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Simple Summary: Gastrointestinal parasites (GIPs) coevolved with mammalian hosts over millennia.
These parasites produce small molecules, peptides, and proteins not only to evade or combat the
host’s immune response, but also to protect their host for longer coexistence. The emerging field
of parasitomics uses various techniques, databases, and software associated with LC-MS (liquid
chromatography–mass spectrometry), NMR (nuclear magnetic resonance), and other mass spectrom-
etry platforms to study the polar and lipid molecules produced by GIPs. Recent advancements in
AI-assisted tools and databases have significantly advanced this field, offering new insights into
host–parasite interactions, immunomodulation and biochemical pathways. As research progresses,
parasitomics promises to deepen our understanding of these complex relationships.

Abstract: Gastrointestinal parasites (GIPs) are organisms known to have coevolved for millennia with
their mammalian hosts. These parasites produce small molecules, peptides, and proteins to evade or
fight their hosts’ immune systems and also to protect their host for their own survival/coexistence.
The small molecules include polar compounds, amino acids, lipids, and carbohydrates. Metabolomics
and lipidomics are emerging fields of research that have recently been applied to study helminth in-
fections, host–parasite interactions and biochemicals of GIPs. This review comprehensively discusses
metabolomics and lipidomics studies of the small molecules of GIPs, providing insights into the
available tools and techniques, databases, and analytical software. Most metabolomics and lipidomics
investigations employed LC-MS, MS or MS/MS, NMR, or a combination thereof. Recent advance-
ments in artificial intelligence (AI)-assisted software tools and databases have propelled parasitomics
forward, offering new avenues to explore host–parasite interactions, immunomodulation, and the
intricacies of parasitism. As our understanding of AI technologies and their utilisation continue
to expand, it promises to unveil novel perspectives and enrich the knowledge of these complex
host–parasite relationships.

Keywords: gastrointestinal parasites; small molecules; database; software; metabolomics; lipidomics;
artificial intelligence

1. Introduction

Metabolomics and lipidomics are powerful techniques developed to study polar
metabolites and lipids (both endogenous and exogenous) present in biological samples
or organisms [1]. These techniques help us to understand the genotype or phenotype
of the biological system at the biochemical level, which has immense applications in
health and disease research [2]. These platforms mainly rely on NMR (nuclear magnetic
resonance) spectroscopy and mass spectrometry, including gas chromatography–mass
spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS), and capillary
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electrophoresis–mass spectrometry (CE-MS) [2,3]. Compared to conventional natural prod-
ucts isolation and structure elucidation methods, all these techniques are high-throughput
systems that can measure and identify many metabolites at a time.

Metabolomics and lipidomics are relatively new “omics” approaches applied in
helminth research, with immense potential for identifying metabolites in cells, biofluids
(including excretory/secretory products, ESPs), tissues, and whole organisms [4]. Gastroin-
testinal parasites (GIPs) have coevolved with their hosts for millennia [5]. The host and
the parasite compete for available energy resources and metabolic building blocks while
parasites enter the gut, significantly impacting each other’s metabolic homeostasis [4,6].
Historically, parasitic helminths’ biological and molecular complexities have posed chal-
lenges in understanding the biochemicals and their biological functions. However, the
emergence of “omics” technologies has enabled a deeper understanding of parasites at
a systems biology level, which is crucial for advancements in preventing and treating
helminth infections [7].

Different types of metabolomics and lipidomics workflows have been applied based on
the choice of experimental approach (targeted versus untargeted approach) [8]. Unlike the
targeted approach, the untargeted approach generates more complex data, the processing
and interpretation of which require advanced computational methods, such as AI (artificial
intelligence) and ML (machine learning) algorithms. Advanced AI platforms are crucial
tools in processing and analysing complex untargeted data [9,10], as they can eliminate
background noise in peak identification, alignment, and normalisation [10]. Typically, ML
algorithms are used to build mathematical models from a data set in a series of steps [10,11].
They have offered countless opportunities, including early disease diagnosis [12], reviewed
in depth by Galal et al. [10].

In this review, we retrieved published metabolomics and lipidomics studies on small
molecules from various gastrointestinal parasites, sourcing data from databases such as
PubMed, MEDLINE Ovid, Scopus, Google Scholar, and Web of Science. To retrieve relevant
literature, we used the following keywords: “metabolomics techniques”, “lipidomics”,
“targeted metabolomics”, “untargeted metabolomics”, “small molecules”, “helminths-
derived small molecules”, “host-parasite communication”, “metabolites”, “lipids”, and
“excretory and secretory products” and gastrointestinal parasite names. We summarised
the AI-assisted metabolomics and lipidomics techniques, databases, and analytical software
used for studying various gastrointestinal parasites.

2. Interaction of Gastrointestinal Parasite with Animal Hosts Using Small Molecules

Gastrointestinal parasites interact with their host in different ways to survive inside
the host or to complete their life cycle [13]. Adult parasites, as well as those in the develop-
mental cycle, excrete/secrete (ES) various small molecules and metabolites to manipulate
the host’s immune system [14]. There is growing interest in how these small molecules and
other metabolites and molecular cues intricately communicate with intercellular crosstalk.
For instance, helminth-derived ES products (ESPs) can activate dendritic cells (DCs), lead-
ing to the development of Th2 (T helper type 2) cells and Treg (regulatory T) cells. These
cells help the parasite evade immune detection and ensure survival (Figure 1). Short-chain
fatty acids (SCFAs) like acetate, butyrate, and propionate, which are not produced by the
host but by commensal bacteria, play a role in promoting Treg cells [15] (Figure 1). Hence,
dysbiosis can disrupt this pathway, leading to pathogenic outcomes [16,17]. Interestingly, it
is possible that helminths can also synthesise compounds [18] that promote commensal
bacteria, increasing SCFA production (Figure 1) [19]. Octadecanoic acid detected in the
Nippostrongylus brasiliensis infective larval stage (L3) helps lyse host red blood cells [5,20].
Succinic acid in the ESPs of adult N. brasiliensis can induce intestinal tuft cells to initiate Th2
responses and serve as an energy source during anaerobic adaptation [5,21]. Other small
molecules include prostaglandins (PGs), such as PGD2 and PGE2, produced by Brugia
malayi (filarial parasites) [22], Onchocerca volvulus [23], and Schistosoma mansoni (cercariae
stage) [24]. One recently explored host–helminth interaction method uses extracellular



Animals 2024, 14, 2671 3 of 17

vesicle (EV) microRNAs to influence the host immune system [25]. For example, the mi-
croRNAs secreted by Schistosoma mansoni (e.g., sma-microRNA-10) can manipulate the
NF-κB pathway to influence the fate of host T cells. Schistosoma species like S. mansoni
produce over 200 miRNAs [26] and a detailed discussion of this subject is beyond the scope
of the current review.
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Figure 1. Host–pathogen recognition systems during GI helminth infections. The host innate immune
system responds to injury by releasing alarmins (e.g., IL-33, TSLP), initiating a type 2 (Th2) immune
response. However, GI helminths may block the release of alarmins or their receptors, e.g., IL-33R
(or ST2). Toll-like receptors (TLRs) may recognise pathogen-associated molecular patterns (PAMPs).
These PAMPs can be presented directly by helminths or indirectly by bacteria passing through the
injured epithelium. In such cases, helminths secrete immune modulators that block the Th1 response
driven by IL-12.

3. Techniques Used for Studying GIPs

An analysis of the available literature on GIP metabolomics and lipidomics studies
highlights the use of a diverse range of analytical and identification tools (Table 1). The
most commonly employed techniques include liquid chromatography–mass spectrometry
(LC-MS), gas chromatography–mass spectrometry (GC-MS), capillary electrophoresis–mass
spectrometry (CE-MS), and nuclear magnetic resonance spectroscopy (NMR) [3]. Addi-
tionally, some studies have utilised advanced techniques such as Raman and Fourier
transform infrared (FTIR) spectroscopies, atmospheric pressure matrix-assisted laser des-
orption/ionisation mass spectrometry imaging (AP-SMALDI MSI), ultra-high-performance
liquid chromatography–mass spectrometry (UHPLC/MS), and high-resolution mass spec-
trometry (HRMS). LC-MS is a widely used analytical technique in global metabolite pro-
filing. LC-MS is even better when high-resolution accurate mass (HRAM) detection is
applied [27–29], as it can detect and identify a broader range of metabolites in terms of
quantity and physicochemical properties [30]. However, we came across only one study
using an HRAM detector, wherein Ferreira et al. [31] identified 20 lipids from the life cycle
(eggs, miracidia, and cercariae) of S. mansoni. Out of 28 metabolomics studies (Table 1), the
highest number of studies (8) used UHPLC/MS.
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Unlike HPLC, the column used in UHPLC has a particle size of ≤2 µm, allowing
more flexible and efficient separation owing to high back pressure [32]. GC-MS is the
second most used technique with six studies (Table 1). For instance, the ESPs of adult
Trichuris muris and Nippostrongylus brasiliensis were analysed (targeted) for their metabolites
using GC-MS [21,33]. However, one of the disadvantages of using GC-MS is that, often, the
derivatisation of analytes is required to enhance the resolution, detection and sensitivity [34].
Moreover, GC-MS require thermally unstable analytes [35]; more about this technique has
been reviewed elsewhere [35–37]. Metabolomics studies using NMR are rapid and non-
destructive, and no derivatisation is required, unlike GC-MS [34]. The metabolites of
Echinococcus multilocularis (metacestode larval stage) and adult N. brasiliensis ESPs were
analysed using proton NMR (H1NMR) [38,39]. NMR is also not ideal in terms of sensitivity,
and it gives convoluted spectra and often more than one peak per component [34]. Recent
publications by Whitman et al. [40] and Kokova and Mayboroda [41] have provided
excellent reviews of GC-MS and NMR methodologies and their applications in helminths
metabolomics, respectively.

Matrix-assisted laser desorption/ionisation MS imaging (MALDI-MSI) is often used in
metabolomics studies [42,43]. Three studies have analysed (both targeted and untargeted)
the somatic extracts of Schistosoma mansoni using MALDI-MSI (Table 1) [42–44]. One of
the advantages of the MALDI technique, such as atmospheric pressure SMALDI-MSI
(AP-SMALDI-MSI), over the classical LC-MS-based lipidomics method is that the spatial
distribution of a wide variety of compounds can be determined immediately in tissue in
a semi-quantitative manner. Kadesch et al. [44] performed an untargeted analysis of the
tissue- and sex-specific lipids of adult S. mansoni using AP-SMALDI-MSI and identified
320 lipids (Table 1). However, some isobaric lipid species (possessing exactly or nearly the
same mass), like phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs), are
not easily discriminated based on MSI data and must be identified using fragmentation
experiments [44]. The MALDI platform is more commonly applied to analyse polymer
samples [45,46], but in metabolomics, it reveals the metabolite distribution in a tissue
sample [47]. Mass spectrometry with electrospray ionisation (ESI) efficiency scales in both
positive and negative modes unified in a single system has enabled a comparative analysis
of IE values across ionisation modes [48].

Many metabolomics/lipidomics studies prefer LC coupled with MS/ESI(+/−) since
more compounds are expected to ionise in the positive mode. Moreover, the negative
mode (ESI−) reduces background noise [49,50]. Lipidomics analyses of the somatic tissue
extracts of S. mansoni [51], Trichinella papuae [52], and Haemonchus contortus [53] have ap-
plied both positive and negative ESI modes (Table 1) and identified more than 1000 lipids.
However, there is a lack of proper guidelines on which ESI mode to proceed with when com-
pounds ionise in both modes [48]. One of the main challenges in helminth metabolomics is
confirming the definite source of metabolites, as it can be influenced by multiple factors,
including the host, strains, sex of the helminths, and isolation timing of metabolites from the
host, as well as the different technical platforms and experimental conditions applied [54].
Metabolomics and lipidomics application in helminth studies is still an emerging field of
science, and methodologies, techniques, software, and bioinformatics tools are evolving.
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Table 1. Metabolomics approaches, analytical platforms, identification databases, and software used to study the small molecules of gastrointestinal parasites.

Helminth Species
and Family

Life Cycle
Stage Host Sample

Analysed
Study
Approach Metabolite Types

MSI
Identification
Level

Analytical Instru-
ments/PLATFORMS
Used

Databases/Software Used Ref.

Ancylostoma
caninum
(Ancylostomatidae)

Adult Dog SE, ESP Targeted Polar metabolites
and lipids Level 1 GC-MS and LC-MS

Database: MAML
Software: Agilent
MassHunter (v.7);
MetaboAnalyst (v.3.0)

[55]

Ascaris suum
(Ascarididae) L3, L4, adult Swine SE Untargeted Lipids Level 2 UHPLC-MS/MS Database: LipidSearch

(v.4.2.23) [56]

Ascaris lumbricoides
(Ascarididae)

Adult

Human and
swine

ESP Targeted Lipids Level 1 GLC
Lipids were identified by
matching retention times
with standards

[57]

Eggs, L1, L3 SE Fingerprint

Biomarkers
(pheromones/
steroidal
prohormones)

Level 2 HRMS

Database: Lipid MAPS;
HMDB (v 3.6); METLIN
Software: MetaboAnalyst
(v.3.0)

[58]

Brugia malayi
(Onchocercidae) Adult Dogs and

wild felids Cuticle Targeted Lipids Level 1 TLC and GC
Lipids were identified by
matching retention times
with standards

[59]

Dictyocaulus
viviparus
(Dictyocaulidae)

Eggs, L1-L3,
preadult, adult Cattle SE Targeted Lipids Level 1 GC

Lipids were identified by
matching retention times
with standards
Software: Chem Station
B.01.03.

[60]

Dipylidium caninum
(Dipylidiidae) Adult Dog ESP Targeted Polar metabolites

and lipids Level 1 GC-MS

Database: MHL; KEGG; NIST
library; MAML
Software: MetaboAnalyst
(v.4.0)

[61]

Echinococcus
multilocularis
(Taeniidae)

Larval
metacestode Fox CS Untargeted Polar metabolites Level 1 1H NMR

Database: HMDB
Software: Chenomx NMR
Suit (v.8.2); STOCSY

[62]
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Table 1. Cont.

Helminth Species
and Family

Life Cycle
Stage Host Sample

Analysed
Study
Approach Metabolite Types

MSI
Identification
Level

Analytical Instru-
ments/PLATFORMS
Used

Databases/Software Used Ref.

Haemonchus
contortus (Tri-
chostrongylidae)

Eggs, L3, xL3,
L4, adult

Goats and
sheep SE Untargeted Lipids Level 2 UHPLC-ESI(+)-

MS/MS-Orbitrap

Database: LipidSearch
(v.4.1.30 SPI)
Software: R package (v.1.6.18)

[53]

Hymenolepis
diminuta
(Hymenolepididae)

Infective stage Rodents
(rats) SE Targeted Lipids Level 1 TLC, CC, and GLC NA [38]

Necator americanus
(Ancylostomatidae) L3 Human SE, ESP Untargeted

Polar metabolites Level 1 Q-Exactive Orbitrap
and MS/HPLC

Database: KEGG; MetaCyc;
CTS; Lipid MAPS; PubChem;
HMDB
Software: IDEOM;
MetaboAnalyst (v.3.0)

[63]

Lipids Level 2

Nippostrongylus
brasiliensis
(Heligmonellidae)

Adult

Rodents
(rats)

ESP Targeted Polar metabolites
and lipids Level 1 1H NMR

Database: GenBank; NCBI
GEO
Software: STAR; Chenomx
NMR Suite (v.5.1)

[39]

L3 SE, ESP Untargeted
Polar metabolites Level 1 Q-Exactive Orbitrap

and MS/HPLC

Database: KEGG, MetaCyc;
Lipid MAPS; PubChem CID;
HMDB; CTS
Software: IDEOM;
MetaboAnalyst (v.3.0) [21,33]Lipids Level 2

Adult ESP Targeted Polar metabolites
and lipids Level 1 GC-MS

Database: MAML; MHL;
KEGG
Software: Agilent
MassHunter (v.7)

Adult
ESP

Untargeted Polar metabolites Level 1 UHPLC-MS

Database: HMDB; PubChem
CID
Software: XCMS;
MetaboAnalyst (v.5.0); R
package (Ropls)

[64]
Intestinal
content
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Table 1. Cont.

Helminth Species
and Family

Life Cycle
Stage Host Sample

Analysed
Study
Approach Metabolite Types

MSI
Identification
Level

Analytical Instru-
ments/PLATFORMS
Used

Databases/Software Used Ref.

Oesophagostomum
dentatum; O.
quadrispinulatum
(Strongylidae)

L3, L4, adult

Common
livestock
(goats,
sheep, and
swine)

SE Untargeted Lipids Level 1 GC

Lipid identification:
matching retention times
with standards
Software: MIDI software
package (MIS v.3.30)

[65]

Schistosoma mansoni
(Schistosomatidae)

Adult

Human

SE Targeted Lipids Level 1 MALDI MSI (+)

Database: METLIN; Lipid
MAPS
Software: Uscrambler (v.9.7);
Mass Frontier (v.6.0)

[42]

Eggs,
miracidia,
cercariae

SE Untargeted Lipids Level 2 ESI(+)-HRMS
Database: Lipid MAPS;
METLIN
Software: Unscrambler (v.9.7)

[31]

Adult SE Untargeted Lipids Level 2 MALDI-MSI(+)
Database: Lipid MAPS;
METLIN
Software: Unscrambler (v.9.7)

[43]

Adult TS Targeted Lipids Level 2 HPLC-MS (Sciex
4000QTRAP)

Lipids were identified by
universal HPLC-MS method
Software: Markerview (v.1.0)

[66]

Eggs,
cercariae,
adult

SE, ESP

Targeted Lipids

Level 2

LC-MS/MS (QTrap)
(ESI−) Software: LipidBlast; FiehnO

lipid database in MS-DIAL
(v2.74)
Software: R package (CRAN
R, v.3.3.2)

[51]Targeted Lipids GC-MS

Targeted Lipids LC-MS/MS (QToF)
(ESI+)

Adult SE Untargeted Lipids Level 2 AP-SMALDI MSI

Database: SwissLipids;
LipidMatch (v.2.0.2)
Software: Lipid Data
Analyzer (v.2.6.2)

[44]
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Table 1. Cont.

Helminth Species
and Family

Life Cycle
Stage Host Sample

Analysed
Study
Approach Metabolite Types

MSI
Identification
Level

Analytical Instru-
ments/PLATFORMS
Used

Databases/Software Used Ref.

Strongyloides ratti
(Strongylidae)

L1, L3,
free-living Rodent (rats) SE Targeted Lipids Level 1 GC-MS

Lipids were identified by
matching retention times
with standards

[67]

Trichuris muris
(Trichuridae)

Embryonated
eggs

Rodents
(mice)

SE Untargeted
Polar metabolites Level 1 Q-Exactive Orbitrap

and MS/HPLC

Database: KEGG; MetaCyc;
Lipid MAPS; PubChem
CID; HMDB; CTS
Software: IDEOM;
MetaboAnalyst (v.3.0)

[33]

Lipids Level 2

Adult ESP Targeted Polar metabolites and
lipids Level 1 GC-MS

Database: MAML; MHL;
KEGG
Software: Agilent
MassHunter (v.7);
MetaboAnalyst (v.3.0)

[21]

Trichinella papuae
(Tricinellidae)

L1
(muscle-stage) Swine SE Untargeted Lipids Level 2 ESI(+/−)

UPLC-MS/MS

Database: Lipid MAPS;
LipidBlast
Software: Progenesis QI
(v.2.1); QuickGO

[52]

Toxocara canis
(Toxocaridae)

Adult
Dog

ESP Targeted Polar metabolites and
lipids Level 1 GC-MS and LC-MS

Database: Agilent
MassHunter (v.7); MAML
Software: MetaboAnalyst
(v.3.0)

[54]

Adult SE Untargeted Polar metabolites and
lipids Level 1 1H NMR NA [68]

Abbreviations: Analytical techniques: AP-SMALDI MSI—atmospheric pressure (AP) matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry imaging (MSI);
CC—column chromatography; ESI(+/−)—electrospray ionisation positive/negative mode; GC—gas chromatography; GLC—gas liquid chromatography; 1H NMR—proton nuclear
magnetic resonance; HPLC—high-performance liquid chromatography; HRMS—high-resolution mass spectrometry; NA—not available; LC—liquid chromatography; MS—mass
spectrometry; Q-TOF—quadrupole time-of-flight; Qtrap—quadrupole ion trap; TLC—thin-layer chromatography; UHPLC—ultra-high-performance liquid chromatography. Databases:
CTS—Chemical Translation Service; HMDB—Human Metabolome Database; KEGG—Kyoto Encyclopedia of Genes and Genomics; MHL—Mass Hunter Library; MAML—in-house
Metabolomics Australia Metabolite Library; Matlab—matrix laboratory; MetaCyc—metabolic pathways and enzymes database; METLIN—Metabolite and Chemical Entity Database;
NIST—The National Institute of Standards and Technology. Software: STAR—Spliced Transcripts Alignment to a Resonance; STOCSY—statistical total correlation spectroscopy;
IDEOM—an Excel interface for analysis of LC-MS-based metabolomics data.
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4. Metabolomics and Lipidomics Approaches and Metabolite Identification Levels
4.1. Approaches

Metabolomics/lipidomics studies generally employ three methods to analyse metabo-
lites: the untargeted method, the targeted method, and metabolic fingerprinting [69].
This review focused on the first two approaches (Figure 2). Metabolic fingerprinting (ex-
ometabolomics) examines extracellular metabolites produced in response to biotic or abiotic
stresses [70,71]. Of the 28 metabolomics and lipidomics studies in Table 1, 16 used targeted
methods, 11 used untargeted methods, and only 1 focused on metabolic fingerprinting [58].
Interestingly, most of these publications have been reported prominently by Wangchuk and
his group from the Australian Institute of Tropical Health and Medicine, which signifies
their leadership in small molecule research involving helminths. Metabolic fingerprinting
was performed using either NMR, FT-IR, or MS [34]. For example, the metabolic finger-
printing of A. lumbricoides by Melo et al. [58] was conducted using high-resolution mass
spectrometry (HRMS), in which nine biomarkers were identified from eggs and L1 and
L2 larval stages. Like protein-based antigens, small-molecule biomarkers can guide the
development of diagnostics to detect helminth infection. Yeshi et al. [33] analysed the
metabolites of T. muris and N. brasiliensis infective stages with the highest-resolution mass
spectrometry (Q-Exactive Orbitrap MS).
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Figure 2. A generic LC/MS-based workflow for targeted and untargeted metabolomics
studies [21,33,55]. (A) In targeted metabolomics, initially, targeted methods are established using
standard metabolites. Method standardisation is followed by sample preparation. Samples are anal-
ysed, and the data output quantifies the metabolites for which standards are available or standard
methods are established. (B) In an untargeted analysis, molecules are first extracted from the sample
and subsequently analysed by LC-MS. Open-source software such as IDEOM is used to process the
acquired LC-MS data. The putative identification of metabolites is achieved by searching the m/z
values for peaks of interest in metabolite databases (Kyoto Encyclopedia of Genes and Genomes,
KEGG; MetaCyc for polar metabolites; Lipid MAPS for lipids; NIST database). The untargeted
approach in metabolomics yields many putative metabolites (a few hundred to thousands).

Of the three major approaches, the targeted approach is widely used in metabolomics
studies, as it can precisely quantify known metabolites, although it has low detection
limits [34]. In targeted metabolomics, methods are established using standard metabolites.
Method standardisation is followed by sample preparation and metabolite extraction from
somatic tissue extracts or ESPs. Samples are analysed, and the data output quantifies
the metabolites for which standards are available or standard methods are established.
One of the limitations of a targeted analysis is that the standards should be available in
purified form for spiking or developing an in-house compound spectra library [72]. Since
compound standards are limited in numbers, and many are expensive, developing an in-
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house standard library is often challenging. Another disadvantage is that discovering novel
metabolites is difficult since the targeted approach only identifies only known metabolites.

An untargeted analysis requires complex bioinformatics or computational methods,
including various AI-based algorithms, and most of the detected peaks are not identifiable.
In untargeted metabolomics, metabolites/lipids are initially extracted from the sample
(somatic/ESPs) and subsequently analysed by analytical instruments (e.g., LC-MS and
GC-MS). LC-MS/GC-MS data are acquired in three dimensions (3D), the mass-to-charge
ratio (m/z), retention time (rt), and abundance. Artificial intelligence (AI)/ML is applied
at this stage to transform a large amount of complex spectral data into smaller sets of
features that can be further statistically analysed. Open-source IDEOM software [33,73] is
commonly used to pre-process raw data (3D) into a 2D format with aligned peak values
(m/z and rt) and peak intensity/abundance. IDEOM [74] is an Excel template that provides
a graphical user interface (GUI) for mzMatch and XCMS data.

Following the pre-processing stage, the putative identification of metabolites is achieved
by searching the m/z values for peaks of interest in metabolite databases, which are dis-
cussed in the following sections. Other open-source algorithms used for pre-processing
are MZmine 2 [75], MetAlign [76], and MS-Dial [77], but none of these algorithms are
yet accepted as standard/ideal algorithms in metabolomics. A few recent studies have
highlighted the presence of false positives and low-quality peaks because of poor inte-
gration in many processed metabolomics data, which may affect downstream statistical
analyses [71,78].

Consequently, quality control (QC) measures have been incorporated into metabolomics
studies to improve data quality and reliability. One such example is the pooling of a
small volume of all samples (pooled QC), as applied in a metabolomics study of the
infective stages of N. brasiliensis and T. muris [33]. Taking a pooled QC may remove false
positives, but there is also the risk of some correct features being removed. Moreover,
it is also challenging to discriminate between true and false positives while analysing
complex samples with higher risks of contamination (>50%) [79]. Therefore, advanced
AI/ML-driven algorithms for peak-picking and filtration, such as the comprehensive peak
characterisation (CPC) algorithm [80], MetaClean [81], NeatMS [82], and NPFimg [83], are
available, and these algorithms are discussed in depth elsewhere [9,10].

In both targeted and untargeted analyses, the types and numbers of metabolites
identified depend on multiple factors, including the sample preparation, quantification
level, experimental objectives and conditions applied, accuracy and precision, and number
of metabolites detected [84]. A valid basis for identifying and characterising metabolites
is still debated, and the consensus is continuously evolving. Shulaev has reviewed the
advantages and limitations of different metabolomics approaches in detail [34].

4.2. Metabolite Databases and Metabolite Identification Levels
4.2.1. Metabolite Databases

The metabolomics and lipidomics studies rely on various metabolite databases and
spectral libraries that may contain both in silico and experimental spectra, including the Hu-
man Metabolome Database (HMDB) [85], MassBank [86], the Metabolite and Tandem MS
Database (Metlin 2) [87], Global Natural Product Social Molecular Networking (GNPS) [88],
and MetaCyc [89] (Table 1). Both spectral and structural databases that emerged in the field
of metabolomics in 2020 have been reviewed by Misra [90]. The HMDB [91], the Metlin MS
2 [92], the in-house Metabolomics Australia Metabolite Library (MAML), the Mass Hunter
Library (MHL), and the NIST library (Table 1) are the most widely used databases in GIP
metabolomics studies.

The Metabolite and Tandem MS Database (Metlin MS 2) and HMDB are the primary
databases used to identify polar metabolites. For example, the Metlin MS 2 database has
more than 85,000 MS/MS compound spectra in positive and negative ionisation modes,
constituting over 4,000,000 pieces of curated HR-MS/MS data, approximately 1% of Pub-
Chem’s compounds [87]. For non-polar metabolite/lipid identification and pathway anal-
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yses, the Lipid MAPS Structure Database is widely referred to (Table 1), as it contains
about 30,000 human endogenous lipids and 12,000 plant lipids and lipid metabolism and
pathways based on MS/MS spectra [93]. Popular databases such as the Kyoto Encyclopedia
of Genes and Genomics (KEGG) [94] and MetaCyc [94] are used to determine metabolic
pathways. Although these two databases are quite similar regarding the number of reac-
tions occurring in pathways, MetaCyc contains a broader set of data, enabling examinations
of the relationships between compounds and enzymes, the spontaneous identification of
reactions, and the determination of the expected range of pathways. Their comparative
features have been described elsewhere [95].

There are a few molecular databases for helminths, including WormBook (http://www.
wormbook.org/, accessed on 15 June 2024), WormBase (https://wormbase.org//#012-34-5,
accessed on 20 June 2024), and Wormatlas (https://www.wormatlas.org/, accessed on 23
June 2024). However, these databases primarily focus on the biological aspects, including
the biochemistry, genomics, and proteomics, of the model nematode Caenorhabditis elegans.
They do not specifically cater to GIPs. While C. elegans is a free-living nematode, parasitic
nematodes are infectious and live inside their animal or plant host, so their metabolic
pathways and metabolome compositions are expected to differ. Since there are no helminth-
specific small-molecule databases, there is an urgent need for a single repository.

GIP host-specific metabolome or animal tissue-derived metabolite databases are scarce.
The Animal Metabolite Database (AMDB, https://amdb.online, accessed 3 September
2024) [96] and the Livestock Metabolome Database (LMDB, https://lmdb.ca, accessed 3
September 2024) [97] are examples of existing animal metabolome databases. Unlike the
HMDB, these two databases contain less metabolite information from a limited number
of animal species. The AMDB contains only 168 metabolites from 50 animal species [96],
while the LMDB contains slightly more metabolites, including 768 from bovine, 412 from
porcine, 285 from ovine, 167 from caprine, and 109 from equine species [97].

4.2.2. Metabolite Identification Levels

The metabolite identification protocol proposed by the Chemical Analysis Working
Group (CAWG) was the most widely applied in all metabolomics studies of GI helminth.
The CAWG established the Metabolomics Standards Initiative (MSI) in 2005, following
earlier efforts to standardise metabolic reporting [98]. This working group identified four
different levels of metabolite identification: MSI level 1 to MSI level 4 [99]. MSI level 1
reports metabolites whose mass and retention time match internal standards. MSI level 2
identification is putative and shows only a probable structure acquired via fragmentation
data from the literature, libraries, and databases. MSI level 3 reports only putatively
characterised compound classes, and MSI level 4 reports only unknown compounds [100].
For identification at MSI levels 2, 3, and 4, there is no requirement to match data with
authentic standards, and, instead, mass and ion fragmentation patterns are compared to
the available compound libraries or databases.

More detailed criteria for different identification confidence levels in HRMS-based
metabolomics analyses can be found in Schymanski et al. [101]. Most studies, i.e., 19 out
of 28, achieved the level 1 identification of metabolites (Table 1). The rest of the studies
achieved only level 2 identification. Yeshi et al. [33] recently reported 55 polar metabolites
through MSI level 1 identification from the infective stages of T. muris and N. brasiliensis us-
ing HRMS (Q-Exactive Orbitrap MS/HPLC). Additionally, 322 lipids were putatively (MSI
level 2) identified. Wangchuk et al. [21] also identified 51 metabolites (35 polar and 16 lipids)
from the adult ESPs of T. muris via a targeted analysis using GC-MS, of which 17 compounds
were associated with various pharmacological properties. Many metabolomics studies
reported putative metabolites and rarely compared their data with authentic standards due
to the unavailability of these standards [100]. With the growing number of metabolomics
studies and the revolution in metabolomics techniques and technologies (discussed below),
greater opportunities exist for achieving higher identification rates.

http://www.wormbook.org/
http://www.wormbook.org/
https://wormbase.org//#012-34-5
https://www.wormatlas.org/
https://amdb.online
https://lmdb.ca
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5. Artificial Intelligence (AI)-Assisted Software and Statistical Tools for
Metabolomics/Lipidomics Data Analysis

The software and statistical tools used in metabolomics studies largely depend on
the mass spectrometry and spectroscopy analytical platforms used for running samples,
processing raw spectra, analysing masses, and identifying molecules. The whole helminth
metabolomics process can be achieved in four general steps: (i) raw data acquisition, (ii) pre-
processing, (iii) post-processing, and (iv) statistical analysis and result interpretation [102].
Raw data are obtained as chromatograms (liquid chromatography), mass spectra (mass
spectrometry), or NMR data. Raw data must go through pre-processing before they are
further analysed.

Pre-processing usually involves alignment, binning, normalisation, and scaling pro-
cesses to minimise analytical errors, reduce data points, and bring data in alignment with
subsequent statistical assumptions [41]. For instance, in mass spectrometry, before pre-
processing, MS data have to be converted into an open format, such as mzML, mzXML,
and netCDF [102]. A recent review by Misra [90] on metabolomics tools that emerged
in 2020 reported six different software tools applied in pre-processing LC-MS/MS data.
The open-source cross-platforms MAVEN (latest version 2.10.17.7) [103] and MZmine 2
(v.2.14) [75] and open-source software IDEOM [74] are a few other examples that Misra did
not report. Software tools such as MetaboliteDetector (v.3.3), MET-IDEA (v.2.08), metaMS
(V.1.10.0), MSeasy, and SpectConnect are used with GC-MS; for additional details, refer
to the review by Spicer et al. [102]. XCMS and MeltDB are applicable for pre-processing
LC-MS and GC-MS data [104]. Gas chromatography–mass spectrometry is used with the
NIST database (https://www.nist.gov/srd) for compound identification. Chen et al. [64]
used XCMS software to process UHPLC-MS in their metabolomics studies of adult N.
brasiliensis (Table 1). IDEOM has automated noise filtering and annotation procedures, and
it can identify metabolites with high confidence levels [74]. Recent metabolomics studies
on the infective stages of T. muris, N. brasiliensis [33], and N. americanus [63] have applied
IDEOM software to process MS data (Table 1).

Before further statistical analysis, metabolomics/lipidomics data must go through
post-processing, often called data pre-treatment [102]. At this stage, data usually undergo
filtration, imputation, normalisation, centring, scaling, and transformation. According
to Armitage et al. [105], up to 40% of metabolomics data may comprise missing values;
thus, imputation (i.e., filling in missing values) is required. Normalisation, scaling, and
transformation minimise the variations in metabolite concentrations between samples
(technical variations) but not necessarily biological variations. Numerous post-processing
tools, including those with R language packages and those that are web-based, are discussed
in detail in Spicer et al. [102] and Misra [90].

After post-processing, metabolomics/lipidomics data (from MS, LC-MS, or NMR)
are analysed statistically, and the selection of tools depends on the study design. The
statistical analysis is either supervised (e.g., PLS-DA, partial least squares discriminant
analysis, and OPLS-DA, orthogonal projections to latent structures discriminant analysis) or
unsupervised (e.g., principal component analysis, PCA). Subsequently, various multivariate
and univariate statistical tests are performed. Numerous statistical analysis software tools
are powered by various programming languages (e.g., Python, R, C/C++, and Java) and
web-based tools [90,102]. For example, MetaboAnalyst 6.0 (http://www.metaboanalyst.
ca) [106] is a convenient free web-based statistical tool that can perform pre-processing and
statistical analyses and generate results for interpretation. Metabolomics data from five
different helminth species (A. caninum, N. americanus, N. brasiliensis, T. canis, and T. muris)
were analysed using MetaboAnalyst 3.0 (Table 1). MetaboAanlyst 6.0 contains a suite of
analytical tools applicable to both MS and NMR data, and it also enables enrichment and
pathway analyses and advanced translational studies [102,106].

https://www.nist.gov/srd
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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6. Conclusions

Among the gastrointestinal parasite (GIP) metabolomics and lipidomics studies re-
ported so far, most studies (16 out of the 28 included) applied a targeted approach, followed
by an untargeted approach (11 studies), and only 1 applied metabolic fingerprinting. One
of the limitations of a targeted analysis is that the standards must be available in purified
form for spiking or developing an in-house compound spectra library. GIP metabolomics
data were mainly acquired with liquid chromatography–mass spectrometry (LC-MS), gas
chromatography–mass spectrometry (GC-MS), capillary electrophoresis–mass spectrome-
try (CE-MS), and nuclear magnetic resonance spectroscopy (NMR). Very recently, advanced
techniques such as Raman and Fourier transform infrared (FTIR) spectroscopies, atmo-
spheric pressure matrix-assisted laser desorption/ionisation mass spectrometry imaging
(AP-SMALDI MSI), ultra-high-performance liquid chromatography–mass spectrometry
(UHPLC/MS), high-resolution mass spectrometry (HRMS), quadrupole time-of-flight (Q-
TOF), and quadrupole ion trap (Qtrap) have been applied. The Metabolite and Tandem
MS Database (Metlin MS 2) and HMDB are the primary databases applied to identify
polar metabolites, and the Lipid MAPS databases are the primary databases applied to
identify lipids.

With the emergence of many artificial intelligence (AI)/machine learning (ML)-assisted
software and tools, helminth metabolomics and lipidomics have significantly advanced,
particularly in the untargeted approach, enabling measurements of many metabolites,
even at the trace level. Over the past decade, AI/ML advancement has accelerated sig-
nificant discoveries in metabolomics and lipidomics platforms, taking the quality and
reliability of data to the next level. However, “omics” technology has only recently been
applied to study the small molecules produced by helminths. Even though there are
limited metabolomics/lipidomics studies involving helminths, this field is gaining mo-
mentum, as many identified metabolites are associated with their immunomodulatory
roles during infection or in host–parasite interactions. One of the main bottlenecks in
metabolomics/lipidomics studies on GIPs is the difficulty in obtaining/collecting live
worm samples from the hosts or host body. The worms must be retrieved from the host
body/specific organ as quickly as possible to keep them alive. There are only limited
helminth databases (e.g., WormBook and WormBase databases and a few GIP host-specific
databases), but even these databases are primarily dedicated to model nematode organism,
Caenorhabditis elegans and do not specifically cater to other GIPs. Thus, future research
should focus on understudied parasitic helminths and work towards developing a single
repository of GIP-specific small-molecule database.
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