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ABSTRACT Antibiotic resistance is one of the most prominent threats to modern med-
icine. In the latest World Health Organization list of bacterial pathogens that urgently
require new antibiotics, 9 out of 12 are Gram-negative, with four being of “critical prior-
ity.” One crucial barrier restricting antibiotic efficacy against Gram-negative bacteria is
their unique cell envelope. While fatty acids are a shared constituent of all structural
membrane lipids, their biosynthesis pathway in bacteria is distinct from eukaryotes, mak-
ing it an attractive target for new antibiotic development that remains less explored.
Here, we interrogated the redundant components of the bacterial type II fatty acid syn-
thesis (FAS II) pathway, showing that disrupting FAS II homeostasis in Escherichia coli
through deletion of the fabH gene damages the cell envelope of antibiotic-susceptible
and antibiotic-resistant clinical isolates. The fabH gene encodes the b-ketoacyl acyl car-
rier protein synthase III (KAS III), which catalyzes the initial condensation reactions during
fatty acid biosynthesis. We show that fabH null mutation potentiated the killing of multi-
drug-resistant E. coli by a broad panel of previously ineffective antibiotics, despite the
presence of relevant antibiotic resistance determinants, for example, carbapenemase
kpc2. Enhanced antibiotic sensitivity was additionally demonstrated in the context of
eradicating established biofilms and treating established human cell infection in vitro.
Our findings showcase the potential of FabH as a promising target that could be further
explored in the development of therapies that may repurpose currently ineffective anti-
biotics or rescue failing last-resort antibiotics against Gram-negative pathogens.

IMPORTANCE Gram-negative pathogens are a major concern for global public health
due to increasing rates of antibiotic resistance and the lack of new drugs. A major
contributing factor toward antibiotic resistance in Gram-negative bacteria is their
formidable outer membrane, which acts as a permeability barrier preventing many
biologically active antimicrobials from reaching the intracellular targets and thus
limiting their efficacy. Fatty acids are the fundamental building blocks of structural
membrane lipids, and their synthesis constitutes an attractive antimicrobial target,
as it follows distinct pathways in prokaryotes and eukaryotes. Here, we identified a
component of fatty acid synthesis, FabH, as a gate-keeper of outer membrane bar-
rier function. Without FabH, Gram-negative bacteria become susceptible to other-
wise impermeable antibiotics and are resensitized to killing by last-resort antibiotics.
This study supports FabH as a promising target for inhibition in future antimicrobial
therapies.
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The outer membrane (OM) of Gram-negative bacteria is critical to their survival
within harsh yet fluctuating environments (1). Unlike the canonical cytoplasmic

membrane, the OM has an asymmetrical design, in which the inner leaflet is almost
exclusively composed of phospholipids (PLs) while the outer leaflet is filled with the
lipid A components of lipopolysaccharide (LPS) (2). Each LPS molecule carries anionic
charges due to phosphate and carboxylate groups, which provides much of the OM ri-
gidity through intermolecular interactions. The uniformly distributed LPS molecules on
the outer leaflet of OM make it a potent barrier and guard the bacterium from harmful
compounds (3). Moreover, each LPS molecule is capped by a hydrophilic core oligosac-
charide, and in most cases, a terminal long-chain polysaccharide is also attached to the
core oligosaccharide. In effect, this creates an additional stabilizing and protecting water-
rich layer extending from the cell surface (4). For nutrient uptake, the otherwise imperme-
able OM houses a set of specialized porin proteins that allows solute exchange (3).

Over the past decades, the emergence of resistance to currently available antibiotics
among many clinically important bacterial pathogens has been recognized as a major
threat to global public health. In response to this challenge, the World Health
Organization released a list of high-priority pathogens urgently requiring new antimicro-
bials (5, 6). Within the critical priority category of this list is the third-generation cephalo-
sporin and/or carbapenem-resistant Enterobacteriaceae (including Escherichia coli,
Klebsiella, Serratia, and Proteus). Many circulating pathogenic E. coli lineages are multi-
drug-resistant (MDR) and therefore remain susceptible to only a few available treatment
options, which are fast diminishing (7, 8). One key contributor to antimicrobial resistance
(AMR) in Gram-negative bacteria is their OM. Most effective antibiotics access their intra-
cellular targets using OM-spanning hydrophilic porin channels, but this transport is re-
stricted by both the chemical properties and the size of the permeant antibiotics. In the
Enterobacteriaceae family, only small hydrophilic antibiotics (,600 kDa) can permeate the
generalized porins (9, 10).

In bacteria, the essential acyl chains of PL and LPS are de novo synthesized by the
highly conserved type II fatty acid synthesis pathway (FAS II) (11, 12). The structural
heterogeneity of acyl chains present in membrane lipids can determine how bacteria
respond to challenging and fluctuating environments (13–19). As seen in other essen-
tial pathways, FAS II has evolved specialized components, which possess overlapping
biochemical activities and complex redundancies. Thus, several enzymes are redun-
dant despite the essentiality of their biochemical activities. For example, in E. coli, three
b-ketoacyl acyl carrier protein (ACP) synthases (KAS proteins)—FabB for KAS I activity
(encoded by fabB), FabF for KAS II (encoded by fabF), and FabH for KAS III (encoded by
fabH)—collectively take part in the Claisen condensation reactions to drive fatty acid
(FA) biosynthesis (11). FabH initiates FA biosynthesis through condensing acetyl coen-
zyme A (CoA) with malonyl ACP (20), while FabB and FabF take overlapping roles in
the subsequent polymerization steps (11). The associated substrate specificity has
been reported in great detail by J. L. Garwin et al. (21).

The PL-LPS ratio, maintenance of membrane asymmetry, surface charge profiles of
the surface exposed LPS, and chemical differences within both the PLs and LPS compo-
nents collectively define the overall physicochemical and biological properties of the
OM (22). As such, progress in understanding the OM may lead to valuable tactics to cir-
cumvent this formidable protective barrier and improve antibiotic cell entry in Gram-
negative bacteria. In this work, we examined the role of redundant FAS II genes in
maintaining the antimicrobial exclusion properties of the membrane barrier in clini-
cally relevant uropathogenic E. coli (UPEC) strains, including a reference MDR isolate
from the globally disseminated sequence type 131 (ST131) lineage (23, 24). We report
that UPEC DfabH strains lacking KAS III activity display a severely defective membrane
envelope and therefore are highly sensitive to antibiotic killing (up to 41-fold reduced
MIC), even by otherwise ineffective drugs and while still harboring relevant AMR deter-
minants. Moreover, this increased sensitivity held true in established biofilm eradica-
tion and the treatment of infected human bladder cell monolayers. Together, this work
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showcases FabH as a promising FAS II component that could be therapeutically tar-
geted to rescue failing last-resort antibiotics and expand the range of currently avail-
able antibiotic treatments for Gram-negative infections.

RESULTS
FabH contributes to outer membrane barrier function in UPEC. To study the

involvement of the redundant genes in the FAS II pathway in the maintenance of the
OM barrier, we used two model UPEC strains, CFT073 (a drug-sensitive reference pyelo-
nephritis isolate) and EC958 (a reference MDR ST131 cystitis isolate), and constructed
null mutants of the fabH, fabF, fabR, fadR, and fadD genes. Mutants were evaluated for
OM defects by measuring their susceptibility to subinhibitory concentrations of vanco-
mycin (25). UPEC DfabF, DfabR, DfadR, and DfadD mutants had growth similar to that
of the wild type (WT) on LB-Lennox containing 50 mg/mL vancomycin, in both strains
(Fig. 1). Like previous E. coli K-12 DfabH studies (26, 27), UPEC DfabH strains grew remark-
ably slower than the WT strains (Fig. S1), and this is reflected in the reduced colony size
illustrated in Fig. 1A. Notably, despite the growth defect, the DfabH sample plated onto
dimethyl sulfoxide (DMSO) carrier control plates contained a similar number of viable
CFU as the optical density at 600 nm (OD600)-matched WT inoculum (Fig. 1A).

As expected, WT strains of EC958 and CFT073 survived low-dose vancomycin, a
Gram-positive antibiotic that is normally ineffective against Gram-negative bacteria, as

FIG 1 Screening UPEC FAS II mutants for membrane barrier defects using vancomycin. (A) CFT073 and EC958
WT and FAS II mutants were cultured on LB-Lennox agar containing 50 mg/mL vancomycin or DMSO carrier
control. (B) Complementation of defective membrane barrier in CFT073 and EC958 DfabH using plasmid-borne
fabH expressed under arabinose control. Overnight cultures normalized to an OD600 of 1.0 were serially diluted
to 1E-6, and 5 mL of each dilution was spotted platted onto plates containing DMSO, 50 mg/mL vancomycin, or
100 mg/mL fusidic acid. Where appropriate, 1% D-glucose or 50 mM L-arabinose was supplemented to suppress
or induce the expression of plasmid-encoded fabH, respectively. The plate images shown are representative of
at least three independent experiments.
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the OM prevents penetration to reach its peptidoglycan target. In contrast, CFU of the
DfabH mutants were diminished by 5-logs when exposed to 50 mg/mL vancomycin
(Fig. 1A). Likewise, we also observed similar increased sensitivity to fusidic acid, a hydro-
phobic antibiotic, which like vancomycin, is normally only effective against Gram-positive
bacteria (Fig. 2B). We then introduced the fabH gene into the DfabH mutants on the low-
copy-number and tightly controllable pBAD322G vector under Para control (28). Intrinsic
resistance to both vancomycin and fusidic acid was fully restored to WT levels upon
induction of FabH expression, but not when transcription was catabolically repressed
(Fig. 1B). We also noticed a similar susceptibility pattern in laboratory K-12 strains; thus,
the cryptic OM of the DfabH strain is not restrictive to UPEC but generally applies to
most, if not all, E. coli strains (data not shown).

FIG 2 Loss of KAS III activity potentiates UPEC killing by a wide array of antibiotics. (A) Individual antibiotic MICs for CFT073 WT (red dots)
and DfabH strains (blue dots). (B) Antibiotic MIC fold changes (improvement in potency) for the CFT073 DfabH mutant relative to the WT. (C)
Individual antibiotic MICs for EC958 WT (red dots) and DfabH (blue dots). (D) Antibiotic MIC fold changes (improvement in potency) for the
EC958 DfabH mutant relative to the WT. The purple lines in panels A and C mark current clinical resistance MIC cutoffs for each antibiotic as
listed in the European Committee on Antimicrobial Susceptibility Testing tables (31). MIC values that exceeded the testing range of the
Liofilchem MIC strips are indicated by blue circles that enclose the red/blue dot(s).
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Loss of FabH promotes UPEC killing by several antibiotics.We hypothesized that
the defective OM allows the efficient penetration of antibiotics and potentiates their
inhibitory effect. To assess this, we determined the MIC of DfabH strains to a wide
range of antibiotics (Fig. 2 and Table S2). As expected, fusidic acid and vancomycin
that cannot penetrate the Gram-negative cell envelope displayed an MIC of .256 mg
mL21 against CFT073 WT (Fig. 2A). In marked contrast, for CFT073 DfabH, the vancomy-
cin MIC was reduced by .64-fold, whereas for fusidic acid, a .8-fold MIC reduction
was observed (Fig. 2A and B). Antibiotics representing the b-lactam, aminoglycoside,
phenicol, polymyxin, and quinolone/fluoroquinolone classes were also tested. A .8-
fold increase in susceptibility to both aminoglycosides (kanamycin, gentamicin, amika-
cin, and tobramycin) and phenicol (chloramphenicol) was observed. Moreover, the MIC
values of ceftriaxone, meropenem, colistin, and ciprofloxacin against the isogenic
CFT073 DfabH mutant were further decreased by 2- to 4-fold (Fig. 2A and B), despite
these antibiotics already being active at sub-mg per mL concentrations against the sus-
ceptible CFT073 strain. Interestingly, we found CFT073 to be phenotypically resistant
to tobramycin, chloramphenicol, and colistin, although it lacks recognizable antibiotic-
resistant determinants (29).

The restored susceptibility to three antibiotics (tobramycin, chloramphenicol, and coli-
stin) in CFT073 DfabH prompted us to test if antibiotic efficacy could be restored against
resistant strains. EC958 is an MDR clinical isolate of the globally disseminated ST131 line-
age, carrying resistance genes to several antibiotic classes, including b-lactams (blaCTX-M-15,
blaTEM-1, blaOXA-1, blaCMY23, and ampC), aminoglycosides (aac39-II and aac6'1b-cr), and sulfo-
namides (dhfrVII, aadA5, and sul1), in addition to two chromosomal mutations (S83L and
D87N mutations in the gyrA gene) that confer fluoroquinolone resistance (23, 24, 30).

We attributed the very high co-trimoxazole and ciprofloxacin MIC values (.32mg/mL)
of EC958 WT and DfabH to the sulfonamide and quinolone resistance determinants pres-
ent in the strain (Fig. 2C). Like in CFT073, loss of fabH rendered EC958 susceptible to van-
comycin (.32-fold change in MIC), fusidic acid (.8-fold), and colistin (2-fold) (Fig. 2D).
Moreover, relative to the WT, EC958 DfabH was .2- to 4-fold more susceptible to all four
tested aminoglycosides (note that for EC958 WT, the kanamycin MIC exceeded the test
range of the MIC strip, so the reported fold change is likely an underestimate; Fig. 2C and
D). Importantly, amikacin susceptibility was restored in the EC958 DfabH mutant (Fig. 2C
and D), despite the presence of the aminoglycoside resistance genes (23, 30). We next
compared the susceptibility of EC958 WT and DfabH strains to ampicillin, ceftriaxone, and
aztreonam. As an extended-spectrum b-lactamase-positive (ESBL-positive) isolate, EC958
was found to be resistant to ceftriaxone (16 mg/mL) and nearly intermediate-resistant to
aztreonam (3mg/mL) (Fig. 2C). For EC958 DfabH, we observed enhanced susceptibility rel-
ative to the WT. The MIC values for ceftriaxone and aztreonam were reduced by 32-fold
and ;47-fold, respectively (Fig. 2D). The extent of this MIC reduction rendered EC958
DfabH clinically susceptible to these otherwise ineffective antibiotics (with MICs well
below the sensitivity values reported for Enterobacterales [31]).

The localization and folding of outer membrane proteins can be impacted by com-
positional changes in the bacterial membrane envelope (see recent review by J. E.
Horne et al. [32] for detailed information). Therefore, in addition to the severed perme-
ability barrier, efflux pumps may be impacted in DfabH and, as such, partially contrib-
ute to the observed antibiotic hypersensitivity. We probed the efflux activity of WT and
DfabH strains of both CFT073 and EC958, using intracellularly accumulated ethidium
bromide (Fig. 3). A DtolC mutant was constructed in EC958 as an efflux-defective con-
trol. As expected, ethidium bromide efflux was significantly delayed in this mutant
(Fig. 3). In contrast, ethidium bromide was rapidly expelled from both the WT control
and the DfabH mutant (Fig. 3). We conclude that efflux activity is unaffected in UPEC
DfabH strains.

Loss of KAS III activity restores UPEC sensitivity to last-line carbapenems.
Intriguingly, unlike other antibiotics of the b-lactam class, the DfabH strains were only
twice more susceptible to meropenem than the WT strains (Fig. 2D). Both UPEC strains
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lack genes for carbapenem resistance, so we introduced a kpc2-containing plasmid
(medium copy pSU2718 vector [33]) into the WT and DfabH strains to directly deter-
mine the impact of losing KAS III activity on carbapenem resistance.

Remarkably, the KPC-producing CFT073 DfabH strain displayed a reduced mero-
penem MIC by more than 21-fold relative to the WT strain (Fig. 4 and Table S3).
Similarly pronounced results were observed for three other carbapenem antibiotics,
with the MIC of imipenem, doripenem, and aztreonam reduced by 32-fold, .31-fold,
and .42-fold, respectively (Fig. 4B and Table S3). All tested carbapenems (other than
aztreonam) regained clinical potency against the KPC-producing UPEC DfabH strain.
Overall, the loss of KAS III activity rendered the resistant parent strain remarkably sus-
ceptible to last-line carbapenems, with MIC values 4- to 10.5-fold lower than the cur-
rent European Committee on Antimicrobial Susceptibility Testing resistance cutoff
values for Enterobacterales (31).

Prompted by the enhanced vulnerability of DfabH strains to last-line b-lactams and
considering the severe OM defects observed in the UPEC strains lacking KAS III activity,
we hypothesized that periplasmic b-lactamases may escape from the cell through the

FIG 4 Carbapenemase-producing UPEC DfabH show restored susceptibility to carbapenem antibiotics.
(A) MIC values for four carbapenem antibiotics tested against KPC-producing CFT073 WT (red dots) and
isogenic DfabH (blue dots). The purple line indicates the latest current resistant MIC cutoff value for
each antibiotic listed in the European Committee on Antimicrobial Susceptibility Testing tables (29). For
MIC values that exceeded the testing range of the Liofilchem MIC strips, a blue circle is used to enclose
the red/blue dot(s). (B) Carbapenem susceptibility MIC fold change (improvement in potency) for the
KPC21 CFT073 DfabH mutant relative to WT.

FIG 3 Efflux activity is unaffected in UPEC DfabH strains. Efflux kinetics of accumulated ethidium
bromide were tracked in late-phase bacterial cultures by excitation at 525 nm and emission at
615 nm. Experiments were performed in biological triplicates, and average fluorescence readings
(arbitrary units) taken every 30 s are plotted with error bars showing standard deviation (SD) values.
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compromised OM, thereby reducing the periplasmic concentration of these protective
enzymes in the previously resistant strain. To test this tenet, we collected cell-free
media from the late log phase cultures of KPC21 CFT073 WT and DfabH strains.
Medium harvested from the KPC21 DfabH culture, but not KPC21 WT, rescued the
growth of carbapenem-susceptible E. coli K-12 MG1655 on LB-Lennox agar containing
4mg/mL meropenem (Fig. 5A). Proteinase K treatment of this growth medium reversed
the growth rescue of MG1655. In contrast, heat treatment only marginally reduced the
growth of MG1655 on meropenem LB-Lennox (Fig. 5A). This observation is consistent
with the previously reported thermostability of KPC2 (34).

We next diluted cell-free culture media to assay b-lactamase activity with nitrocefin,
a chromogenic cephalosporin substrate (Fig. 5B and C) (35). Growth medium harvested
from KPC21 DfabH exhibited significantly stronger b-lactamase activity than that of
the KPC21 WT (Fig. 5B and C). To confirm that KPC2 was present in significant
amounts in the DfabH cell-free culture medium, proteins from the supernatant were
concentrated and analyzed by Western blotting using anti-KPC2 antisera. As expected,
we detected KPC2 in whole-cell lysates of KPC21 CFT073 but not in the vector control
(Fig. 5D). KPC21 CFT073 DfabH had amounts of KPC2 comparable to those of the WT,
although an additional higher-molecular-weight band consistent with premature KPC2
was also detected (Fig. 5D).

In the cell-free culture supernatant fraction, we detected a weak signal for KPC2 in
the KPC21 CFT073 sample (Fig. 5D). In striking contrast, very large amounts of KPC2
were observed in the KPC21 DfabH culture medium sample (Fig. 5D). A weak band
corresponding to the cytoplasmic chaperone protein DnaK was also detected, indicat-
ing minor levels of cell lysis (Fig. 5D). However, based on the very high KPC2:DnaK ratio

FIG 5 Evidence for leakage from the CFT073 DfabH severely compromised the outer membrane. (A)
KPC21 DfabH cell-free growth medium rescues MG1655 growth in meropenem-containing agar. (1)
Growth medium harvested from KPC21 WT; (2) growth medium harvested from KPC21 DfabH; (3)
heat-treated KPC21 DfabH growth medium; (4) proteinase K-treated KPC21 DfabH growth medium;
(5) LB-Lennox medium control. Cell-free growth media were applied to meropenem plates swabbed
with MG1655 (1) or no bacteria (–). (B) Nitrocefin degradation assays using cell-free growth media
recovered from KPC21 CFT073 WT and DfabH. (C) Nitrocefin hydrolysis assays using KPC21 CFT073
WT and DfabH growth medium. (D) Western blot of KPC2 present in cell-free growth media and
whole-cell preparations. Data from three biological replicates are shown in panels B and C as means 6 SD.
Images shown in panels A and D are representative of three biological replicates.
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in the sample compared to that of the whole cell (Fig. 5D), we reasoned that the bulk
of KPC2 detected in the cell supernatant likely escaped to the extracellular milieu
through the severely compromised OM of DfabH intact cells.

Loss of KAS III activity potentiates ceftriaxone treatment of ESBL+ UPEC biofilms
and infected human bladder cells. UPEC bacteria form biofilms on biotic and abiotic
surfaces that are recalcitrant to antibiotic treatment and aid bacterial survival inside
bladder cells and on urinary catheters (36, 37). To investigate whether the enhanced
antibiotic susceptibility of UPEC DfabH strains observed in planktonic drug sensitivity
assays can be extended to improved activity against established biofilms, we grew
EC958 WT and DfabH mature biofilms with both strains establishing comparable viable
biofilm cell densities after 24 h (Fig. 6A). While biofilms formed by either strain had
very high ceftriaxone resistance, a 4-fold reduction in the minimal biofilm eradication
concentration (MBEC) was observed for DfabH, with a ceftriaxone MBEC of 512 mg/mL
for the WT and 128 mg/mL for DfabH (Fig. 6B). Interestingly, residual EC958 WT cells
remained viable even at the highest ceftriaxone dose tested (1,024 mg/mL), while no
viable DfabH cells were detected in biofilms treated at and above 256 mg/mL ceftriax-
one, i.e., achieving complete biofilm eradication (Fig. 6B).

We next tested if ceftriaxone is effective in treating established human cell infec-
tion by EC958—a strain that is clinically resistant to this antibiotic. Infection of

FIG 6 Preclinical evaluation of KAS III as a target aiding the eradication of UPEC biofilms and
treatment of human bladder cell infection with antibiotics. (A) EC958 WT and DfabH establish mature
biofilms of comparable biofilm on the Calgary biofilm device; (B) Ceftriaxone MBEC assessment of EC958
WT and DfabH biofilms, including untreated (NA) and drug carrier (DMSO) controls. (C) Total adherent
bacteria on T24 bladder cell monolayers infected for 24 h at an MOI of 10 with EC958 WT and DfabH.
(D) Reduction in viable CFU recovered from UPEC-infected T24 monolayers following a 1-h treatment
with ceftriaxone (8 mg/mL). Group means were compared by an unpaired t test (***, P = 0.003).
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human T24 bladder cell monolayers with EC958 WT and DfabH at a multiplicity of
infection (MOI) of 10 resulted in high-level adhesion (.106 CFU per monolayer) by
both strains, albeit at slightly lower levels for DfabH (Fig. 6C). Subsequent 1-h treat-
ment of infected monolayers with 8 mg/mL ceftriaxone eliminated ;90% of DfabH
from the monolayer, while only a ,65% reduction was observed for the WT
(Fig. 6D). Taken together, our preclinical data on improved antibiotic activity against
resistant E. coli in planktonic, biofilm, and cell infection models support the tenet
that FabH constitutes a promising antimicrobial target for reviving failing last-resort
antibiotics.

DISCUSSION

AMR is one of the top 10 global public health threats of the 21st century, and tack-
ling this invisible pandemic constitutes a current priority (38–40). A recent report high-
lights that 1.27 million deaths in 2019 were directly attributable to resistant bacterial
infections, with E. coli being the leading cause (6). Tactics to extend the life of existing
antimicrobial agents or expand their spectrum are becoming a necessity in light of the
dwindling antibiotic discovery pipeline, as new antibiotics are sparse. As an evolving
permeability barrier, the OM is instrumental in developing antibiotic resistance in
Gram-negative bacteria (9, 41). In recent years, there has been a resurgence of interest
in exploring the disruption of the OM as an antimicrobial tactic (42–45). FAs are the
common building blocks for structural lipids in the cytoplasmic membrane and the
OM; thus, their biosynthetic pathways present attractive antibiotic targets (46). Here,
we showed that the loss of KAS III incapacitates the OM to drastically improve antibi-
otic activity against clinical E. coli, even in the presence of acquired antibiotic resist-
ance determinants.

Carbapenem is one of the last-resort antibiotics used to treat infections caused by
drug-resistant Gram-negative bacterial infections. Unfortunately, resistance to carbape-
nems is increasingly prevalent in E. coli and other members of the Enterobacteriaceae
family (47). We showed that targeting FabH can deactivate the antibiotic protection
offered by advanced b-lactamases and carbapenemase to clinical E. coli strains.
Another attractive prospect of targeting FabH (or other similar membrane perturbation
tactics), is expanding the range of drugs with physicochemical properties amenable to
Gram-negative entry, potentially expanding the spectrum of activity of many Gram-
positive antibiotics.

FabH was previously thought to be indispensable in E. coli (48). However, this essen-
tiality is bypassed by the product of the yiiD gene (renamed MadA) (49). The bypass
mechanism involves the decarboxylation of malonyl ACP to produce acetyl ACP (50).
Unlike acetyl-CoA, which can only be integrated into the initiation step of FA biosyn-
thesis by FabH, this substrate can be used by FabB/FabF to bypass the loss of KAS III ac-
tivity in E. coli (50). However, the supply of FA to integrate into membrane biogenesis
by the MadA bypass is highly restrictive, and as such, earlier E. coli K-12 studies
reported that DfabH cells are tiny (26, 27). This observation had been instrumental in
developing the lipid-centric view that FA availability sets the capacity of the cell enve-
lope to dictate cell size (27). Intriguingly, both CFT073 and EC958 DfabH cells have
comparable size to their corresponding WT cells, though at the expense of cell division
rate (Fig. S2). Together, these findings suggest that an additional layer of regulation
might be employed in the two UPEC strains, allowing them to reach a destined cell en-
velope capacity despite severe FA starvation. Nonetheless, we note that antibiotic
potentiation of DfabH is unrelated to cell size, given that K-12 DfabH cells with reduced
size also displayed increased sensitivity to hydrophobic antibiotics (26), and we also
observed a 42-fold and 6-fold potentiation to vancomycin and fusidic acid in K-12
strains lacking KAS III (data not shown).

Two recent studies had linked FA starvation to increased antibiotic tolerance
(51, 52). Sublethal inhibition of FA biosynthesis either by blocking the chain elon-
gation steps catalyzed by FabB/FabF or the enoyl ACP reductase FabI activates the
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(p)ppGpp synthetase, RelA, which overproduces ppGpp, the effector molecule of
stringent bacterial response (51, 52). A high ppGpp level inadvertently drives E. coli
and several other species to reach an antibiotic-tolerant state (51–57). The loss of
KAS III also triggers the overproduction of ppGpp (26). In fact, the production of the
stringent response alarmone is necessary for the survival of DfabH, as ppGpp is
required to drive the transcription of MadA that partially substitutes FabH (49). Yet,
in multiple E. coli lineages, DfabH shows hypersensitivity toward a broad panel of
antibiotics.

Yao et al. (26) reported that the membrane lipids of DfabH contain elevated ratios
of unsaturated fatty acids. We expected the cytoplasmic membrane would also be
altered in a DfabH strain. However, In the context of drug diffusion, influx across the
cytoplasmic membrane, composed of phospholipids, is orders of magnitude faster
than flux across the outer membrane. As such, drug diffusion across the outer mem-
brane is the key rate-limiting step to achieve antibiotic potentiation. Given the
extent to which the cell envelope is disrupted in DfabH, presumably allowing leak-
age of large periplasmic contents (Fig. 5D), this damage alone is sufficient to over-
come antibiotic tolerance induced by the stringent response. Nonetheless, to our
surprise, the strain that possessed such a cryptic cell envelope remained highly sta-
ble, demonstrated by our failed previous attempts to isolate the then unresolved
functional bypass of KAS III activity through permissive conditions (Hong Y and
Cronan JE, unpublished). The mystery may lie in the multifaceted network regulating
FAS II (58, 59) and other related pathways to compensate for defects in membrane
biogenesis (60).

MATERIALS ANDMETHODS
Bacterial strains and growth. The strains and plasmids used in this study are described in Table 1.

The E. coli strains were grown at 37°C in lysogeny broth (LB)-Lennox unless otherwise indicated. For solid
media, 15 g/L bacteriological agar was added. Ampicillin was used at 100 mg/mL, chloramphenicol at
17mg/mL, and gentamicin at 10mg/mL.

Cloning and genetic manipulations. The fabH gene was amplified from the genomic DNA of the K-
12 strain MG1655 and cloned into the BamHI and PstI sites in the pBAD322G vector (28). pKPC2 was con-
structed by amplifying Tn4401a-kpc2 from the genomic DNA of a clinical K. pneumoniae strain, JIE2709
(61), and cloned into the PstI and KpnI sites in pSU2718 (33). Lambda recombination competency was
achieved by adding temperature-sensitive plasmids, either pKD46 (62) or pKOBERG-Gen (63), to the
manipulating strain. Transformation and lambda recombination were performed as previously described
(64). Temperature-sensitive pCP20-Gent carrying FLP recombinase was used to remove the cat marker
wherever applicable. For the construction of EC958 DtolC::cat, lambda-red recovery culture postelectro-
transformation was platted onto a low-dose chloramphenicol (6.5 mg/mL chloramphenicol) LB-Lennox
plate and isolated and screened from a thin bacterial lawn. Oligonucleotide sequences used for gene
replacements and cloning are included in Table S1.

Outer membrane defect assay. Vancomycin can only transverses the Gram-negative OM when the
permeability barrier is compromised (65). The OM defect of the null mutants constructed was assayed
using susceptibility of a dilution series from overnight-grown cultures adjusted to an OD600 of 1.0 to sub-
inhibitory concentrations of vancomycin similar to the method previously described (66, 67). Equivalent
loading of the OD600-adjusted samples (5 mL) was spot-plated onto LB agar.

Ethidium bromide efflux assay. Stationary cultures were diluted with fresh LB-Lennox containing
1 mg/L ethidium bromide and 20 mg/mL carbonyl cyanide m-chlorophenylhydrazone. Cultures were
incubated at 37°C until an OD600 of 0.7 to 0.8 was reached with aeration. The cells pellets were harvested
via centrifugation and washed with 4� volumes of 1� phosphate-buffered saline (PBS). The samples
were then resuspended in 1� PBS and incubated for 30 min in a dark room at 5°C. The samples were
adjusted to an OD600 of 0.2 and dispensed in 150-mL volumes in a Greiner 96-well flat-bottom plate;
D-glucose (20% wt/vol stock) was then added at a 0.1% concentration (12 mL) to energize ethidium bro-
mide efflux. Efflux activity was tracked over 60 min in a CLARIOStar instrument (BMG, Australia) at 37°C.
The following instrumental settings were used: excitation at 525 6 15, emission at 615 6 20, auto 568.8
dichroic filter. The experiment was performed in biological triplicates.

Determination of antibiotic MICs. The specific bacterial strains were prepared and tested according
to the MIC test strips (Liofilchem) manufacturer’s instructions. Briefly, overnight cultures of the specific
strains were diluted in 0.85% (wt/vol) saline to give a final inoculum concentration of 1.5 � 108 CFU
mL21. The inoculums were then used to inoculate Mueller-Hinton agar (Thermo Fisher, Australia) plates
using a sterile swab. The MIC test strip was applied to the agar surface after the inoculum had dried.
Plates were then incubated at 37°C for 20 h. The MIC values were determined by observing where the
relevant inhibition ellipse intersected with the MIC test strip.
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Determination of carbapenemase activity in cell-free growth media using MG1655 rescue.
MT1803 and MT1804 overnight early stationary cultures were diluted 1:50 into fresh LB-Lennox contain-
ing chloramphenicol (17 mg/mL) and grown to an OD600 of 0.8 at 37°C. Cell-free growth media were pre-
pared by the filtration of culture supernatant of OD600 0.8 cultures grown at 37°C with aeration through
a 0.22-mm filter (3M). The samples (5 mL) were spotted onto LB-Lennox agar containing meropenem
(4 mg/mL) and had been swabbed with overnight cultures of MG1655 on the plate surface. Cell-free
growth media treated with proteinase K at 37°C for 30 min and heat-treated (60°C for 30 min) cell-free
growth media were also added to MG1655-swabbed LB-Lennox containing meropenem (4 mg/mL) to
serve as controls. LB-Lennox containing meropenem (4 mg/mL) without MG1655 swab was also included
as a control for the cell-free growth media. Plates were incubated at 37°C for 20 h, and images were
taken with a Bio-Rad GelDocXR1 system using Image Lab software (v5.1; Bio-Rad). Figure 5D is represen-
tative of three biological replicates.

Assaying carbapenemase activity from cell-free growth media. MT1803 and MT1804 overnight
early stationary cultures were diluted 1:50 into fresh LB-Lennox containing chloramphenicol (17 mg/
mL) and grown to an OD600 of 0.8 at 37°C. The cell-free growth medium was prepared by filtering cul-
ture supernatant through a 0.22-mm filter (3MM). The cell-free growth media were then diluted
1:1,000 (180 mL) and adjusted to 150 mM nitrocefin to give a testing volume of 200 mL. Nitrocefin
degradation assays using cell-free growth media recovered from KPC21 CFT073 WT and DfabH were
then performed using KPC21 CFT073 WT and DfabH growth medium, with two variables, degrada-
tion of nitrocefin and generation of products tracked at 390 nm and 486 nm, respectively, on a
CLARIOStar instrument (BMG, Australia) over time. Nitrocefin working stock was prepared at 1.5 mM
in 50 mM phosphate buffer.

Precipitation of extracellular proteins and Western blot analysis. First, 5 mL of cell-free growth
medium was prepared by the filtration of culture supernatant of OD600 0.8 cultures grown at 37°C with
aeration through a 0.22 mm filter (3MM). The sample was then precipitated with 1 mL of ice-cold 100%
(wt/vol) trichloroacetic acid and incubated on ice for 10 min. The precipitated protein was harvested via
centrifugation (20,000 � g, 4°C, 10 min), washed once with 500 mL of ice-cold acetone, and dissolved in
100mL of SDS-PAGE sample buffer, with the pH adjusted with 1 M Tris-HCl, pH 9. Precipitated extracellu-
lar protein samples (10 mL) and whole-cell lysates (10 mL, derived from a 10� concentrate of OD600 1.0

TABLE 1 Strains and plasmids used in this work

Strains and plasmids Detail Source or reference
Strains
MG1655 E. coli K-12 strain; F-l-ilvG rfb-50 rph-1 Coli Genetic Stock Centre
MT1776 MG1655 DfabH::cat This work
CFT073 Pyelonephritogenic E. coli isolate (O6:K2:H1) 69
MT2099 CFT073/pBAD322G This work
MT1534 CFT073 DfabH::FRT This work
MT2092 CFT073 DfabH::FRT/pBAD322G-fabH This work
MT534 CFT073 DfabR::cat This work
MT1427 CFT073 DfadR::cat This work
MT1439 CFT073 DfadD::cat This work
MT1496 CFT073 DfabF::FRT This work
MT1803 CFT073/pKPC2 This work
MT1804 CFT073 DfabH::FRT/pKPC2 This work
EC958 E. coli ST131 urinary tract infection isolate (O25b:H4), MDR 23
MT2098 EC958/pBAD322G This work
MT1667 EC958 DfabH::cat This work
MT2100 EC958 DfabH::cat/pBAD322G-fabH This work
MT1901 EC958 DfabR::cat This work
MT1902 EC958 DfabF::cat This work
MT1903 EC958 DfadD::cat This work
MT1917 EC958 DfadR::cat This work
MT1608 EC958 DtolC::cat This work

Plasmids
pKPC2 Tn-4401a-kpc2 cloned into pSU2718, chloramphenicol resistance This work
pBAD322G araBAD promoter-based expression vector, complete pBR322 origin, gentamicin resistance 28
pSU2718 p15A-derived plasmids carry lacZa reporter gene, chloramphenicol resistance 33
pBAD322G-fabH K-12 MG1655 fabH cloned into the BamHI/PstI sites of pBAD322G This work
pKD3 FRT-flanked cat gene, oriRg replicon, ampicillin, and chloramphenicol resistance 62
pKD46 l recombineering genes (a, b ,g) controlled by arabinose-inducible promoter, ParaB,

temp-sensitive oriR101 replicon, ampicillin resistance
62

pCP20 flp recombinase gene, temp-sensitive replicon, ampicillin, and chloramphenicol resistance 62
pKOBERG-Gen Gentamicin-resistant plasmid carrying the l recombineering genes (a, b,g) 70
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culture harvested simultaneously as cell-free growth media) were separated on 12% SDS-PAGE. The sam-
ples were transferred to nitrocellulose membranes. Immunoblot analyses were performed with rabbit
a-KPC2 (1:8,000) and mouse a-DnaK (1:10,000; Enzo Life Sciences, kindly gifted by Renato Morona), fol-
lowed by goat a-rabbit Amersham ECL HRP-conjugated antibodies (1:20,000; Cytiva) for chemiluminescent
detection using Pierce ECL Western blot substrate. Rabbit polyclonal a-KPC2 sera were raised by inocula-
tion with three previously described KPC2 peptide epitopes (epitope A: CFAKLEQDFGGSIGVYA; epitope B:
CLNSAIPGDARDTSSPRAVT; epitope C: CVIAAAARLALEGLGVN [68]) at the Walter and Eliza Hall Institute of
Medical Research (peptides were synthesized by Mimotopes Pty. Ltd.). The developed blots were imaged
in the Bio-Rad GelDocXR1 system using Image Lab software (v5.1; Bio-Rad).

Biofilm growth.Minimum biofilm eradication concentration (MBEC) and biofilm growth assays were
performed in a Calgary biofilm device (CBD) (MBEC assay; Innovotech, Inc., Canada). Overnight bacterial
cultures in LB were diluted to 106 CFU/mL and used to inoculate the plate with 130 mL of culture per
well. The CBD was incubated for 24 h with shaking (150 rpm) at 37°C in 95% relative humidity. Following
24 h of growth, biofilms were washed once in PBS to remove nonadherent cells and then sonicated for
20 min at 20°C. At least three biological and two technical repeats per strain per experiment were seri-
ally diluted and spotted onto LB agar plates to determine viable CFU recovered from each peg biofilm.
Plates were incubated overnight at 37°C, and colonies were counted the following day to obtain log10

(CFU/mL) values for each strain.
MBEC assays. Following 24 h of biofilm growth in the CBD, biofilms were washed once in PBS to

remove nonadherent cells, and the biofilm peg lid was transferred to a treatment plate containing vari-
ous concentrations of ceftriaxone disodium salt heptahydrate or dimethyl sulfoxide (DMSO) in Muller
Hinton broth. Peg biofilms were incubated in the treatment plate for 24 h and then sonicated and plated
as per the biofilm growth assay. MBEC values were defined as concentrations with over 3 log10 reduction
in CFU/mL.

Epithelial cell infection assay and ceftriaxone treatment. Intestinal epithelial T24 cells (ATCC
HTB4; Dulbecco’s modified Eagle’s medium [DMEM]) were maintained in McCoy medium (Invitrogen)
supplemented with 5% heat-inactivated fetal calf serum (Invitrogen). Bacterial strains were cultured
under type 1 fimbria enrichment conditions, as previously described (23). Infection assays were per-
formed as previously described (63). Briefly, confluent cell monolayers were infected with strains at
a multiplicity of infection (MOI) of 10 and incubated at 37°C, 5% CO2, for 1 h. PBS washes (3�) were
used to remove nonadherent bacteria. Ceftriaxone salt heptahydrate (in DMSO) was added to
McCoy medium and applied to the infected monolayer without disturbance. Antibiotic treatment
was performed by incubation at 37°C, 5% CO2, for 2 h. Then, 1� PBS washes (3�) were used to
remove nonadherent bacteria and antibiotic residue. Monolayers were lysed with 0.1% (vol/vol)
Triton X-100, and lysates were serially diluted and plated onto LB agar to enumerate total adherent
bacteria.

SUPPLEMENTAL MATERIAL
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