inhibitory
peptides with DPPIV is shown in Figure 5.

Figure 5 shows the conformation of all three DPPIV-inhibitory peptides in DPPIV. The
red-colored backbones represent the conformation of the peptides inside the DPPIV pocket
sites. The molecular interaction takes place in chain A of DPPIV, and chain B of DPPIV is
identical to chain A. The peptide conformation is also compared to piperidine-constrained
phenethylamine (green-colored compound), a potent and selective DPPIV inhibitor, and is
shown in Figure 6.

The peptides bind to the active sites in the cavity, as shown in the two visualizations
above. The globular shapes in Figure 6 represent the catalytic triad (SER 630, ASP 708,
and HIS 740) of DPPIV. These peptides have the potential to exhibit satisfactory DPPIV
inhibition activity, as they interact with and bind to the active sites. Two-dimensional
protein–peptide interaction diagrams are visualized in Figure 7.
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DPPIV. The tube structure models represent the amino acids of DPPIV at active sites, while the
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the phenethylamine structure.

The molecular interactions observed in Figure 7 consist of non-covalent interactions
such as hydrogen bonds (purple-colored lines), pi–cation interactions (red-colored lines),
and Pi stacking (green-colored lines). The interacting residues of ACE-inhibitory peptides
are displayed in Table 7. The DPPIV-inhibitory peptides interact with the active sites of
DPPIV in S2 and S3, but none interact with S1 residues. Two peptides (AAWMIY and
AWMIYT) interact with Glu 206 and Arg 125, while MQML only interacts with Arg 125,
in common with the other two peptides. The residues Arg 125, Glu 205, Glu 206, Tyr 547,
Tyr 662, and Tyr 666 are key amino acid residues in ligand and receptor interactions [70].
Recent studies suggest that hydrophobic interactions in the S1 pocket are crucial for DPPIV-
inhibitory peptides, and the interaction at the S2 pocket may improve affinity [71]. Another
study considered competitive inhibitory peptides that were predicted to have both hy-
drophobic and hydrogen bond interactions with the active site of DPPIV [72]. Nevertheless,
it has been reported that different peptides show different DPPIV-inhibitory modes, such as
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competitive, uncompetitive, non-competitive, and mixed-type modes [73]. With high prob-
ability, the three peptides (AAWMIY, AWMIYT, and MQML) might exert DPPIV-inhibitory
activities by binding either at the active site and/or outside the catalytic site of DPPIV.
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Table 7. DPPIV-inhibitory peptide residue interactions.

DPPIV-Inhibitory Peptide Interacting Residue Active Site Pocket Interaction Type

AAWMIY Glu 206 S2 HA
Glu 205 S2 HA
Ser 209 S3 HA
Arg 125 S2 HD, Pi-c
Trp 629 Pi
Tyr 752 HA



Foods 2024, 13, 2594 16 of 21

Table 7. Cont.

DPPIV-Inhibitory Peptide Interacting Residue Active Site Pocket Interaction Type

AWMIYT Arg 125 S2 Pi-c, Pi-c
Glu 206 S2 HA
Ser 209 S3 HA
Tyr 585 HD, Pi
Arg 356 HD
Phe 357 HD, Pi
Arg 358 S3 HA

MQML His 126 HD
Arg 125 S2 HD
Ser 209 S3 HD
Arg 358 S3 HD

HA, HD, Pi, and Pi-c are abbreviations for hydrogen bonds where the enzyme residue is the acceptor, hydrogen
bonds where the enzyme residue is the donor, Pi-Pi stacking, and Pi–cation interactions, respectively.

3.9. Drug-Likeness Analysis

The concept of drug-likeness is established from analyses of the physiochemical
properties and structural features of existing small organic drugs or drug candidates.
This has been widely used to remove compounds with undesirable properties, especially
those with poor ADMET (absorption, distribution, metabolism, excretion, and toxicity)
profiles [74]. Pre-clinical and clinical trials are time-consuming and responsible for most of
the drug development costs. Hence, the drug-likeness of compounds should be determined
as early as possible in the design process for cost and time efficiency. The predicted
absorption, distribution, and toxicity of the peptides are shown in Table 8.

Table 8. Absorption, distribution, and toxicity of twelve different peptides.

Peptide Absorption Distribution Toxicity
a MDCK b HIA c VD (L/Kg) d PPB (%) e HHT f Ames

VNPYKWL 3.5 × 10−5 Low 0.426 31.35 Yes No
PMNPPK 4.9 × 10−6 Low 0.617 19 Yes No

PPPPV 3.4 × 10−6 Low 0.425 21.67 Yes No
AAPNF 6.4 × 10−4 Low 0.283 8.31 No No
YPPPT 1.5 × 10−4 Low 0.369 33.84 Yes No
PMIPG 1.7 × 10−6 Low 0.418 12.11 Yes No
AMYF 4.4 × 10−6 Low 0.262 36 Yes No
PPPS 6.2 × 10−5 Low 0.422 14.85 Yes No

MVWH 1.7 × 10−6 High 0.318 19.86 No No
AAWMIY 2 × 10−6 High 0.331 65.25 Yes No
AWMIYT 2.2 × 10−6 High 0.366 62.72 Yes No
MQML 7.1 × 10−6 High 0.465 12.86 No No

a MDCK: Madin–Darby canine kidney; b HIA: human intestinal absorption; c VD: volume distribution; d PPB:
plasma protein binding; e HHT: human hepatotoxicity; f Ames: genotoxicity assay.

Madin−Darby canine kidney cells (MDCK) have been developed as an in vitro model
for permeability screening and are widely considered to be the in vitro gold standard for
assessing the uptake efficiency of chemicals by the body. The unit of predicted MDCK per-
meability is cm/s. A compound is considered to have a high passive MDCK permeability if
Papp > 20 × 10−6 cm/s, medium permeability if 2–20 × 10−6 cm/s, and low permeability
if <2 × 10−6 cm/s. Four peptides are predicted to have high passive permeability (VN-
PYKWL, AAPNF, YPPPT, and PPPS), two peptides to have poor permeability (PMIPG and
MVWH), and the other peptides to have medium permeability (PMNPPK, PPPPV, AMYF,
AAWMIY, and AWMIYT). Of all of these peptides, four (MVWH, AAWMIY, AWMIYT, and
MQML) are predicted to have good intestinal absorbability. All peptides fulfill the optimal
distribution parameters (a VD in the range of 0.04–20 L/kg and plasma protein binding
not exceeding 90%). As for toxicity, most peptides are predicted to be hepatotoxic, except
AAPNF, MVWH, and MQML. All of the screened peptides are also predicted not to be
genotoxic or able to induce mutations in cells.
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The specific physiochemical properties of the peptides were also evaluated to establish
compliance with orally administered drug-likeness guidelines known as the Lipinski rule
of five (ROF). The rule of five predicts that poor absorption or permeation is likely to
occur when there are more than five hydrogen bond donors and ten hydrogen bond
acceptors, the molecular weight is greater than 500, and the calculated log P (log P) is
lower than five [75]. The physicochemical and physiochemical properties of the identified
peptides are shown in Table 9. The simple physicochemical properties of molecules, such
as molecular weight (MW), the number of hydrogen bond donors (HBDs) and acceptors
(HBAs), hydrophobicity, and the polar surface area (TPSA), can affect their in vivo behavior
and influence their efficiency in molecular targeting [76]. Another factor, the octanol/water
partition coefficient (log P), greatly affects the lipophilicity of a compound [77]. It should
be noted that highly lipophilic compounds can be trapped in the bilayer due to their poor
penetration of membranes, as high lipophilicity and poor aqueous solubility cause the
inability of small compounds to solubilize completely in aqueous media [78]. Of all the
evaluated peptides, only one peptide complies with the Lipinski rules (PPPS). This peptide
was derived from milkfish collagen. This peptide has previously been reported to bind the
active site of dipeptidyl carboxypeptidase derived from Streptomyces [79]. This enzyme
is analogous to angiotensin-I-converting enzyme (ACE), which plays a critical role in the
regulation of blood pressure homeostasis. The findings of this study corroborate current
results, demonstrating that integrated bioinformatic techniques can effectively identify
potential drug candidates.

Table 9. The physicochemical and physiochemical properties of the identified peptides.

Peptide
a MW

(<500 Da)

b HBAs
(≤10)

c HBDs
(≤5)

d logP
(≤5)

e TPSA
(≤140)

f RO5
Violation

VNPYKWL 918.5 20 14 0.417 334.26 4
PMNPPK 682.35 16 9 −3.067 246.36 4

PPPPV 505.29 11 3 −2.066 139.36 2
AAPNF 518.25 13 8 −2.042 214.02 3
YPPPT 573.28 13 6 −1.391 193.81 3
PMIPG 513.26 11 5 −1.02 156.94 3
AMYF 530.22 10 7 0.568 170.85 3
PPPS 396.2 10 4 −3.053 139.28 0

MVWH 571.26 12 8 0.342 195.09 3
AAWMIY 753.35 15 10 0.944 244.84 3
AWMIYT 783.36 16 11 0.592 265.07 4
MQML 521.23 11 8 −0.222 193.71 3

a MW: molecular weight; b HBAs: hydrogen bond acceptors; c hydrogen bond donors; d log P: octanol/water
partition coefficient; e TPSA: the polar surface area; f RO5 violation: number of Lipinski rules violated.

Compounds violating more than two of the RO5 conditions are prone to cause gas-
trointestinal absorption problems [80]. This has always been an issue in peptide-based drug
development, as the use of peptides in therapy presents several limitations, from physio-
chemical characteristics to inadequate pharmacokinetic profiles for oral absorption [81].
Nevertheless, peptide drug development has made great progress in the last decade due to
production, modification, and analytic technologies, where peptides have been produced
and modified using both chemical and biological methods [82].

4. Conclusions

Conventional methods for identifying and characterizing bioactive peptides often in-
volve extensive laboratory analyses, which are time-consuming, costly, and labor-intensive.
Furthermore, these techniques may overlook low-abundance peptides and require con-
siderable expertise, potentially limiting the discovery of novel peptides with therapeutic
potential and delaying the development of new treatments. Integrated bioinformatics meth-
ods for the identification of bioactive peptides offer several advantages, including speed,



Foods 2024, 13, 2594 18 of 21

cost-effectiveness, and the ability to analyze large datasets rapidly. Peptide activity, stability,
and interactions can be predicted with high accuracy using computational approaches,
reducing the need for extensive laboratory work. In addition, integrated bioinformatics
tools allow the screening of numerous peptide sequences simultaneously, facilitating the
efficient discovery of novel peptides with therapeutic potential.

In this study, nine stable and abundant milkfish muscle proteins were selected and
hydrolyzed using three different proteases, generating over 2000 peptides in silico. The pep-
tide pool was rigorously screened using an integrated bioinformatics approach involving
BIOPEP-UWM, PeptideRanker, and HADDOCK 2.4 to predict bioactivities. A drug-likeness
analysis was performed with ADMETlab to evaluate ADMET properties, physicochem-
ical characteristics, and medicinal chemistry suitability. This workflow yielded several
peptides with high ACE- and DPPIV-inhibitory activities, as well as satisfactory scores
and favorable interactions with the receptors’ defined active sites. Two ACE-inhibitory
tetrapeptides (MVWH and PPPS) were predicted to possess the competitive mode of ACE
inhibition by directly binding to the tetra-coordinated Zn ion. Three peptides were found
to inhibit DPPIV with unspecific modes. The drug-likeness analysis resulted in one peptide
(PPPS), derived from high-abundance and heat-stable milkfish collagen, that satisfied the
Lipinski rule of five and has the potential to be an orally administered ACE-inhibitory
drug candidate. While molecular docking analyses provided insights into potential interac-
tions, experimental validation through in vitro or in vivo assays is necessary to confirm the
bioactivity, bioavailability, and therapeutic potential of the identified peptides.
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