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Abstract
Tracking fish movements and sizes of fish is crucial to understanding their ecology and behaviour. Knowing where fish 
migrate, how they interact with their environment, and how their size affects their behaviour can help ecologists develop more 
effective conservation and management strategies to protect fish populations and their habitats. Deep learning is a promising 
tool to analyse fish ecology from underwater videos. However, training deep neural networks (DNNs) for fish tracking and 
segmentation requires high-quality labels, which are expensive to obtain. We propose an alternative unsupervised approach 
that relies on spatial and temporal variations in video data to generate noisy pseudo-ground-truth labels. We train a multi-task 
DNN using these pseudo-labels. Our framework consists of three stages: (1) an optical flow model generates the pseudo-labels 
using spatial and temporal consistency between frames, (2) a self-supervised model refines the pseudo-labels incrementally, 
and (3) a segmentation network uses the refined labels for training. Consequently, we perform extensive experiments to 
validate our method on three public underwater video datasets and demonstrate its effectiveness for video annotation and 
segmentation. We also evaluate its robustness to different imaging conditions and discuss its limitations.

Keywords  Computer vision · Convolutional neural networks · Image and video processing · Underwater videos · Machine 
learning · Deep learning

1  Introduction

The automatic tracking and segmentation of individual 
fish have emerged as pivotal tools in the field of ecological 
behavioural analysis, with a broad spectrum of applications. 
This is evidenced by numerous studies in the domain [1–6]. 
The ability to understand and predict animal motion in their 
natural habitats could yield significant benefits across vari-
ous research and industry domains [7–11]. However, the 
inherent complexity of animal movement in the wild pre-
sents a great challenge. Factors contributing to this complex-
ity include intermittent visibility of animals in videos and 
the presence of multiple animals within a single video frame, 
both of which complicate tracking and segmentation tasks. 

Addressing these challenges often necessitates the deploy-
ment of advanced computational methods.

A large number of studies have attempted to tackle these 
challenges [12–18]. These studies predominantly rely on 
pixel-level annotations to train or enhance their deep neural 
networks (DNNs). However, obtaining these annotations is 
both costly and time-consuming, particularly for fish seg-
mentation in the wild. Most current automated methods 
operate under the assumption that training data are typically 
paired with ground truth derived from videos containing a 
large number of fish [13, 19–22]. Despite the high cost asso-
ciated with obtaining ground truth, it is necessary to acquire 
a substantial number of video sequences. This is due to the 
difficulty in achieving accurate results using only a limited 
number of sample videos.

This study was motivated by the importance of the chal-
lenges faced when trying to annotate and segment animals 
in videos in the wild. Unlike in controlled conditions, where 
animals are easily distinguishable from the background, fish 
are difficult to distinguish in realistic videos [23–25], even 
with domain knowledge. This is due to the large variations 
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in the appearance of the animals, lighting conditions, and 
background.

Our approach aims to develop an unsupervised method 
for fish tracking and segmentation without the need for 
human annotations, by leveraging spatial and temporal vari-
ations in video data using known techniques of background 
subtraction and optical flow, as shown in Fig. 1. Specifically, 
we propose to generate pseudo-labels based on unlabelled 
video data. The use of pseudo-labels can benefit various 
learning-based algorithms since it can significantly reduce 
the labelling cost. The key to the proposed method is to 
take advantage of the intrinsic temporal consistency between 
consecutive frames to improve the generated labels by refin-
ing them with a self-supervised model. We propose train-
ing a Deep Neural Network (DNN) to segment individual 
fish based on the generated pseudo-labels. As long as the 
pseudo-labels are generated in a way that they have similar 
structure and appearance to real ones, the model can learn to 
understand the underlying structure from the pseudo-labels. 
In general, the more realistic the pseudo-labels, the better 
the segmentation accuracy. We include a short video of our 
model prediction in https://​youtu.​be/​Z5G7Y​BoL3eM and 
https://​youtu.​be/​8LOKs​VSiY9U.

The main contributions of this paper are listed as follows:

•	 Propose to use pixel-level pseudo-labels generated by an 
optical flow model and background subtraction to learn 
the segmentation and tracking of individual fish auto-
matically without manual interaction.

•	 Demonstrate that using self-supervised refinement, we 
can further improve the accuracy of the pseudo-labels 
for fish tracking and segmentation.

•	 Evaluate our method on three public datasets with differ-
ent image quality.

•	 Discuss the limitations of the current model and our 
future research directions.

The rest of the paper is organised as follows. Section 2 cov-
ers related works and provides background information on 
the novel aspects of our work. Our model’s framework is 
described in detail in Sect. 3. Section 4 presents our method 
for training and evaluating our model. The experimental 
setup and results are presented in Sect. 5, while detailed 
discussions of our results are presented in Sects. 6. Finally, 
Sect. 7 concludes our paper.

2 � Related work

The field of video object segmentation and animal tracking 
has witnessed substantial advancements in recent years. A 
noteworthy contribution is the unsupervised video object 
segmentation model, UVOSAM, proposed by Zhang et al. 
[6]. This model, which operates without the need for masks, 
has introduced new possibilities in the field. In the realm 
of animal tracking, Dutta et al. [11] have developed a deep 
learning workflow that holds particular relevance for eco-
logical studies. Complementing this, Javed et al. [12] have 
provided a comprehensive survey of visual object tracking 
techniques, significantly enhancing our understanding of the 
current landscape.

Further enriching the field, Cao et al. [22] proposed a 
method of dense spatio-temporal position encoding to 
improve tracking accuracy. Proencca et al. [25] introduced 
TRADE, a method that utilises 3D trajectory and ground 
depth estimates for UAVs. In terms of segmentation, Jahan-
bakht et al. [26] explored distributed deep learning and 
energy-efficient image processing for fish segmentation. 
Zhang et al. [27] developed MSGNet, which uses multiple 
sources of information to improve the precision of fish seg-
mentation. This approach has been influential in shaping 
our own methodology. In the following subsection, we will 
provide a brief review of the research domains that are most 
relevant to our work.

Video object segmentation is a task that is used to 
locate and segment each target object [28–30]. The target 
object to be segmented can be either a class of interest 
in the videos or moving objects of interest. Object seg-
mentation is generally categorised into two categories: 
segmentation with instance-level semantics and segmen-
tation without instance-level semantics, which is the main 
objective of this paper. Therefore, this study focusses on 
generating labels without human intervention. Some seg-
mentation methods for moving objects have been devel-
oped by using background subtraction techniques [31–33]. 
Several of these approaches are based on the assumption 
that the scene is locally constant [34, 35]. This means 

Fig. 1   Combining background subtraction and optical flow demon-
strate how both levels work in concert to preserve object boundaries 
and temporal coherence throughout the video. Please refer to Sect. 3 
for details

https://youtu.be/Z5G7YBoL3eM
https://youtu.be/8LOKsVSiY9U
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that the background in one frame is assumed to be similar 
to the background in the next frame or only a few pixels 
away. In order to use this assumption, they estimate the 
local background and threshold it according to the similar-
ity threshold to identify foreground regions. However, this 
method is known to be sensitive to illumination changes 
and may even lose all detail within the image due to over-
estimating the local background. Another approach to 
segmentation uses the detection of optical flow to define 
motion boundaries [36–39].

Optical flow predicts the relative motion of objects in two 
consecutive frames of a video [38, 39]. It gives a dense cor-
respondence between frames, but at the cost of being limited 
to rigid objects, and computation entangled. Additionally, 
optical flow can only work within scenes where the move-
ment of the camera is significantly lower than the movement 
of the object [36, 37, 40]. This can be seen as a limitation, as 
the background subtraction method can be used in a wider 
range of applications. However, the key element of optical 
flow is that it can also be used for background subtraction 
[41, 42]. By tracking the movement of the pixels between 
frames, we can determine the background. If a pixel that is 
part of the background does not match the static background 
within a given threshold, then that pixel is determined to be 
an instance of an object.

Another segmentation approach is based on the detection 
of visual motion. It is based on the fact that moving objects 
in the scene induce consistent changes to the flow of pixels 
in a region [37, 40]. However, due to substantial displace-
ments or occlusions, their calculated optical flow may con-
tain considerable inaccuracies [43–45]. In our method, we 
address these issues and enhance both estimated optical flow 
and object segmentation, simultaneously.

Video object tracking is the task of assigning a consist-
ent label for each individual object in the scene as it moves 
[46, 47]. This tracking is generally divided into multiple 
steps, including detection of the object of interest, track-
ing of the moving object in the scene, and then associating 
labels between frames. The tracking task, therefore, consists 
of identifying the bounding box of the object over several 
video frames and, at the same time, updating the location 
of the object in the image [48, 49]. This can be done based 
on a similarity metric between different frames [50, 51]. 
The idea of such a metric is to find the closest objects in 
the frame with an overlapping bounding box. This can be 
performed at either the pixel level or at the region level. The 
major drawback of this method is the computation time [52, 
53] that is needed to compute all the similarities between 
all the different frames. On the other hand, if the computa-
tional resources are available, this method has been proven 
to be useful when tracking fast-moving objects and when 
the objects are not occluded in the frame [54, 55]. In our 
method, we produce the rotating 2D object bounding box 

from each instance mask of the object over several video 
frames.

In contrast to our work, Yang et al. [56] uses a Siamese 
network with an anchor-free tracker for general object track-
ing, simplifying the tracking algorithm by avoiding the 
anchor box design that predicts the tracking target with a 
pair of corners (top-left and bottom-right corners). While 
both our work and SiamCorners [56] utilise deep learning 
techniques for object tracking, there are key differences. 
Our approach specifically addresses the challenges of fish 
segmentation and tracking in underwater videos, leveraging 
optical flow and background subtraction to generate pseudo-
ground truth labels. In contrast, SiamCorners simplifies the 
tracking algorithm by avoiding anchor box design but does 
not specifically address the unique challenges of fish seg-
mentation and tracking in underwater videos. We believe 
these distinctions highlight the novelty and significance of 
our work in this specific domain.

Supervised And Unsupervised Learning. Supervised 
learning has been used to build object detection [57–59], 
video object segmentation [29, 30] and video object tracking 
[47, 48]. These methods require extensive human annotation 
and therefore are not suitable for video annotation in the 
wild. To reduce the labelling costs of data, unsupervised 
learning has emerged as a powerful technique for the learn-
ing of video data. In the traditional image domain, unsuper-
vised methods are expected to outperform their supervised 
counterparts [13, 14, 16, 60, 61] due to their potential to 
train data without labels.

The idea behind many of the unsupervised DNN mod-
els is to learn a feature representation from unlabelled data 
[62–64]. Then, a DNN model can be applied to the learned 
feature representation to produce the output. For example, 
in the domain of video segmentation [15, 65–67], DNNs 
have been used to learn a representation from the differ-
ence between a pair of unlabelled videos [68–70] and from 
warped frames [71].

In this work, we focus on unsupervised learning. Our 
proposed method will generate labels referred to as pseudo-
labels to train a multi-task supervised DNN for video object 
segmentation and video object tracking.

3 � Framework

The overall framework can be divided into three stages as 
shown in Fig. 2. The first stage is to generate pseudo-labels 
using background subtraction and optical flow for both vid-
eos and still images. The second stage is to train a self-super-
vised model to refine the pseudo-labels using their spatial 
structure. In the last stage, the refinement of the video and 
still-image versions are applied jointly to train the segmenta-
tion network and to predict the final label. The segmentation 
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network’s training behaviour closely matches supervised 
training because we employ improved pseudo-labels. As a 
result, the network’s training process is more reliable than 
that of current unsupervised learning techniques [68–70, 
72]. In the following subsections, we describe the details 
of these three components and the corresponding loss 
functions.

3.1 � Background subtraction

As a first step to generating pseudo-labels, background sub-
traction is performed on the video frames. A clean back-
ground image is estimated for every video sequence by 
computing the median of the first 10 frames of the video 
sequence along the first axis. This is to average out any dis-
tracting elements that come in front of the clean background. 
Then, each video frame is subtracted from the clean back-
ground to create the mask sequence. After subtracting, all 
foreground pixels take on a value of 1, and pixels belong-
ing to any background region have 0 values using adaptive 
Gaussian thresholding [73].

Adaptive Gaussian thresholding is used instead of one 
global value as a threshold because it sets a pixel’s threshold 
based on a local region surrounding it. As a consequence, 
we obtain various thresholds for various areas inside the 
same image, which produces better results for images with 
varying illumination.

This background subtraction step is crucial in eliminat-
ing any stationary elements or shadows from the video 
sequences that might disturb the next step, optical flow.

3.2 � Optical flow

The next step in pseudo-label generation is to calculate 
the optical flow using recurrent all-pairs field transforms 
(RAFT) [74]. However, optical flow is frequently inaccurate 
at object boundaries, so we want our segmentation to be 
accurate exactly at these borders. Therefore, we consider 

video segmentation from background subtraction and opti-
cal flow estimation simultaneously. Using pixel level and 
temporal information sources, the segmentation algorithm is 
improved by removing artefacts induced by background sub-
traction and optical flow. We demonstrate how both levels 
work in concert to preserve object boundaries and temporal 
coherence throughout the video. The key is that we need to 
remove motion blurs while preserving the motion of the fish 
boundaries.

To achieve the pseudo-labels, we first deconstruct a pair 
of video frames, xt and xt+1 , and estimate a mask mt and 
mt+1 with the background subtraction method as described 
in Sect. 3.1. Segmented masks mt , mt+1 are used to synthe-
sise frames x̂t and ̂xt+1 by warping xt and xt+1 with mt , mt+1 , 
respectively. The optical flow [74] takes two frames x̂t and 
̂xt+1 , and produces a motion vector v̂ between them. This 

motion vector is used to compute the magnitude and angle 
of the motion. Specifically, pixels with a motion vector v̂ out-
side mt (and mt+1 ) are assigned the value of the background, 
and pixels with a motion vector v̂ inside mt (and mt+1 ) are 
reassigned the object. We denote the reassigned images as 
x̂∗t  and ̂x∗

t+1
 and use them as input for our segmentation step, 

as shown in the top panel of Fig. 2 (Fig. 3).
We show the optical flow results for the three video data-

sets with and without background subtraction of frames xt 
and xt+1 in Figs. 4, 5, and 6. A mask mt+1 that better distin-
guishes the background from the foreground from the optical 
flow step is then refined with our proposed unsupervised 
refinement method in the next section. A sample optical flow 
comparison video before and after background subtraction 
is available at https://​youtu.​be/​8LOKs​VSiY9U.

3.3 � Unsupervised refinement

The second stage in our method is cumulative pseudo-
label refinement through unsupervised historical moving 
averages (MVA) [77] using DeepLabv3 [78] network for 
semantic segmentation and Conditional Random Fields 
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Fig. 2   Our proposed framework consists of three main components: 
generate pseudo-labels, unsupervised pseudo-labels refinement, and 
segmentation network. The proposed segmentation model trains with 

the generated pseudo-labels, which are refined with self-supervised 
training. Please refer to Sect. 3 for details

https://youtu.be/8LOKsVSiY9U
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(CRF) [79] by minimising the F-score until the MVA pre-
dictions reach a stable state. The CRF can “sharpen” ini-
tial location predictions to make them more accurate and 
consistent with edges and parts of the source image that 
have a constant colour.

Given the pseudo-labels of the previous step, we train the 
network for 50 epochs. The number of epochs is low to avoid 
a significant over-fitting of the network to the noisy pseudo-
labels. Then, the network is reinitialised with trained weight 
to predict a new set of pseudo-labels to train on again.

Fig. 3   Sample image from each of the four utilised datasets. From left: Seagrass [23], DeepFish [24], YouTube-VOS [75], and Mediterranean 
Fish Species [76]

Fig. 4   Sample optical flow results for Seagrass [23]. From left, the original image, optical flow without background subtraction, optical flow 
with background subtraction, mask overlay
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Let D be the set of training examples and M be the net-
work model. By M(x, p), we denote the mask prediction 
of model M on the pixel p of the image x ∈ D . During this 
stage, a historical moving average (MVA) from the last 
training stage is composed as follows:

where M(x, p) is the network mask prediction, k is the epoch 
number, � is a positive real factor, and CRF is the condi-
tional random fields (CRF) [79].

We use L� = 1 − F� as an image-level loss function 
w.r.t. each training example x. F-score ( F� ) is the har-
monic mean of precision and recall of the prediction out-
put of pixel p on image x w.r.t. the pseudo-labels, which 
use a positive real factor � as follows:

MVA(x, p, k) = (1 − �) ∗ CRF(M(x, p)) + � ∗ MVA(x, p, k − 1),

The network is retrained until the MVA reaches a stable 
state, as shown in the middle panel of Fig. 2. By doing so, 
the quality of pseudo-labels is improved over time.

3.4 � Segmenting objects by locations

Our last stage is training a supervised segmentation model 
using the refined pseudo-labels from the previous stage. The 
supervised model is based on segmenting objects by loca-
tions (SoloV2) [80]. SoloV2 is an updated version of Solo 
[81], a previous method for instance segmentation. The idea 
is to dynamically segment objects by location.

F� =
(

1 + �2
) precision ⋅ recall

�2 precision + recall
.

Fig. 5   Sample optical flow results for DeepFish [24]. From left, the original image, optical flow without background subtraction, optical flow 
with background subtraction, mask overlay
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Given an image as input, the network generates the object 
mask, then the object mask generation is decoupled into a 
mask kernel prediction and mask feature learning. Further-
more, matrix non-maximum suppression (MNMS) is applied 
to reduce inference overhead. Specifically, SoloV2 is com-
posed of two modules: (1) dynamic instance segmentation 
and (2) matrix non-maximum suppression (MNMS). The 
dynamic instance segmentation scheme dynamically seg-
ments objects by location by learning the mask kernels and 
mask features separately. The mask kernels are predicted 
dynamically by the fully convolutional network (FCN) [82] 
when classifying the pixels into different location categories, 
then constructing a unified mask feature representation for 
instance-aware segmentation. The non-maximum suppres-
sion process is achieved by performing NMS with a parallel 
matrix operation in one shot to reduce inference overhead 

and suppress duplicate predictions. Compared to the widely 
adopted multi-class NMS [83], where the sequential and 
recursive operations result in non-negligible latency, the 
parallel non-maximum suppression with matrix operation 
can achieve similar performance with much lower latency. 
The parallel processing strategy performs MNMS inference 
on-the-fly and enables processing at a high frame rate (34 
frames per second). For more details, we refer the reader 
to [80].

3.5 � Rotating bounding box

From each instance mask that we predicted from the previ-
ous stage, we are able to produce the rotating 2D object 
bounding box. The minimum bounding rectangle (MBR) 
technique is used to obtain a rotated bounding box from a 
binary mask of the object. We used OpenCV [84] to find 
the minimum area of a rotated rectangle. It takes the binary 
mask of the object as an input and returns a Box2D struc-
ture that contains the following information: (centre (x, y), 
(width, height), angle of rotation). The output of this step 
is used to track the objects as discussed in the following 
section.

3.6 � Online tracking

We used simple online and real-time tracking (SORT) [85] 
as an online tracking framework that focuses on frame-to-
frame prediction and association. The position and size of 
the bounding box are used only for both motion estimation 
and data association. Kalman filter [86] is used to handle 
motion estimation and the Hungarian method [87] is used 
for data association.

Motion estimation is used to propagate a target’s identity 
into the next frame. The inter-frame displacements of each 
object are approximated with a linear constant velocity esti-
mation. The detected bounding box is used to update the 
target state where the Kalman filter [86] solves the velocity 
components. The state of each target is estimated as:

where h and v represent the horizontal and vertical pixel 
location of the centre of the target, while s and r represent 
the scale and the aspect ratio of the target’s bounding box, 
respectively. Here, ĥ, v̂, ŝ are for the source.

Data association is assigning new detections to existing 
targets. Each target’s bounding box is estimated by predict-
ing its new location in the current frame. The intersection-
over-union (IOU) distance between each detection and each 
forecasted bounding box from the existing targets is used to 
calculate the assignment cost matrix. The assignment cost 

x = [h, v, s, r, ĥ, v̂, ŝ]T ,

Fig. 6   Sample optical flow results for YouTube-VOS [75]. From left, 
the original image, optical flow without background subtraction, opti-
cal flow with background subtraction, mask overlay
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matrix is then resolved using the Hungarian technique [87] 
to produce the fish trajectory as shown in Fig. 7.

4 � Method

This section describes our method in detail. Our method is 
based on three main components: the pseudo-labels genera-
tion, the unsupervised learning method to refine the gener-
ated pseudo-labels and the DNN for fish tracking and seg-
mentation. Figure 2 shows the algorithm flow diagram for 
the fish tracking and segmentation framework.

4.1 � Datasets

We performed experiments using four publicly available 
datasets, i.e. Seagrass [23], DeepFish [24], YouTube-VOS 
[75], and Mediterranean Fish Species [76]. Figure 3 dem-
onstrates a sample image from each dataset.

Seagrass [23] is comprised of annotated footage of 
Girella tricuspidata in two estuary systems in south-east 
Queensland, Australia. The raw data were obtained using 
submerged action cameras (HD 1080p). The dataset includes 
4280 video frames and 9429 annotations. Each annotation 
includes segmentation masks that outline the species as a 
polygon.

DeepFish [24] consists of a large number of videos col-
lected from 20 different habitats in remote coastal marine 
environments of tropical Australia. The video clips were 
captured in full HD resolution ( 1920 × 1080 pixels) using 
a digital camera. In total, the number of video frames taken 
is about 40k.

YouTube-VOS [75] is a video object segmentation dataset 
that contains 4453 YouTube video clips and 94 object cat-
egories. The videos have pixel-level ground truth annota-
tions for every 5th frame (6fps). For a fair comparison, we 

extracted only the videos that contained fish, which include 
130 video clips and 4349 video frames in total.

Mediterranean Fish Species [76] consists of a large num-
ber of images collected from 20 different Mediterranean fish 
species. In total, the number of images is about 40k. The 
dataset was split into two subfolders, training and test sets. 
The training set contains 34k and the test set contains 6k 
images. The image resolution ranges between ( 220 × 210 
pixels) and ( 1920 × 1080 pixels). The original images are 
stored in an RGB file format in subfolders as a class label.

We train our feature extractor on all of the four datasets 
and evaluate it on the video datasets only, Seagrass [23], 
DeepFish [24], and YouTube-VOS [75].

4.2 � Pseudo‑labelling

To train our supervised model, which is explained in 
Sect. 3.4, we first generate pseudo-labels for the image data-
set, Mediterranean Fish Species [76] and the video datasets, 
Seagrass [23], DeepFish [24], and YouTube-VOS [75].

4.2.1 � Image dataset

Since our image dataset [76] is curated from static images 
of different fish species, our framework discussed in Sect. 3 
was not applicable to this dataset. Therefore, we used Dee-
pUSPS [77] as an unsupervised saliency prediction network 
for a pseudo-labels generation. DeepUSPS is trained on 
the unlabelled MSRA-B dataset [88] for predicting salient 
objects. And it is an unsupervised learning method that pro-
duces pseudo-labels with high intra-class variations, which 
is useful for the training of the supervised model.

However, DeepUSPS is only good in pseudo-prediction 
for a single object in the image that is not disturbed by addi-
tional intricate details, which is not ideal for the more chal-
lenging video datasets [23, 24, 75].

Fig. 7   Sample fish trajectory results. Zoom in for a better view. See also a short video of fish trajectory results at https://​youtu.​be/​Z5G7Y​
BoL3eM

https://youtu.be/Z5G7YBoL3eM
https://youtu.be/Z5G7YBoL3eM


Pattern Analysis and Applications (2024) 27:4	 Page 9 of 18  4

4.2.2 � Video datasets

Unlike our image dataset, our video datasets contain mul-
tiple objects in a single frame as well as across multiple 
frames. Therefore, we adapted our pseudo-label generation 
framework discussed in Sect. 3 that is capable of predicting 
multiple salient objects in the same video clip and handling 
the case of a cluttered background. This pseudo-label gen-
eration framework aims to tackle the issue of single-image 
datasets by generating more pseudo-labels with intra-class 
variations in image space.

The pseudo-label generation framework consists of three 
steps: 

1)	 Obtain salient objects by performing background sub-
traction using adaptive Gaussian thresholding [73], as 
explained in Sect. 3.1.

2)	 Enhance the obtained salient object boundaries from 
the previous step with optical flow using RAFT [74], as 
explained in Sect. 3.2.

3)	 Apply cumulative pseudo-label refining via unsu-
pervised historical moving averages (MVA) [77], as 
explained in Sect. 3.3.

In this way, we can get pseudo-labels for video datasets, Sea-
grass [23], DeepFish [24], and YouTube-VOS [75], which 
are used to train the supervised model.

4.3 � Model training

Our models were trained with an input resolution of 
256 × 256 pixels. We scale the lowest side of the video 
frames to 256 and then extract random crops of size 
256 × 256 . We sample two video sets, B = 2 (of size T = 5 
frames); therefore, B × T = 2 × 5 = 10 frames are used per 
forward pass.

We found that for this problem set, a learning rate of 
1 × 10−3 works the best. It took around 300 epochs for all 
models to train on this problem. Our networks were trained 
on a Linux host with a single NVidia GeForce RTX 2080 Ti 
GPU with 11 GB of memory, using Pytorch framework [89]. 
We used stochastic gradient descent (SGD) optimiser [90] 
with an initial learning rate of 0.01, which is then divided by 
10 at 27th and again at 33th epoch. We use light augmenta-
tion (resizing, greyscale). Following [80, 91], a scale jitter 
is used, where the shorter image side is randomly sampled 
from 640 to 800 pixels.

We applied the same hyperparameter configuration for 
all of the models. However, the optimum model configu-
ration will depend on the application, hence, these results 
are not intended to represent a complete search of model 
configurations.

4.4 � Inference

During tracking, we extract frames from the input video, 
forward each frame through the network, and obtain the 
fish category score from the classification branch. Ini-
tially, to filter out predictions with low confidence, we use 
a threshold of 0.1 and perform convolution on the mask 
feature using corresponding predicted mask kernels. Then, 
after applying a per-pixel sigmoid, we binarise the output 
of the mask branch at the threshold of 0.5. The final step 
is the matrix NMS, which fits the output mask with the 
Min-max box.

Our model operates online without any adaptation to the 
video sequence. On a single NVidia GeForce RTX 2080 
Ti GPU, we measured an average speed of 34 frames per 
second.

5 � Experiments

We report experimental results for our model’s trained rep-
resentation on 50% of the DeepFish, Seagrass, YouTube-
VOS datasets and the train set of the Mediterranean Fish 
Species dataset. We then evaluated it in the other 50% of the 
first three datasets. We provide quantitative and qualitative 
results that demonstrate our model’s generalisation capabili-
ties to a range of different underwater habitats.

5.1 � Results

We summarise our main results on Seagrass [23], Deep-
Fish [24] and YouTube-VOS [75] datasets in Table 1. The 
quantitative results for all datasets were obtained using the 
COCO dataset [92] evaluation script. The average precision 
(AP), the average recall (AR), and intersection over union 
(IoU) were measured for the predicted bounding boxes and 
segmentation masks in the output images obtained from the 
trained SoloV2 [80], as explained in Sect. 3.4 in detail.

The average precision (AP) and average recall (AR) met-
rics provide a comprehensive view of the model’s perfor-
mance. The values AP.50 and AP.75 indicate that the model 
has a high precision rate when the intersection over union 
(IoU) thresholds are 0.5 and 0.75, respectively. This means 
that the model is able to accurately predict the bounding 
boxes and segmentation masks for a majority of the objects 
in the images. The values APM and ARM show that the model 
maintains its precision and recall across a range of IoU 
thresholds, indicating its robustness to variations in object 
size and shape. The APL and ARL values specifically meas-
ure the model’s performance on large objects. These metrics 
are particularly important in our case, as they reflect the 
model’s ability to accurately segment and track larger fish 
species.
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The results across different datasets demonstrate that our 
model is capable of generalising well to unseen videos in 
other environments. This is a significant achievement, as it 
suggests that our approach could be applied to a wide range 
of underwater video data.

To the best of our knowledge, no prior research has 
reported detection and segmentation evaluation for these 
datasets. To compare our proposed unsupervised method 
to a supervised approach, we present the results of SoloV2 
[80] in the three data sets in Table 2. This table displays the 
results of a fully supervised model with the original labels, 
not our generated pseudo-label.

In both tables, Tables 1 and 2, higher values are better 
because they indicate that the model’s predictions are more 
accurate. From these tables, we can see that both unsuper-
vised and supervised methods perform well across all three 
datasets, with some variation in performance depending on 
the specific dataset and whether detection or segmentation 
was being evaluated.

For example, in Table 1 (unsupervised method), we can 
see that the model performs best on the DeepFish dataset 
in terms of segmentation ( APM = 31.2 , ARM = 56.6 ), but 
struggles more with detection on this dataset ( APM = 11.7 , 
ARM = 34.5).

In contrast, in Table 2 (supervised method), we can see 
that although performance generally improves across all 
metrics compared to the unsupervised method, there are still 
some challenges with certain datasets—for example, detec-
tion on the DeepFish dataset ( APM = 12.2 , ARM = 41.0).

Our proposed unsupervised method has yielded close 
accuracy results to the original supervised SoloV2 [80] in 
both detection and segmentation experiments, validating 
the effectiveness of our generative approach. Furthermore, 
our results suggest that the proposed model is not heav-
ily impacted by different underwater habitats, with almost 
similar performance for DeepFish [24] and Seagrass [23] 
datasets. The latter is particularly challenging due to the dif-
ficulty of visually detecting the fish. In some cases, the pro-
posed model is not as good as fully supervised approaches. 
However, the primary objective of this study is the develop-
ment of an unsupervised method for fish tracking and seg-
mentation. We postulate that our proposed approach offers 
enhanced stability during training compared to other unsu-
pervised methods without a dedicated pseudo-label genera-
tion step. This stability, coupled with the robust performance 
of our method across diverse datasets, underscores its poten-
tial for further refinement and application in this domain.

The qualitative results of our algorithm for the Deep-
Fish [24], Seagrass [23] and YouTube-VOS [75] datasets 
are illustrated in Figs. 8, 9 and 10, respectively. Additional 
examples of failure cases are provided in Fig. 11.

Despite the challenges posed by fast movements and com-
plex, crowded backgrounds, which often result in significant 
distortion, our algorithm produces favourable outcomes for 
the majority of images. This is particularly noteworthy for 
non-rigid objects.

For a more dynamic view of our model’s predictions, 
you can watch a short video at this link https://​youtu.​be/​

Table 1   Comparison of 
*unsupervised* detection and 
segmentation on Seagrass [23], 
DeepFish [24] and YouTube-
VOS [75] datasets

Dataset AP
M

AP
.50

AP
.75 AP

L
AR

M
AR

L

Evaluating detection
Seagrass [23] 22.1 72.5 13.7 38.2 61.4 61.3
DeepFish [24] 11.7 35.0 05.3 19.3 34.5 57.1
YouTube-VOS [75] 23.6 43.2 18.4 26.9 46.1 57.5
Evaluating segmentation
Seagrass [23] 12.0 37.6 05.2 20.8 31.2 52.0
DeepFish [24] 31.2 75.0 24.4 43.8 56.6 59.4
YouTube-VOS [75] 15.4 33.0 12.2 19.2 33.8 42.2

Table 2   Comparison of 
*supervised* detection and 
segmentation on Seagrass [23], 
DeepFish [24] and YouTube-
VOS [75] datasets

Dataset AP
M

AP
.50

AP
.75 AP

L
AR

M
AR

L

Evaluating detection
Seagrass [23] 32.4 82.2 13.0 34.9 68.5 72.4
DeepFish [24] 12.2 41.8 04.3 20.9 41.0 68.0
YouTube-VOS [75] 25.9 56.2 21.6 32.8 54.1 69.9
Evaluating segmentation
Seagrass [23] 18.0 56.4 07.8 31.2 36.8 68.0
DeepFish [24] 46.8 72.5 36.6 50.7 64.9 72.1
YouTube-VOS [75] 23.1 49.5 18.3 28.8 40.7 53.3

https://youtu.be/Z5G7YBoL3eM
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Fig. 8   Sample images from our model results for DeepFish [24]; 
from left, the original image, the ground truth, the predicted image

Fig. 9   Sample images from our model results for Seagrass [23]; from 
left, the original image, the ground truth, the predicted image
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Z5G7Y​BoL3eM. The video showcases the performance 
of our model in various scenarios, further demonstrating 
its effectiveness.

5.2 � Ablation study

We performed an ablation study to demonstrate the pro-
posed approach’s effectiveness in generating pseudo-labels. 
Specifically, we analysed the contribution of the vital com-
ponent in the proposed method, the optical flow with back-
ground subtraction (Sect. 3.2). In addition, we evaluated the 
segmentation network training with refined pseudo-labels 
(Sect. 3.4) for different epochs. The results reported in 
Table 3 are for unsupervised segmentation based on optical 
flow without background subtraction as a baseline. And the 
results reported in Table 4 are for the four epoch trials with 
the same random seeds, see Sect. 4.3 for the details.

The metrics used in the ablation study are as follows: 

1)	 APM (Average precision for medium objects): This is the 
average precision for medium-sized objects. Precision is 
the ratio of correctly predicted positive observations to 
the total predicted positive observations. The higher the 
APM , the better the model is at predicting medium-sized 
objects correctly.

2)	 AP.50 and AP.75 : These are the average precision values 
at different intersection over union (IoU) thresholds. IoU 
is a measure of overlap between two bounding boxes. 
AP.50 is the average precision when IoU is 0.50, and 
AP.75 is the average precision when IoU is 0.75. Higher 
values indicate better precision at these IoU thresholds.

3)	 APL (Average precision for large objects): This is the 
average precision for large-sized objects. Like APM , a 
higher APL indicates that the model is better at predict-
ing large-sized objects correctly.

4)	 ARM (Average recall for medium objects): This is the 
average recall for medium-sized objects. Recall is the 
ratio of correctly predicted positive observations to 
all actual positives. The higher the ARM , the better the 
model is at identifying all actual medium-sized objects.

5)	 ARL (Average recall for large objects): This is the aver-
age recall for large-sized objects. Like ARM , a higher 
ARL indicates that the model is better at identifying all 
actual large-sized objects.

In all these metrics, higher values are better because they 
indicate that the model’s predictions are more accurate.

It is apparent from the results that the segmentation accu-
racy of our proposed method has improved significantly 
when compared to that of the baseline method. We also note 
that the accuracy of the models also depends on the number 
of epochs used in the training. We observe from the results 
shown in Table 4 that the segmentation accuracy decreases 
after 100 epochs. The reason for this is the over-fitting of 
the network to the noisy pseudo-labels. While the training 
losses for both the baseline and our model decreased, the 

Fig. 10   Sample images from our model results for YouTube-VOS 
[75]; from left, the original image, the ground truth, the predicted 
image

https://youtu.be/Z5G7YBoL3eM
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Fig. 11   Sample of the failure 
cases of our model. From the 
left, the original image, the 
ground truth mask overlay, and 
the predicted image. Images 
show instances where the model 
struggles with heavy occlu-
sion, variability in fish size and 
shape, segmentation of fore-
ground items, and influence of 
training videos. These scenarios 
highlight the limitations of our 
current approach and provide 
directions for future improve-
ments
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segmentation accuracy for our model was still greater than 
that for the baseline.

5.3 � Failure cases

While our model has shown promising results, there are spe-
cific scenarios where it fails to perform optimally.

•	 Occlusion: Our model’s performance degrades when sev-
eral fish are heavily occluded. While it can estimate the 
fish mask in some parts as long as they are part of the 
animal body, it struggles when the occlusion is severe, 
see Fig. 11.

•	 Variability in fish size and shape: The large variability 
in the size and shape of fish presents a challenge for our 
model. It can identify a certain shape of fish, but deter-
mining the number of fish in an image remains a difficult 
task.

•	 Segmentation of foreground Items: Given a set of unla-
belled video collections, our model is only capable of 
segmenting foreground items and cannot distinguish 
between distinct object instances or semantic classes. 
Occasionally, the whole object or parts of the object may 
not be segmented out.

•	 Influence of training videos: Our model’s performance is 
highly influenced by the characteristics of training vid-
eos, the coverage of object categories, and the motion of 
both the camera and the objects. This is similar to other 
data-driven learning techniques.

These failure cases provide valuable insights for future 
improvements to our model.

6 � Discussion

Fish segmentation and tracking are notoriously difficult 
tasks, especially for small fish in video data where the back-
ground, lighting conditions and fish shape can vary signif-
icantly. In particular, for real data, the quality of ground 
truth labels varies from video to video, since it is difficult to 
annotate the animal’s entire path. Therefore, our model aims 
to generate a pseudo-ground truth by leveraging temporal 
consistency between frames and improving its quality based 
on self-supervised learning. The key to our proposed model 
is to leverage the intrinsic temporal consistency between 
consecutive frames by using the optical flow and background 
subtraction method to improve the generated labels. This is 
especially important when the fish is moving quickly and not 

Table 3   Comparison of 
*unsupervised* segmentation 
based on optical flow without 
background subtraction

Dataset AP
M

AP
.50

AP
.75 AP

L
AR

M
AR

L

Evaluating segmentation
Seagrass [23] 05.0 23.8 03.1 14.7 19.7 29.5
DeepFish [24] 15.3 44.8 13.6 33.5 42.7 37.4
YouTube-VOS [75] 07.2 23.8 07.4 11.9 26.1 33.0

Table 4   Comparison of 
*unsupervised* segmentation 
for different epochs: 50, 100, 
150, 300

Dataset AP
M

AP
.50

AP
.75 AP

L
AR

M
AR

L

50 epochs
Seagrass [23] 12.4 33.6 07.2 20.4 28.4 47.2
DeepFish [24] 32.0 68.6 30.8 34.8 53.6 56.2
YouTube-VOS [75] 15.8 34.0 13.8 19.8 33.8 42.2
100 epochs
Seagrass [23] 12.0 37.6 05.2 20.8 31.2 52.0
DeepFish [24] 31.2 75.0 24.4 43.8 56.6 59.4
YouTube-VOS [75] 15.4 33.0 12.2 19.2 33.8 42.2
150 epochs
Seagrass [23] 12.0 36.0 04.8 20.4 30.0 48.8
DeepFish [24] 30.4 69.8 23.2 32.4 54.2 56.8
YouTube-VOS [75] 15.2 34.0 14.0 20.2 32.8 41.0
300 epochs
Seagrass [23] 10.8 33.6 04.0 18.8 28.0 46.4
DeepFish [24] 29.8 70.0 22.4 31.8 53.0 55.6
YouTube-VOS [75] 15.2 33.8 14.4 23.0 32.0 40.0
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in the same location in consecutive frames, as is the case in 
natural data. Tracking fish in video data is also challenging 
because their motion is very irregular and small fish may not 
be visible throughout the entire dataset. The other problem 
is that segmentation and tracking are time-consuming tasks, 
especially when dealing with large datasets.

Our model outperforms the baseline method (the opti-
cal flow without background subtraction) with higher AP 
values in most of the cases. Our approach can utilise tem-
poral consistency to produce consistent labels. In the case 
of the DeepFish dataset [24], we observed that our proposed 
unsupervised model results in higher accuracy compared to 
the Seagrass dataset [23]. This is mainly due to the more 
challenging videos in the Seagress data set [23] compared 
to the DeepFish video data [24]. Furthermore, we show that 
for different video datasets, our model shows similar accu-
racy. Therefore, we can expect that the accuracy would be 
similar when tested under the same conditions but in new 
underwater video datasets.

In addition, segmentation accuracy does not degrade after 
training with supervised training, and training converges in 
only a few epochs, as shown in Table 4. In our experiments, 
we found that segmentation quality has a significant impact 
on tracking performance. This is because the quality of the 
produced object bounding box has a high impact on track-
ing performance. Even in this case, we still achieved decent 
results.

We also analysed the robustness of our proposed model 
with respect to the environmental conditions. We observed 
degradation of the model’s performance when several fish 
were heavily occluded, like in Fig. 11. However, our pro-
posed model is still able to estimate the fish mask in some 
parts as long as they are part of the animal body. One of the 
main challenges in this task is the large variability in the size 
and shape of fish, as well as the variation in the shape of the 
fish’s body. Although it is possible to identify a certain shape 
of fish, it is not always possible to determine the number of 
fish in the image.

Given a set of unlabelled video collections, the main limi-
tation of our study is that it is only capable of segmenting 
foreground items and cannot distinguish between distinct 
object instances or semantic classes. Occasionally, the entire 
object or parts of the object may not be segmented out. The 
performance of our model is highly influenced by the charac-
teristics of training videos, the coverage of object categories, 
and the motion of both the camera and the objects, similar to 
other data-driven learning techniques. Our results are based 
on a few assumptions. One is that a small subset of semanti-
cally similar objects (e.g. all fish) exists in the scene, and 
these objects are likely to share the same motion feature or 
to be semantically similar. These assumptions are reasonable 
if the objects are within a certain size range, they all belong 
to the same class, and most of them share similar colours, 

shapes, and sizes. Another limitation of our approach is that 
we used a relatively large number of videos with a relatively 
small number of object categories (for instance compared to 
ImageNet). This allows our model to segment objects of all 
shapes and colours with only a handful of training examples.

One other limitation of our current framework is that in 
some cases, it is unable to detect all the objects that appear in 
the video. In future work, we intend to study how to develop 
a detection-based model that is able to detect all objects 
appearing in a given scene. Therefore, in the next step, we 
should look for a more robust and generic objectness model 
that is able to generalise across a variety of object categories 
and a variety of background types. Further work could be 
conducted on more fine-grained object segmentation, espe-
cially with new video datasets.

7 � Conclusion

In this study, we introduced an innovative unsupervised 
methodology for the segmentation and tracking of fish in 
uncontrolled video environments. Our approach leverages a 
pseudo-label generation method that combines optical flow 
with background subtraction, followed by an unsupervised 
refinement network. This method has proven to yield accu-
rate segmentation results when used to train a supervised 
deep neural network (DNN) for segmentation. Furthermore, 
our approach has shown its efficacy in tracking applications.

Our methodology was rigorously tested on three challeng-
ing datasets, with the results indicating its robustness and 
adaptability across different scenarios. This suggests that 
our approach could serve as a valuable tool for research-
ers and conservationists working with video data in aquatic 
environments.

Future research directions include extending our method-
ology to encompass other aquatic species. This extension, 
however, would necessitate further adaptations to account 
for the unique movement patterns and physical charac-
teristics of these species. Another promising avenue for 
future research is the application of our model to autono-
mous driving systems for tracking-by-detection. Although 
this application would present additional challenges, such 
as dealing with faster-moving objects and more complex 
backgrounds, we believe the core principles of our approach 
remain applicable.

In conclusion, our study contributes to a significant 
advancement in the field of video processing for fish behav-
iour analysis. The proposed methodology not only enhances 
our ability to study fish behaviour, but also has potential 
implications for conservation efforts by providing more 
accurate data on fish populations and movements. Despite 
the limitations and challenges, we believe that our work lays 
a solid foundation for future research in this area.
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