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Abstract 

The Anthropocene epoch is marked by unprecedented human influence on natural systems. 

Coral reefs, in particular, are confronted with mounting threats, including climate change, habitat 

destruction, pollution, and overexploitation. These challenges underscore the urgent need for a 

comprehensive understanding of ecological processes and coral reef functioning. To achieve this, 

research must encompass expansive spatial and temporal dimensions, recognizing our increasing 

knowledge of the scale of both key coral reef processes and emerging threats. As stressors continue 

to escalate, resulting in altered and degraded coral reefs in the Anthropocene, there is a growing 

imperative to assess coral reef functions across broader scales. 

In this thesis, therefore, I aimed to explore multiple coral reef functions across broad scales 

using geospatial and modelling approaches. Throughout the data chapters (2 to 4), I examine our 

understanding of ecosystem processes among scales to answer the following questions: a) What are 

the differences between survey methodologies employed in coral reef ecosystems, and what 

opportunities exist for future improvements in scalability of reef surveys and generalizability of remote 

sensing surveys?, b) What are the primary drivers of reef growth at global scales? And, c) What are the 

correlates of herbivorous fish catches and trends in CPUE in coastal small-scale fisheries across the 

Western Atlantic and Indo-Pacific? 

Chapter 2 encapsulates an extensive review of the literature from the past decade in two key 

coral reef research areas, ecology and remote sensing, revealing that observer-defined scale artefacts 

may compromise the various approaches. As expected, the two fields differ substantially in their focal 

questions: most traditional in-water observation-based coral reef ecology studies assess community 

composition; while remote sensing studies focus on benthic mapping. Ecological studies typically 

employ direct measurements from detailed observations of small areas; remote sensing studies 

typically rely on sensors detecting patterns at broader scales. Remarkably, few studies integrated 

comprehensive in-situ observations with broadscale sensing. Bridging these two scientific disciplines 

poses challenges but holds great promise for upscaling observations to reef-wide scales. 

In chapter 3, I used the Allen Coral Atlas to sample over 3700 virtual transects across 60 

locations in the Caribbean and Indo-Pacific realms in ArcGIS. The goal was to investigate the extent 

(i.e. width) of shallow reef habitats. Specifically, whether the disparities between these realms, in 

terms of biogeographical extents, biodiversity patterns, and evolutionary or sea-level histories, 

impacted the width of shallow-water biogenic coral reef habitats. Considering the vast differences in 

the diversity of corals and the stability of sea levels during the Holocene, I expected greater widths in 

shallow reef habitats in the Indo-Pacific. Contrary to expectations, I found that the widths were 
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strikingly similar across the two realms, indicating a disconnect between coral growth, an ecological 

process, and reef growth, a geological process. Reef growth, an important coral ecosystem function, 

appears to be primarily influenced by local hydrodynamic factors rather than coral diversity or coral 

growth rates. 

In chapter 4, I assessed the role of herbivorous fishes in global fishery yields across 69 Exclusive 

Economic Zones (EEZs) in the Indo-Pacific and Western Atlantic using reported and reconstructed 

global catch data. Specifically, I assessed indirect measures of fishing pressure and ecosystem 

attributes that could modify herbivorous fish catches. Reef habitat area and human population 

densities were identified as key factors influencing herbivorous fish yields and catch-per-unit-effort 

(CPUE). Rabbitfishes were identified as crucial contributors, explaining the higher herbivorous fish 

yields in the Indo-Pacific compared to the Western Atlantic. However, all herbivorous fish groups 

showed distinct declines in CPUE over the last 60 years, potentially indicating a global decrease in 

production potential . This reveals a significant social-ecological scale mismatch: while coastal habitats 

may be dynamic, herbivorous fish catches at larger scales are declining, along with their ability to 

sustain coastal communities. 

Overall, the findings of this thesis emphasize the value of upscaling our understanding of 

critical ecosystem processes. In all cases, this broader perspective provides new insights into how these 

systems function. To effectively address the escalating temporal and spatial scales of human impacts 

on coral reefs in the Anthropocene, it is imperative to align the scale of scientific investigation, 

monitoring, and management with the scale of these pressures, minimising current scale mismatches. 

The suitability and efficacy of coral reef ecosystem management depends on scale-appropriate 

knowledge and actions.  
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Chapter 1. General Introduction 

 

The Anthropocene marks a new geological epoch, defined by the unprecedented influence of 

human activities on Earth's ecosystems (Lewis and Maslin 2015; Steffen et al. 2015). As a species, 

humanity and its societies have become a global geophysical force, intricately intertwined with the 

biosphere (Steffen et al. 2011; Folke et al. 2021). Unfortunately, the most pressing consequence of this 

impact is climate change, which is fundamentally altering the conditions of life on our planet (Hoegh-

Guldberg and Bruno 2010; Diffenbaugh and Field 2013; Steffen et al. 2015; Pecl et al. 2017). Rising 

temperatures, changing precipitation patterns, and frequent extreme weather events are already 

taking a toll on the world's ecosystems and their functioning (Grimm et al. 2013; Hughes et al. 2017; 

Ummenhofer and Meehl 2017; IPCC 2023). This, in turn, has severe repercussions for biodiversity, food 

security, and human well-being. However, the impacts of climate change are unevenly distributed 

worldwide, with poorer nations and individuals bearing a disproportionate burden (Allison et al. 2009; 

Althor et al. 2016; Islam and Winkel 2017; Thomas et al. 2019). This disparity can be attributed to their 

limited capacity to implement climate protection measures and their tendency to inhabit warmer 

regions, where further warming could adversely affect both ecosystem productivity and health (IPCC 

2023). Consequently, understanding the intricate interactions between human activities and the 

Earth's ecosystems has become an urgent research priority, with far-reaching implications for the 

future of our planet. However, the scale and scope of human impact are now believed to have pushed 

ecosystems, and the ecological processes that support their functioning, beyond their tipping points 

on a global scale (Kopf et al. 2015; Duarte et al. 2020), potentially rendering the restoration of its prior 

states impossible.  

 

The relationship between ecological processes and ecosystem functioning is often compared 

to a performance in the "ecological theatre" that occurs at different spatial and temporal scales 

(Hutchinson 1965; Wiens 1989). To fully understand this performance and its impact on ecosystems 

and patterns, studying ecological phenomena at the appropriate level is crucial (Hutchinson 1965; 

Wiens 1989). Examining these phenomena at the scales most relevant to the underlying processes is 

necessary to draw causal and holistic inferences about ecosystems and their functioning. Scale 

generally refers to the spatial, temporal, or organizational dimension of a phenomenon (Wu and Li 

2006; Lecours et al. 2015). Generally, time and space are the fundamental axes of scale, whereas 

organizational scale elements are usually introduced and dictated by the observer (Levin 1992; Wu and 

Li 2006; Lecours et al. 2015). Resolution, describing the finest detail achievable in space or time within 
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which homogeneity is assumed, and extent, the total spatial or temporal expanse, are the fundamental 

components of scale (Wiens 1989; Wu and Li 2006; Lecours et al. 2015). Understanding scale and 

pattern has been a long-standing problem in ecology, as spatial heterogeneity often forms the basis of 

structure and functioning in diverse landscapes and seascapes, inevitably making processes, ecological 

phenomena, and their observations across these systems scale-dependent (Levin 1992; Wu 2004). This 

issue has become even more important in the face of the escalating threats to ecosystem functioning 

caused by climate change, which is altering and degrading ecosystems on a global scale. In the 

Anthropocene, assessing the interfacing phenomena and processes at a multitude of highly variable 

scales across space, time, and levels of organization is a necessary first step in addressing these threats 

(Levin 1992; Chave 2013; Verburg et al. 2016). 

 

The degradation and transformation of ecosystems at a global level has led to a profound 

change in ecological research. Scientists have moved away from taxon-based investigations with a 

narrow focus, towards more comprehensive, functional or "trait-based" approaches. These functional 

studies aim to identify an organism's contribution to ecological processes, rather than simply 

quantifying their identity and abundance (McGill et al. 2006; Violle et al. 2007; Bellwood et al. 2019b; 

Streit and Bellwood 2022). In the Anthropocene, there has been a growing emphasis on ecosystem 

functioning, which aims to address the crucial question of "What functions, processes, and services 

must we preserve?" (Bellwood et al. 2019b; Streit and Bellwood 2022). However, it has been noted 

that we are facing a ‘functionality crisis’, especially in the marine realm, as many functional studies 

tend to rely on easy-to-measure traits or proxies that are thought to have functional significance, 

without empirical or causative evaluations (Bellwood et al. 2019b, Streit and Bellwood 2022). Even the 

term ‘function’ lacked a unified and broadly applicable definition, prohibiting comparability across 

studies and disciplinary boundaries. This lack of empirical evidence and unified definitions poses a 

challenge to making informed recommendations for ecosystem management.  

Recently, Bellwood et al. (2019b) proposed ‘the movement or storage of energy or material’ 

as a broad and unified definitional framework for the term function on coral reefs. While this 

framework is applicable to all levels of organization (from cellular to global levels), its main purpose is 

to shift the focus from how ecological functions are delivered to what functions are necessary to 

sustain ecosystem functioning and desirable services. For example, herbivory represents a key 

ecosystem function on coral reefs and is facilitated by numerous nominally herbivorous fishes 

(Bellwood et al. 2004; Adam et al. 2015; Tebbett et al. 2023a). Thus, by employing an approach that 

focuses on ‘what’ ecosystem functions are of importance, functional redundancies within a system 
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may become apparent, revealing that the loss of certain individuals may not necessarily jeopardize the 

delivery of ecosystem functions (Bellwood et al. 2019b). Ultimately, prioritizing ecosystem functions, 

rather than specific taxa that deliver functions, changes perspectives and helps to increase the scale 

at which we both observe and understand ecosystem processes. Upscaling our understanding of 

ecological processes, particularly in an era marked by the accelerating transformations of ecosystems, 

is vital to ensure that our management approaches and responses are commensurate with the scale 

of anthropogenic threats. 

 

The large-scale impacts of climate change and dire state of our planet is perhaps nowhere 

more evident than in the ongoing struggle on coral reefs (Hughes et al. 2017; Bellwood et al. 2019a; 

Sully et al. 2019), which are among the most productive and vulnerable ecosystems on Earth (Odum 

and Odum 1955; Connell 1978). These large-scale biogenic structures, formed by living creatures, are 

a powerful reminder of the widespread repercussions of humanity's impact on the environment 

(Hughes et al. 2017, Bellwood et al. 2019a). Beyond their intrinsic ecological value, coral reefs play a 

pivotal role by providing crucial ecosystem services such as coastal protection, fisheries, and tourism 

(Moberg and Folke 1999; Woodhead et al. 2019), often fostering rapid human population growth in 

their proximity (Wong et al. 2022). Consequently, communities worldwide exhibit varying degrees of 

reliance on marine ecosystems and coral reefs (Selig et al. 2019; Allison et al. 2009). Yet, changes in 

the Anthropocene have undermined the ability of coral reefs to sustain key services at historical levels 

and to uphold their ecological and geological productivity (Hughes et al. 2017; Williams and Graham 

2019; Williams et al. 2019; Woodhead et al. 2019; Tebbett et al. 2021). Recent surges in sea-surface 

temperatures have triggered multiple global coral bleaching events, raising concerns about the future 

carbonate production on coral reefs (Perry et al. 2018; Perry and Alvarez-Filip 2019; Browne et al. 2021; 

Cornwall et al. 2021).  

Moreover, coral reefs, nestled within tropical seascapes, can harbor a rich diversity of marine 

life, playing a crucial role in supporting high fish biomass and densities (Sievers et al. 2020). Tropical 

small-scale fisheries depend heavily on these habitats and constitute approximately half of the global 

fish catches (FAO 2020). They also provide a livelihood for over 90% of the people who rely on capture 

fisheries (FAO 2020). Nevertheless, the severe impacts of climate change pose an imminent threat, 

leading to a global decline in their productivity. The catch per unit effort of coral reef-associated fishes 

has undergone a decline of over 60% since 1950, presenting significant challenges for millions of 

people dependent on coral reef ecosystem services for nutrition (Eddy et al. 2021). Unfortunately, the 

threats to coral reefs have become more extensive and pervasive than ever, and existing management 
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strategies struggle to keep pace with the escalating scale of these challenges (Bellwood et al. 2019a). 

Addressing these challenges and scaling issues is imperative for the effective management of coral reef 

ecosystems. 

 

1.1 Thesis outline 

 

Significant disparities exist between the scales examined in ecological studies on coral reefs 

and the extent to which inferences are being made about the drivers of ecosystem processes. These 

scale-artefacts hinder our holistic understanding of ecosystem processes, while also undermining our 

ability to make causal inferences about the drivers of their functioning. This thesis, therefore, aims to 

explore diverse and vital coral reef functions across different spatial and temporal scales, aiming to 

shed light on the scale-dependent factors influencing the functioning of coral reef ecosystems. To 

address the pressure to upscale, it is essential to understand existing methods and assess their 

application. This analysis will shed light on potential reasons behind current spatial mismatches. 

Therefore, in chapter 2, I investigated and compared the relative contribution and focus of traditional 

in-water observation-based coral reef ecology and remote sensing-based methods. To identify 

potential overlap, as well as future blueprints to increase the utility of each, I employed a structured 

review of the literature spanning all relevant publications in key journals of each field spanning over 

the last decade. Then in chapters 3 and 4, I focused on specific coral reef functions across two major 

oceanic basins, the Indo-Pacific and Caribbean/Western Atlantic, to identify patterns and explore 

potential drivers from a functional, large-scale perspective. In chapter 3 (Lutzenkirchen et al. 2023), I 

analysed shallow reef width patterns to determine the extent to which the highly divergent 

evolutionary and biogeographic history, as well as biodiversity gradients, between the two realms 

impacts coral reef geomorphology. This was achieved by using high-resolution and universally applied 

satellite-based geomorphic coral reef zonation maps provided by the Allen Coral Atlas and a desktop 

based geospatial ArcGIS approach. In chapter 4, I focused on three nominally herbivorous fish groups 

to describe their contributions to seascape-associated fisheries across the two realms and their relative 

levels of exploitation. I also investigated potential correlates of fishery catches. In this project I used 

reported and reconstructed catch estimates from the Sea Around Us database and modelled the 

relationship between fishery statistics, such as average total catch and average catch-per-unit-effort, 

and large-scale social, geomorphic, and biogeographic covariates.   
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Chapter 2. Exploring benthic habitat assessments on coral reefs: a comparison of direct field 

measurements vs. remote sensing 

 

Accepted as: Lutzenkirchen, L. L., Duce, S. J., & Bellwood, D. R. (2024). Exploring benthic habitat 

assessments on coral reefs: a comparison of direct field measurements vs. remote sensing. 

Coral Reefs  

2.1 Abstract 

Coral reefs are spatially variable ecosystems that form biogenic structures ranging in size from 

10s to 1000s of meters. Their changes in response to anthropogenic stress are occurring across 

increasingly broad scales, yet our ability to detect, understand and respond to these changes at 

relevant scales is limited. Traditional in-water observation-based coral reef ecology and remote 

sensing-based methods both offer valuable insights into benthic change, but their relative scalability 

and use to-date must be understood to inform optimal future research approaches. We conducted a 

systematic literature review comparing the approaches used to quantify benthic habitat, through 

traditional in-water ecological studies and remote sensing studies, with respect to: a) their geographic 

distribution, b) reef zone selection, and c) their focal questions.  Among the 199 studies reviewed, 

traditional ecological studies primarily concentrated on community composition (89%), using high-

detail direct measurements, especially from the reef slope (80%). By contrast, remote sensing studies 

provided spatially explicit datasets at coarser spatial and thematic resolutions, with a predominant 

focus on benthic mapping (72%) across entire reef systems. Only 3% of studies integrated both 

approaches, combining comprehensive in-situ observations with broadscale remote sensing. As 

anthropogenic stressors continue to increase in scale, bridging these scientific disciplines offers a 

promising way to upscale observations to entire reef-scape scales. Given the evident limitations in 

scalability of reef surveys and the constrained generalizability of remote sensing approaches, we 

identify steps to harness the strengths of both fields and integrate multiple tools at various levels of 

resolution and scale. Such bridging approaches offer a way forward in understanding and managing 

coral reef functioning in the Anthropocene. 

 

2.2 Introduction 

Ecosystems, both terrestrial and marine, share a degree of hierarchical organization with 

sublevels operating at distinct temporal and spatial scales, collectively contributing to larger systems 

(O’Neill et al. 1989). Consequently, each subsystem exhibits varying spatio-temporal heterogeneity 

and patchy distributions, forming the foundation for ecosystem structure and functioning (O’Neill et 
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al. 1989; Azovsky 2000; Wu 2004). These fundamental characteristics, also found in coral reefs, create 

scale multiplicity in spatial patterns and ecological processes (O’Neill et al. 1989; Levin 1992). Such 

that, at smaller scales, ecosystems may be dominated by intricate processes or behaviours of 

individuals, but their influence becomes negligible at intermediate or broad scales, where 

environmental, evolutionary, or geomorphological processes shape ecosystems (Wiens 1989; Holling 

1992). Therefore, understanding ecosystem structure and functioning necessitates studying ecological 

phenomena at scales most relevant to the underlying processes. Detecting patterns relies on two scale 

components: resolution and extent. Extent refers to the overall study area coverage, while resolution 

describes the size of individual observation units (Wiens 1989; Wu and Li 2006). Combining extent and 

resolution sets the upper and lower dimensional boundaries of a study, much like the size and mesh 

of a sieve (Wiens 1989).  

 

In coral reef ecology, addressing processes across various scales is crucial due to the complex 

interactions within these ecosystems. Reefs, as open systems, are influenced by factors operating at 

multiple levels, necessitating a comprehensive approach to understand their dynamics and 

functioning. Scale, pertaining to ecology, can be categorized into three dimensions: spatial, temporal, 

and thematic (Wu and Li 2006; Lecours et al. 2015). The spatial dimension encompasses the spatial 

resolution (i.e. level of detail measured) and geographic extent of an object, area, or process. Temporal 

resolution refers to the frequency of data collection, while temporal extent describes the period of 

data collection. Thematic scale, refers to the number of classes identified within a chosen domain/s, 

mainly concerning taxonomic resolution and the level of organization that can be resolved in datasets 

(Wu and Li 2006; Lecours et al. 2015). As coral reefs face increasing threats, it is becoming more 

important for research and conservation responses to address changes at broader spatial and temporal 

scales and in relevant thematic classes. However, there exists a mismatch between the geographic 

extent of reef stressors (e.g. marine heatwaves which lead to bleaching events) and the extent of 

scientific investigation, monitoring, and management responses. These challenges and mismatches 

must be addressed if coral reef ecosystems are to be effectively managed and conserved into the 

future (Hughes et al. 2017; Bellwood et al. 2019a). 

 

Coral reefs provide crucial functions and ecosystem services, such as coastal protection, 

fisheries, and tourism (Moberg and Folke 1999; Woodhead et al. 2019). The protection of functionally 

important groups within coral reef ecosystems is vital for ensuring the continual delivery of these 

services (Bellwood et al. 2019b; Brandl et al. 2019). However, identifying contributors to ecosystem 
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functioning is challenging, and their identities may change in response to climate change (Bellwood et 

al. 2019b; Wolfe et al. 2021; Streit and Bellwood 2022).  Moreover, coral reefs are dynamic 

environments where interactions among reef organisms and other ecosystem components occur at 

various scales and hierarchies (Hatcher 1997; Dietzel et al. 2021; Wolfe et al. 2023). Due to their 

heterogenous nature, spatial variability, and distribution in clumped patches ranging from 10s to 1000s 

of metres in extent (Hopley et al. 2007), changes in coral reefs systems are not distributed 

homogeneously (Morais et al. 2021a; Tebbett et al. 2023b). As a result, most coral reef functions are 

scale dependent. For instance, the rate and extent of vital functions provided by coral reef fishes, such 

as herbivory or bioerosion, are often estimated by assuming that fish presence equals function delivery 

(Bellwood et al. 2003; Graham et al. 2018; Perry et al. 2022). However, the implicit assumption of 

homogeneity of function across the reef is increasingly being questioned (Streit et al. 2019; Tebbett 

and Bellwood 2020), particularly in the face of the escalating scale of reef disturbance. The presence-

function and scale mismatches present challenges in managing and conserving reef systems in the 

Anthropocene (Bellwood et al. 2019a; Brandl et al. 2019). Traditional approaches, such as Marine 

Protected Areas, are no longer sufficient to address the new challenges in coral reef governance, 

management, and science (Bellwood et al. 2019a). 

In coral reef research, benthic metrics like habitat cover, complexity, and diversity are used for 

evaluating and monitoring reef health and structure. They are commonly assessed using measures 

such as coral cover, benthic cover, and rugosity (Bellwood et al. 2004; Bruno and Selig 2007; Graham 

and Nash 2013). Coral cover indicates the percentage of the seafloor occupied by live coral, while 

benthic cover evaluates the proportion of different substratum types, including coral, algae, sand, and 

rubble (Bruno and Selig 2007). Rugosity provides a three-dimensional complexity estimate, helping to 

understand habitat diversity and potential habitat availability for various other reef inhabitants 

(Graham and Nash 2013; Ferrari et al. 2018). Assessing these metrics has traditionally involved in-water 

field surveys by skilled scuba divers. However, these labour-intensive surveys are often limited to 

specific taxa and specific study areas, representing only a small portion of the entire reef ecosystem 

(Bellwood et al. 2020; Tebbett et al. 2023b). As a result, findings from localized surveys may not fully 

capture broader patterns and variation at wider spatial scales. Valuable methods and techniques 

involving the use of remote sensing technologies, both above and below the water, have been 

emerging over recent decades with the aim of overcoming these challenges. These advances are 

increasingly employed to map extensive benthic areas for management purposes and to quantify 

large-scale complexity metrics of the benthos. 
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Ecology and remote sensing constitute pivotal domains within coral reef research, both 

characterized by scale awareness and dependence. Their shared objective is to appraise benthic 

transformations in coral reef systems to improve knowledge and ensure sustainability. While in-situ 

ecological studies are increasingly addressing coral reef functioning, recent papers have highlighted 

the constraints placed on our understanding because of the limited spatial extent of study efforts, 

across both reefs and habitats, as well as the immense associated costs, which constrain our ability to 

describe dynamic phenomena and processes at broad spatial scales (Hedley et al. 2016; Estes et al. 

2018; Bellwood et al. 2020; Kench et al. 2022; Tebbett et al. 2023b). However, the rapid development 

of in-water remote sensing techniques to derive 3D structural assessments, at unprecedentedly high 

resolution and across relatively large areas (1ms -100ms), holds the potential to significantly enhance 

our capacity to monitor these ecosystems (Ferrari et al. 2016, 2022; Calders et al. 2020). Recent 

advances in aerial and satellite remote sensing technologies offer a promising avenue to upscale the 

extent of in-situ observations to the reef-scale, of kilometre/hundreds of kilometres, optimizing the 

efficiency of such studies (Green et al. 2000; Hamylton 2017; Dornelas et al. 2019; D’Urban Jackson et 

al. 2020) (Figures 2.1 and 2.2). Nevertheless, the potential for scale-dependency raises the question: 

How can the methods used in traditional coral reef ecology be optimised to accurately assess biological 

and ecological processes affected by stressors operating at ever-increasing scales? To address this 

question, this study looked at the relative contribution of two fields (traditional in-situ coral reef 

ecology and remote sensing), that both assess benthic habitats. This was achieved by conducting a 

systematic review of relevant literature to compare these two fields of coral reef research and their 

inherent approaches, in terms of: 1) the geographic distribution of study sites; 2) their inherent 

approaches; 3) the habitats examined, and 4) their focal questions. Following this evaluation, we 

outline potential opportunities to create a bridge between these two fields to better address the 

challenges of scale. Ultimately, by addressing these aims, this study will help identify positive paths 

towards harnessing the valuable contributions of the two fields, traditional in-water coral reef ecology 

or remote sensing, in a world that will have to upscale rapidly to meet challenges in the Anthropocene.  
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Figure 2.1 Differences in spatial extent and resolution among technologies and approaches employed in 

coral reef ecosystem research. Specifically, differences among satellite and aerial remote sensing platforms 

(i.e. a) satellite, b) aeroplane, c) unoccupied aerial vehicles, and d) drones); and in-water remote sensing 

platforms, including e) autonomous underwater vehicles, f) underwater drones, and g) diver-operated 

camera systems. Figure adapted from Harris et al. (2023) based on the original schematic in Joyce (2004). 
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Figure 2.2 Examples of the imaging and resolution capabilities of different coral reef remote sensing 

techniques at Lizard Island Reef in the northern Great Barrier Reef. a Satellite imagery (Sentinel-2A imagery. 

GSD = 10m Courtesy of European Space Agency - ESA), b unoccupied aerial vehicles and non-consumer 

grade drones (UAVs) (GSD ~ 10cm, but cover larger extents), c consumer-grade drones (GSD ~ 2cm, cover 

much smaller extents), d and e high resolution in-water photography (GSD ~ 5mm).  

 

2.3 Methods 

2.3.1 Systematic Review 

To address our aims, we surveyed the international journal Coral Reefs, one of the world’s 

primary journals for coral reef studies, as a representative sample of coral reef research, similar to the 

approach of Bellwood et al. (2020). We specifically selected the journal Coral Reefs due to its 

comprehensive coverage of research in the coral reef domain globally. It serves as an ideal choice for 

our study, with the sole inclusion criterion being scientific quality, provided the papers pertain to coral 

reefs. Importantly, this journal has no geographical or methodological constraints; including papers 

from diverse locations and employing various approaches. To ensure we sampled a representative 

range of relevant remote sensing studies, we surveyed the journals Frontiers in Marine Science, PLoS 
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One, Remote Sensing, and Remote Sensing of Environment as representative journals for remote 

sensing-based studies on reefs. We used multiple journals as there were fewer relevant articles 

available when compared to Coral Reefs. We acknowledge the potential omission of some studies 

through this approach, however the attained sample size was robust and representative of the broader 

body of scientific coral reef literature (cf. Brandl et al. 2019; Sambrook et al. 2019; Bellwood et al. 

2020; Crisp et al. 2022).  

Studies were downloaded in August 2023 from two databases: ‘Scopus’ and ‘Web of Science’. 

To facilitate direct comparisons, we included search terms that were broadly overlapping between the 

two fields (see below). Furthermore, we selected a time slice that ensured both fields had a high 

chance of appearance and influence, i.e. between 2012 and 2021, inclusive. For the four representative 

remote sensing journals, the respective search terms were: [Topic sentence (TS) = coral* OR “Coral 

reef”] AND [TS = Satellite OR UAV OR drone* OR algorithm OR “airborne sensor” OR structure-from-

motion OR s-f-m OR “structure from motion” OR photogrammetry OR photomosaic* OR “photo 

mosaic” OR camera OR “photo-mosaic” OR “remote sensing” OR multispectral OR "imagery" OR "3D" 

OR "3D mapping" OR "3D modelling" OR "terrain reconstruction" OR "orthomosaic" OR "Large area 

imaging"].  Hyperspectral sensors hold great promise and are gaining importance in assessing benthic 

changes on coral reefs by offering imagery data across numerous narrow bands, possibly improving 

the thematic resolution of outputs (Bajjouk et al. 2019; Dierssen et al. 2021). However, we did not 

include “hyperspectral” as a search term in this review because, at present, these sensors and the 

platforms on which they operate, have lower operational efficiency and are not yet as widely available 

and adopted compared to the majority of methods covered. When a study using hyperspectral imagery 

was encountered in the review (e.g Joyce et al. 2013) it was included (N =11).  

 

For the Journal Coral Reefs, the topic sentence was surveyed for: [benth* OR bathym* OR 

complexity OR cover OR rugosity OR map*]. Both searches were limited to full articles. After removing 

duplicates, the initial pool consisted of 747 studies. Among these, 359 were categorized as traditional 

in-water coral reef ecology (i.e. appearing in Coral Reefs), and 363 were classified as remote sensing 

(i.e. found in the four remote sensing journals). The search in Coral Reefs also yielded 25 studies that 

primarily used remote sensing methods to raise their final metrics (e.g. Doo et al. 2017; Newnham et 

al. 2020). Consequently, these were included in the remote sensing category, resulting in a total of 388 

studies. 

To ensure a meaningful comparison between the two fields we adopted a filtering protocol to 

select studies that were broadly comparable. We filtered the initial pool to identify suitable studies 
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from the two fields by specifically looking for studies that assessed a benthic component on coral reefs 

and were concerned with in-situ measurements by screening the Abstract and Methods. To be 

included, remote sensing publications had to be undertaken on tropical coral reef systems, involve a 

benthic component (e.g. studies focusing on water quality were excluded), and had to address an 

ecological aspect of coral reefs, i.e. they must be concerned with metrics and processes (functions) 

that contribute to the movement or storage of energy or material on coral reefs. Review-style studies 

or studies in deep-sea or cold-water environments were excluded. Similarly, ecological papers had to 

be conducted on tropical reefs, in less than 20 m depth, and be non-experimental (i.e. studies 

employing terra cotta tiles or collecting specimens for lab experiments were excluded). This screening 

process resulted in the retention of 111 remote sensing studies and 88 traditional in-water coral reef 

ecology studies for analysis (see Table A1).  

 

These remaining 199 papers were thoroughly reviewed and for each we recorded: 1) the 

category of the study (i.e. traditional coral reef ecology or remote sensing), 2) focal question(s) 

addressed, 3) organisms/parameters investigated, 4) method/approach employed, 5) geographic 

region(s) each study was conducted in, 6) geomorphic zone(s) surveyed, 7) whether study sites were 

identified in a reproducible way (i.e. with geographic co-ordinates or shown on a map), and 8) sensor 

platform(s), 9) spatial resolution, and 10) whether in-water field verification of broad spatial scale 

remote sensing was undertaken. These variables were chosen to allow for effective and insightful 

cross-domain comparison (see Table A2 for additional justification). Reporting the "spatial extent" of 

studies was exceptionally rare, leading us to rely on the geomorphic zone/s of operation as a proxy. 

Due to the wide range of papers addressing various themes at a range of scales, classifying thematic 

resolution (e.g. taxonomic resolution or number of benthic classes) consistently and meaningfully 

proved nearly impossible, necessitating the use of the broader "focal question" category as a 

substitute. The resulting data were then quantitatively explored to identify the potential overlap and 

divergences between ecological and remote sensing literature on coral reef systems.  

 

2.3.2 Categorizing studies 

Initially, we categorized all studies based on their approach or the type of data they generate. 

For simplicity and illustrative clarity, we classified studies into two categories: direct ecological 

observations, primarily utilizing or generating localized in situ data (termed traditional coral reef 

ecology or CR), and remote sensing (RS), primarily involving the use or creation of spatially explicit 

map-based data. The focal question(s) addressed in each study were identified and divided into the 
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following categories: benthic mapping, bathymetry, carbonate budget, bleaching detection, disease 

impact, bioturbation, organism ecology, climate change, or community composition. Benthic mapping 

was defined as studies concerned with dividing different substrata into respective groups and spatially 

mapping their location, often producing spatially explicit datasets across large extents (e.g. identifying 

the benthic communities across the Capricorn Bunker; Hamylton et al. 2017). In contrast, community 

composition studies assessed and categorized an ecosystem component into high-detail taxonomic 

categories, quantifying their presence and abundance often in form of localised point-based 

assessments (e.g. assessing spatial and temporal patterns in hard coral cover; Roelfsema et al. 2021a). 

When studies addressed multiple focal questions, each of these instances was treated as distinct 

observations in the dataset. Thus the number of focal questions identified is greater than the number 

of papers assessed.  

 

2.3.3 Categorizing methods used 

We categorized the approaches used in the studies into four main groups: direct 

quantification, sensor-based, linked studies, and upscaled linked studies. Direct quantification studies 

involved counting organisms present (e.g. Perry and Morgan 2017). Sensor-based studies utilized 

various sensors such as satellites or cameras, primarily for mapping or three-dimensional imaging of 

the benthic environment (e.g. Ferrari et al. 2016). Linked studies combined direct quantification and 

sensor-based approaches, linking in-situ observations and remote sensing approaches to infer stronger 

relationships between multiple metrics, such as assessing how coral colony complexity affects fish 

distributions (e.g. Oakley-Cogan et al. 2020). Upscaled linked studies introduced an additional aspect 

of aerial remote sensing and ground-truthing to extend ecological observations to entire reef-scape 

scales such as measuring the biomass of foraminifera in different reef zones and upscaling that to the 

reef scape scale using classified satellite imagery (e.g. Doo et al. 2017).  

 

2.3.4 Categorizing geographic regions and habitat assessed 

To assess how studies from the different fields (CR and RS) were distributed globally and 

determine if number of studies in a region was related to the area of reef present, we categorized the 

geographic region/s of each study based on the size of reef areas mapped by the Allen Coral Atlas 

(2022). For instance, studies conducted in the Great Barrier Reef (GBR) were assigned to the 

corresponding geographic region “Great Barrier Reef and Torres Strait” mapped area in the Allen Coral 

Atlas. In cases where a study covered multiple mapped areas, it was classified as surveying 'multiple' 

reef areas. To calculate the area of reef present in the studied regions the reef areas were extracted 
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from the Allen Coral Atlas in early November 2022 and included the reef’s benthic classes such as 

Coral/Algae, Microalgal Mats, Rock, and Rubble. We excluded Sand and Seagrass as benthic classes to 

maintain a focus on biogenic reef framework building structures and to prevent an overrepresentation 

of mapped reef areas, especially in cases with extensive sand banks and seagrass habitats, particularly 

within the Caribbean context. Data were handled and visualised using ArcGIS Pro (version 2.9) and R 

(R Core Team 2022), using the ‘tidyverse’ package (Wickham et al. 2019).  

To assess which coral reef habitats were studied we categorized the habitats investigated 

within each study into their corresponding geomorphic zones. Our analysis included only those 

geomorphic zones that were consistently identified, namely back reef, lagoon, reef crest, reef flat, and 

reef slope/fore reef (as defined in Kennedy et al. 2021). If studies encompassed multiple geomorphic 

zones, each zone was treated as a separate allocation. Studies that assessed or mapped entire reef-

scapes were categorized as ‘Entire reef’. To determine the distribution of studies across different zones 

in relation to the proportional reef area each zone represents, we calculated the average area of each 

geomorphic zone across all reefs in the Great Barrier Reef and Torres Strait mapped region (Allen Coral 

Atlas 2022) and derived the relative proportions.  It is important to emphasize that our study did not 

specifically centre on this particular region and we recognise that it may not be representative of reef 

proportions in all other regions globally. We chose this region to represent the proportional reef area 

of geomorphic zones because it has received the most extensive scientific attention (Figure 2.3A), 

making it likely to provide the most reasonable geomorphic zone area estimates due to the substantial 

mapping efforts (Kennedy et al. 2021; Roelfsema et al. 2021b).  

 

3. Results 

A broad and variable geographic spread of studies was identified (Figure 2.3A) with most 

studies coming from the Great Barrier Reef (GBR) (36 in total, 18% of all studies) with a relatively equal 

split between traditional in-water ecology and remote sensing (Figure 2.3B). Some regions were 

dominated by remote sensing studies, for example the SW Pacific, Hawaiian Islands and the Central 

South Pacific (over 70% of studies) with a paucity of traditional ecological studies (N = 9). There was 

no obvious relationship between the number of studies conducted in a region and its mapped reef 

area (Figure 2.3B, Figure A1). For instance, the South-east Asian Archipelago, which had the largest 

mapped reef area, had only six studies included in the review (Figure 2.3B). In contrast, the Hawaiian 

Islands, with a relatively small reef extent, contributed 17 studies, almost 90% of which were remote 

sensing studies (Figure 2.3B). Notably, barely any traditional coral reef ecology studies surveyed more 
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than two regions (N = 2), while remote sensing studies frequently covered multiple regions (N = 13) 

(Figure 2.3B, number 28 – “Multiple”).  

  

 

Figure 2.3 A) Map showing the locations of the major reef regions (Allen Coral Atlas 2022). B) Graph 

comparing the mapped reef area (km2) (presenting the mapped area of the benthic classes Coral/Algae, 

Rock, and Rubble; sourced from Allen Coral Atlas 2022) of each region) to the number of studies included 

in this analysis from each field. The numbers and corresponding name of each major region labelled on the 

map are displayed at the bottom.  
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 Traditional in-water coral reef ecology studies addressed a wide range of focal questions, but 

primarily focused on community composition of the benthos, involving a taxonomic level of 

identification (Figure 2.4A). In contrast, most remote sensing studies (72%) were concerned 

predominantly with benthic mapping, i.e. the classification of substrata into distinctive groups based 

on spectral signatures, and/or quantifying bathymetry (18%) (Figure 2.4A). Numerous studies (18%, N 

= 20) using in-water remote sensing technologies were bridging this gap in focal questions, increasingly 

investigating community composition with a taxonomic level of identification similar to that of 

ecological studies (Figure 4A, Figure S2). Unsurprisingly, remote sensing studies predominantly (86%) 

employed primarily sensor-based approaches ranging from satellite imagery to unoccupied aerial 

vehicles (UAVs) or underwater photogrammetry approaches (Figure 2.4B). These approaches were 

mainly passive, gaining data and producing metrics through imagery processing. In-situ field surveys 

mostly employed methods that directly quantify or count the presence of organisms (95%) (Figure 

2.4B). Only 7% (N = 14) of studies used a linked approach combining direct quantification (e.g. counting 

fish) with, mostly, in-water sensor-based techniques (e.g. photogrammetry), allowing for a more 

nuanced understanding of processes and higher-order metrics, such as rugosity (e.g. Oakley-Cogan et 

al. 2020). Notably, only 3% (N = 6) of studies combined multiple approaches (i.e. in water counts, drone 

imagery and satellite imagery) to upscale observations to an entire reef-scape (Figure 2.4B) (e.g. Doo 

et al. 2017).  
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Figure 2.4 A) Proportion (%) of focal questions answered by traditional coral reef ecology studies (blue) (N 

= 100) and remote sensing studies (orange) (N = 139). B) Relative proportion (%) of methodological 

approaches employed by traditional coral reef ecology studies (blue) (N = 88) and remote sensing studies 

(orange) (N = 112). Note, when studies addressed multiple focal questions, each of these instances was 

treated as distinct observations in the dataset.  

 

Most (73%) remote sensing studies accurately reported the location of their study sites in a 

manner that allowed for reproducibility (i.e. giving coordinates). Just over half (58%) of traditional coral 

reef ecology studies did likewise (Figure A3). Overall, 45% (N = 40) and 33% (N = 37) of traditional coral 

reef ecology and remote sensing studies, respectively, did not specify which geomorphic zone (i.e. back 

reef, lagoon, reef crest, reef flat, and reef slope/fore reef) their study was conducted on. Of those 

studies that did specify, geomorphic zones examined by each field contrasted markedly (Figure 2.5). 

The reef slope was the most surveyed habitat (80%) in traditional ecological studies (N = 37), while 

most remote sensing studies (N = 50) covered entire reef systems (68%) (Figure 2.5). Notably, the reef 

flat, which often accounts for the largest proportion of a reef by area (Yamano et al. 2001; 

Lutzenkirchen et al. 2023), received relatively little attention by traditional coral reef ecology, with only 

30% of studies specifically mentioning this habitat (Figure 2.5). While only 14% of remote sensing 

studies explicitly mention this geomorphic zone, it would be encompassed within the 81% of studies 

operating across entire reef systems (Figure 2.5). In contrast, the smallest of all geomorphic zones on 

reefs by area, the reef crest (at 3% area), was barely assessed by remote sensing studies (1%) but 

received moderate attention by coral reef ecologists (26%) (Figure 2.5). There were also temporal scale 

constraints, with most studies being single, one-off studies (62%). Only 38% of all studies from either 

field included multiple years.  
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Figure 2.5 Comparing the proportion of studies that allocated specific geomorphic coral reef zones as 

their area of operation from the fields of traditional coral reef ecology (blue) (N = 48, 45%) and remote 

sensing (orange) (N = 75, 33%). The size of red circles represents the average proportional area (%) of 

each reef habitat based on the average mapped area of those zones for all reefs of the GBR and Torres 

Strait as mapped by the Allen Coral Atlas (2022). 

 

4. Discussion 

Unsurprisingly, despite their shared focus on the reef benthos, we found that traditional coral 

reef ecology and remote sensing studies generally use different approaches and address distinct 

questions. Integration between the two fields is increasing but to-date there are relatively few studies 

using a linked approach, that combines in-water and aerial sensor-based methods, to upscale 

ecological observations to the reef-scape level. While not all coral reef ecosystem functions occur at 

the reef scale (i.e. across multiple reef habitats), negating the need for wholesale upscaling, this lack 

of integration to-date shows that our understanding of coral reef systems and their functioning is not 

easily translatable to larger scales. This is concerning, as threats to these systems are steadily 

increasing in magnitude. Below, we discuss the limitations of each field and outline a joint approach 
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for future research and development that could enhance the utility of both fields and provide a basis 

for positive synergies. 

 

4.1 Traditional coral reef ecology 

We found that studies in traditional coral reef ecology predominantly employed methods that 

aim to directly quantify organisms on a very fine taxonomic scale, i.e. genus and species. Such detailed 

in-situ assessments are valuable to get a high-resolution picture and to make inferences that may help 

to identify causal relationships and responses to threats (Hughes et al. 2017; Bellwood et al. 2019a). 

High-detail data enable us to predict the future impact of disturbances on ecosystem functioning in a 

causal and robust manner, especially at the community and population scale.  

However, the greatest problem in upscaling these high-resolution observations is that the 

delivery of functions by coral reef organisms is not homogenously spread across reef scapes (Streit et 

al. 2019; Tebbett and Bellwood 2020), emphasising that there is not one unifying scale at which to 

measure all processes (Holling 1992; Levin 1992; Wu 2004). For example, detritivory delivered by 

Ctenochaetus striatus, a reef surgeonfish, was shown to occur over less than 28% of the entire reef-

scape (Tebbett and Bellwood 2020). Thus, where we measure shapes what we understand. While 

certain ecosystem functions may occur at smaller scales and provide insights into broader patterns, 

measuring in high detail everywhere is impossible. Despite coral reef ecologists' substantial effort to 

broaden their observations' scope and scale, this review identified that study effort is unevenly 

distributed both at the reef-scape scale and at global levels. Consequently, as researchers, we need to 

acknowledge that the scale of our research ultimately constrains the scale of our understanding and 

predictions. 

For example, traditional coral reef ecology studies primarily target the reef slope, a structurally 

complex habitat, which often supports the highest fish densities and coral cover (Wismer et al. 2009; 

Oakley-Cogan et al. 2020). While covering less than a third of the total reef area (when measured above 

20m depth), the reef slope was the focus of 80% of all traditional coral reef ecology studies that 

specified a habitat. However, relying on a single site or geomorphic zone to represent an entire reef 

overlooks critical within-reef variability. A long-term study on Heron Island on the GBR spanning 16 

years across 31 sites, including 567 sub-sites, revealed significant variation at multiple scales, spanning 

from the entire reef-scale to smaller subsite divisions (Roelfsema et al. 2021a). Accordingly, recent 

papers have highlighted the constraints placed on our understanding of coral reef functioning by the 

limited spatial and temporal distribution of study effort, which often focuses on only a limited subset 

of available shallow reef habitats (Rocha et al. 2018; Bellwood et al. 2020; Collins et al. 2022; Kench et 
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al. 2022; Tebbett et al. 2023b). For instance, we found that the reef flat, which may play a significant 

role in reef functioning (i.e. for productivity [Hatcher 1988; Bellwood et al. 2018] and wave energy 

dissipation [Kench and Brander 2006; Harris et al. 2015]), and is typically the largest reef habitat in 

terms of area (Bellwood et al. 2018), is often underrepresented in traditional coral reef ecology studies 

(Bellwood et al. 2020; Tebbett et al. 2023a). In a recent global assessment of coral reef benthic 

composition change based on 24,000 observations over 22 years, Tebbett et al. (2023a) found that 

only 7% of the data were derived from reef flat observations. Likewise, less than a quarter of all reef 

ecology studies included our analysis investigated the reef flat.  

Beyond such biases, or selective focus on specific reef habitats, we distinguished regional 

hotspots of research effort on a global scale. Most coral reef ecology studies took place in a few well-

established research areas with existing infrastructure (i.e. research stations), that facilitate effective 

sampling. These infrastructure patterns may drive local overrepresentation and possibly ecological 

bias – not because of ecological factors but ease of access (Hedley et al. 2016). In addition, published 

papers may be biased toward countries and organizations with resources to support publication, 

potentially overlooking research conducted in nations with more limited financial means. Few 

ecological studies were able to survey entire reef systems regionally or multiple regions on a global 

scale.  

In sum, these results indicate that traditional coral reef ecology studies are valuable but 

somewhat limited in their extent and ability to be upscaled, as observations of organisms and their 

environments are often spatially sparse. They are frequently conducted at scales (spatial, temporal, or 

thematic) that are chosen subjectively and often dictated by practical factors such as access, time or 

costs, rather than by the ecosystem processes investigated. These challenges may lead to a 

considerable mismatch (of an estimated 5.6 orders of magnitude; Estes et al. 2018) between the scales 

at which ecologists conduct research and the areas their observations are supposed to represent 

(Wheatley and Johnson 2009; Lecours et al. 2015; Estes et al. 2018). Ecologists acknowledge the 

disparity between collected samples and the resulting inferences drawn from them. To address this 

disparity, statistical techniques are frequently employed (e.g Brown et al. 2021; Castro-Sanguino et al. 

2021; Edgar et al. 2023). Nonetheless, the efficacy of a model and its transferability heavily depend on 

the quality of the underlying data it relies upon (Yates et al. 2018). The potential for substantial 

enhancement in model performance lies in the improved spatial representation of data. Such 

enhancement becomes even more crucial when considering the inherent spatial heterogeneity, 

patchiness, and hierarchical structure within ecosystems. Changes in scale can unveil different drivers 

of patterns and processes (Wiens 1989; Holling 1992; Levin 1992; Wu and Li 2006) . Consequently, the 

presumption that observations made in a single reef habitat can aptly represent an entire reef-scape 
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can introduce scale-related artefacts. These mismatches between ecological, observational, and 

analytical scale, ultimately hinder the detection of causal relationships in macroecological patterns 

(Wheatley and Johnson 2009; Lecours et al. 2015) and the formation of effective management 

responses (Bellwood et al. 2019a).   

If unidentified, such scale artefacts can become widespread and lead to fundamental 

ecological misinterpretations. We found that most (95%) traditional ecological studies used direct 

observation techniques which are labour intensive to collect and analyse, whilst also being limited to 

restricted spatial and temporal scales. These limitations are likely to cause mismatches amongst scales. 

For instance, recently, discrepancies across both temporal and spatial scales have been found to drive 

the identified occurrence of coral reef phase shifts (Crisp 2022; Crisp et al. 2022). As a result, the 

reporting of phase shifts in the coral reef literature may have been overrepresented because most 

studies detecting phase shift occurrences did not persist long enough to capture reverses (i.e. 

bidirectional change), thus interpreting short-lived blooms as shifts (Crisp et al. 2022). Spatially, the 

detectability of phase shifts was highly dependent on the scale of sampling, with a decrease in 

apparent phase shifts as spatial scale increased (Crisp 2022). 

 

4.2 Remote sensing 

Remote sensing approaches may help to address the problem of scale in ecological coral reef 

studies (Green et al. 2000; Hedley et al. 2016; Kutser et al. 2020). Unlike traditional in-situ studies, our 

results show that remote sensing studies can assess entire reef systems, even in remote locations, and 

can encompass multiple geographic regions globally. Over 60% of remote sensing studies in this review 

assessed entire reef-scapes, rather than specific reef habitats. This offers the opportunity to evaluate 

benthic changes across diverse spatial, temporal, and thematic scales (Lecours et al. 2015; Hedley et 

al. 2016; D’Urban Jackson et al. 2020).  

Accordingly, our results show that remote sensing studies have made significant progress in 

upscaling observations to reef-scape scales by combining approaches and linking methodologies. This 

progress is driven by advances in medium and high-resolution sensors, such as satellites, and UAVs, as 

well as in-water photogrammetry studies (Ferrari et al. 2016; Bennett et al. 2020; Roelfsema et al. 

2021b; Remmers et al. 2023). The Allen Coral Atlas (2022), a global coral reef mapping project, is an 

example of recent developments. This project used Planet Dove imagery (3 m pixel resolution) and a 

‘Reef Cover’ classification (Kennedy et al. 2021) to map all coral reef systems on Earth. By using 

uniformly defined algorithms and classification systems, this is the most recent project to create 

globally consistent benthic and geomorphic reef classes. 
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Maps are powerful tools for conveying complex spatial information to diverse audiences (Stieb 

et al. 2019). While a single map can offer a snapshot of a specific reef or marine community, a series 

of maps can be an effective monitoring tool to track changes in entire coral reef systems across 

extended temporal and spatial scales (Green et al. 2000; Hedley et al. 2016; Hamylton 2017). However, 

only a minority (17%) of the remote sensing studies analysed in this review employed multiple time 

steps. Furthermore, to maximise the utility of time-series analyses, accuracy, i.e. the consistent correct 

identification of actual features, is key. Ground-truthing fieldwork is commonly used in remote sensing 

mapping studies to train and validate classification algorithms by conducting georeferenced surveys 

(Green et al. 2000; Roelfsema and Phinn 2010; Hamylton 2017).  

 

Despite improvements, aerial and satellite remote sensing products are often still limited in 

their ability to provide an ecological understanding of coral reef systems. Most remote sensing studies 

are concerned with benthic mapping, but as spatial extents increase, spatial and taxonomic resolution 

decreases accordingly. Thus, while creating benthic cover maps may be a predominant objective for 

managing purposes, simply mapping broad benthic classes does not measure the ecological status of 

the benthos (Hedley et al. 2016). Without empirical ecological in-situ data and multiple time steps, 

they at best, detect changes, not the cause of change, which is key when developing management 

responses. Furthermore, mapped benthic classes derived through aerial and satellite remote sensing 

technology are often based on spectral signatures, restricting accurate datasets to shallow reef zones 

due to the spectral interference of water. Moreover, the spectral similarity of benthic organisms, such 

as algae and coral, makes it extremely difficult to separate them (Knudby et al. 2010; Kutser et al. 

2020). While not specifically assessed in this review, hyperspectral sensors, with their expanding 

capabilities and the ability to assess a narrower range of spectral bands, hold the potential to enhance 

discrimination of benthic components (Bajjouk et al. 2019; Dierssen et al. 2021). Beyond spectral 

limitations, submergence and light attenuation in the water column also pose significant challenges 

for aerial and satellite remote sensing (Purkis 2018). Despite improvements in sensor capabilities, 

including global coverage, higher spatial and temporal resolution (Hedley et al. 2016; Kutser et al. 

2020), accurately distinguishing spectrally similar substrata in a heterogeneous environment 

modulated by variable water depth and quality remains a major challenge (Lucas and Goodman 2015; 

Purkis 2018). Even moderate-spatial and high-spatial resolution sensors are often unable to reliably 

differentiate benthic groups, such as algae and hard coral. As a result, aerial and satellite remote 

sensing studies have difficulty detecting the main ecological transformation on coral reef systems (i.e. 

algae to/from coral; Tebbett et al. 2023a) (cf. Cornet and Joyce 2021). This predicament is reflected in 

the distribution of focal questions identified herein. While most traditional in-water ecological studies 
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address community composition, possibly elucidating the response of individual species or groups to 

environmental variables, most remote sensing studies employing aerial sensors are currently limited 

to mapping broad benthic classes (i.e. coral and/or algae as one class). Consequently, there is a 

mismatch between aerial and satellite remote sensing data sets,  and the eco-physiologically based 

demands of potential end users (i.e. ecologists and reef managers) (Kutser et al. 2020). 

To establish a functional and mechanistic understanding of coral reef systems and their 

changes, integrating remote sensing studies with empirical ecological in-situ data (i.e. various 

underwater visual census methods) is essential. This gap is being effectively bridged using relatively 

new techniques, particularly in-water photogrammetry, which plays a crucial role in expanding 

quantitative data on structural complexity (Friedman et al. 2012; Figueira et al. 2015; Ferrari et al. 

2016; Pygas et al. 2020; Remmers et al. 2023). These techniques actively leverage in-water remote 

sensing technology to unite ecological observations with advanced tools, promising a more 

comprehensive and holistic comprehension of intricate ecosystems like coral reefs. However, 

comparable links at larger extents afforded by aerial and satellite remote sensing, remain elusive.  

 

4.3 Future directions 

As human-induced stressors continue to reshape ecosystems, coral reefs are particularly 

vulnerable (Hughes et al. 2017; Bellwood et al. 2019a; Woodhead et al. 2019). To understand and 

manage these fragile ecosystems in the Anthropocene, we may benefit from novel approaches and 

the integration of scientific disciplines (Dornelas et al. 2019; Williams et al. 2019). Indeed, as threats 

escalate in scale, it is essential to establish dynamic relations and to upscale observations by combining 

multiple tools that vary in scale and resolution (Dornelas et al. 2019). 

Below we identify approaches that may enable us to harness the best of both traditional coral 

reef ecology and remote sensing fields, offering the greatest potential to address the scale mismatch 

between coral reef research and anthropogenic threats by rapidly upscaling observations and 

inferences. Shallow reef environments (i.e. reef flats and crests) offer the optimal habitats for these 

upscaled studies as they impose the fewest limitations for aerial and satellite remote sensing (Hedley 

et al. 2016; Purkis 2018; Kutser et al. 2020). Furthermore, these habitats are ecologically critical (Kench 

and Brander 2006; Bellwood et al. 2018), yet are often underrepresented in coral reef ecology studies 

(Bellwood et al. 2020; Kench et al. 2022; Tebbett et al. 2023a). To understand coral reef ecosystem 

functioning on regional and global scales, in-situ measurements, which provide the finest detail but 

present multiple trade-offs and a lack of scalability, need to be linked directly (in space and time) with 
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multiple sensors that are less detailed in resolution but offer effective and continuous large spatial 

coverage (Figure 2.6) (Calders et al. 2020).  

 

For effective cross-scale work, combining ground-truthed remote sensing with high-detail 

ecological observations in shallow reef settings, like inner and outer reef flats, is crucial. To ensure 

accurate benthic maps from moderate to high-resolution (< 3m) satellite imagery, georeferenced 

images could be taken along transects or quadrats, estimating benthic structure and organism 

abundance in-situ (e.g. Roelfsema et al., 2021b). Several studies have successfully upscaled in-situ 

ecological measurements via remote-sensed benthic maps (e.g. Doo et al. 2017; Hamylton et al. 2017; 

Williamson et al. 2021) (Figure 2.6). This approach appears to be particularly promising with the 

possibilities to expand on these concepts, combining the strengths of both fields for ongoing cross-

calibration between sensors and upscaling of ecological observations to large reef-scape scales (Figure 

2.6). These methods involve “small-area-high-resolution” in-situ observations and in-water 

technologies (< 1cm resolution) across shallow reef sites to provide ecological context and ground-

truthing, ensuring accurate delineation of key benthic components and data reliability (Figure 2.6A, B), 

while recent “large-area-lower-resolution” (< 3m) imagery and mapping methods further enhance the 

reliability of upscaling ecological observations and novel metrics (Figure 2.6C). 
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Figure 2.6 Schematic summary outlining a potential approach using in-situ assessments, as well as multiple 

layers of sensors of varying resolution, to bridge scientific disciplines and upscale observations onto reef-

scape scales. After multiple shallow reef areas are surveyed using a ‘small-area-high resolution’ sensor (A) 

and ground-truthed using in-situ assessments and sub-cm resolution in-water remote sensing technology 

(B), observations can be extrapolated and upscaled using a ‘large-area-lower-resolution’ sensor (C). 

Geomorphic map in (C) taken from (Phinn et al. 2012). 

 

While combining these approaches will ensure more empirically linked upscaling onto larger 

reef-wide scales, the utility of each approach may be enhanced by: 

1) Standardizing procedures in coral reef ecology to enhance data reproducibility, facilitating 

robust comparisons across scales and disciplines. While local and regional ecological monitoring 

protocols may be standardized, global standardization will improve comparability. The MERMAID 

project (https://datamermaid.org/), an open-source application that gathers and manages real-time 

coral reef health data, provides an example of this approach. However, existing long-term benthic 

databases such as Caribbean Coastal Marine Productivity or National Oceanic and Atmospheric 

Administration lack uniformity, hindering cross-validation, particularly for finer-resolution benthos 

categorization (Tebbett et al. 2023b, 2023c). Consolidating these datasets under a common protocol 

would increase the value of data for training and validation of remote sensing mapping algorithms 

(Lyons et al. 2020). 

2) The reliable recording and reporting of survey sites is crucial to data sharing and study 

replication. Therefore, including the survey start location using global positioning system (GPS) and 

indicating the direction of the surveys would significantly improve the spatial accuracy and 

reproducibility of ecological studies. 

3) Technological advances, especially in the field of remote sensing, have opened numerous 

new frontiers in the marine realm. However, moving forwards, we need to ensure that new techniques 

are responding to critical questions. Despite increasing spatial resolution, current methodological 

advances are largely used for the same applications. To fully harness the capacity of recent 

technological innovations and advance our understanding of coral reef functioning in the 

Anthropocene, we must ensure that critical questions are being addressed and that technology is being 

developed to address these key questions, rather than retrofitting questions to new tools. We need to 

move beyond traditional studies that describe patterns to a deeper understanding of the functional 

and mechanistic basis of change. Integrating remote sensing and coral ecology studies may not directly 

yield causal insights. However, it has the potential to enhance our comprehension of complex 
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relationships (Wedding et al. 2019). This integration, particularly when spatially explicit, can offer 

insights into seascape dynamics. 

4) Just as certain parameters of coral biology, such as coral respiration, can only be accurately 

measured in controlled laboratory experiments, with specialized equipment, there are certain 

parameters of coral reef processes that cannot be reliably measured using broad-scale remote sensing 

methods, no matter how advanced the technology becomes. For instance, discerning fine-scale 

rugosity (<1 m) of coral colonies or distinguishing between live corals and dead corals coated in 

filamentous algae can be challenging using aerial and satellite remote sensing data, often necessitating 

optimal conditions. Therefore, it is crucial for coral reef ecologists, biologists, and remote sensing 

scientists to collaborate and develop new and meaningful indicators or proxies for coral reef processes 

that are applicable to both remote sensing and ecological methods and that operate at shared scales. 

Recent success has been shown in employing high-resolution (< 1m) airborne sensors such as LiDAR to 

accurately describe broadscale coral habitat complexity (Asner et al. 2020; Harris et al. 2023). 

Furthermore, the utilization of automated image annotation for coral reef monitoring, which 

demonstrates accurate estimations of benthic abundance with a high agreement of 97%, significantly 

expedites data analysis by over 200 times and reduces costs by 99% (González-Rivero et al. 2020). 

Approaches like these enable the translation of detailed in-water measurements to broadscale 

remotely sensed methods with increased accuracy and relevance. 

5) To advance our understanding of ecosystems and their vulnerability in the Anthropocene, 

increased public availability of datasets is crucial (Calders et al. 2020). However, despite the benefits 

of open science, data sharing lacks incentivisation and it is often perceived to have potential negative 

ramifications (Perrier et al. 2020; Gomes et al. 2022). To promote public availability of datasets, data 

source citations in perpetuity, a growing component in the field of remote sensing, as well as open-

source databases such as MERMAID, could provide incentives that would ensure collaboration, 

promotion, recognition, and reward. Without these incentives, the collection of new data is likely to 

be impeded. 

 

Overall, our review of studies investigating the benthic habitat of shallow water tropical reefs 

suggests that a gap exists between traditional coral reef ecology and remote sensing studies. Although 

advances have been made, especially through in-water photogrammetry, drones, and high-resolution 

satellite mapping, a more concentrated approach is recommended to effectively bridge this gap, 

especially at large scales. Coral reef ecologists rely on detailed observations that may not match the 

spatial scale needed for robust, broadly applicable inferences about complex and dynamic 
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relationships within seascapes. Bound by logistical challenges and resource-intensive high-detail data, 

they often focus on a subset of habitats, inevitably creating scale artefacts. Remote sensing studies 

can supply continuous datasets across a range of scales and broader extents, offering a potential way 

to assess and study the scale of changes in the Anthropocene. However, they need ongoing spatially 

and temporally matched ecological data to ground-truth observations, ensure accuracy, and start the 

process of exploring mechanistic explanations for change. As anthropogenically caused stressors 

continue to escalate in scale, our study suggests that bridging these two scientific disciplines will be 

challenging but offers promising ways to upscale observations to entire reef-scape scales. We identify 

potential avenues for increasing the utility of each field, recognizing limitations and emphasizing 

collaborative approaches. In a world characterized by intensifying global change, such bridged 

approaches, integrating multiple tools at varying levels of resolution and scale, will be crucial to 

advance our understanding and management of coral reef functioning in the Anthropocene.  
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Chapter 3. The global biogeography of reef morphology 

 

Published as: Lutzenkirchen, L. L., Duce, S. J., & Bellwood, D. R. (2023). The global biogeography of reef 

morphology. Global Ecology and Biogeography, 32, 1353–1364. (flow of paper has been 

slightly altered to fit the thesis format) 

3.1 Abstract 

The Caribbean and Indo-Pacific are separate biogeographical realms with distinct 

biogeographical and evolutionary histories, a 10-fold difference in coral biodiversity, and highly 

disparate sea-level histories. Since reef morphology often reflects interactions between biological 

activity and biogeographical history, including sea levels, the widths of shallow coral reef habitats are 

likely to differ markedly between realms, with ramifications for numerous ecosystem functions. Our 

goal was to assess the impact of global-scale biogeographical and evolutionary histories on coral reef 

habitats, specifically investigating if Indo-Pacific reefs are wider than their Caribbean counterparts. We 

used the Allen Coral Atlas, a global reef mapping system (3 m pixel resolution), to examine 3765 

transects, 3 km long and 1 km apart, on 60 reefs across the two realms, quantifying shallow reef habitat 

widths (Inner and Outer Reef Flat, and Reef Crest) using ArcGIS. Shallow reef habitat widths 

demonstrated remarkable similarity between the Caribbean and Indo-Pacific. Estimated modal widths 

diverged by only 37 m; means by just 122 m. Although shallow reef zones appeared wider in the Indo-

Pacific, habitat widths on atolls were nearly identical across realms (means varying by less than 8 m). 

Our remote sensing approach provides a global description of the biogeography of coral reefs as 

biogenic structures. Furthermore, we can assess the relative importance of realm-wide differences in 

coral diversity and sea-level history on reef growth. The striking similarity of reef widths across realms 

suggests that reef growth (net reef accretion) is largely independent of coral diversity, or sea-level 

history, and that other factors may have played a major role in constraining shallow reef widths. These 

factors may include geomorphology (e.g. antecedent topography and historical accommodation space) 

and, once at sea level, self-limiting local hydrodynamics. 

 

3.2 Introduction 

Coral reef ecosystems are exceptional in their ability to create broadscale (10s-100s of km) 

biogenic structures and their own substratum. Coral reefs represent the ultimate expression of an 

interaction between the biology of organisms and their environment (Smith and Buddemeier 1992). 

Their morphology and configuration, including shape and size, reflects the relationship between 

biological activity and biogeographic history, as well as physical hydrodynamic drivers. While coral 
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reefs are incredibly diverse systems globally, they share basic, fundamental, habitat structures and 

zonation patterns (Goreau et al. 1979). Thus, all coral reefs can be broadly divided into distinct 

omnipresent habitat zones, including the reef slope, crest, and flat, each with its own distinct 

community composition and structure (Goreau 1959; Stoddart 1969; Chappell 1980; Done 1983; 

Bellwood et al. 2018). The relative size of these habitat zones can vary, and help to characterize 

different coral reef systems around the globe (Adey 1978; Done 1983; Dullo 2005) .  

 

Reef flats are arguably the most conspicuous of all shallow water reef zones (Yamano et al. 

2001; Bellwood et al. 2018). They are defined by coral reef growth having reached modern sea-level  

(Thornborough and Davies 2011) and are often the largest zone of a coral reef by area (Bellwood et al. 

2018). Due to their shallow nature, reef flats are highly variable but productive habitats (Hatcher 1988; 

Bellwood et al. 2018) and are also important dissipators of wave energy (Kench and Brander 2006; 

Harris et al. 2015). Thus, the extent (i.e. width) of reef flats is an important proxy for reef productivity 

and coastal buffering. Assessing the global distribution of reef widths may also have implications for 

understanding how reefs, as broadscale biogenic structures, form and evolve over time and which 

factors are most important in determining their growth.  

 

The Caribbean and Indo-Pacific are highly divergent biogeographic realms in terms of their 

evolutionary history, biogeography and biodiversity (Cowman and Bellwood 2013a; Bellwood et al. 

2017; Siqueira et al. 2019a) (Figure 3.1A). They also differ markedly in their sea-level history, and timing 

of reef initiation (Montaggioni and Braithwaite 2009; Gischler 2010, 2015; Woodroffe and Webster 

2014) (Figure 3.1B).  

 

Geologically, the long-term biogeographic and evolutionary differences between the 

Caribbean and the Indo-Pacific coincide with more recent disparities in sea-level history (Figure 3.1B). 

The Holocene period (ca. 11,500 YBP – present), for example, has been characterized by widespread 

environmental change, including extensive global sea-level rise (Fairbanks 1989; Bard et al. 1996). In 

the Caribbean, sea-level history can be described by a transgressive curve, where sea-levels rose 

rapidly during the Mid-Holocene, but decelerated afterwards, never exceeding modern sea-levels 

(Gischler 2015). By contrast, in the Indo-Pacific, after a steep initial rise, reef systems experienced 

relatively static sea-levels (1-2 m above modern levels) for the past 6000 years, with a fall towards 

modern levels at the end of the Holocene (Gischler 2010) (Figure 3.1B). 
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Sea-level is a major controlling factor, determining both the onset of coral reef growth, as well 

as the extent and progradation of shallow reef zones. This control is manifest through its impact on 

available vertical accommodation space (Kennedy and Woodroffe 2002), which is a function of sea-

level changes and antecedent (basement) topography, primarily Pleistocene reef substrata, that may 

play a pivotal role in the initiation and development of modern coral reefs (Camoin and Webster 2015; 

Gischler 2015). Reefs are thus commonly categorised as ‘keep-up’, ‘catch-up’ or ‘give up’ according to 

their response to sea-level rises increasing the available accommodation space (Davies and 

Montaggioni 1985; Neumann and Macintyre 1985). 

Given that Indo-Pacific reefs had sea-levels at or above present for approximately 6 ka longer 

than Caribbean reefs they have had considerably more time to accrete laterally regardless of whether 

they were ‘keep-up’ or ‘catch-up’ reefs. A review of Indo-Pacific reefs found lateral accretion rates 

ranged from 8 to 330 m/ka with a mean of 84 m/ka (Yamano et al. 2003). Given these rates, one may 

expect Indo-Pacific shallow reef habitats to be about 500m wider than their Caribbean counterparts. 

This sustained growth could be expected to be further facilitated by the higher diversity of corals in 

the Indo-Pacific as discussed below.  

 

Ecologically, the evolutionary history, and the subsequently highly disparate coral species 

richness and composition of the Caribbean and Indo-Pacific, was primarily driven by tectonic activity 

during the Miocene, which resulted in the formation of hard geological barriers that isolated the 

Atlantic and Caribbean from the Indo-Pacific (O’Dea et al. 2007; Lessios 2008; Cowman and Bellwood 

2013b) and by intensifying extinctions of coral lineages in the Caribbean during the Plio-Pleistocene  

(Budd et al. 2011; van Woesik et al. 2012). Coral reefs in the Caribbean (Tropical Western Atlantic) 

show a much more depauperate coral and fish fauna, compared to reefs in the Indo-Pacific (Spalding 

et al. 2001; Bellwood et al. 2004; Cowman and Bellwood 2013b; Siqueira et al. 2019b) (Figure 3.1A). 

Coral species richness in the Indo-Pacific is an order of magnitude higher than in the Caribbean, with 

only 51 species of corals present in the Caribbean compared to almost 700 species in the Indo-Pacific 

(Roff 2021). Furthermore, many coral lineages found in the Atlantic (including most Caribbean species) 

are evolutionary distinct (Fukami et al. 2004), emphasising a long evolutionary history driven by 

isolation (Bellwood and Wainwright 2002; Floeter et al. 2008). If coral biodiversity does indeed 

promote reef growth, or ecosystem stability, one may therefore expect greater and/or more sustained 

growth of reefs in the Indo-Pacific.  
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Figure 3.1. A) Coral species richness across the tropics of the world (Ecoregions based on Spalding et 

al. [2007] and coral species richness data: www.coralsoftheworld.org, see Veron et al. [2015], B) 

Holocene relative sea-level curves for the Western Atlantic/Caribbean and Pacific from Gischler 

[2010], modified). 

The impact of these potential drivers of regional reef development may have significant 

implications for reef habitat widths, the functionality of shallow reef systems, and their response to 

climate change. As some of the most productive reef habitats (Bellwood et al. 2018; Kench et al. 2022), 

with a major influence on wave attenuation (Harris et al. 2015), and sediment retention (Schlaefer et 

al. 2022), any differences in reef habitat widths could have far reaching implications for the 

sustainability of reefs and their ability to deliver ecosystem services to humans in the future (Morais 

et al. 2021b; Tebbett et al. 2022). Thus, globally, reefs may differ markedly in their ability to deliver 

key functions. However, there has been no quantification of global differences in the widths of shallow 

reef habitats.  

 

Historically, the spatial quantification of reefs has been restricted by the available data. 

However, advances in remote sensing now permits the assessment of reefs at global scales and in 

increasingly high detail (Hedley et al. 2016; Kutser et al. 2020). The Allen Coral Atlas enables us to 

undertake the first standardised worldwide assessment of benthic cover and geomorphic zonation of 

coral reefs using fine-scale (3 m) resolution imagery and maps (Allen Coral Atlas 2022). The present 

study utilises this cutting-edge dataset to investigate how the contrasting biogeographic and regional 

evolutionary histories of the Caribbean and Indo-Pacific may have shaped shallow reef width patterns 

at 60 reefs in 20 reef locations within these two realms. Specifically, transects spaced at 1 km intervals 

were used to: 1) quantify shallow reef habitat widths between the Caribbean and Indo-Pacific, and 2) 

explore potential geological, ecological and biogeographical drivers of any differences. The key 
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question is: Are Indo-Pacific shallow reef habitats broader than their Caribbean counterparts, and, if 

so, what are the potential implications for reefs given escalating climate change?  

 

3.3 Methods 

3.3.1 Data acquisition 

Biogeographic variation in the width of shallow coral reef ecosystems was evaluated using the 

Allen Coral Atlas, a global mapping project aiming to combine conventional ecological-biophysical 

perspectives of coral reef ecosystems with an earth observation systems view of reefs, provided 

through remote sensors (Kennedy et al. 2021). The Coral Allen Atlas uses PlanetScope (Dove) imagery 

(Allen Coral Atlas 2022) and the ‘Reef Cover’ classification described by Kennedy et al. (2021), which 

combines machine-based learning algorithms and Object-Based-Analysis (Lyons et al. 2020) to create 

a coral reef classification system consisting of 17 geomorphic class descriptors. Our study used this 

new and freely available data resource to investigate the width of shallow water reef zones across 

3,765 transects on 60 reefs across the Indo-Pacific (n = 30) and Caribbean (n = 30) (Figure 3.2) 

(accessed: March 2022). While the total geographic extents of the two realms may differ (Figure 3.2), 

we ensured that the reef extent (i.e. the area of mapped reef chosen per location as indicated by the 

Allen Coral Atlas) was comparable. Shallow water reef zones were defined as the inner, outer and reef 

crest zones of the Allen Coral Atlas’ geomorphic map (accessed: March 2022). To facilitate between-

realm comparisons, sample reefs were chosen to ensure a balanced sample in both realms based on 

reef types, individual reef area, and location (oceanic vs continental) (see Text B1 for further 

information). Major reef types were classified as: Barrier reefs (n = 11), Atolls (n = 10), Low Islands (n 

= 2) and High Islands (sensu Nunn et al. 2016) (n = 37). In our analyses, we purposefully did not include 

reefs close to, or attached to, mainland shores that could be classified as ‘fringing reefs’. The term is 

very broad and lacks consistent definition, as fringing reef types vary markedly on a global reef scale 

(Kennedy et al. 2021). Therefore, ‘fringing reefs’ were only included if located adjacent to isolated 

islands. In these cases, the topography of the adjacent island was used to differentiate such reef 

systems, following Nunn et al. (2016) (categorising islands with elevations above 30m as high islands). 

Furthermore, to minimise the potential for variation in terrestrial influences and coastal effects, 

including turbidity, compromising image classification accuracy, we excluded the ‘Terrestrial Reef Flat’ 

class (as defined by Kennedy et al. 2021) from our analyses. Our approach, as applied to both realms, 

therefore, focusses solely on shallow reef habitat width estimates from geomorphic zones (Inner Reef 

Flat, Outer Reef Flat and Reef Crest) that are interrelated in the classification scheme, widely supported 

in the geological and ecological literature, and in locations where terrestrial influences are likely to be 

limited or non-existent.  Therefore, we specifically look at reefs in shallow, clear water situations (up 
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to 15 meters depth). Outer reef flats are defined by the Allen Coral Atlas as shallow, strictly horizontal 

habitats, characterized by increased coral cover and relatively high wave energy gradients. Inner reef 

flats, on the other hand, are deeper, gently sloping habitats, dominated by the presence of sand-

covered substrata. Reef crests are defined as the narrow zones experiencing the greatest wave 

exposure, dominated by hard-bottom substrata with little structural complexity (Kennedy et al. 2021). 

These classifications use interzonal relationships as part of their class description, meaning that Inner 

Reef Flat, Outer Reef Flat, and Reef Crest must be adjacent to one another, and in that order, increasing 

accuracy within these class descriptors. Map accuracies partially depend on the availability of 

reference data, as well as potential obstructions that may vary across locations. The Appendix (Table 

B1) includes a comprehensive list of further potential limitations inherent to the mapping process.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Map of the geographic position of the 20 sites containing the 60 reefs used in this study in the 

Caribbean (A) and Indo-Pacific (B).  

 

3.3.2 Geospatial analysis 

The geomorphic zones for the study reefs were downloaded from Allen Coral Atlas (Allen Coral 

Atlas 2022). The desired reef zones (Inner Reef Flat, Outer Reef Flat, and Reef Crest) were then selected 

(Figure 3.3B). A polyline was created along the outline of each reef, roughly following the crest (Figure 
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3.3C). Along this outline of each reef, three kilometre long cross-reef transects were generated every 

kilometre (Figure 3.3D). Reef width transects were also divided by exposure status, according to the 

prevailing wind in the region (e.g. leeward or windward) accessed through a simulated and modelled 

weather dataset created by meteoblue (Meteoblue 2022). Hereby, modelled wind roses for each 

location, quantifying the predominant wind direction and speed, were used as estimates of prevailing 

wind directions to assign each transect an exposure status (exposed, sheltered). Exposure status was 

assigned according to the typical wind direction of the transect (indicated as hours per year), not the 

intensity. Potential limitations and caveats of the dataset used are described in Table B1 of the 

supplementary material. Lastly, we measured the width of the reef zones intersected by each transect. 

All geospatial analyses were performed in the software ArcGIS Pro 2.7.0 (Esri Inc. 2022). 

 

 

 

 

 

 

 

Figure 3.3 Process and methodology of shallow reef habitat width estimation. A) Access high-resolution 

PlanetDove imagery through the Coral Allen Atlas (Yonge Reef, Northern GBR, AUS), B) filter for desired 

reef zones, C) create polyline (yellow) along the crest of the reef and D) create equally spaced cross-reef 

transects every kilometre along the polyline.  

 

3.3.3 Data exploration 

Measurements of the Inner Reef Flat, Outer Reef Flat, and Reef Crest width on each transect 

were summed to calculate the total shallow reef habitat width on that transect. Transects with a 

shallow reef extent of 0 were excluded from further analysis. All statistical analyses were conducted 

in the software R (R Core Team 2022), ‘tidyverse’ (Wickham et al. 2019), ‘moments’ (Komsta and 

Novomestky 2022), ‘glmmTMB’ (Brooks et al. 2017), ‘DHARMa’ (Hartig 2022) and ‘vegan’ (Oksanen et 

al. 2022) packages. Relationships between the various reef zone widths and independent variables, 

including realm (Caribbean vs. Indo-Pacific), exposure status (leeward vs. windward) and reef type 

(atoll, barrier, low or high island), were assessed using a Principal Component Analysis (PCA). The PCA 
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was performed on a correlation matrix. Kernel densities were estimated using the density function to 

visualize and compare mean, as well as modal, shallow reef habitat width patterns. We used a 

generalized linear mixed model (GLMM) to assess the nature of the relationship between the shallow 

reef habitat width and realm. Realm was used as a fixed effect, while reef and transect ID were fitted 

as nested random effects. The most parsimonious model was chosen based on Akaike Information 

Criterion (AIC) and was fitted using a tweedie distribution with log link. Model assumptions were 

assessed using residual diagnostics and post-hoc pairwise means comparisons were conducted 

employing a Tukey’s adjustment. While the relationship of shallow reef habitat width between realms 

was statistically insignificant (Appendix B Table B2), we strongly caution against using this model as 

the extensive spatial autocorrelation in the dataset precluded detailed statistical comparisons 

(violating the assumptions of ANOVA and GLM or GLMM, as well as not meeting residual diagnostic 

standards) (Appendix B Table B3). We therefore provide descriptive statistics and a multivariate 

analysis which can accommodate non-independent data. Further spatial autocorrelation and cluster 

analyses were conducted in the statistical analyses package GeoDa 1.4.1 (Anseling et al. 2006). See 

Appendix B for details.  

 

3.4 Results 

The widths of shallow reef habitat (inner and outer reef flat and crest combined) in the 

Caribbean and Indo-Pacific ranged from 0 m to over 3000 m, although the vast majority are less than 

500m wide (Figure 3.4). Interestingly, modal shallow reef widths between the two realms differed by 

only approximately 37 m (estimated by kernel density estimates; 117.35 m Indo-Pacific, 80 m 

Caribbean). Averages likewise differ by just 122 m (486.9 m ± 9.45m Indo-Pacific, 365.1 m ± 9.92 m 

Caribbean) (Figure 3.4). In both cases, Indo-Pacific reefs were marginally wider than those in the 

Caribbean (Figure 3.4). Both realms exhibit right skewed distributions, with a greater prevalence of 

narrow width values, however, the Caribbean exhibits a stronger skew and relatively higher kurtosis 

than the Indo-Pacific (Figure 3.4) (see Appendix B Table B4). 
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Figure 3.4 Kernel Density Estimates of shallow reef widths (m) in the Caribbean (red) (n = 1945 transects) 

and Indo-Pacific (blue) (n = 1820 transects). Dashed lines represent the means and solid lines the modes of 

the shallow reef widths in the Caribbean and Indo-Pacific (shallow reef widths = inner reef flat + outer reef 

flat + reef crest).  

 

Generally, shallow reef systems in the Indo-Pacific were wider than their Caribbean 

counterparts. This holds true for total shallow reef width (Figure 3.4), and individual zone widths (Reef 

flat and Crest) (Figure 3.5). Reef flats (inner + outer reef flat) across both realms showed similar mean 

widths, ranging roughly between 350 m and 475 m regardless of their exposure status (Figure 3.5). 

Crests were by far the narrowest zone and again were wider in the Indo-Pacific and wider at windward 

sites in both realms (Figure 3.5). While windward sites seem to be marginally wider, total shallow reef 

habitat widths at windward versus leeward transects differed by just 29 m on average (windward 436.9 

+/- 9.8 m, leeward 408.1 +/- 9.8 m) (Appendix B Table B5).  
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Figure 3.5 Average width (m) (+/- SE) of each geomorphic zone grouped by exposure to prevailing winds 

(white = leeward, grey = windward) across the Caribbean and Indo-Pacific realms Reef flats represent the 

combined data of Inner and Outer flat. Note: see Appendix B Figure B1 for Average width (m) (+/- SD). 

 

The patterns described above were strongly supported by the PCA, which explained over 90% 

of the total variance along its first two axes (Figure 3.6). The two realms showed substantial overlap, 

further emphasising the overall trend of similarity in shallow reef habitat widths (Figure 3.6). However, 

the Indo-Pacific demonstrates larger variation along the PC2 axis, primarily driven by wider reef crests 

on the GBR, and generally wider shallow reef habitat zones (Figure 3.6). Notably the loading vectors 

all orient in the same direction, signifying a shared increase in all habitats, i.e., wider reefs have 

consistently wider individual zones (Figure 3.6). These patterns were also strongly supported by the 

geospatial analyses conducted in GeoDa which showed positive spatial autocorrelation (Moran’s I = 

0.694 in the Caribbean and 0.674 in the Indo-Pacific) with narrow reef zones clustered together and 

wide zones clustered near other wide zones (Appendix B Figures B2 and B3). 
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Figure 3.6 Principal Component Analysis (PCA) of the average widths of shallow reef habitat zones 

(vectors - IRF = Inner Reef Flat, ORF = Outer Reef Flat, RC = Reef Crest, Total = total shallow reef width) 

and their associated reefs based on their location. Circles and red hull: Caribbean, triangles and blue hull: 

Indo-Pacific. 

 

The average width also varied across the different reef types (Figure 3.7, Appendix B Figures 

B4 and B5). Within reef types, shallow reef width averages and distributions show notable similarities, 

especially atolls (Figure 3.7A). Remarkably, mean shallow reef habitat widths of transects across atolls 

in the Indo-Pacific (n = 710) and Caribbean (n = 261) vary by just 8 m, averaging 503.73 m (+/- 14.31 

m) and 511.75 m (+/- 19.89 m), respectively (Figure 3.7A). Furthermore, the Kernel Density estimates 

are very similar, showing slightly different modes but with substantial overlap in the distributions 

(Figure 3.7A). By contrast, the kernel density estimate distributions of shallow reef habitat widths of 

barrier reef systems in the Caribbean differ markedly from the Indo-Pacific (Figure 3.7B). Although 

average widths across barrier reef systems in the Indo-Pacific (n = 63) and Caribbean (n = 151) vary by 

less than 33 m (Figure 3.7B, the Indo-Pacific barrier reefs show a narrower range, averaging 682.6 m 

(+/- 21.5 m), while their counterparts in the Caribbean show a broader range and average 649.9 m (+/- 
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37.7 m) (Figure 3.7B). By contrast, reefs around high islands show a broader distribution in the Indo-

Pacific (n = 1047), averaging 463.7 m (+/- 13.1 m) (Figure 3.7C) when compared to their counterparts 

in the Caribbean (n = 1356) which have a mean shallow reef habitat width of 286.7 m (+/- 10.9 m); 

their modal classes vary by just 48 m (Figure 3.7C). Lastly, low islands are absent from our Indo-Pacific 

data set and average 507.4 m (+/- 45.4 m) in the Caribbean (n = 177) (Figure 3.7D). Overall, while there 

is some variation in the shape of kernel distributions, and in the biogeographic location of the reefs 

with the largest modes or means, the overall pattern is one of remarkably similar sizes, especially in 

atolls. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Kernel Density Estimates of shallow reefs widths (m) for A) atolls, B) barrier reefs, C) high 

islands and D) low islands within the Caribbean (red) and Indo-Pacific (blue). Dashed lines represent the 

means and solid lines the modes of the shallow reef widths in the Caribbean (red) and Indo-Pacific (blue). 

Note the x-axes scales differ between upper and lower panels. 

 

3.5 Discussion 

This study represents a preliminary description of the biogeography of coral reefs as biogenic 

structures. Using novel remotely sensed data, we revealed that, in general, shallow reef habitats in the 

Indo-Pacific were only marginally wider than in the Caribbean, with the modal widths between the two 
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realms diverging by just 37 m and means by a mere 122 m. This pattern is consistent with our 

expectations, in direction, but not in extent. As described in the introduction, we hypothesised shallow 

reef habitats of the Indo-Pacific should be considerably wider than those in the Caribbean (at least 500 

m wider). The unexpected similarity in widths between the two realms suggests that species richness, 

sea-level regime and biogeographic history potentially have a limited impact on reef accretion, and 

that other drivers may be more important in constraining the size of biogenic coral reef structures. 

These other factors that may drive the homogenous distributions of shallow water habitat widths 

between these two vastly different biogeographic realms may include: (1) antecedent topography of 

the Pleistocene substratum, (2) non-coral components as drivers of reef growth, or (3) local 

hydrodynamics. Below, we discuss these factors and their implications for our understanding of reef 

accretion, herein used as a term to describe both lateral and/or vertical reef growth, and the future of 

coral reefs. 

 

3.5.1 Antecedent topography 

Today, it is widely understood that during the Holocene many reefs initiated their accretion 

and reef formation on Pleistocene reef substrata (Hopley et al. 2007; Montaggioni and Braithwaite 

2009). Thus, it has been hypothesised that the extent and nature of these Pleistocene foundations may 

govern the physiography of Holocene and modern coral reef structures (Purdy 1974; Grigg et al. 2002; 

Gischler and Hudson 2004; Barrett and Webster 2012). More specifically, the literature suggests that 

the unique morphology, size, and shape of both atolls and barrier reef systems is predominantly 

produced by the subaerial exposure of relic Pleistocene substrata (Montaggioni and Braithwaite 2009; 

Davies 2011; Droxler and Jorry 2021). For instance, Pirazzoli and Montaggioni (1986) found that the 

reticulated lagoon at Mataiva Atoll in the central Pacific, which is divided into a series of central basins, 

is a result of extensive sub-aerial exposure of the antecedent Pleistocene platform. Consequently, the 

similarity in average shallow reef widths in both atoll and barrier reefs systems across both realms in 

this study could potentially be a result of similar sub-aerial exposure regimes during the Pleistocene. 

However, on more local scales, Holocene reef growth can occur independently, without the 

restrictions of antecedent topography (Montaggioni and Braithwaite 2009; Salas-Saavedra et al. 2018). 

In his study on John Brewer Reef in the central GBR, Walbran (1994) found that modern morphologies 

of coral reef structures may result from the interactions between Holocene sea-level rise, prevalent 

hydrodynamics, and the biological activity of organisms in response to these other factors. Thus, 

modern coral reef structures appear to be the result of a complex suite of interactions between the 

biology and diversity of reef dwelling organisms within the context of prevailing hydrodynamic or 
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environmental drivers. This may be influenced, but is not necessarily constrained, by the underlying 

Pleistocene substratum (Adey 1978; Walbran 1994). 

 

3.5.2 Coral growth driving reef accretion (vertical and lateral) 

Corals throughout the world share the ability to create three-dimensional, biogenic structures 

through the accumulation of calcium carbonate. Given the markedly different coral lineages and 14-

fold difference in coral species richness between the two realms, reefs in the Indo-Pacific were 

expected to exhibit much more extensive reef growth, both vertically and laterally once at sea-level. 

However, our results reveal that the difference in shallow reef habitat widths between Caribbean and 

Indo-Pacific reefs was not as pronounced as anticipated. Furthermore, throughout the Holocene, both 

realms showed similar historical rates of carbonate production and reef growth. While Caribbean reefs 

accreted between 3 mm – 4 mm/year (Hubbard 2009), reef accretion rates in the Indo-Pacific were 

only slightly below that average (Dullo 2005). However, Holocene reef development models assume 

that reef accretion is directly controlled by the accretion rates of the local dominant coral species, 

implying that reefs dominated by branching species would accrete faster than reef systems dominated 

by slow-growing massive coral species (Adey 1978; Chappell 1980; Gischler 2008). Recently, Roff 

(2020) used cores from two opposing reef slopes at an inshore reef on the central GBR to explore reef 

accretion patterns of late-Holocene reef frameworks. While the two sites were dominated by different 

coral species, namely Goniopora and Acropora, that show a ten-fold difference in potential growth 

capacity, core data revealed that vertical reef accretion rates were strikingly similar over the last 750 

years (Roff 2020). Similarly, in the Caribbean, there was no significant difference in reef accretion rates 

between reefs dominated by fast-growing and slow-growing coral species (Gischler 2008; Hubbard 

2009). Moreover, using new and previously published fossil data, Johnson et al. (2008) showed that 

Caribbean reef development remained unaffected by an extinction event in the late Pliocene that 

decreased coral diversity by 50%. Thus, coral reef functioning, defined as the movement or storage of 

energy or material (sensu Bellwood et al. 2019) and pertaining herein to reef growth, appears to 

remain largely unaffected by variation in biodiversity. Reef growth appears to be primarily driven by 

abiotic and biotic interactions with the environment (Johnson et al. 2008).  

 

At Holocene time scales, coral growth and reef accretion may be decoupled processes; 

challenging the common assumption that the life-history and growth capabilities of corals dictate reef 

accretion rates (cf. Roff 2020; Hammerman et al. 2022). Consequently, it has been suggested that past 

research may have overestimated the role of in-situ coral growth in reef building processes (Hubbard 
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et al. 1990; Perry et al. 2012; Blanchon et al. 2017; Hammerman et al. 2022). Although our study 

provides valuable insights, it has certain limitations. It is a snapshot in time and does not include an 

analysis of existing geological core data or the timing of sea-level rise and reef initiation. Nonetheless, 

the striking similarities in shallow reef widths in the Caribbean and Indo-Pacific, despite highly 

disparate coral assemblages, may support this emerging perspective. Based on our findings, it appears 

that reef accretion (both vertical and lateral) and coral diversity may not be linked. This may indicate 

a potential separation between biodiversity and a key reef function (i.e., reef growth). Indeed, the 

accumulation of stressors on coral reefs in the Anthropocene may cause further decoupling of the 

processes that support reef accretion from the more visible ecological coral-based processes that 

appear to drive carbonate production on the reef surface (Morais et al. 2022).  

 

Coral reef accretion, herein the function of both vertical and lateral reef expansion, can be 

facilitated through a multitude of other, non-coral growth processes and by other non-coral organisms, 

such as crustose coralline algae, foraminifera, molluscs, or Halimeda. Recently, Hammermann et al. 

(2022) showed that a large percentage of investigated reef slopes in the Red Sea were not constructed 

solely by in-situ coral growth, with a considerable contribution from unconsolidated coral rubble. 

Similarly, in St. Croix, US Virgin Islands, Hubbard et al. (1990) described the local reef framework as a 

‘garbage pile’ of carbonate reef detritus rather than an array of in-situ coral framework assemblages. 

Montaggioni (2005) likewise identified coral and skeletal rubble facies as the most prominent features 

of reef cores in the Indo-Pacific, occupying up to 60% of the total core volume, while Morais et al. 

(2022) showed that dead coral skeletons may have a negligible contribution to local, in-situ, reef 

accretion.  

 

If corals do not contribute to reef accretion as much as previously assumed, other organisms 

may underpin reef accretion. Crustose coraline algae (CCA), for example, have been shown to be key 

secondary reef builders, able to consolidate and cement reef framework (Littler and Littler 2013), thus 

playing an important role in reef accretion (Nash et al. 2013). Kench et al. (2022) showed that vertical 

reef accretion in the low coral cover wave breaking zone (reef crest) was maintained, even shortly after 

periods of elevated sea-surface temperatures, by CCA calcification. Within two years of a major 

bleaching event, the outer rim of the reef flat and reef crest maintained positive accretion rates that, 

averaging up to 6.6 mm/year vertical growth, match pre-bleaching values (Kench et al. 2022). Reef 

accretion may therefore still occur in disturbed areas lacking live coral cover. Accretion rates appear 

to be predominantly influenced by local environmental factors, rather than by the abundance or 
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diversity of corals. Clearly the future of coral reefs will also depend on the response of these non-coral 

taxa to climate change. However, our understanding and knowledge regarding the potential responses 

of these non-coral organisms to climate change, and ultimately, their capacity to facilitate reef growth 

in the future, remain limited (Short et al. 2015). Addressing the knowledge gaps surrounding the non-

coral components of reef vertical and lateral accretion will be vital to predicting the impacts of climate 

change on these biogenic coral reef structures. 

 

3.5.3 Local hydrodynamics as common factor 

While limited in number, studies investigating mid-late Holocene coral assemblages and their 

living counterparts across reefs in the Indo-Pacific and Red Sea have found little variation in overall 

composition and diversity (Pandolfi and Minchin 1996; Roche et al. 2011; Hallmann et al. 2020). This 

suggests that over the course of the Holocene, environmental parameters - such as light conditions or 

nutrient levels, have changed relatively little, except within the context of sea-level driven 

hydrodynamic regimes (Hallmann et al. 2020). The importance of hydrodynamics has been established 

for other reefal structures, such as reticulate ridges in reef systems (Schlager and Purkis 2015) and 

sand aprons (Isaack and Gischler 2017). However, the degree to which modern reef morphology can 

be attributed to prevalent hydrodynamics remains relatively poorly understood (Woodroffe and 

Webster 2014; Camoin and Webster 2015; Salas-Saavedra et al. 2018). While reef structures on the 

GBR show vast differences in their timing of initiation and rate of accretion during the early phases of 

reef development, once sea-level was reached, they appear to be strikingly similar (Dechnik et al. 2015, 

2017; Salas-Saavedra et al. 2018). This concept is underlined by the results in the present study where 

isolated carbonate platforms, such as atolls and barrier reef systems, showed remarkably similar 

average widths between biogeographic realms. This emphasises the potential role of local 

hydrodynamics in shaping, and potentially homogenising, modern reef structures and their 

morphology. It also suggests that the influence of hydrodynamics on reef accretion at sea-level may 

be a common factor shaping and constraining reef growth (Dechnik et al. 2016, 2017; Salas-Saavedra 

et al. 2018), independent of biogeographic location.  

 

Recently, Rankey (2021) investigated the interactions between geomorphology and 

hydrodynamic setting to assess reef progradation patterns on isolated carbonate platforms and atolls. 

He identified that sand aprons on the windward side are generally wider due to the higher energy 

across these locations. This is consistent with the existing literature (Yamano et al. 2003; Hongo and 

Kayanne 2009) and the findings herein, which showed consistently wider shallow reef habitats along 
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exposed, windward, margins. However, sand apron development and more generally reef 

progradation, has been shown to be self-limiting (Ortiz and Ashton 2019; Rankey 2021; Vila-Concejo 

et al. 2022). As reef flat and sand apron width increases, shear stress decreases to a point where no 

sediment can be moved by hydrodynamic forces (Rankey 2021). Early work also suggested that the 

reefs’ ability to prograde lagoonward would be limited by extreme levels of temperature, turbidity and 

salinity in lagoons which may exceed coral reef growth thresholds (Neumann and Macintyre 1985). 

Therefore, the shallow reef habitats of atolls and other isolated carbonate platforms may reach a width 

that ultimately halts leeward accretion. Seaward accretion is also likely to be limited by the steepness 

of the reef slope (Maxwell 1968; Kan et al. 1995; Duce et al. 2020). These factors potentially explain 

the homogenous distribution of shallow reef habitat widths documented herein for atoll systems in 

the Caribbean and Indo-Pacific. Prevailing hydrodynamics may be the primary driving force 

underpinning the similarity of widths of biogenic coral reef structures in the Caribbean and Indo-

Pacific. Hydrodynamics may be a universal factor that overrides the biogeographic, historic and 

evolutionary contingencies between these two distinct realms.  

 

3.6 Conclusion 

This study demonstrates that the widths of shallow-water biogenic coral reef habitats in the 

Caribbean and Indo-Pacific are strikingly similar. Although these two realms, have highly disparate 

biogeographic extents, biodiversity patterns, evolutionary and sea-level histories, their modal shallow 

reef zone widths differed by just 37 m. This suggests that there are other, non-historical, drivers 

underpinning this remarkable similarity; drivers that can override the influence of biogeography and 

sea-level history. Furthermore, the results of this study may lend support to the perspective that reef 

accretion, a geological process, is largely decoupled from coral growth an ecological process; with the 

corollary that coral diversity does not determine reef accretion rates. Once biogenic coral reef 

structures reach sea-level, hydrodynamic forcing appears to be the major force in a self-limiting system 

that constrains reef accretion. While climate change is driving the global loss of corals, the results of 

this study emphasise the need for a more thorough understanding of the contribution of non-coral 

components to coral reef functioning and growth including further examination of historical reef 

development trajectories, for example by coring and dating studies. 
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Chapter 4: Correlates of tropical marine herbivorous fish catches across the Indo-Pacific and Western 

Atlantic 

 

Submitted as: Lutzenkirchen, L. L., Tebbett, S.B., Yan, H.F. & Bellwood, D. R. (Under revision). Drivers 

of tropical marine herbivorous fish catches across the Indo-Pacific and Western Atlantic. Cell 

Reports Sustainability (flow of paper has been slightly altered to fit the thesis format) 

 

4.1 Abstract 

Ensuring food security in the Anthropocene presents a significant socio-ecological challenge, 

especially in the rapidly changing coastal seascapes that sustain critical fisheries. Herbivorous fishes 

support human communities by providing food and financial security via fisheries, however, their 

contribution to realm-wide catches is not well understood. By analysing reported and reconstructed 

large-scale catch data across 69 Exclusive Economic Zones, we identify shallow reef area and human 

coastal population density as significant predictors of between-realm herbivorous fish catches, with 

rabbitfishes making a disproportionately large contribution to herbivorous fishery catches. While 

rabbitfishes have the potential to support productive fisheries, due to their life history traits, a 60% 

decline in catch per unit effort suggests that their production potential, along with parrotfishes and 

surgeonfishes, may be decreasing globally. Our study highlights a concerning social-ecological 

mismatch between rising human population levels and declines in area-dependent fisheries which are 

vital for sustaining coastal human communities. 

 

4.2 Introduction 

Sustaining food security in an era of global change represents a critical socio-ecological 

challenge (Willett et al. 2019; FAO et al. 2020). This challenge is multifaceted as an ever-growing 

human population places an increasing demand on the world’s ecosystems to supply nutritional 

resources, while human activities are also rapidly altering the world’s ecosystems and reducing their 

capacities to deliver critical ecosystem services (Steffen et al. 2011; Folke et al. 2021). These issues are 

epitomised in the world’s coastal seascapes, especially on coral reefs (Hughes et al. 2017; Fulton et al. 

2019; He and Silliman 2019). Globally, the connection between humanity and near-shore seascapes 

has intensified, particularly among coastal communities that rely on these ecosystems to secure 

livelihoods through subsistence and artisanal fisheries (Cinner et al. 2012; Hoegh-Guldberg et al. 2019; 

Wong et al. 2022). Coastal seascape-associated fisheries are critical for human development through 

the supply of high-quality protein and micronutrients (Tacon and Metian 2013; Hicks et al. 2019). 
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However, coastal seascapes are also among the most threatened ecosystems on the planet, as a range 

of stressors, especially global climate change, are re-shaping the composition of these systems (Hughes 

et al. 2017; He and Silliman 2019; Tebbett et al. 2023b). Ultimately, as the condition of coastal 

seascapes declines, their capacity to sustain fisheries yields is expected to follow (Bell et al. 2013; Eddy 

et al. 2021).  

Coastal seascape habitats display highly heterogeneous and patchy distributions, resulting in 

scale-dependent characteristics for associated fish assemblages and fisheries (Taylor et al. 2015; 

Heenan et al. 2016; Sambrook et al. 2019; Wilson et al. 2022). The influence of bottom-up effects (e.g. 

habitat quality and availability) and top-down effects (e.g. fishing pressure) can vary across local, 

regional, and biogeographic scales (Williams et al. 2015; Harborne et al. 2018; Samoilys et al. 2019; 

McClure et al. 2021). Given the limited availability of comprehensive small-scale fishery-dependent 

data across larger scales (Zeller et al. 2015; Grafeld et al. 2017), fish biomass often serves as a valuable 

fishery-independent indicator of potential yield (Harborne et al. 2018; McClure et al. 2021; Zamborain-

Mason et al. 2023).  

Fish biomass is used to track changes in fish stock volume over time and facilitates cross-stock 

comparisons, particularly in multi-species coral reef fisheries (Nash and Graham 2016; Birkeland 2017). 

Recent research has linked fishery-independent data, including coral reef fish biomass, with 

environmental and socioeconomic time-series data (e.g. Samoilys et al. 2019; McClure et al. 2021; 

Morais et al. 2023). Such studies often highlight that coral reef fish biomass is driven by bottom-up 

factors, such as habitat quality, primary productivity, and reef geomorphology, which can lead to 

increased catch volumes (Samoilys et al. 2019; McClure et al. 2021). However, in large-scale studies, 

habitat availability (i.e. the accessible habitat area for fishers) may be omitted (Williams et al. 2015), 

potentially due to its seemingly self-obvious relationship. This omission means that relationships 

between fisheries catch and habitat area are not fully explored, and might lead to an underestimation 

of the importance of habitat area in supporting fish biomass. On more local scales, fishing has also 

been found to exert a pronounced top-down influence, leading to a significant reduction in reef fish 

biomass (Jennings and Polunin 1996b; Taylor et al. 2015). Notably, in small-scale coral reef fisheries, 

which are characterized by diverse species, habitats, and gear types, there are a limited number of 

species that often dominate a significant portion of the total catch (Jennings and Polunin 1996a; 

Samoilys et al. 2017; Rassweiler et al. 2020). 

Herbivorous fishes represent a key group of organisms that lay at the junction of coastal 

ecosystem decline and small-scale fisheries yields (Robinson et al. 2023). Herbivory is widely viewed 

as a critical ecosystem function on coral reefs (Bellwood et al. 2004; Adam et al. 2015) as it has been 



Chapter 4: Correlates of tropical marine herbivorous fish catches 

48 
 

suggested that herbivory may limit the dominance of algae via top-down control, potentially 

facilitating recovery of corals after disturbance (Bellwood et al. 2004; Hughes et al. 2007). This, in turn, 

has led to calls for the protection of herbivorous fishes in coastal seascapes via ecosystem- and stock-

based management approaches (Rogers et al. 2015; Williams et al. 2016; Chung et al. 2019). Yet, 

herbivorous fishes are also a key component of coastal fisheries (Bejarano et al. 2013; Edwards et al. 

2014; Humphries et al. 2019; Fulton et al. 2020), and are typically targeted once higher-trophic level 

fish stocks have been overfished (Pauly et al. 1998; Mumby et al. 2012). Indeed, Robinson et al. (2023) 

concluded that herbivorous fishes are now the primary contributors to fisheries services across varying 

reef habitats.  

Despite the attention herbivorous fishes have received from an ecological perspective (e.g. 

Bellwood et al. 2004; Adam et al. 2015; Bruno et al. 2019), we have a limited understanding of the 

biogeographical, geomorphological, and socioeconomical factors influencing between-realm catches 

(i.e. between the Western Atlantic and Indo-Pacific). Fishery-independent data suggests that 

herbivorous fish biomass patterns tend to align with general drivers, where habitat effects take 

precedence at larger scales, potentially overshadowing more local fishing-related impacts on biomass 

reduction (Taylor et al. 2015; Heenan et al. 2016). However, assessments of fishery-dependent 

datasets, specifically total catch data, predominantly pertain to localized studies. Indeed, at the local 

scale, herbivorous fishes can contribute over 50% of the total catch to coral reef fisheries (Houk et al. 

2012; Bejarano et al. 2013; Samoilys et al. 2017). This substantial contribution is influenced by various 

factors affecting catch success, including environmental conditions, exposure regimes, dominant gear 

types, and behavioural traits. Moreover, herbivorous fishes are captured using diverse gear types, 

including hook and lines, traps, spears, and nets, rendering them susceptible to a wide array of 

accessible fishing methods (Bejarano et al. 2013; Campbell et al. 2014; Samoilys et al. 2017; Humphries 

et al. 2019). 

Given the ecological importance of herbivorous fishes in coastal seascapes (Bellwood et al. 

2004; Hughes et al. 2007; Adam et al. 2015), and their potential to be a productive nutritional resource 

to people (Robinson et al. 2019, 2023; Hamilton et al. 2022), a better understanding of their fishery, 

at large scales, is clearly important. Previously, this endeavour has been constrained by the scarcity of 

large-scale fishery-dependent datasets. However, the Sea Around Us project has been pivotal in 

overcoming this limitation, with this project now providing global time series data on reported and 

reconstructed fisheries catches (Pauly et al. 2020). This project conducts taxon and fishery-specific 

catch data reconstructions by analysing additional fisheries, socio-economic, and population data 

sources, offering both total catch (in tonnes) and fishing effort (kW) estimates for various fishing 

sectors at the country/territory level. These large-scale fishery-dependent data have previously been 
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instrumental in identifying the data-poor and underreported nature of small-scale fisheries across 

Pacific islands (Zeller et al. 2015) and the possible global decline in the production potential of coral 

reef fisheries (Eddy et al. 2021). 

Here, we utilized large-scale catch estimates of three archetypical tropical fish groups that are 

predominantly considered nominal herbivores (i.e. surgeonfishes, parrotfishes, and rabbitfishes; 

Figure 4.1), to examine how yields are related to potential biogeographic, geomorphic, and social 

correlates and ecosystem attributes. Our analysis involved fishery-dependent data, including total 

catches (in tonnes), and indirect measures of fishing pressure, namely catch-per-unit effort (CPUE), 

from the Exclusive Economic Zones (EEZs) of 69 nations (i.e. countries and territories), spanning the 

period from 1950 to 2019, with an emphasis on the most recent decade from 2009 to 2019. Moreover, 

we evaluate how these fishery estimates change over time and consider how the specific life histories 

of herbivorous fishes may enhance their ability to withstand exploitation and adapt to future changes. 
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Figure 4.1 Species from the three focal herbivorous fish groups. The a) parrotfish (Scarus oviceps), b) 

surgeonfish (Acanthurus lineatus), and c) rabbitfish (Siganus corallinus) (images V. Huertas). 

 

4.3 Materials and Methods 

4.3.1 Catch data collation 

Our study focused on three groups of fishes: parrotfishes, surgeonfishes, and rabbitfishes, 

which are widely recognized as the primary tropical nominal herbivorous fish groups (Tebbett et al. 

2023a). These three groups are ecologically important (Bellwood et al. 2004; Adam et al. 2015) and 

contribute to numerous artisanal and subsistence fisheries (Robinson et al. 2011; Hicks and 

McClanahan 2012; Bejarano et al. 2013; Samoilys et al. 2017; Fulton et al. 2020). To examine how the 

catch of these three nominal tropical herbivorous reef fish groups varied between realms, we compiled 

a dataset using reported and reconstructed catch data from the Sea Around Us Project (Pauly et al. 

2020) which reports landings data (in tonnes) for each taxonomic group (from 1950 onwards) from a 

nation’s Exclusive Economic Zones (EEZ). Here, we included both countries’ and territories’ EEZs that 

reported individual landings data; for example, although the Andaman and Nicobar Islands are not an 

independent state, their landings data were reported separately from those of India and were thus 

treated as an individual nation in our analyses. It is crucial to highlight that global catch data are limited 

by what nation’s actually report annually to the Food and Agriculture Organization of the United 

Nations, which can be improved with reconstructions (as done by the Sea Around Us Project; Pauly 

and Zeller 2014). Although small-scale artisanal and subsistence fisheries are typically underreported 

(Sale 2008; Teh et al. 2013), such as those targeting herbivorous fishes, non-commercial fisheries can 

contribute up to 80% of the total production in coastal fisheries in certain countries (Dalzell et al. 1996; 

Grafeld et al. 2017). Consequently, the use of catch data here, particularly the analyses of average total 

catch across herbivorous fish groups and average catch-per-unit-effort, are likely to be conservative 

estimates as true catch values are likely much higher. 

We generated a list of species and genera for each herbivorous fish group from Acanthuridae, 

‘Scaridae’, and Siganidae from Fish Base (Froese and Pauly 2022). Note, although parrotfishes are 

taxonomically within the family Labridae, they are still often reported as ‘Scaridae’ (cf. Bellwood 1994). 

We then extracted all available taxon-specific catch data for each at the species, genus, and family 

level to avoid incomplete catch data due to the variation of taxonomic resolution of reported and 

reconstructed catches. In addition, Sea Around Us provides catch data categorized by ‘functional 

groups’, with one of these groups being all reef-associated fishes. Therefore, following the same 
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approach as above, we also extracted catch estimates for all reef-associated fishes from the same EEZs, 

as well as overall catch by each EEZ per year.  

We applied the methods outlined by Eddy et al. (2021) to calculate catch per unit effort (CPUE) 

for each group (i.e. surgeonfishes, parrotfishes, and rabbitfishes) from 1950 to 2010. We first 

determined the proportion of herbivore catch for each group from the total catch of all reef-associated 

fishes in each EEZ from 1950 to 2010. We then multiplied each EEZ’s total fishing effort, which we 

extracted from the Sea Around Us database (Greer 2014), by that proportion. Lastly, we divided the 

total herbivorous fish catch by the estimate previously calculated (i.e. effort multiplied by the 

proportion) (Text C2). To ensure comparability in effort and associated CPUE calculations, we focused 

solely on effort expended in the subsistence and artisanal sectors, excluding gear types not commonly 

used for harvesting herbivorous fishes (i.e. Drifting Longlines, Driftnets, Gleaning, Lampara, Longline 

Not Specified, Midwater Shrimp Trawl, Pelagic Longline, Set Longline, and Trolling). This produced a 

comparable relative estimate of CPUE for each herbivorous group per EEZ per year. Fishing effort data 

was only available for 1950-2010, limiting CPUE analyses to that period.  

Both total catch and CPUE offer crucial insights for understanding fisheries dynamics. Total 

catch provides a comprehensive view of harvesting scale, aiding in the evaluation of fishing's overall 

influence on aquatic resources (Pauly et al. 2013). In contrast, CPUE assists in assessing the 

effectiveness and impact of fishing efforts. It may reveal trends that arise from the interplay between 

harvested biomass and fishing effort expenditure, acting as an indicator of relative biomass (Eddy et 

al. 2021). By analysing both metrics, our objective is to disentangle trends within small-scale seascape-

associated fisheries in a more comprehensive manner, allowing for more informed inferences 

regarding large-scale correlates. Temporal trends in total catch, fishing effort, and CPUE for each 

herbivorous fish group were plotted across the entire dataset, which spans from 1950 to 2020 (1950-

2010 for fishing effort). It is important to note that these trends serve as an overview of the dataset 

and were not subjected to formal analysis, as the primary focus of this study was placed on the most 

recent decade which has the most robust data. 

 

4.3.2 Environmental and socioeconomic variable collation 

We used large-scale geomorphic and social variables to assess how potential correlates and 

ecosystem attributes could modify herbivore catches. To explore potential biogeographic differences, 

we assigned each EEZ a biogeographic location following the general delineation of realms by Kulbicki 

et al. (2013). Namely, we separated EEZs into the Indo-Pacific and the Western Atlantic. We focused 

on the Indo-Pacific and Western Atlantic as these areas incorporate the majority of countries bordering 
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coral reefs (Wong et al. 2022), as well as major marine biodiversity hotspots (Roberts et al. 2002). We 

found that in the Tropical Eastern Pacific (TEP), only Nicaragua and Colombia had available data for 

reconstructed or reported herbivorous fish catch. However, due to the nature of our covariates, which 

are primarily country-based, and considering the complexity of differentiating catch estimates 

between the Pacific and Caribbean sides of these countries, we chose to categorize both Nicaragua 

and Colombia as part of the Western Atlantic region. This decision was influenced by the fact that a 

significant portion of their EEZ and shelf area is located in the Caribbean, the inherent evolutionary 

link between the TEP and Western Atlantic, the comparatively depauperate fish fauna, and the 

absence of rabbitfishes in both biogeographic realms (Kulbicki et al. 2013; Siqueira et al. 2019a, 2019b).  

Area estimates of each EEZ, as well as a spatial layer of their global distribution, were accessed 

via the Flanders Maritime Institute (Flanders Marine Institute 2019). Using a global coral reef 

distribution layer (UNEP-WCMC et al. 2021) and global bathymetry layer (GEBCO Compilation Group 

2023), we estimated the area of reef habitat and shallow coastal habitat (0-30 m depth) area within 

each EEZ using ArcGIS Pro 2.9.0. The global reef distribution layer was derived from the Millenium 

Coral Reef Mapping Project that mapped geomorphic reef classes globally at a 30 m resolution using 

Landsat 7 satellite imagery (Andréfouët et al. 2006). The global bathymetry layer was derived from a 

30 m resolution global terrain model for ocean and land, closely matching the reef area resolution 

(GEBCO Compilation Group 2023). We limited shallow coastal habitats to the tropics (i.e. between 30 

degrees North and South) as we were examining tropical herbivorous fish groups. We intersected 

global reef and shallow water habitat distributions with the EEZ spatial layer, after projecting each to 

the Equal Earth projection (EPSG 1078), to calculate both coral reef area and shallow water habitat 

area per EEZ. Importantly, shallow coastal habitat area and reef area were highly correlated (Pearson’s 

r = 0.84; Figure C6). Thus, in our statistical analyses, we solely included reef area as a predictor to avoid 

collinearity.  

A range of social correlates were included and assigned to each EEZ to determine the potential 

relationship between socio-economic factors affecting herbivorous fish catches. Social variables 

included coastal population density levels, Marine Dependency Score (MDS), and Ocean Health Index 

(OHI), which were chosen because of their availability at an EEZ level, and their contribution to varying 

aspects of human dependence on marine resources. The coastal population density for each EEZ was 

estimated using a 100 km buffer along the coastline of each EEZ and a population density raster from 

2010 and 2020 (Center for International Earth Science Information 2022). We then calculated 

population density per reef area by dividing coastal population density by the estimated reef area for 

each EEZ for both time periods (following Houk et al. 2012; Brewer et al. 2013; Campbell et al. 2014; 

Samoilys et al. 2019). For modelling purposes, in cases where the population density per reef area was 
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zero (such as isolated island states like Wake Island), we assigned a low value (0.1), which corresponds 

to 10% of the lowest value found in the dataset.  

We also used the Marine Dependency Score (MDS) as a standardised measure of the 

importance of marine-derived services as it encompasses the nutritional, economic, and coastal 

protection dependency of each nation (Selig et al. 2019). This relatively novel conceptual framework 

represents a detailed quantitative assessment of the level of human dependence on marine 

ecosystems based on the value of the benefit, vulnerability to loss, and availability of substitutes (Selig 

et al. 2019). Although published in 2019, the MDI calculations primarily relied on datasets from 2011, 

thus reducing temporal disparities between response and explanatory variables in our statistical 

analyses. Because the Ocean Health Index (OHI) is a framework for assessing the health of marine 

ecosystems based on ten broad ecological, social, and economic goals (Halpern et al. 2012), it was also 

included in our analyses. OHI values were available from 2012 onwards. Other social variables like the 

Human Development Index or Gross Domestic Product (GDP) are only available at a sovereignty (i.e. 

country) level, whereas OHI and MDS are available for countries and territories. By using both indices 

in our analyses, we can comprehensively account for both the state of the surrounding marine 

environment as well as the usage of marine resources.  

 

4.3.3 Statistical analyses 

To explore the relationship between our fishery estimates (average total catch and average 

CPUE) and large-scale environmental and socioeconomic covariates, we employed Generalized Linear 

Models (GLMs). Renowned for their versatility and effectiveness across various applications (Zuur et 

al. 2009), GLMs possess a key feature—proficiency in fitting predictors, enabling us to compare the 

effects of predictor variables on the response variable (Bolker et al. 2009; Harrison et al. 2018). In 

addition, we centred and scaled all continuous predictors (via z-score transformations), a process 

aimed at enhancing the relative interpretability of regression coefficients across multiple predictors 

(Schielzeth 2010).  

To generate a single estimate of catch for each herbivorous group per EEZ for analysis, we used 

the average total catch (i.e the average summed/total catch across reported years) for each group over 

the most recent decade available (i.e. from 2009-2019). To examine the relationship between average 

total herbivore catches between 2009 and 2019 and the set of explanatory variables, we used GLMs 

with a Gamma distribution and a log-link from the glmmTMB package (Brooks et al. 2017) as the 

average total catch was never zero. Specifically, we assessed if reef area (km2), realm (i.e. Indo-Pacific 

and Western Atlantic), and social correlates (i.e. OHI, MDS, and/or coastal population per unit reef 
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area), were related to average total fishery catches of each herbivorous fish group. We used the 

average OHI from 2012 to 2019 and population density data from 2020 to ensure close temporal 

alignment. For all GLMs, average total catch for each group from each EEZ was treated as the response 

variable, while realm was treated as a categorical fixed effect and all other variables as continuous 

fixed effects. All continuous fixed effects were centred and scaled by subtracting the mean and dividing 

by the standard deviation, while reef area and coastal population per reef area were also logged. We 

specified models with an interaction between realm and reef area, and additive effects between all 

social covariates (i.e. no interactions). Subsequently, when models were indistinguishable based on 

Akaike Information Criterion corrected for small sample sizes (i.e. Δ AICc < 2), we chose the most 

parsimonious model (Table C1).  

We also used GLMs with a Gamma distribution and a log-link to assess the relationship 

between CPUE of all herbivorous fishes and the same set of explanatory variables. Since effort data 

was only available until 2010 and only for 62 of the EEZs included in this analysis, we used the average 

CPUE of all nominal herbivorous groups over the five most recent years available (2005-2010). 

Although this analysis represents only a subset of those used to assess average total catches, these 62 

nations still accounted for 84% of the total catches. Using the average CPUE between 2005-2010 of all 

herbivorous groups, we generated a single, positive estimate of CPUE per EEZ and treated this as the 

response variable. To ensure consistency in the temporal scales of our explanatory variables, we 

utilized the OHI from 2012 and coastal population density data from 2010, while keeping the other 

explanatory variables constant. Furthermore, to investigate whether the significant interaction 

between reef area and realm, as well as the impact of OHI on the average CPUE, was driven by a single 

outlier (Niue), we used the same GLM structure on a dataset that excluded Niue (Table C2). However, 

we had no biological or socio-economic reason to remove the outlier, so we show the complete 

analyses and results for full transparency. All model assumptions and fit were assessed using simulated 

residuals, which were satisfactory in all cases (package: ‘DHARMa’; Hartig 2022). All statistical analyses 

and data manipulations were performed using the software R 4.2.2 (R Core Team 2022) and ‘tidyverse’ 

package (Wickham et al. 2019). 

 

4.4 Results 

4.4.1 Herbivorous fish catches – an overview 

Between 1950 and 2019, a total of 69 EEZs in the Sea Around Us database harvested 

parrotfishes, rabbitfishes, and/or surgeonfishes (Figure 4.2a). During this period, total catch (i.e. the 

sum of all herbivorous fish catches in each of the 69 EEZs across years) per km2 of reef area increased 
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for all groups. Notably, the catch of rabbitfishes increased the most, from 0.16 tonnes per km2 to 0.73 

tonnes per km2 between 1950 and 2019, while the catch of parrotfishes and surgeonfishes increased 

from 0.12 tonnes per km2 to 0.15 tonnes per km2 and 0.1 tonnes per km2 to 0.17 tonnes per km2, 

respectively (Figure 4.2b). Importantly, the notable increase in total rabbitfish catches from 1950-2019 

(Figure 4.2b) can, at least partially, be attributed to a substantial increase in fishing effort for this group, 

which, in 2010, was almost 8-fold higher than parrotfishes and surgeonfishes combined (Figure 4.2c). 

Furthermore, rabbitfishes consistently contributed the most to the total catch of all herbivorous fishes 

(Figure 4.2b). This pattern remains consistent when considering the families relative to catch of all 

reef-associated fishes (Figure C1). Nonetheless, the contribution of rabbitfishes to total reef-associated 

fisheries has declined from 7% to 4.6%, with similar declines in the contribution of parrotfishes and 

surgeonfishes over the same period (Figure C1). 
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Figure 4.2 Temporal patterns of tropical herbivorous fish catch data. a) Location of the 69 Exclusive 

Economic Zones (EEZs) included in the analysis, b) total catches of herbivorous fishes, standardised by 

reef area, across all EEZs per year between 1950-2019, and c) the total fishing effort (Mega Watts) for 

each herbivorous fish group across all EEZs per year. In all panels, points are the raw data points (i.e. 

sums of annual estimates across all EEZs) while the lines were produced by the loess function of the 

‘stats’ package (R Core Team 2022) and are used for illustration purposes only.  

 

4.4.2 Spatial distribution of herbivorous fish catches 

Based on the initial exploration of the data, rabbitfishes appear to disproportionately 

contribute to large-scale catch patterns. But, this initial overview did not consider the inherent spatial 

variability in the data, nor the potential drivers of this variability. To explore how average total 

herbivorous fish catches (in tonnes) were spatially distributed, and how this variability related to key 

correlates, we focused on the most recent 10 years of data (2009-2019) available. These data are likely 

to be the most robust as they consist of fewer reconstructed catch estimates and allow the most 

reliable comparison with recent estimates of both geomorphic and social covariates. During this ten-

year period, the average total catches of herbivores (i.e. the average annual total catch of herbivorous 

fishes within each of the 69 EEZs between 2009-2019, calculated by summing the yearly catches per 

EEZ and then averaging them over the decade) was spatially heterogenous, ranging from 0.01 tonnes 

in Eritrea to 22,572 tonnes in the Philippines (Figure 4.3a-c). In addition, as expected based on the 

biogeographic distribution of rabbitfishes (i.e. they are absent from the Western Atlantic; Siqueira et 

al. 2019a), the data also shows that rabbitfishes were only a major contributor to the herbivore catch 

in the Indo-Pacific, while both surgeonfishes and parrotfishes were harvested across both realms 

(Figure 4.3a-c).  
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Figure 4.3 Spatial distribution of tropical herbivorous fish catches. The average total catches (i.e. the 

average annual total catch of herbivorous fishes within each of the 69 EEZs between 2009-2019, 

calculated by summing the yearly catches per EEZ and then averaging them over the decade; in tonnes; 

t) of a) rabbitfishes, b) surgeonfishes, and c) parrotfishes across Exclusive Economic Zones (EEZs) 

between 2009 and 2019. 

 

4.3.3 Potential correlates of herbivorous fish catches 
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Given the heterogenous distribution of average total herbivorous fish catches over the most 

recent decade, we formally tested their variability and correlation to potential covariates using 

generalised linear models (GLMs) for each herbivorous fish group. The unequal distribution of catches 

around the globe (Figure 4.3a-c) follows previous suggestions that consumption is often highest in 

developing nations with extensive coastal populations (Allison et al. 2009; Hicks et al. 2021), where 

social drivers often have strong relationships with fishery yields (e.g. Brewer et al. 2013; Cinner et al. 

2016; Seguin et al. 2023). We therefore explored how a range of large-scale biogeographic, 

geomorphic, and social factors, previously linked to fishery yields, were related to herbivore catch. 

Specifically, we considered reef area, the Marine Dependency Score (MDS; Selig et al. 2019), Ocean 

Health Index (OHI; Halpern et al. 2012), and coastal population standardised per km2 of reef area (Houk 

et al. 2012; Brewer et al. 2013; Campbell et al. 2014; Samoilys et al. 2019).  

Across all herbivorous fish groups, we found that reef area stood out as the sole consistently 

significant covariate (Figure 4.4a-c; Table C2; see Figure C2 for raw data points). Generally, the GLMs 

employed to evaluate the relationship between the average total catch (in tonnes) of each herbivorous 

fish group over the last decade and our large-scale covariates indicated an increase in average total 

catch across all herbivorous fish groups with greater habitat availability. Rabbitfishes, in particular, 

displayed the highest average catch for any given reef area (Figure 4.4a-c). Furthermore, for 

rabbitfishes, reef area (p <0.001; Figure 4.4a; Table C2), coastal human population per km2 of reef area 

(p <0.001; Figure C3a; Table S2), and OHI (p = 0.03; Table C2) were able to explain over 67% of the 

variability in average total catches across EEZs between 2009 and 2019. Average total catch of 

surgeonfishes differed between realms (p = 0.01; Figure 4.4b; Table C2) and was positively correlated 

to reef area (p <0.01; Figure 4.4b; Table C2), coastal population per km2 of reef area (p <0.001; Figure 

C3b; Table C2), and MDS (p = 0.04; Table C2). Lastly, reef area alone (p <0.001; Figure 4.4c; Table C2) 

explained over 54% of the variability in parrotfish catch. Overall, these results highlight that, at a large 

scale, EEZs that contain larger areas of shallow reef habitat and higher coastal human population 

densities, landed higher catches of herbivorous fishes. 
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Figure 4.4 Herbivorous fish catches among major realms. The relationship between the average total 

catch (2009-2019) of a) rabbitfishes (r2 = 0.67), b) surgeonfishes (r2 = 0.5), and c) parrotfishes (r2 = 

0.54) and the corresponding reef area (km2) across the Indo-Pacific (darker colours) and Western 

Atlantic (lighter colour in panel b). Lines show the mean predicted fits from generalised linear 

models, shaded ribbons are the 95% confidence intervals. Note the y- and x-axes are on the log10 

scale in both cases and the r2 value refers to the fit of the entire model. For a version of this figure 

with raw data points refer to Figure C1 in the supplemental material. 

 

4.4.4 Herbivorous fishes as fisheries resources 

While the analyses above provide insights into geomorphic and socio-economic correlates of 

average total catches across each herbivorous fish group, it is obvious that fishing effort is likely a 

determining force as well (Figure 4.2c). When we examined catch-per-unit-effort (CPUE) for 

rabbitfishes, surgeonfishes, and parrotfishes, effectively standardizing total catch by fishing effort, 

clear declines were apparent between 1950 and 2010 (Figure 4.5a). These declines in CPUE were 

greatest for rabbitfishes with a 60% decrease compared to a 42% and 52% decrease in surgeonfishes 

and parrotfishes, respectively (Figure 4.5a). We used GLMs to assess how the factors (i.e. the same 

covariates as above) were linked to variability of the average CPUE (tonnes per kW) for all herbivorous 

fish groups combined for the most recent five years available (2005-2010). In doing so, we revealed a 

significant negative relationship between coastal population density and average herbivorous fish 

CPUE (p <0.001; Figure 4.5b; Table C2). Furthermore, average CPUE between 2005 and 2010 was 

significantly positively correlated with reef area in the Western Atlantic (p <0.001, Table C2), but not 

the Indo-Pacific, and was significantly positively correlated with the Ocean Health Index (p <0.01, Table 

C2).  
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Figure 4.5 Tropical herbivorous fish catch-per-unit-effort. A) Catch-per-unit-effort (CPUE) of each 

herbivorous fish group across all EEZs between 1950-2010, and b) the relationship between average 

CPUE (tonnes per kW) of all herbivorous fish groups between 2005-2010 vs. coastal human population 

per km2 of reef area (r2 = 0.54). In panel a), points are the raw data points (i.e. sums of CPUE annual 

estimates) and the lines were produced by the loess function of the ‘stats’ package (R Core Team 2022)  

and are used for illustration purposes only. In panel b) the points represent the raw data points (i.e. 

the average CPUE of all herbivorous fish groups between 2005-2010) and the lines show the mean 

predicted fits from generalised linear models, shaded ribbons are the 95% confidence intervals. Note 

the y- and x-axes are on the log10 scale (which is why the majority of points appear to fall below the 

fitted line) and the r2 value refers to the fit of the entire model. 

 

4.5 Discussion 

Our study explored 70 years of large-scale herbivore catch data from the Exclusive Economic 

Zones (EEZs) of 69 nations to examine the contributions of parrotfishes, rabbitfishes, and surgeonfishes 

to fishery catches. As expected, we found that reef area and coastal human population density were 

the strongest predictors of average herbivore catch. However, we also revealed that rabbitfishes 

yielded the highest contribution to catches across all herbivorous fish groups. Furthermore, despite 

increasing average total catches, our study reports a concerning decline in the CPUE for all three 

herbivorous groups over the same period. Our findings indicate potential global decrease in production 

potential of these functionally important herbivorous fish groups from coastal seascapes in recent 
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years. This has clear implications for the critical ecosystem functions that these fishes deliver across 

coastal seascapes, as well as for the ongoing sustainability of current fishery yields.  

We observed that average herbivore catches increased with higher human population density 

and reef area. However, when standardised for fishing effort, we revealed a negative relationship 

between CPUE of herbivorous fish groups and coastal population density, indicating that higher human 

densities may contribute to the decrease in production potential of herbivorous fishes through 

increased fishing effort. These results suggest that: a) there may be an area-dependent baseline level 

of catch that is consistent across large-scales, irrespective of social drivers, b) that coastal fishers in 

tropical seascapes catch the fishes available to them in accessible habitats (Samoilys et al. 2017; 

Robinson et al. 2020), and c) that more people lead to higher herbivorous fish catches, but as human 

density increases CPUE declines dramatically, which is likely due to a reduction in fishable biomass 

(Edwards et al. 2014; Heenan et al. 2016). Consequently, nations with larger areas of shallow reef 

habitats may be better positioned to extract more resources, in terms of herbivorous fishes, while 

smaller nations with limited access to such habitats may face challenges in meeting their resource 

needs, particularly as human populations grow (Robinson 2020).  

While it is well established that human activities have a significant impact on coastal habitats 

and their capacity to provide ecosystem services at smaller scales (Brewer et al. 2013; Cinner et al. 

2016; Seguin et al. 2023), our results indicate that social correlates, other than human population 

density, had a limited relationship with large-scale herbivore catch patterns. This finding is consistent 

with previous studies in the Indo-Pacific region that also found distinct relationships between human 

density and reef fish trophic structure, but limited relationships with other social variables (Ruppert et 

al. 2018). However, it is important to note that the manner in which links between fisheries catches, 

social correlates, and habitat area manifest in the data could be dependent on the scale examined. For 

example, a study in Timor-Leste found that the availability and distribution of shallow reef habitat can 

play a critical role in determining the success of livelihood strategies that rely on them (Grantham et 

al. 2021). Human engagement with ecosystems can, therefore, be influenced by the constraints and 

resources arising from the type and extent of shallow reef habitat (Grantham et al. 2021). Hence, at 

smaller scales, an interconnection between reef area and social correlates could dictate the nature 

and extent of human-nature interactions in coastal areas. However, at a regional or national scale, the 

availability of habitat and the density of humans that can exploit that habitat appear to be the primary 

correlates that account for most of the variability in herbivore catch data. In this respect, at a between-

realm scale, it is also important to consider the types of fishes available to fishers in different areas.   
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Fish communities across tropical seascapes in the Atlantic and Indo-Pacific differ 

fundamentally in composition and diversity (Kulbicki et al. 2013), with significant implications for what 

is available to people. In terms of herbivorous fishes, the Western Atlantic has a far less diverse fish 

fauna than the Indo-Pacific, exemplified by the complete absence of rabbitfishes in the Atlantic 

(Siqueira et al. 2019b). Interestingly, the high contribution of rabbitfishes to herbivorous fish catch in 

the Indo-Pacific aligns with evidence from smaller scale studies, which show that rabbitfishes can 

account for up to 60% of total fisheries catch (by weight) in some areas (Hicks and McClanahan 2012; 

Muallil et al. 2014; FAO 2023). Moreover, previous studies in the Indo-Pacific have highlighted the 

ability of rabbitfishes to maintain coastal fishery yields even in the face of ecosystem change 

(McClanahan et al. 2008; Rogers et al. 2018; Robinson et al. 2019; Hamilton et al. 2022). For example, 

Robinson et al. (2019) found that despite extensive coral reef change caused by a mass coral mortality 

event and persistent macroalgal regime shifts, fishery yields in the Seychelles were maintained; driven 

primarily by a 2-fold increase in the CPUE of rabbitfishes. Together, these lines of evidence suggest 

that rabbitfishes may have traits that make them more capable of withstanding both ongoing fishing 

pressure and environmental change. 

The life history characteristics of fishes that can help withstand fishing pressure include shorter 

generation times and higher somatic growth rates (Jennings et al. 1998; Denney et al. 2002; Zhou et 

al. 2012; Abesamis et al. 2014). Both traits bolster population growth rates and fishable biomass 

production, potentially enhancing resistance to overfishing through rapid population turnover 

(Jennings et al. 1998; Denney et al. 2002; Zhou et al. 2012; Abesamis et al. 2014). Rabbitfishes possess 

both exceptional life history traits, reaching their asymptotic size twice as fast as parrotfishes and 

surgeonfishes (Text C1; Figure C5), and demonstrating an ability to reproduce and recruit to fishery 

sizes within one year (Grandcourt 2002). These faster life history strategies may be coupled with their 

remarkable habitat versatility, which enables them to thrive in a diverse range of environments, 

including clear-water, coral-dominated reefs, and mangrove-dominated turbid estuaries (Sambrook et 

al. 2019, 2020). With over 50% of rabbitfish species exhibiting this versatility (Sambrook et al. 2019, 

2020), and some species having wide home/occupancy ranges (Kaunda-Arara and Rose 2004; Ebrahim 

et al. 2020), their adaptability to various habitats is evident. The combination of key life history traits 

and a capacity to occupy a range of habitats may, therefore, underpin the high contribution of 

rabbitfishes to fisheries catches.  

However, the sustainability of rabbitfish catches, as well as those of parrotfishes and 

surgeonfishes, within their native range remains uncertain. A recent study revealed a significant 

decline of 63% in CPUE of reef-associated fishes since the 1990s, compromising the production 

potential of coral reef fisheries (Eddy et al. 2021) and potentially affecting the coastal communities 
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reliant on these fishes (Cinner et al. 2012; Hicks et al. 2021). Our analysis, employing similar methods, 

indicates that the decline in CPUE for parrotfishes, surgeonfishes, and rabbitfishes is less than the 

global average decline for reef-associated fisheries. However, rabbitfishes, in particular, have 

experienced an alarming decrease (over 60%) in CPUE from 1950 to 2010, raising concerns over 

potential over-exploitation. Whilst rabbitfishes exhibit life-history traits that may increase resilience, 

their unique reproductive biology, characterized by benthic spawning (Woodland 1990) and the 

vulnerability of large spawning aggregations to fishing (Grandcourt et al. 2007; Robinson et al. 2011; 

Samoilys et al. 2013), may contribute to their susceptibility to overexploitation.  

Although high somatic growth rates can potentially support higher catch rates in rabbitfishes, 

exploitation before sexual maturity and the targeting of both adult and juvenile specimens have led to 

growth and recruitment overfishing of rabbitfishes in certain regions (Grandcourt et al. 2007; Hicks 

and McClanahan 2012). Furthermore, rabbitfishes seem to be more susceptible to specific gear types 

than other herbivorous fishes; notably nets and traps which account for approximately 27% and 22% 

of all artisanal rabbitfish catches (Figure C6). These findings align with previous local studies that have 

emphasized the vulnerability of rabbitfishes to various gear types, with nets and traps frequently being 

the primary contributors to the overall catch (McClanahan and Mangi 2004; Soliman et al. 2009; Hicks 

and McClanahan 2012; Samoilys et al. 2017). For instance, McClanahan and Mangi (2004) observed 

that while Siganus sutor contributed around 16% to the total catch across all gear types, it displayed 

the highest susceptibility to gill nets (32% of the total catch) and large traps (21% of the total catch). 

To ensure the sustainability of rabbitfish fisheries, effective management measures, such as size-based 

catch restrictions, seasonal fisheries, and gear modifications, could be effective (Hicks and McClanahan 

2012; Gomes et al. 2014; Condy et al. 2015; Carvalho and Humphries 2022). These management 

strategies may be essential to safeguard the potential of rabbitfishes as a resilient and sustainable 

component of coastal seascape fisheries. 

Coastal fisheries are crucial for sustaining food security in the Anthropocene, and herbivorous 

fishes, which play key ecosystem roles, are part of this equation. By revealing that habitat extent and 

coastal human population densities are large-scale factors that relate to herbivorous fish catches and 

CPUE, we highlight the potential for a growing mismatch between increasing population levels and 

area-dependent fisheries productivity. This mismatch has particularly large ramifications for 

developing countries, such as island nations, which are limited by small available habitat areas. 

Moreover, given the distinct declines of CPUE across all herbivorous fish groups, as well as reef fishes 

more generally (Eddy et al. 2021), the data suggests that these ecologically important fishes may 

already be exhibiting decreased production potential (overexploitation?) at large-scales. To ensure the 

sustainability and resilience of coastal seascape fisheries, it is crucial to advance our understanding of 
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herbivorous fish fisheries, and to implement effective management of diverse tropical seascapes in a 

changing world. 
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Chapter 5. General Discussion 

 

In the year 2023, during which much of this thesis' research took place, humanity found itself 

navigating uncharted territory in the climate crisis, marked by unprecedented extremes (IPCC 2023; 

Ripple et al. 2023). With numerous days surpassing the global average temperature by 1.5 degrees 

Celsius, the year held significant implications for coastal seascapes, particularly coral reefs (Ripple et 

al. 2023). Consequently, 2023 became another record-breaking year, marked by an escalating scale of 

anthropogenic stressors on coral reefs, leading to a reconfiguration of their benthic composition and 

functionality. However, I discovered that current methodologies for assessing such large-scale 

transformations on coral reef ecosystems face serious scale-related limitations. Current approaches 

have not yet effectively incorporated the increasing scale of threats and they may thus inadequately 

assess large-scale transformations. To illustrate how upscaling coral reef studies can provide novel 

insights into drivers of ecosystem functioning I provide two examples of vital coral reef ecosystem 

functions (reef development [Chapter 3] and fisheries yield [Chapter 4] at large scales. Firstly, coral 

growth and reef development were shown to be distinct processes. Reef development and growth, a 

geological phenomenon, doesn't appear to be shaped by region (i.e. by ocean basin), but rather a local-

scale phenomena, where local hydrodynamics appear to override large-scale biogeographic and 

evolutionary histories. In contrast, herbivorous fisheries exhibit a markedly different pattern, with 

national variations in catches influenced primarily by social correlates. However, at the global scale, I 

observed a pronounced negative trend in catch-per-unit-effort, indicating the potential for a global 

decrease in production potential of these fishes. Furthermore, total fisheries catches at a regional scale 

appear to be area-dependent, carrying significant ramifications, particularly for nations characterized 

by limited coastal shallow water habitat and high population growth. 

Importantly, to comprehensively grasp the benthic dynamics and associated shifts in fish and 

coral fauna within the context of extensive coral reef transformations, it is imperative to use long-term 

monitoring datasets with standardized protocols (Edgar and Stuart-Smith 2014; Obura et al. 2019; 

Tebbett et al. 2023b; Yan and Bellwood 2023). However, in chapter 2 I revealed that, while direct field 

measurements provide crucial, high-detail data, they are both restricted spatially (i.e. to subsets of 

coral reef habitat) and temporally (i.e. to single studies), making them hard to upscale without creating 

scale-artefacts. Remote sensing technologies are rapidly advancing, placing emphasis on ecosystem 

assessment, which is accurately evaluated through an ecological lens, may help upscale observations 

(Hedley et al. 2016; Calders et al. 2020; Roelfsema et al. 2021b; Purkis and Chirayath 2022; Remmers 

et al. 2023). Chapter 2 identified that the most promising approach involves integrating multiple tools 

and products, combining broader coverage with higher-resolution data and in-situ information 
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(Dornelas et al. 2019; Bakker et al. 2023). This integration can bridge the gap between point-based 

ecology and macroecology, enabling a more effective evaluation of environmental change and its 

drivers across various scales – while reducing scale artifacts. 

Beyond the synergies and ways to improve the utility of joint approaches I identify in chapter 

2, novel emerging technologies that address the trade-off between extent and resolution, as well as 

spectral signature similarity of algae and coral, may pave the way forward. In particular, LiDAR and 

fluid lensing may effectively bridge scale-related issues, drawing traditional high-detail in-situ 

observations and remote sensing measurements closer together. Airborne Light Detection and 

Ranging (LiDAR) utilizes laser light to generate precise three-dimensional information about objects or 

landscapes (Purkis and Brock 2013). The high-resolution of airborne LiDAR-derived Digital Elevation 

Models (DEMs), with grid cells often less than 1 meter, allows mapping of fine-scale features and 

provides information on broad-scale elevation changes across entire coral reef systems (Brock and 

Purkis 2009; Hostetler et al. 2018; Asner et al. 2020; Harris et al. 2023; Li and Asner 2023). Furthermore, 

NASA recently introduced an innovative remote sensing technique, airborne fluid lensing using the 

FluidCam instrument, designed to robustly image underwater objects by overcoming refractive 

distortions caused by surface waves (Chirayath and Li 2019; Purkis and Chirayath 2022). This technique 

can create cm-scale 3D images of coral reefs at depths up to ~15m, demonstrating its effectiveness in 

resolving both sessile benthic ecosystems and mobile targets within the water column (Chirayath and 

Earle 2016; Chirayath and Instrella 2019; Chirayath 2021). Taken together, the inclusion and 

integration of diverse approaches spanning multiple disciplines with varying extents and resolutions 

holds the potential to enhance the effectiveness of upscaling observations and studies, particularly in 

ecosystems like coral reefs. Generally, these mixed approaches may enable us to overcome the 

inherent issue of heterogeneity in these systems by aligning with the second law of geography, where 

"everything is related to everything else, but things observed at a coarser resolution are more related 

than things observed at a finer scale" (Arbia et al. 1996). Essentially, by upscaling coral reef studies, we 

have the potential to minimize noise arising from minute relationships, allowing for identification of 

major, large-scale drivers influencing these processes. 

Indeed, applying the theory of integration at scale can amend prior understandings of reef 

functionality. For instance, reef growth models often presume that the life-history traits and growth 

capabilities of dominant coral taxa determine a reef's growth rate, both vertically and laterally (e.g. 

Perry et al. 2018; but see Roff 2020). According to this assumption, a reef dominated by fast-growing 

branching species should exhibit faster accretion than one dominated by slow-growing massive coral 

formations. Nevertheless, the findings in chapter 3 (Lutzenkirchen et al. 2023), coupled with recent 

research (Roff 2020; Hammerman et al. 2022), challenge this assumption. By upscaling reef size 
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measurements, albeit presenting a single snapshot in time, I found that environmental local-scale 

drivers, such as hydrodynamics, may homogenise reef width patterns, overwhelming large-scale 

biogeographical or evolutionary factors. While variations in reef growth rates may exist on local or 

regional scales, the remarkable consistency in reef widths globally suggests that coral growth as an 

ecological process and reef growth as a geological process should be treated as distinct entities (a 

concept that appears to be more clearly understood in geological rather than ecological studies; Toth 

et al. 2018, 2022). Moreover, it emphasizes the importance of inclusion of other calcifying non-coral 

reef components in terms of reef growth, a function that is crucial for coastal protection under future 

sea-level rise scenarios.  

In terms of wave dissipation and the wave buffering role of coral reefs, the crucial factor lies 

in the direct alteration of reef crest/flat elevation, emphasizing the significance of the absolute 

elevation change rather than particular aspects of change (e.g. loss of fine-scale coral-derived 

structural complexity) (Ferrario et al. 2014; Kench et al. 2022). Given the decoupling between coral 

growth and reef growth discovered in chapter 3, the significance of non-coral calcifying components 

in constructing and maintaining coral reef carbonate structures is expected to grow in importance in a 

future dominated by structurally less complex, turf-algae dominated states (Cornwall et al. 2021, 2023; 

Tebbett et al. 2023b). Recent research indicates that some crustose coralline algae maintain stable 

calcification rates under heat treatments, suggesting their ability to sustain vital ecological roles, such 

as reef accretion, in a warming ocean (Krieger et al. 2023). Therefore, these findings offer some hope 

that anthropogenic coral reefs, even those without a coral-dominated benthos, can uphold critical 

ecosystem functions and services, such as reef growth and coastal protection.   

Similarly, recent efforts show that despite coral reefs shifting towards high algal turf cover and 

lower coral cover (Tebbett et al. 2023b), effective management can maintain fisheries productivity to 

a certain extent. Changes in the structure of fish assemblages, including the increasing abundance of 

plant material, may result in a rise in abundance/biomass of herbivorous fishes (Pratchett et al. 2018; 

Robinson et al. 2019; Morais et al. 2020). The findings in Chapter 4, strongly support previous work in 

the Indo-Pacific (Hicks and McClanahan 2012; Muallil et al. 2014; Robinson et al. 2019; Hamilton et al. 

2022), and identifies herbivorous fishes, particularly rabbitfishes, as significant contributors to total 

catches in small-scale (i.e. artisanal and subsistence) fisheries. However, fisheries depend on a 

constant flux of resource production (Morais and Bellwood 2020). Therefore, elucidating the rates at 

which biomass is produced and stored as standing biomass (i.e. biomass turnover) is crucial for 

understanding the long-term stability of fisheries yield (Morais et al. 2020). Recent efforts focusing on 

ecosystem processes directly revealed a decoupling of standing fish biomass and productivity or fishery 

yields in coral reef ecosystems (Rogers et al. 2018; Morais and Bellwood 2019, 2020; Robinson et al. 
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2019; Morais et al. 2021b, 2023). Coral reef fish communities exhibit a level of buffering capacity. This 

means that the productivity of a given community is less sensitive to fishing-induced biomass or size-

structure alterations, therefore exhibiting potential resistance to increased fishing (Morais et al. 2020, 

2023). These buffering responses could be particularly influenced by highly productive species that 

prosper in post-bleaching and altered coral reef habitats, such as herbivores-detritivores (Morais et al. 

2020; Hamilton et al. 2022). Indeed, in chapter 4 I found that rabbitfishes, in particular, may be one 

such group as they reach their asymptotic size twice as fast as parrotfishes or surgeonfishes. Thus, due 

to their high productivity, as well as life history characteristics and recent range extensions, they may, 

if managed correctly, be a vital part of these buffering responses, as well as an integral component of 

resilient and sustainable coastal seascape fisheries. 

 These findings underscore the adaptive capacity of coral reef ecosystems, suggesting the 

potential for sustaining coral reef fisheries in the Anthropocene, especially by prioritizing lower trophic 

level species and offshore resources (Bell et al. 2018; Hamilton et al. 2022; Robinson et al. 2023). 

However, chapter 4 also revealed that the growing catch of herbivorous fishes is likely a result of 

increasing coastal population density and fishing effort. Although total catches may rise with higher 

coastal population density, CPUE shows a significant decline, likely attributed to a reduction in fishable 

biomass. Therefore, vigilance is essential regarding the challenges brought to light by the decline in 

herbivorous fish CPUE (chapter 4) and coral reef fisheries more broadly (Eddy et al. 2021). To reliably 

assess the longevity and temporal stability of these buffering responses, particularly of herbivores, it 

is important to ensure that the apparent stability of catches is not the result of catch diversification or 

fishing ground expansion (Robinson et al. 2020). Modelled relationships need empirical assessment 

through quantifying in-situ catches and fishing effort (Morais et al. 2023), at appropriate scales. 

Given that anthropogenic influences are driving fundamental changes to the foundational 

ecology of coral reefs, the central theme of this thesis was to explore whether adopting a more 

expansive perspective, through upscaling, offers fresh insights into the functioning of these systems. 

My research delved into the potential of upscaling ecosystem studies on coral reefs, revealing 

intriguing results. For instance, reef growth, a geological process, may be primarily dictated by local 

hydrodynamics. By contrast, patterns in herbivore catches may vary at local scales, potentially 

distracting attention from large-scale correlates and trends. These findings underscore the advantages 

of upscaling functional and spatial ecology studies by leveraging basic geographical concepts, where 

processes at a coarser resolution exhibit stronger correlations than at finer resolutions. Effectively 

addressing the escalating temporal and spatial impacts of human activity on coral reefs in the 

Anthropocene will benefit from the alignment of scientific inquiry, monitoring, and management with 

the scale of pressures faced by these ecosystems. The challenges confronting these vital but delicate 
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ecosystems have never been more pervasive and continue to intensify across space and time. Adopting 

a more macroscopic approach may rectify existing scale mismatches, ensuring more appropriate 

application and effectiveness of future coral reef ecosystem management. 
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Table A2. Explanation of the rationale behind each assessed variable across all studies. 

Variable Rationale 

Category of the study Based on the premise of this review, to compare synergies, overlap, 

and scalability, all studies need to be first assigned a category (i.e. 

remote sensing studies or coral reef ecology studies).  

Focal question To facilitate a comprehensive comparison of the primary focus of each 

study and to delineate the specific facets they explored, we 

implemented a filtering process where studies were required to 

incorporate a benthic component and address ecological aspects of 

coral reef systems. Subsequently, each study was allocated one or 

multiple focal questions. This approach was employed to enable a 

thorough analysis and visual representation of disparities between 

these two domains concerning their overarching thematic interests 

within coral reef benthic communities. 

Organisms/parameters 

investigated 

We included both the organisms and parameters investigated by each 

study to get a representation of what each field commonly is used to 

assess.  

Methodology/ approach 

employed 

We incorporated the methodology section to glean insights into the 

prevailing approaches within each domain. This also afforded us the 

opportunity to evaluate approaches or subdisciplines that notably 

contribute to benthic assessments, such as the generation of high-

detail structural metrics or comprehensive analyses of benthic 

community composition. Furthermore, this methodology section 

provided the means to connect the previously assigned focal 

questions, representing the overarching interests of each study, with 

the methodologies employed. This linkage enabled us to identify 

common practices concerning specific metrics or assessments. 

Location of the study We integrated the study locations, based on the coral reef realms 

mapped by the Allen Coral Atlas, to facilitate a comparison of the 

distribution of scientific studies across various coral reef-associated 

regions globally. By aligning these studies with the mapped areas 

delineated by the Allen Coral Atlas, we could directly compare the 

number of studies against the actual coral reef area within each 
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mapped location. This approach aimed to highlight potential biases 

within each scientific domain. 

Habitats investigated Since a direct comparison of spatial extent between these distinct 

scientific domains is challenging, our focus shifted to comparing their 

extent and focus at the reef scape scale. It is acknowledged in the 

literature that both coral reef ecology and remote sensing studies 

could exhibit biases towards specific habitats, whether driven by 

observer bias or sensor limitations in surveying certain environments. 

Moreover, this approach enabled us to evaluate the actual mention of 

reef habitats in studies, rather than merely a depth gradient, ensuring 

the reproducibility of findings. 

Identification of study 

sites 

We observed whether each study provided a dependable and 

consistent identification of their study site. This comparison aimed to 

identify shared practices or mismatches within each scientific domain 

that enhance transparency and reproducibility in scientific studies. 

sensor platform(s), spatial 

resolution, and ground 

truthing of remote 

sensing 

These criteria were specific to remote sensing studies and were 

evaluated to provide further differentiation among approaches within 

that domain. Sensor platforms were examined to understand the 

range of platforms or technologies utilized, with the notation varying 

based on the methodology employed. When mentioned, spatial 

resolution was assessed to compare the sensitivity across different 

sensor platforms and methodologies. Additionally, we documented 

whether and how studies underwent ground truthing, a practice 

primarily relevant to mapping and bathymetry studies, aimed at 

ensuring a consistent protocol. 
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Figure A1. Relationship between number of studies and mapped reef area (km2) within each mapped 

region.  
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Figure A2. Number of studies across the fields coral reef ecology and remote sensing through time. 
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Figure A3. Number of studies across the fields coral reef ecology and remote sensing specifically 

locating their survey sites (blue) versus those with limited/no details (red).  
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Text B1. Explanation and justification of the selection process of reefs within the two 

biogeographic realms.  

To facilitate comparison across the Caribbean and the Indo-Pacific, sites were chosen based 

on location (oceanic vs. continental), reef type, relative reef area, and data accuracy. Sites were chosen 

based on a paired comparison scheme (Figure 2) to increase robustness of the analysis. For example, 

the Belizean Barrier Reef and Great Barrier Reef were included as counterparts, both representing 

barrier reef morphologies. Pairing was firstly driven by similar locations, i.e. ensuring that the locations 

treated as analogues were positioned in similar oceanic or continental settings. Then, using the Allen 

Coral Atlas, the initial sites were compared according to their mapped reef area to ensure all were fully 

developed reef systems (excluding exceptionally small or incomplete reefs, e.g. plug reefs or isolated 

mounts). Reefs were then evaluated in an initial accuracy assessment (conducted by the authors) to 

ensure correct classifications in the algorithms employed by the Allen Atlas. In this data checking stage, 

mapped reef areas, as provided by the Atlas, were investigated and compared to independent 

estimates to ensure that the algorithms presented reef area within the specific location correctly. 

Accuracy was visually determined by assessing the high-resolution imagery of shallow reef zones using 

expert knowledge and visual cues (i.e., colour or texture) to distinguish geomorphic zones, and then 

comparing our estimates against the classification by the Atlas. Preference was given to sites that 

showed higher accuracies for the shallow reef habitat zones of interest, i.e., Inner Reef Flat, Outer Reef 

Flat and Reef Crest. We endeavoured to compare sites that were not only similar in their geographic 

setting and reef type, but also balancing mapping accuracy. Finding analogues in the two highly 

disparate realms was challenging. For example, few atolls occur in the Caribbean. Banco Chincorro 

atoll was selected in the Caribbean because mapping accuracy is likely to be much higher than other 

atolls in the Caribbean region as it has been more intensively surveyed due to its closeness to Belize 

and Mexico. 

It must be noted that sites within the Caribbean are entirely in the Northern hemisphere and 

sites in the Indo-Pacific mostly in the Southern Hemisphere since the majority of reef area in each 

realm is encompassed within these longitudes. Furthermore, research effort is highly concentrated in 

specific locations within each realm, meaning that mapping accuracies in these regions are much 

higher due to the existence of long-term in-situ training datasets. However, these differences are an 

inherent part of the between-realm variation and there is no a priori reason to believe that hemisphere 

will influence shallow reef extents.  
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Table B1. Potential limitations and caveats pertaining to the data set of geomorphic reef classes 

classified by Kennedy et al. (2021) accessed through the Allen Coral Atlas (2022).  

Potential Limitation Reasoning 

Environmental Characteristics of the natural environment could potentially 

limit or decrease the scope and accuracy of generated maps. Cloud 

cover, turbidity, and breaking waves could hinder the automated image 

processing, ultimately affecting classifications. Geomorphic maps will be 

limited to a maximum depth of 15m due to the varying ability of satellite 

imagery to penetrate the water column and potentially restrained by the 

lack of accurate training bathymetry data. Furthermore, reliability of 

accurate bathymetry data will decrease with turbidity and high-energy 

wave climates. Source imagery was generally taken between January 

2018 and December 2020, allowing for a broad series of images meaning 

that poor visibility conditions could be avoided thus increasing the 

accuracy of class assessments.  

Algorithm training 

process 

Maps are created with a semi-automated machine learning 

algorithm and cleaned up with an object-based analysis approach. 

Therefore, the accuracy is highly dependent on the abundance, 

availability and quality of the data and imagery utilized during the 

training and classification process, as well as the availability of local 

reference data. Generally, the maps are created and validated for broad-

scale assessments and class description and not focused on small reef-

scale (e.g., 10 – 100 meters) areas. Additionally, reference data 

availability varies between regions and is sometimes dependent on 

expert interpretation only (rather than in-situ field data), thus limiting 

the scope of training for the algorithm. Therefore, accuracy varies 

between 60-90% (Allen Coral Atlas 2022). While maps that are very 

localised, generated in correspondence with in-situ observations, might 

be more accurate, the methodology of the Allen Coral Atlas does allow 

for mapping on a much broader scale and globally consistent basis.  

Classification - 

Exposure 

Classes assigned ‘sheltered’ status within the ‘Reef Cover’ 

classification scheme are any geomorphic classes more protected from 

strong directional prevailing wind or current, either by land or by 

opposing reef structures (Kennedy et al. 2020). Classes that are 
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nominated as ‘sheltered’ are heavily context dependent. However, 

within the class descriptors, no thresholds for what constitutes 

“exposed” in terms of wind speeds, current velocities or wave energy 

are established. Therefore, sheltered reef classes may appear on both 

windward and leeward sides of reef systems. Similarly, in their provided 

case studies, Back Reef Slope was identified with the lowest confidence 

(5.9 +/- 1.7 SD) by experts. (NB the sheltered and exposed classifications 

within the present study used a different set of criteria based on 

predominant wind directions; in this case it must be acknowledged that 

intense winds and waves can be periodically experienced in ‘sheltered’ 

locations).  

Classification – reef 

categorization 

The Allen Coral Atlas allows for the first unified and standardised 

assessment of large-scale patterns of benthic, as well as geomorphic 

zonation patterns of the world’s coral reefs. However, it does not 

provide any categorization of general reef types (e.g. Barrier Reef). 

Categorizing reef type will, therefore, be open to interpretation by the 

end users of the Atlas. The end products will depend on their expert 

knowledge or the literature. 
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Table B2. Summary of the generalised linear mixed effect model assessing the shallow reef habitat 

width patterns between the Caribbean and Indo-Pacific. Model outputs are presented on the log-

scale.  

Response 
variable 

Model 
used 

Predictor variable Estimate SE statistic p value 

       
Shallow reef 
habitat width 

tweedie 
GLMM 

Intercept 
LocationIndo-Pacific 
 

5.4931 
0.3937 
 

0.2288 
0.3233 

24.011 
1.218 

<0.001 
0.223 

 

 

Table B3. Summary of the DHARMa Moran's I test results for distance-based autocorrelation. 

observed expected SD p value 

    
0.26118197 
 

-0.00027473 
 

0.00384216 
 

<0.001 
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Text B2. Spatial autocorrelation and cluster analysis in GeoDa 

A univariate Local Moran’s I with spatial weighting based on six K-nearest neighbours was used as a 

local indicator of spatial association to identify local clusters and local spatial outliers (Anselin 1995). 

Clustering was assessed using 99,999 permutations and a False Discovery Rate (Benjamini and 

Hochberg 1995) creating a significance level cut-off of p = 0.0143 (designated by the program).  
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Figure B1. Average width (m) (+/- SE) of each geomorphic zone grouped by exposure to prevailing winds 

(white = leeward, grey = windward) across the Caribbean and Indo-Pacific realms Reef flats represent the 

combined data of Inner and Outer flat. 
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Figure B2. GeoDa LISA (Local Indicators of Spatial Association) cluster map for shallow reef habitat 

widths across the Caribbean. Data showed a Moran’s I of 0.694.  
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Figure B3. GeoDa LISA (Local Indicators of Spatial Association) cluster map for shallow reef habitat 

widths across the Indo-Pacific (A = ranging from the Maledives to New Caledonia, and B = French 

Polynesia). Data showed a Moran’s I of 0.674.  

 

 

Table S4. Measurements of the shape of the distribution of shallow reef habitat margins across 

biogeographic realms. 

Location Skewness Kurtosis 

Caribbean 2.287673 9.840317 
   
Indo-Pacific 1.144568 4.289006 
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Table S5. Comparison of the average widths (m) (+/- SE) for windward and leeward shallow reef 

habitat margins between biogeographic realms, as well as globally. 

Location Leeward  Windward  

     
Caribbean 353.93 ± 15.36 N = 833 373.54 ± 12.99 N = 1112 
     
Indo-Pacific 460.77 ± 11.86 N = 856 510.03 ± 14.36 N = 964 
     
     
Global 408.1 ± 9.76 N = 1689 436.92 ± 9.75 N = 2076 

     
 

 

 

 

 

 

 

 

 

 

 

 

Figure B4. Principal Component Analysis (PCA) of the average widths of shallow reef habitat zones 

(IRF = Inner Reef Flat, ORF = Outer Reef Flat, RC = Reef Crest, Total = total shallow reef width) and 

their associated reefs based on the reef types (Circles and red hull = atolls, triangles and orange hull = 

barrier reef systems, squares and purple hull = high islands, and crosses and green hull = low islands). 

Closed symbols are reefs in the Indo-Pacific, open symbols reefs in the Caribbean. For position of 

Outer_GBR, see Figure 3.6. 
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Figure B5. Shallow reef habitat widths (m) of different reef types (Atoll = Atoll reefs, Barr = barrier 

reefs, High = high islands, and Low = low lying islands) across the Caribbean (C) and Indo-Pacific (IP). 

Blue dots represent the mean for each morphology, the bar shows the median, box the inter-quartile 

range (IQR) and lines the 1.5 IQR values. Outliers were removed from the figure for visual appeal. 
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Text C1. Trends in growth rates across tropical herbivorous fishes.   

 

Given the overwhelming contribution of rabbitfishes to herbivore catches, we explored other 

factors that may be driving the disproportionately high catch of rabbitfishes. Specifically, we 

hypothesised that the overwhelming contribution of rabbitfishes to fisheries may stem, at least 

partially, from life history characteristics that can be correlated with faster population growth rates 

(Denney et al. 2002). To assess this hypothesis, we utilised a derived parameter from the Von 

Bertalanffy growth equation, Kmax (sensu Morais and Bellwood 2018), across species of parrotfishes, 

surgeonfishes, and rabbitfishes. In short, Kmax is the rate at which a population with specific Von 

Bertalanffy growth parameters would reach its asymptotic size, L∞, if it grew to the maximum size 

reported for that species (Morais and Bellwood 2018). This standardisation allows for cross-species 

comparisons of growth rates (Morais and Bellwood 2018, 2020). Data were available for 31 parrotfish 

species, 30 surgeonfish species, and eight rabbitfish species (R package ‘rfishprod’; Morais and 

Bellwood 2020), representing approximately 37%, 30%, and 28% of described species, respectively.  

Using a generalized linear mixed effect model (GLMM), we compared growth rates across the 

three herbivorous fish groups. For the GLMM, we used group as a categorical fixed effect (three levels: 

parrotfishes, surgeonfishes, and rabbitfishes) to explain variation in Kmax and specified random 

intercepts for each species to account for repeated observations at the species level. Models with 

different distributions were compared using AICc, with the best-fit model being a Gamma distribution 

with a log link. Pairwise comparisons with Tukey’s adjustment between herbivorous groups (Table C3) 

were conducted using ‘emmeans’ (Lenth et al. 2020). All model assumptions and fit were assessed 

using simulated residuals, which were satisfactory in all cases (package: ‘DHARMa’; Hartig 2022). All 

statistical analyses and data manipulations were performed using the software R 4.2.2 (R Core Team 

2022) and ‘tidyverse’ package (Wickham et al. 2019). 

Based on the GLMM, the average Kmax of rabbitfishes was significantly higher than both 

parrotfishes and surgeonfishes by roughly two-fold (p <0.01; Figure C4; Table C2, C3). There was no 

difference between parrotfishes and surgeonfishes (Figure C4; Table C2, C3). This suggests that 

rabbitfishes grow twice as quickly as the other herbivorous fish groups and, therefore, could 

potentially sustain higher fishing pressure than the other groups. 
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Text C2. Catch-per-unit-effort calculations. 

The equation used to calculate catch-per-unit effort from the Sea Around Us catch data as in Eddy et 

al. (2021). 

 

𝐶𝑃𝑈𝐸 (𝐸𝐸𝑍) =
𝑡𝑜𝑡𝑎𝑙 ℎ𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒 𝑐𝑎𝑡𝑐ℎ (𝑡)

((
𝑡𝑜𝑡𝑎𝑙 ℎ𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒 𝑐𝑎𝑡𝑐ℎ (𝑡)

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑡𝑐ℎ (𝑡)
) ∗ 𝑓𝑖𝑠ℎ𝑖𝑛𝑔 𝑒𝑓𝑓𝑜𝑟𝑡 (

𝑘𝑊
𝑑𝑎𝑦

))

 

 

 

 

 

 

 

 

 

Figure C1. The relative contribution of each herbivorous fish group to overall reef-associated fish 

catches across all EEZs per year. The points are the raw data points (i.e. sums of global annual 

estimates) while the lines are produced by the loess function of the ‘stats’ package 6 and are used for 

illustration purposes only. 
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Figure C2. The relationship between the average total catch (2009-2019) of a) rabbitfishes (r2 = 0.67), 

b) surgeonfishes (r2 = 0.51), and c) parrotfishes (r2 = 0.54) and the corresponding reef area (km2) across 

the Indo-Pacific (darker colours) and Western Atlantic (lighter colours). Lines show the mean predicted 

fits from generalised linear models, shaded ribbons are the 95% confidence intervals, and points 

represent the raw data (i.e. the average total herbivore catch for each group between 2009-2019 for 

each EEZ). Note the y- and x-axes are on the log10 scale in all cases (which is why the majority of points 

appear to fall below the fitted line) and the r2 value refers to the fit of the entire model.  
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Figure C3. The relationship between average total herbivore catches (2009-2019) of a) rabbitfishes and 

b) surgeonfishes, and coastal population per reef area (km2) across the Indo-Pacific (darker colours) 

and Western Atlantic (lighter colours). Lines show the mean predicted fits from generalised linear 

models, shaded ribbons are the 95% confidence intervals. Note the y- and x-axes are on the log10 scale 

in both cases and the r2 value refers to the fit of the entire model. Also note that there is no plot for 

parrotfishes as the AICc scores suggested that coastal population did not have a substantial effect on 

parrotfish catch (Table C1). 
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Figure C4. The theoretical growth rates (Kmax) for each tropical herbivorous fish group. Points show the 

mean predicted value of generalised linear mixed effect model and ranges denote the upper and lower 

95% confidence intervals.  
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Figure C5. The relative distribution of total catch across each gear type for the three herbivorous fish 

groups. 
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Figure C6. The relationship between shallow coastal habitat area (km2) and reef area (km2) (Pearson’s 

r = 0.84). The line shows the mean predicted fit of a linear model, the shaded ribbon denotes the upper 

and lower 95% confidence intervals, and the points represent the raw data. Note the y and x-axes are 

on the log10 scale. 
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Table C1. Comparison of models used to examine variation in average total catch across each 

herbivorous fish group, as well as average catch-per-unit-effort (CPUE) of all herbivorous fish groups 

both including and excluding the outlier (Niue). Models are compared using the corrected Akaike 

Information Criterion (AICc). Shown are degrees of freedom (df), model maximum log-likelihood 

(logLik), AICc, change in AICc (Δ), AICc weight (wAICc), and the conditional coefficient of determination 

(r2). OHI = Ocean Health Index; CoastalPop = Coastal population; MDS = Marine Dependency Score. 

 

Response 
variable 

Variables df logLik AICc Δ wAICc r2 

        

Rabbitfish 
catch  

Reef Area+OHI+CoastalPop 5 -268.55 549.09 0.00 0.60 0.67 

Reef Area+CoastalPop 4 -271.05 551.38 2.29 0.19 
 

Reef Area+OHI+MDS+CoastalPop 6 -268.52 551.94 2.85 0.15 
 

Reef Area+MDS+CoastalPop 5 -270.85 553.71 4.61 0.06 
 

Reef Area+MDS 4 -276.44 562.17 13.08 0.00 
 

Reef Area+MDS+OHI 5 -276.42 564.83 15.74 0.00 
 

Reef Area 3 -280.04 566.83 17.73 0.00 
 

Reef Area+OHI 4 -280.01 569.32 20.23 0.00 
 

Null 2 -286.23 576.82 27.72 0.00 
 

        

Surgeonfish 
catch  

Reef Area+Realm+MDS+CoastalPop 6 -308.45 630.77 0.00 0.38 0.51 

Reef Area+Realm+CoastalPop 5 -310.39 632.09 1.32 0.20 
 

Reef Area*Realm+MDS+CoastalPop 7 -308.24 633.03 2.26 0.12 
 

Reef 
Area+Realm+MDS+OHI+CoastalPop 

7 -308.42 633.38 2.62 0.10 
 

Reef Area*Realm+CoastalPop 6 -310.15 634.17 3.40 0.07 
 

Reef Area+Realm+OHI+CoastalPop 6 -310.39 634.64 3.87 0.06 
 

Reef 
Area*Realm+MDS+OHI+CoastalPop 

8 -308.24 635.84 5.07 0.03 
 

Reef Area*Realm+OHI+CoastalPop 7 -310.14 636.82 6.05 0.02 
 

Reef Area+Realm 4 -315.34 639.52 8.75 0.00 
 

Reef Area+Realm+OHI 5 -314.31 639.92 9.15 0.00 
 

Reef Area+Realm+MDS 5 -314.84 640.98 10.21 0.00 
 

Reef Area+Realm+MDS+OHI 6 -313.82 641.50 10.73 0.00 
 

Reef Area*Realm 5 -315.33 641.96 11.20 0.00 
 

Reef Area*Realm+OHI 6 -314.12 642.10 11.33 0.00 
 

Reef Area 3 -318.32 643.14 12.37 0.00 
 

Reef Area*Realm+MDS 6 -314.81 643.49 12.72 0.00 
 

Reef Area*Realm+MDS+OHI 7 -313.70 643.95 13.18 0.00 
 

Realm 3 -319.51 645.53 14.76 0.00 
 

Null 2 -326.08 656.41 25.64 0.00 
 

        

Reef Area 3 -290.70 587.99 0.00 0.30 0.54 
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Parrotfish 
catch  

Reef Area+Realm 4 -290.42 589.84 1.85 0.12 
 

Reef Area+Realm+CoastalPop 5 -289.17 589.88 1.89 0.12 
 

Reef Area+Realm+OHI 5 -289.39 590.31 2.33 0.09 
 

Reef Area+Realm+MDS+CoastalPop 6 -288.17 590.55 2.57 0.08 
 

Reef Area+Realm+OHI+CoastalPop 6 -288.72 591.65 3.66 0.05 
 

Reef Area*Realm 5 -290.08 591.71 3.72 0.05 
 

Reef Area*Realm+CoastalPop 6 -289.06 592.33 4.34 0.03 
 

Reef Area+Realm+MDS 5 -290.41 592.35 4.36 0.03 
 

Reef Area*Realm+OHI 6 -289.29 592.80 4.81 0.03 
 

Reef 
Area+Realm+MDS+OHI+CoastalPop 

7 -287.95 592.93 4.94 0.03 
 

Reef Area+Realm+MDS+OHI 6 -289.39 592.98 5.00 0.02 
 

Reef Area*Realm+MDS+CoastalPop 7 -288.08 593.19 5.21 0.02 
 

Reef Area*Realm+MDS 6 -290.08 594.38 6.39 0.01 
 

Reef Area*Realm+OHI+CoastalPop 7 -288.68 594.40 6.41 0.01 
 

Reef Area*Realm+MDS+OHI 7 -289.29 595.62 7.63 0.01 
 

Reef 
Area*Realm+MDS+OHI+CoastalPop 

8 -287.92 595.84 7.86 0.01 
 

Null 2 -300.18 604.65 16.67 0.00 
 

Realm 3 -299.74 606.07 18.08 0.00 
 

        

CPUE Reef Area*Realm+OHI+CoastalPop 7 235.81 -455.55 0.00 0.63 0.54 

 Reef 
Area*Realm+MDS+OHI+CoastalPop 

8 236.01 -453.31 2.24 0.21  

 Reef Area+Realm+OHI+CoastalPop 6 232.29 -451.06 4.49 0.07  

 Reef Area*Realm+CoastalPop 6 232.03 -450.52 5.03 0.05  

 Reef 
Area+Realm+MDS+OHI+CoastalPop 

7 232.83 -449.58 5.97 0.03  

 Reef Area*Realm+MDS+CoastalPop 7 232.23 -448.38 7.17 0.02  

 Reef Area+Realm+CoastalPop 5 226.50 -441.93 13.62 0.00  

 Reef Area+Realm+MDS+CoastalPop 6 227.66 -441.80 13.75 0.00  

 Reef Area*Realm+MDS 6 219.77 -426.02 29.53 0.00  

 Reef Area*Realm 5 217.94 -424.82 30.73 0.00  

 Reef Area*Realm+MDS+OHI 7 220.26 -424.44 31.11 0.00  

 Reef Area*Realm+OHI 6 218.02 -422.50 33.05 0.00  

 Reef Area+Realm+MDS+OHI 6 217.43 -421.34 34.21 0.00  

 Reef Area+Realm 4 214.89 -421.08 34.47 0.00  

 Reef Area+Realm+MDS 5 215.68 -420.29 35.26 0.00  

 Reef Area+Realm+OHI 5 215.53 -419.99 35.56 0.00  

 Realm 3 213.04 -419.66 35.89 0.00  

 Reef Area 3 206.08 -405.74 49.81 0.00  

 Null 2 204.19 -404.18 51.37 0.00  

        

CPUE - outlier 
removed 

Reef Area*Realm+MDS+CoastalPop 7 246.49 -476.86 0.00 0.23 0.43 

Reef Area+Realm+MDS+CoastalPop 6 245.08 -476.60 0.26 0.20  
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Reef 
Area+Realm+MDS+OHI+CoastalPop 

7 245.87 -475.63 1.23 0.12  

Reef 
Area*Realm+MDS+OHI+CoastalPop 

8 247.01 -475.24 1.62 0.10  

Reef Area+Realm+MDS 5 242.91 -474.74 2.13 0.08  

Reef Area*Realm+CoastalPop 6 243.68 -473.81 3.06 0.05  

Reef Area+Realm+CoastalPop 5 242.42 -473.76 3.11 0.05  

Reef Area*Realm+MDS 6 243.63 -473.71 3.15 0.05  

Reef Area+Realm+OHI+CoastalPop 6 243.50 -473.45 3.41 0.04  

Reef Area*Realm+OHI+CoastalPop 7 244.65 -473.18 3.68 0.04  

Reef Area+Realm+MDS+OHI 6 242.98 -472.40 4.47 0.02  

Reef Area*Realm+MDS+OHI 7 243.64 -471.16 5.70 0.01  

Reef Area+Realm 4 232.16 -455.60 21.26 0.00  

Reef Area+Realm+OHI 5 232.81 -454.53 22.34 0.00  

Reef Area*Realm 5 232.18 -453.26 23.60 0.00  

       

Reef Area*Realm+OHI 6 232.88 -452.20 24.66 0.00  

Reef Area 3 229.30 -452.19 24.67 0.00  

Realm 3 227.32 -448.23 28.64 0.00  

Null 2 220.87 -437.52 39.34 0.00  
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Table C2. Summary of generalised linear model (GLM) and generalised linear mixed effects model 

(GLMM) results used to examine differences in average total catch across each herbivorous fish group, 

average CPUE of herbivorous fishes with and without the outlier (Niue), and variation in growth 

coefficients among herbivorous groups. Note that the significant interaction between reef area and 

Western Atlantic, as well as effect of OHI in the CPUE model appears to be primarily driven by a single 

outlying data point. This outlier was Niue, a single uplifted atoll island with limited shallow reef habitat 

and shelf are (Zylich et al. 2012). Niue is likely an outlier as its fisheries primarily target pelagic species 

with minimal near-shore effort (Zylich et al. 2012). 

 

Response 
variable 

Model used Predictor variable 
Estimat

e 
SE z value p value 

       

Rabbitfish catch Gamma GLM Intercept 6.60 0.22 29.67 <0.001 
 Reef Area 1.50 0.29 5.25 <0.001 
 OHI 0.77 0.35 2.22 0.03 
 CoastalPop/ReefArea 1.54 0.22 6.90 <0.001 

       

Surgeonfish 
catch 

Gamma GLM Intercept 5.63 0.27 20.93 <0.001 
 Reef Area 0.85 0.28 3.05 <0.01 
 Realm (W.Atlantic) -1.27 0.51 -2.47 0.01 
 MDS 0.54 0.26 2.03 0.04 
 CoastalPop/ReefArea 0.89 0.23 3.90 <0.001 

       

Parrotfish catch Gamma GLM Intercept 5.67 0.21 26.99 <0.001 
 Reef Area 1.52 0.31 4.98 <0.001 

       

CPUE Gamma GLM Intercept -4.46 0.22 -20.71 <0.001 
 Reef Area -0.17 0.18 -0.95 0.34 
 Realm (W.Atlantic) -0.19 0.51 -0.37 0.71 
 OHI -0.65 0.22 -3.01 <0.01 
 CoastalPop/ReefArea -1.08 0.15 -7.10 <0.001 

 Reef Area*Realm 
(W.Atlantic) 1.22 0.43 2.85 <0.001 

       

CPUE –  
outlier 

removed 

Gamma GLM Intercept -4.80 0.18 -26.61 <0.001 
 Reef Area 0.29 0.17 1.68 0.09 
 Realm (W.Atlantic) -0.34 0.39 -0.88 0.38 
 MDS 0.42 0.17 2.46 0.01 
 CoastalPop/ReefArea -0.40 0.17 -2.31 0.02 

 Reef Area*Realm 
(W.Atlantic) 0.62 0.36 1.71 0.09 
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Kmax Gamma GLMM Intercept -1.50 0.12 -12.51 <0.001 
 FamilyScaridae 0.05 0.17 0.33 0.74 
 FamilySiganidae 0.70 0.25 2.75 0.01 

       

 

 

 

Table C3. Post-hoc pairwise comparisons of growth coefficients between herbivorous fish groups. 

 

contrast ratio SE df asymp.LCL asymp.UCL z.ratio p.value 

        
Acanthuridae / Scaridae 0.95 0.16 172.00 0.64 1.40 -0.33 0.94 

Acanthuridae / Siganidae 0.50 0.13 172.00 0.27 0.91 -2.75 0.02 

Scaridae / Siganidae 0.53 0.13 172.00 0.29 0.95 -2.55 0.03 
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