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Abstract
A variety of 3-hydroxy-isoindolin-1-one derivatives were synthesized using the photodecarboxylative addition of carboxy-
lates to phthalimide derivatives in aqueous media. Subsequent acid-catalyzed dehydration furnished 3-(alkyl and aryl)
methyleneisoindolin-1-ones with variable E-diastereoselectivity in good to excellent overall yields. Noteworthy, the parent 
3-phenylmethyleneisoindolin-1-one underwent isomerization and oxidative decomposition when exposed to light and air. 
Selected 3-hydroxy-isoindolin-1-one and 3-(alkyl and aryl)methyleneisoindolin-1-one derivatives showed moderate anti-
bacterial activity that justifies future elaboration and study of these important bioactive scaffolds.
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1 Introduction

The isoindolin-1-one scaffold (I) has gained considerable 
focus in synthetic organic chemistry due to its broad bio-
logical activity profile (Scheme 1) [1–5]. Among these, 
the E-phenylethylidene derivative AKS-186 (II) exhibited 
inhibition of thromboxane  A2 analog (U-46619)-induced 
vasoconstriction [6], while chlortalidone serves as a first-
line medication for the treatment of high blood pressure 
[7]. Alkylated and benzylated 3-hydroxy-isoindolin-1-ones 

can be readily accessed through the photodecarboxylative 
addition of carboxylates to N-substituted phthalimides. This 
process has been developed as a versatile alternative to con-
ventional alkylation reactions [8, 9]. In general, photode-
carboxylations of carboxylic acids and their corresponding 
salts serve as an attractive source of alkyl radicals due to 
the easy availability, inexpensiveness, and stability of these 
feedstock materials [10–12], as well as the ability to scale up 
these reaction protocols [13–18]. Subsequent acid-catalyzed 
dehydration of the photoaddition products readily yields 
the important 3-alkyl and 3-arylmethylene-2,3-dihydro-
1H-isoindolin-1-ones in high yields [19, 20]. * Michael Oelgemöller 
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2  Results and discussion

2.1  Photodecarboxylative addition reactions

A series of readily accessible phthalimides 1a–g were irra-
diated in the presence of three or ten equivalents of vari-
ous potassium or sodium carboxylates 2a–m (Scheme 2). 
The photoreactions were conducted in Pyrex vessels until 
TLC analysis indicted complete consumption of 1a–g. In 
line with previous optimization studies [20, 21], two solvent 
systems were tested, either a 1:1 vol-% mixture of acetone 
and water (method A) or alternatively of acetone and pH 
7 buffer solution (method B), respectively. No dramatic 
differences in yields or irradiation times were noted and 
method A was subsequently applied to all further experi-
ments due to its simplicity. After irradiation with UV-B 
light (λ = 300 ± 25 nm; 16 × 8 W) for 2–30 h, the addition 
products 3a–s were obtained in isolated yields of 40–92% 
(Table 1). All photoproducts exhibited the characteristic 
singlet representative of the newly formed C–OH func-
tionality at approximately 90–95 ppm in their 13C-NMR 
spectra. In accordance with earlier observations [9, 21, 22], 
photodecarboxylative additions involving the simple alkyl 
carboxylates 2a–e to N-methylphthalimide 1a proceeded 
with lower efficiency, requiring prolonged irradiation times 
and large excess amounts of carboxylate (10 equivalents) 
to reach high conversions and acceptable yields of 3a–e of 
40–88% (entries 1–5). These inefficiencies were most likely 
caused by competitive ‘simple’ decarboxylations (–CO2

−/-H 
exchange), i.e., the formation of the respective volatile 
alkanes of 2a–e [23, 24]. These ‘simple’ decarboxylation 

products have been identified in crude product mixtures 
before but are typically removed by evaporation or during 
purification [9, 25]. In solution, the methylated photoprod-
uct 3a was found to be sensitive toward spontaneous dehy-
dration. In contrast, photodecarboxylative benzylations of 
arylacetates 2f–k (3 equivalents) [26] to phthalimide 1a 
proceeded rapidly and furnished the corresponding photo-
products 3f–k in good to high yields of 53–92% (entries 
6–17). Irradiations conducted using pH 7 buffer solution as 
co-solvent performed somewhat cleaner due to the avoidance 
of extreme pH conditions at higher conversion rates [27]. 
Despite their known photochemical activities [28, 29], the 
salts of the non-steroidal anti-inflammatory drugs ibuprofen 
(2j) and naproxen (2k) reacted readily and selectively. The 
presence of diastereomers for compounds 3h–l was observed 
via NMR analysis, with varying diastereomeric excess (d.e.) 
ratios of 1:1 to 17:1 (entries 9–17). To expand the scope 
of novel products synthesized, six additional N-substituted 
phthalimide derivatives 1b-g were investigated with photo-
decarboxylative benzylations involving 2f proceeding as the 
most efficient [22, 30]. N-Isopropylphthalimide (1b) pref-
erentially underwent benzylation to 3m in a yield of 66% 
(entry 18), while the isomeric N-cyclopropylphthalimide 
(1c) solely reacted with the electron-deficient arylacetate 2m 
after exhaustive irradiation for 19 h to 3n in a respectable 
yield of 68% (entry 19). Competitive intramolecular Norrish 
reactions were not observed for either of the two phthal-
imide derivatives [31, 32]. Likewise, for the allylated and 
ester-containing phthalimides 1e–g, no addition reactions 
to the corresponding N-sidechains were noted and selective 
photodecarboxylative additions to compounds 3p–s operated 
instead (entries 21–24) [33, 34].

Scheme 1  The isoindol-1-one 
scaffold and representative 
bioactive examples

Scheme 2  Photodecarboxy-
lative additions of 2a–m to 
phthalimides 1a–g 
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The mechanism of the photodecarboxylative addition of 
carboxylates to phthalimides through triplet sensitization 
and subsequent photoinduced electron transfer (PET) is 
well understood and has been described in detail elsewhere 
[35–37]. With the exception of the trimethoxyphenyl acetate 
2f, the carboxylate group acts as an electron donor to gener-
ate an unstable carboxy radical. In case of 2f, the electron-
rich aryl moiety functions as an electron donor instead [38]. 
In both cases, successive decarboxylation, protonation, and 
C–C bond formation yield the observed addition products 
3a–s.

2.2  Acid‑catalyzed dehydrations and stability 
testing

Several of the photoproducts 3 were submitted to acid-cat-
alyzed dehydration conditions to yield the corresponding 
3-alkyl and 3-arylmethylene-1H-isoindolin-1-ones 4a–l 
(Scheme 3) [39–41]. This was conveniently achieved by stir-
ring a solution of the respected 3-hydroxy-isoindolin-1-one 
in dichloromethane in the presence of catalytic amounts of 
concentrated sulfuric acid (Table 2) [19, 20]. This proce-
dure furnished the desired dehydration products 4a–l in good 

Table 1  Product yields and 
experimental details for 
photodecarboxylative additions 
of 2a–m to 1a–g 

a Conditions: 1:1 vol-% mixtures of acetone–water (Method A) or acetone and pH 7 buffer (Method B) of 1 
(15 mM) and 2 (30–150 mM) were irradiated with UV-B light (λ = 300 ± 25 nm) in a Pyrex Schlenk flask 
under  N2-purging
b Conversion determined by integration of baseline separated signals in the 1H-NMR spectrum of the crude 
reaction mixture (± 5%)
c Diastereomeric excess (d.e.) determined by integration of baseline separated signals in the 1H-NMR spec-
trum of the isolated product (± 5%)
d Used as a sodium salt

Entry 1 2 Time/h  (Methoda) Conversion 
of 1/%b

Yield of 3/%

R1 R2 R3

1 CH3 (a) H H (a) 30 (A) 55 40 (a)
2 CH3 (a) CH3 H (b) 20 (A) 100 49 (b)
3 CH3 (a) CH3 CH3 (c) 24 (A) 93 61 (c)
4 CH3 (a) (CH2)2CH3 H (d) 24 (A) 98 88 (d)
5 CH3 (a) (CH2)5CH3 H (e) 22 (A) 92 42 (e)
6 CH3 (a) Ph H (f) 7 (A) 100 62 (f)
7 3 (B) 83 79 (f)
8 CH3 (a) O

O

H (g) 7 (A) 88 53 (g)

9 CH3 (a) Ph CH3 (h) 4 (A) 100 73 (3:2c, h)
10 3 (B) 95 83 (17:1c, h)
11 CH3 (a) Ph Et (i) 3 (A) 100 74 (1:1c, i)
12 3 (B) 93 78 (3:2c, i)
13 CH3 (a) CH3 (j)d 3 (A) 100 74 (3:2c, j)

14 5 (B) 96 92 (11:9c, j)
15 CH3 (a)

H3CO

CH3 (k) 5 (A) 100 89 (9:1c, k)

16 CH3 (a) Ph CH3O (l) 3 (A) 100 83 (3:2c, l)
17 3 (B) 98 89 (11:9c, l)
18 iPr (b) Ph H (f) 2 (A) 95 66 (m)
19 cPr (c)

OCH3

H3CO

H3CO H (m) 19 (A) 100 68 (n)

20 p-TolCH2 (d) Ph H (f) 3 (A) 100 89 (o)
21 CH2=CHCH2 (e) Ph H (f) 6 (A) 100 51 (p)
22 CH2=CHCH2 (e)

OCH3

H3CO

H3CO H (m) 20 (A) 100 53 (q)

23 CH3O2CCH2 (f) Ph H (f) 3 (A) 100 76 (r)
24 EtO2CCH2 (g) Ph H (f) 2 (A) 93 51 (s)
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to excellent yields of 60–99%. Except for 4a (entry 1), all 
dehydration products produced mixtures of E- and Z-isomers 
and their diastereomeric ratios varied depending on the sub-
stituents (entries 2–12). The diastereoisomers of 4b–l were 
assigned by comparison with literature data and 1H-NMR 
spectroscopic analyses, respectively. In contrast to their cor-
responding E-isomers, the olefinic protons of the Z-isomers 
of 4 were shifted downfield by the adjacent isoindolin-1-one 
ring [35, 42].

In agreement with theoretical calculations by Kise 
et  al. [43] and Li and Janesko [44], all trisubstituted 

arylmethylene-1H-isoindolin-1-ones 4b–d and i–l predomi-
nantly gave the thermodynamically favored E-isomer as the 
major product. Low to no diastereoselectivities were found 
for the tetrasubstituted dehydration products 4e–h instead. 
As previously noted by other groups [41, 43], the dehydra-
tion products 4 were sensitive toward spontaneous degra-
dation in the solid state or in solution when exposed to air 
and visible light. The stability of the parent 3-phenylmeth-
yleneisoindolin-1-one E-4d was thus investigated under a 
variety of environmental conditions (Scheme 4; Table 3). 
In the absence of light in the solid state or in acetonitrile 
solution, no reaction was observed despite the presence of 
air (entries 1 and 2). Irradiations in acetonitrile with UV-B 
light solely induced E/Z-photoisomerization into an approx. 
1:1 mixture (entries 3 and 4) as reported in the literature 
[21]. Importantly, exposure of solid E-4d to ambient light in 
air caused complete degradation, with N-methylphthalimide 
1a, benzaldehyde 6 and benzoic acid 7 as the main products 
detected (entry 5), as confirmed by spiking experiments. The 
potential presence of the isomeric dioxetanes 5 was sug-
gested by characteristic singlet signals in the required 1:3 
ratios at 5.19 and 5.28 ppm for their methine C–H moieties 
[45, 46] and at 3.10 and 3.11 ppm for their N–CH3 groups, 
respectively. Since the oxidative cleavage to 1a and 6 is 
believed to operate via a [2 + 2]-cycloaddition of singlet oxy-
gen (1O2) [43, 47], a solution of E-4d and catalytic amounts 
of rose bengal in acetonitrile was irradiated with visible light 
while being purged with oxygen. After 5 h, a conversion of 
approximately 70% was observed, with photoisomerization 
and oxidative cleavage operating in parallel (entry 6).

To prevent these degradation processes, the dehydration 
products were stored under an inert gas atmosphere (Ar or 
 N2) and in amber vials. Noteworthy, these sparsely reported 

Scheme 3  Acid-catalyzed dehy-
dration of selected 3-hydroxy-
isoindolin-1-ones 3 to 3-alkyl 
and 3-arylmethylene-1H-isoin-
dolin-1-ones 4a–l 

Table 2  Product yields and experimental details for acid-catalyzed 
dehydrations to 4a–l 

a Determined by integration of baseline separated signals in the 1H-
NMR spectrum of the isolated product (± 5%)

Entry 3 4

R1 R2 R3 E/Z-ratioa Yield/%

1 CH3 H H (a) – 97 (a)
2 CH3 CH3 H (b) 8:1 92 (b)
3 CH3 (CH2)5CH3 H (e) 9:1 94 (c)
4 CH3 Ph H (f) 9:1 96 (d)
5 CH3 Ph Et (i) 1:1 74 (e)
6 CH3 CH3 (j) 1:1 97 (f)

7 CH3
H3CO

CH3 (k) 1:1 98 (g)

8 CH3 Ph CH3O (l) 1:2 72 (h)
9 p-TolCH2 Ph H (o)  > 10:1 99 (i)
10 CH2=CHCH2 Ph H (p) 9:1 77 (j)
11 CH3O2CCH2 Ph H (r) 5:1 64 (k)
12 EtO2CCH2 Ph H (s) 4:1 60 (l)

Scheme 4  Proposed oxidative decomposition mechanism of E-4d 
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decomposition pathways pose a significant challenge to the 
usability of 3-methylene-1H-isoindolin-1-one derivatives 
and must be considered when generating, analyzing, or uti-
lizing these compounds.

2.3  Antimicrobial activity testing

Due to the known antimicrobial activity of structurally 
related isoindolin-1-ones [1–5, 48], a total of eight of the 
3-hydroxy-isoindolin-1-one photoadducts, i.e., 3c, f, i, j, l, 
m, o and p, and five of the methylene-1H-isoindolin-1-one 
dehydration products, i.e., 4c–e, h and i, synthesized in 
this study were chosen for antibiotic activity screening. 
The additional hydroxy group in 3 may offer beneficial 
pharmacological properties [49, 50]. The disk diffusion 
method versus suitable control antibiotics was chosen 

using three different bacteria (Table 4) [51, 52]: the Gram-
positive Staphylococcus aureus and the Gram-negative 
Escherichia coli and Pseudomonas aeruginosa, respec-
tively. Compounds 4c, d and h inhibited growth of both, 
S. aureus and Ps. aeruginosa, but were inactive against E. 
coli at the tested doses (entries 9, 11 and 14). Activities 
against S. aureus were noted for the photoproducts 3f and 
l (entries 2 and 5), while compound 3j was moderately 
active against Ps. aeruginosa (entry 4). Inhibition of E. 
coli was only observed for compounds 3m and 3o at high 
concentrations (entries 6 and 7), with the later also show-
ing low activity against S. aureus.

These results show the potential of the isoindolin-1-one 
scaffold to inhibit bacterial growth. However, more research 
needs to be conducted to gain a deeper understanding of 
their efficacy and suitability in this utilization.

Table 3  Stability test conditions and observation conducted with E-4d 

a Determined by integration of baseline separated signals in the 1H-NMR spectrum (±5%)
b Evaporation losses of additionally formed 6 cannot be excluded

Entry Conditions Observationsa

1 Standing in the dark in the solid state while exposed to air for 
7 days

No changes noted

2 Standing in the dark in acetonitrile while exposed to air for 24 h No changes noted
3 Exposure of a degassed acetonitrile solution to UV-B light for 24 h Photoisomerization to an approx. 1:1 mixture of E/Z-4d
4 Exposure of an aerated acetonitrile solution to UV-B light for 24 h Photoisomerization to an approx. 1:1 mixture of E/Z-4d
5 Exposure to ambient light and air in the solid state for 7 days Presumed formation of 5 (12%) and decomposition to 1a (62%), 6 

(3%b) and 7 (23%)
6 Exposure to visible light in acetonitrile solution with catalytic 

amounts of rose bengal while purging with oxygen for 5 h
Photoisomerization to Z-4e (47%), presumed formation of 5 (3%) 

and oxidative decomposition to 1a (14%) and 6 (7%b)

Table 4  Antimicrobial activity 
of selected photoaddition and 
dehydration products against 
S. aureus, E. coli and P. 
aeruginosa 

a Amounts on disk (in µg) in 20 µl of ultrapure acetone given in brackets
b Regrown colony formation units (CFUs) were present within the inhibition zones after 48 h

Entry Compound S. aureusa E. colia P. aeruginosaa

1 3c Inactive (59) Inactive (59) –
2 3f Weakly  activeb (444) Inactive (444) Inactive (444)
3 3i Inactive (190) Inactive (48) Inactive (190)
4 3j Inactive (180) Inactive (45) Moderately  activeb (180)
5 3l Weakly active (192) Inactive (48) Inactive (192)
6 3m Inactive (128) Moderately active (128) Inactive (128)
7 3o Weakly  activeb (464) Moderately active (464) Inactive (464)
8 3p Inactive (198) Inactive (50) Inactive (198)
9 4c Moderately active (236) Inactive (59) Weakly active (236)
10 Weakly active (59)
11 4d Weakly active (208) Inactive (52) Moderately  activeb (208)
12 Inactive (52)
13 4e Inactive (194) Inactive (49) Inactive (194)
14 4h Weakly active (232) Inactive (58) Moderately  activeb (232)
15 Inactive (58)
16 4i Inactive (232) Inactive (232) Inactive (232)
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3  Conclusions

In conclusion, a library of diversely substituted 3-hydroxy-
isoindolin-1-ones was generated via photodecarboxylative 
addition of readily available carboxylates to N-substituted 
phthalimides. Subsequent dehydration under mild condi-
tions furnished a series of novel 3-(alkyl and aryl)meth-
ylene-2,3-dihydro-1H-isoindolin-1-ones. The simple pro-
tocols make this tandem-process an attractive application 
for telescoping under continuous flow conditions [53–55]. 
Antibiotic screening of a variety of compounds synthesized 
revealed several active hit compounds, justifying further 
medicinal chemistry studies. However, the somewhat lim-
ited stability of 3-(alkyl and aryl)methylene-2,3-dihydro-
1H-isoindolin-1-ones demands special care when dealing 
with these compounds.

Supplementary Information The online version contains supplemen-
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