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Non-technical summary 
Coastal wetlands function as links between terrestrial and marine ecosystems throughout 

the world. They have vibrant and diverse flora and fauna, and are crucial habitats for fish 

and invertebrates, often providing critical nursery grounds and are major contributors of 

nutrients to coastal systems. However, our present understanding of tropical and sub-

tropical estuarine floodplain wetlands is limited, particularly in tropical and subtropical 

areas. This lack of understanding, together with their extensive ecological importance 

and their value to so many user groups, makes detailed understanding of estuarine 

floodplain wetlands an important research priority.  

The delta of the Fitzroy River, in Central Queensland, has extensive wetlands clustered 

around its large estuary system. Except during flooding, the aquatic environment of the 

wetlands is restricted to a number of semi-permanent pools of varying types and sizes, 

which are recognised as important nursery habitats for marine fish, such as barramundi. 

Unfortunately, the way these habitats provide for juvenile fish, and how juvenile fish 

interact with other animals and plants associated with the pools (as prey or predators) is 

unknown. Similarly, there is no knowledge of how aquatic animals are influenced by the 

type of pool environment (eg. marine or freshwater influenced), or how the compositions 

and fates of pool inhabitants are influenced by the degree and regularity of connection to 

other habitats. 

Thus the current project aims to extend, broaden and refine our understanding by 

investigating the influence of connectivity on faunal dynamics and food webs of Fitzroy 

Estuarine Floodplain Wetland Pools.   

The current study was conducted during a drought period, with no substantial wet season 

flows during the project. This has two consequences: (1) the study is limited to wetland 

pools, with little ability to generalise the results to the whole wetland, and (2) the results of 

the study are not necessarily representative of the situation during wet years.  

Methods 
The project studied a variety of wetland pools, ranging from completely fresh pools to 

hypersaline pools, from pools regularly connected to other habitats to those isolated 

throughout the study, of sizes ranging from a few hundred metres long to pools a number 

of kilometres in length, and pools in settings ranging from natural forest to rural.  A broad 
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variety of sampling techniques were employed to gain a detailed understanding of the 

organisms inhabiting the pools, and the patterns of biological connectivity among the 

pools. Data were collected on abundances, biomasses and stable isotope compositions 

(measures of position in the food chain) of fish and invertebrates; on fish sizes, 

biochemical condition (as a measure of health), diets and spatial distributions; on 

patterns of abundance of water birds; and on the physical environments of the pools and 

their patterns of connectivities.  

Results 

Connectivity 

The physical environment of the Fitzroy Estuarine Floodplain Wetland Pools and the 

extent of their physical connectivities are governed by rainfall and flooding regimes, the 

length and nature of the connecting channels, whether the pools have direct connections 

to the marine environment, and tidal anomalies that modify potential tidal connections.  

Some pools are only connected to each other and to the main estuary system during 

major floods, at intervals of years to tens of years. These isolated freshwater pools can 

only provide productive habitats for aquatic fauna (including a nursery ground function for 

marine species) if they are large enough to retain adequate water to support the aquatic 

assemblage until the next physical connection event occurs. If connections don’t occur 

frequently enough the pools dry out, with the last stages of drying out characterised by 

fish kills as the shallow water becomes hot, muddy and inhospitable. 

A second group of pools are connected a number of times a year by local rainfall. These 

pools occur as components of defined creek systems, and their regular connection 

allows passage to both upstream and downstream movements of fauna. This is 

important in allowing recolonisation of pools that have dried out, in providing access to 

marine spawning species moving upstream into nursery or feeding habitats, and in 

allowing freshwater species to recolonise brackish pools where conditions may be 

unsuitable for reproduction. These species (such as the freshwater bony bream) can be 

dominant components of the community of brackish pools.  

A third group of pools is never threatened with drying out because they are reasonably 

deep and have regular connections to the marine environment on high spring tides. 

These pools have a fauna dominated by marine species. Although there are many spring 

tides during the year with predicted heights great enough to produce connections, in 



 

  

  

 

13 

many cases expected connections do not result or connections occur when predicted 

tides are below “normal” connection levels. This is due to tidal anomalies; the 

modification of tidal heights caused by factors like increases in air pressure depressing 

water levels or strong winds blowing down long river reaches slowing the progress of 

tidal currents.  

A final group of pools is shallow and only connected during a few of the largest tides 

each year. These pools are not part of stream systems, and like the isolated freshwater 

pools saw very little freshwater input during the study. As a result these pools dried out 

quickly, but because they contained salt water, evaporation quickly produced very 

hypersaline conditions, making them inhospitable to most species long before they dried 

out. 

The timing of connections is crucial for the successful use of the pools as nurseries for 

marine fish. Marine fish generally spawn at particular times of the year. Their larvae live 

and grow in the upper levels of estuarine and coastal waters for only a few weeks before 

they need to move into appropriate juvenile habitats (termed recruitment). Consequently, 

they are available to enter pools for only part of the year, so if physical connections do 

not occur at these times no biological connection can result.  

While fish rely on aquatic connections to facilitate their movements between pools, and 

to and from the estuary, fish-eating water birds to not suffer this restriction. Water birds 

are able to fly between pools, producing biological connections independent of physical 

connections. This action of birds connecting pools across the whole floodplain has far 

reaching consequences for both the birds and the fish they feed on. Predatory birds are 

particularly effective at feeding on fish when water depths become very shallow (around 

1m or less). Being able to fly between pools that reach these shallow depths at different 

times, means the birds are regularly able to find abundant supplies of fish that are easy 

to catch. In this way, as a connected unit, the wetland pools support large populations of 

water birds. At the same time, the movement of birds to feed in pools at times when the 

fish become vulnerable has a considerable impact on patterns of mortality of fish in the 

pools. Small, open water fish (like bony bream), that are the dominant species when 

pools are full, are more susceptible to attack by birds than larger bottom feeding fish 

(such as catfish). So when pools become shallow, preferential feeding on the smaller 

species can lead to profound changes in the fish community (ie. change in dominance by 

detritus feeders [bony bream] to dominance by omnivores [catfish]). This results a major 

change in pool food web structure, which represents ecosystem collapse. These 
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changes in function can not be redressed until the pools are reconnected to another pool 

from which the detritivore population can be replenished.  

Faunal Composition 

The animals of the Fitzroy Estuarine Floodplain Wetland Pools are similar to those 

occurring in nearby freshwater and marine habitats. Fifty-eight species of birds use the 

pools, including species that are strictly water birds (56) and birds such as kites that feed 

on fish in the pools. Other species of birds are closely associated with bank-side 

vegetation, most notably the Yellow Chat (Epthianura crocea macgregori), a critically 

endangered species only recently re-recorded from the Fitzroy floodplain. Forty-six 

species of fish were recorded from the pools. Pools that are regularly connected to the 

estuary (saline pools) had the greatest diversity of fish with a maximum of 25 species, 

while freshwater pools had less species with a maximum of 16 species. The fish fauna of 

saline pools is similar to that found in estuaries in the regions, with numbers and biomass 

both dominated by detritus feeders, principally mullet. Freshwater pools also had fish 

species mixes similar to those in other coastal freshwater systems, with numbers again 

dominated by detritus feeders but in this case freshwater bony bream. The one truly 

brackish pool, in the lower reaches of 12 Mile Creek, had a mixed fauna of fresh and 

marine derived species. Here the fauna was again dominated by detritivors, with both 

mullet and bony bream common. Invertebrate faunas again reflected pool type, with 

freshwater faunas composed of freshwater insects, crustaceans and molluscs, and 

marine faunas comprising mainly marine polychaete worms, crustaceans and molluscs. 

Faunal Composition and Connectivity 

The Fitzroy Estuarine Floodplain Wetland Pools provide a diverse range of 

environments, harbouring a variety of plant and animal communities. Patterns of 

connectivity determine the natures of the pools and the natures of their faunas. Highly 

connected pools have extensive marine derived fauna and exchange those faunal 

components during connection events. 

Saline pools with regular connections to the main estuary have salinities close to 

seawater and have communities dominated by marine fish and invertebrates, while pools 

with little or no direct connection to the estuary contain predominantly freshwater 

species. Between these, brackish pools, with regular connections to both fresh and 

marine systems have faunas comprising both fresh and marine species.  
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The size structures of fish in the pools reflect time since connection. Only large marine 

spawned fish are found in large, isolated freshwater pools without recent marine 

connections, while young individuals of marine spawned species occur in saline, 

brackish and freshwater pools whenever recent connections coincided with the 

availability of young juveniles in the Fitzroy estuary. Similarly, although bony bream were 

abundant in the brackish 12 Mile Creek pool, they apparently did not breed there, with 

small individuals only present after connection to upstream freshwater pools.  

Trophic Roles of Fish and Invertebrates 

Detritus feeding fish dominated communities in all pools. These were predominantly 

mullet and bony bream. One marine spawning species, the spot-banded scat, fed 

principally on plant material. A number of predators such as barramundi and giant 

herring, which fed extensively on fish, were collected but these only occurred in 

abundance in the 12 Mile Creek brackish pool. Omnivores, mainly forktail catfish, were 

the only other common group in freshwater pools, contributing a substantial biomass in 

large isolated pools like Frogmore Lagoon. Feeders on sediment dwelling invertebrates, 

like the silverbiddy were only common in the saline pools. Unlike fish assemblages that 

were consistently dominated by detritus feeders, the trophic composition of invertebrate 

assemblages was different for freshwater and saline pools. The invertebrates of saline 

pools were mainly omnivores while freshwater pools were dominated by plant and 

detritus feeders.  

Food Web Structure 

This section is incomplete at present because of technical difficulties with stable isotope 

analysis equipment. 

Within-Pool Distribution of Aquatic Vertebrates 

In pools with water depths exceeding 1.5m tortoises (Emydura krefftii) and most fish 

were more abundant in shallow water along the edges of the pools, following the 

distribution pattern expected from previous studies of tropical systems. In contrast to 

other species bony bream, the dominant freshwater fish, showed a clear preference for 

deeper parts of the pools. Marked changes in abundance of bony bream when water 

depths became shallow enough to advantage feeding by predatory birds, such as 

pelicans, suggests that bony bream preferentially use of deep water to reduce bird 

predation. The deep water preference of bony bream also suggests that their 
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abundance, and therefore importance, may have been greatly underestimated in 

previous studies that have restricted sampling to pool edges. Fish tended to be 

distributed more haphazardly in pools with maximum depths less than about 1.5m.  

Fish Condition 

Stores of fat in the livers of fish were monitored as indicators of sub-lethal changes in the 

health of fish in the pools. Even though the Fitzroy Pools represent an eclectic group of 

environments, differing in salinity regime, physical connectivity, location and 

environmental setting, there was no indication of systematic variation in levels of fat 

stores between sites but a consistent pattern of season-related temporal changes. 

Evaluation of lipid vacuole area suggests it has the potential to be a sensitive indicator of 

fish nutritional status, with the potential for development into a useful index of sub-lethal 

impacts on fish health.  

Conclusions & Implications 
Fitzroy Estuarine Floodplain Wetland Pools provide a diversity of special and often 

unique habitats, with each class of pool harbouring a particular fauna reflecting its salinity 

and connectivity regimes. Pools vary in the duration that they provide hospitable habitats 

for fauna, and when isolated for too long develop adverse conditions and eventually dry 

out. Different classes of wetland pools are functionally different and each provides 

different outcomes for its fauna. Together these factors mean that different pool types 

are not ecologically interchangeable: the loss of any one pool is likely to be much more 

important than suggested by the fraction of the total number of pools or the total pool 

area it represents.  

Wetland Pool habitats are fragile; their unique characters are determined by small 

difference in height relative to tidal levels and by specific climatic patterns. But small 

changes in tidal levels or climate are likely to significantly change the nature of the pools 

and their quality as habitats. More extreme weather patterns will lead to more infrequent 

and unpredictable connectivites, resulting in a greater number and variety of pools 

moving to the point of ecosystem collapse. Consequently, global warming-induced 

climate change and sea-level rise are likely to profoundly influence the total area of pools 

available, the natures of individual pools and their quality as habitats. These changes will 

not just compromise species directly utilising the pools but will flow on to effect coastal 

and offshore ecosystems that are linked to the wetlands by the movement of organisms, 

nutrients and productivity.  
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The complexities of biological connectivity need to be factored in to our understanding if 

we are to successfully manage the effects of future climate and sea level changes. 

Careful management of habitat loss and rehabilitation of degraded pools is crucial to 

prevent further loss of ecological function in the face of climate change and adverse 

human intervention.  
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Chapter 1 

Introduction 
Marcus Sheaves 

 

 Littoral wetlands occur adjacent to marine coasts and estuaries throughout the world, 

and function as links between terrestrial and marine ecosystems (Levin et al. 2001). 

These wetlands comprise temporarily flooded lowlands, “swampy” palustrine habitats 

(Kingsford & Norman 2002), and permanent and semi-permanent pools, lakes and 

lagoons (Allanson & Whitfield 1983). Littoral wetlands have vibrant and diverse flora and 

fauna, and are crucial habitats for fish (Brown et al. 2005, Noble et al. 2004), birds 

(Kingsford & Norman 2002, Noble et al. 2004) and invertebrates (Castellanos & Rozas 

2001). In particular, they are often critical nursery grounds for fish and invertebrates 

(Secor & Rooker 2005), and major contributors of nutrients and pollutants to coastal 

systems (Caddy 2000).  

 Littoral wetlands are of substantial value to commercial, traditional and recreational 

fishers, both in terms of exploitable fish stocks they contain (Barbier & Strand 1998, 

Paterson & Whitfield 2000, Ley et al. 2002) and their nursery ground value (Secor & 

Rooker 2005). Above and beyond their fisheries values, littoral wetlands are highly 

valued by many elements of the community. They often have considerable traditional 

value (Anon 2004), are used substantially by a diversity of groups including birdwatchers 

and eco-tour operators, and are highly valued by a diversity of members of the 

community (eg. artists, photographers) for their aesthetic beauty (Anon 2005). 

Additionally, the dwindling area of littoral wetlands confers considerable conservation 

value on them (Barbier et al. 2002). 

 

Nursery-Ground Function of Littoral wetlands  

Littoral wetlands are widely recognised as nursery grounds for a variety of fish 

(Russell & Garrett 1988, Laffaille et al. 2000) and crustaceans (Achuthankutty 1988, 

Sheridan & Hays 2003), but nursery ground value is incompletely understood (Sheaves 

2001, 2005). While relatively few fish that use wetlands are obligatory users (Secor & 

Rooker 2005), many species are advantaged by their use as juvenile habitats. 
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Advantages flowing from abundant food supplies (Javonillo et al. 1997) and/or reduced 

predation (Paterson & Whitfiled 2000) lead to enhanced storage pools of energy and 

genetic material. These ultimately lead to more productive and less variable adult stocks 

than would otherwise be the case (Kraux & Secor 2005). The importance of the 

utilisation of nursery habitats to marine fish populations is underlined by the fact that, 

across a broad range of ecosystems, patterns of abundance of juveniles in nursery 

habitats is a reliable predictor of abundance of adults in adult habitats in subsequent 

years (Kraux & Secor 2005). Conversely, adult abundance is generally a poor predictor 

of juvenile abundance, emphasising that factors influencing the entry to and successful 

use of juvenile habitats are more important to future spawning stocks than are previous 

patterns of spawning. 

 Species that utilise temporary littoral wetlands are themselves special. They can be 

seen in one sense as generalists, able to thrive in and utilise a diversity of conditions 

(Gelwick et al. 2001), and in another as specialists, that require great phenotypic 

plasticity (Ray 2005) to prosper under a diversity of environmental regimes.  

 A crucial factor in nursery ground value is the availability of suitable habitat. Although 

some organisms are habitat specialists (Davis et al. 1995, Nagelkerken & Velde 2002), 

many can utilise a variety of habitats (Ray 2005). However, even these species require 

habitat type and condition to be within acceptable ranges (Halpern 2004). Even in open 

systems, the condition and extent of necessary habitats vary greatly between years, and 

may become critically restricted (Niklitschek & Secor 2005). The situation is even more 

variable for closed systems, where the inability to move to a new area means that the 

loss of a particular habitat from the system can have far reaching effects for a variety of 

species (Bloomfield & Gillanders 2005). 

 As well as nursery ground value varying in space and time (Kraux & Secor 2005), 

utilisation of habitats by juveniles is also variable (Able 2005). This reflects the interaction 

of larval supply and habitat availability in determining location-specific juvenile 

abundance (Brown et al. 2005). Consequently, the degree of connectivity and integrity of 

connections among habitats, and between wetland units and sources of larval supply, is 

of overriding importance to nursery ground value because both habitat availability and 

larval supply are determined by connectivity (Chabrerie et al. 2001, McCormick-Ray 

2005). Larval and juvenile aquatic and marine animals can not occupy a habitat that is 

not connected to a source of supply, no matter how potentially favourable that habitat is. 
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In fact, larvae and/or juveniles cannot be supplied to a habitat without connection at the 

specific time when the larvae and/or juveniles are available (Brown et al. 2005). 

 The importance of habitat availability and the needs for appropriate connectivity to 

enable habitat occupancy are obvious. Just as obvious is that the widespread 

occurrence of habitat modification (Ferrer Montano 1994, Vose & Bell 1994, Blaber 

1999) and restriction and removal of connectivity (Hyland 2002, Kraux & Secor 2005) 

has the potential for substantial impacts on the distribution and dynamics of fish and 

other fauna (Noble et al.2004). Conversely, land management plans that restore 

connectivity and rehabilitate habitats are important in protecting biodiversity and restoring 

whole-of-ecosystem function (De Freese 1995). Additionally, restoring connectivity can 

advantage endangered species (Tanner et al. 2002) and lead to expanded diversity of 

life-history variation (Bottom 2005) leading ultimately to more resilient ecosystems 

(D’Eon et al. 2002). Ensuring that ecosystem resilience is maximised is a pressing issue, 

given speed of habitat and connectivity loss and modification is accelerating in response 

to human-induced climate change and sea level increase (Kingsford & Norman 2002). 

 

The Relationship between Water Bird Populations and Nursery-Ground 

Function of Littoral Wetlands  

Piscivorous birds benefit from foraging over large areas (Alexander 2002) and 

depend on access to wetlands that are healthy fish habitats (Noble et al. 2004). In fact, 

many waterbirds respond to newly generated wetland habitats to feed and/or breed 

(Kingsford & Norman 2002), then disperse or die as wetlands dry up. In fact, predatory 

birds are advantaged by cycles of filling and drying of wetland pools, with birds moving to 

take advantage of pools (Timms 2001)as they become shallow enough for effective 

feeding (Roshier et al. 2002). This advantage to piscivorous birds feeds-back to influence 

nursery ground value, with predatory birds visiting substantial mortality on small and 

juvenile fish in wetlands (Whitfied & Blaber 1978, Miranda & Collazo 1997). Because of 

the importance of wetlands to water birds their loss is a major threat to bird populations 

(Kingsford & Norman 2002), and their numbers and diversity are closely linked to 

wetland health (Kingsford 1999). 
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Littoral Wetlands and Nutrients and Pollutants  

Because most pathways of transport of nutrients and pollutants pass through them, 

littoral wetlands play a crucial role in the movement of nutrients between catchments and 

the sea. Understanding this role is particularly important in the current climate of 

increasing loads of suspended sediments, nutrients and pollutants (Brodie & Mitchell 

2005).  Depending largely on the strength of flow (Brodie & Mitchell 2005) (eg. wet 

season versus dry season), a variable proportion of the nutrients and pollutants 

generated in the catchment are trapped in wetlands (Thimdee et al. 2003). There they 

may be stored for long periods (Boto et al. 1989, Alongi et al. 2000a, Thimdee et al. 

2003), modified (Davis et al. 2001a), controlled (Davis et al. 2001b) or passed rapidly 

onwards (Brodie & Mitchell 2005). For instance, large quantities of nutrients may be 

converted to mangrove biomass and trapped in mangrove forests (Cebrian 2002) or 

pollutants removed water and stored in wetland plants such as reeds (Hosoi et al. 1998). 

At the same time, wetlands themselves generate large amounts of organic carbon 

(Jennerjahn & Ittekkot 2002, Alongi et al. 2004), and can be substantial contributors of 

nutrients and pollutants to coastal systems (Machiwa & Hallberg 2002, Caddy 2000). 

Depending on the type of wetland (Clarke 1985, Mohammed et al. 2001) and its 

geographical setting (Alongi et al. 2000a, Dittmar & Lara 2001) this carbon may be 

retained in the wetland by recycling (Cebrian 2002) or passed onwards (Alongi et al. 

1998). Thus littoral wetlands can trap nutrients and pollutants, and/or slow, modify or 

promote their flows between ecosystems. 

 The movement of nutrients and pollutants through wetlands is generally thought of in 

terms of physical transport as dissolved or particulate material (Thimdee et al. 2003, 

Brodie & Mitchell 2005). However, wetland organisms play crucial roles in nutrient 

recycling (Alongi et al. 2000b), nutrient accumulation (Alongi et al. 2000a, Cebrian 2002), 

nutrient regeneration (Dham et al. 2002), and nutrient transport (Javonillo et al. 1997, 

Deegan 1993), which may be as great as that of physical processes (Deegan 1993). Our 

incomplete understanding of these biologically mediated flows is a reflection of our 

general lack of recognition of the importance of biological connectivities (Sheaves 2005). 

 

Fitzroy Estuarine Floodplain Wetland Pools  
The Fitzroy River is the largest coastal river system in central and southern 

Queensland, draining a catchment of more than 140,000 square kilometres. It has an 

estuary about 65 km in length, with its upper boundary defined by a barrage, constructed 
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in 1970 to prevent ingress of saltwater to areas further upstream (Kowarsky & Ross 

1981). The barrage is located at the city of Rockhampton, the major centre in the region.  

At the mouth of the estuary is an extensive delta system surrounded by a broad 

floodplain (Fig. 2.1). Interspersed across the floodplain are a variety of wetland pools that 

are the focus for this study. For the purposes of this study this particular subset of littoral 

wetlands is termed “Fitzroy Estuarine Floodplain Wetland Pools” (see Chapter 2 for 

definitions). These pools present a range of degrees of connectivity to each other and to 

the Fitzroy estuary proper (see Chapters 2 & 3). During major floods the floodplain may 

become covered with water, producing an extensive area of nursery habitat for fish and 

crustaceans. Once the floodwaters receed the floodplain wetlands contract, with the 

pools representing persistent remnants of this wetland.  

 Littoral wetlands are recognised as important nursery habitats for juveniles of the 

commercially and recreationally important fish, the barramundi, Lates calcarifer, (Russell 

& Garratt 1983, 1985, 1988), prompting a series of studies into importance of Fitzroy 

Estuarine Floodplain Wetland Pools to this species (Sawynok 1998, Infofish 2005, 

Sawynok & Platten 2005). 

 

User Needs  

In the last five years there has been a shift from centralised management of natural 

resources and environments of river catchments in Queensland, to management at a 

local level. In 2000 the Fitzroy Basin Association (FBA), the community organisation 

charged with coordinating this management, produced a strategy for sustainability (FBA 

2000). The strategy identified river health and water quality as key regional issues, with 

key strategy of developing planning and management measures to protect fisheries 

habitats and ensure the maintenance of fish passage through the Fitzroy River system.  

 In response to the strategy, a number of studies were implemented to understand the 

use of habitats in the system by recreationally and commercially important species, 

principally barramundi. These studies include habitat utilisation by barramundi and 

evaluation of relative habitat quality (Infofish 2005), barramundi spawning and 

recruitment (Sawynok & Platten 2005), and establishing the relationship between 

freshwater flows and barramundi production (Robins et al. in progress). These first two 

projects, supported by the Coastal CRC, identified Fitzroy Estuarine Floodplain Wetland 

Pools as crucial habitats for barramundi. The latter project, a major Coastal CRC sup-
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project, has linked barramundi recruitment pulses with freshwater flow events, implicating 

wetlands as important in underpinning fisheries production. These studies also build on 

the studies of the use of ponded pastures in the region by barramundi (Hyland 2002). 

While these studies represent a broad range of necessary work relating to the 

barramundi themselves, there is very little understanding of the functioning of the Fitzroy 

Estuarine Floodplain Wetland Pools in particular, or indeed littoral wetlands in general. In 

particular, there is essentially no understanding of the faunal dynamics of littoral wetland 

pools or of the trophic webs supporting nursery ground function and productivity.  

 

Aims: 
 At present our understanding estuarine floodplain wetlands is limited, particularly in 

tropical and subtropical areas. Most previous research in coastal northern Australia has 

focussed on purely estuarine (eg. Blaber et al. 1989, Sheaves 2001) or freshwater (eg. 

Pusey et al 2000) systems and then mainly on moving waters. This lack of 

understanding, their extensive ecological importance and their value to so many user 

groups, makes detailed understanding of estuarine floodplain wetland pools an important 

research priority. Thus the current project aims to extend and broaden our understanding 

by investigating the faunal dynamics and food webs of Fitzroy Estuarine Floodplain 

Wetland Pools, and the influence of connectivity on faunal dynamics and foodwebs.  

 In particular, the project investigates the natures and connectivities of Fitzroy Wetland 

Pools (Chapter 3), the influence of connectivity on densities (Chapter 4) and biomasses 

(Chapter 5) of fish, the densities of invertebrates (Chapter 6), the diets of fish (Chapter 

7), stable isotope profiles of fauna and flora (Chapter 8), the structure of food webs 

(Chapter 9), the health and condition of fish (Chapter 10), the spatial distribution of fish 

within pools (Chapter 11), the spatial and temporal abundance of waterbirds (Chapter 

12). 

 The current study was conducted during a drought period, with no substantial wet 

season flows during the project. This has two consequences: (1) the study is limited to 

wetland pools, with little ability to generalise the results to the whole wetland, and (2) the 

results of the study are not necessarily representative of the situation during wet years.  
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Chapter 2 

Physical Nature of Fitzroy Floodplain Wetland Pools 
Marcus Sheaves and Ross Johnston 

 

Summary 
Floodplain Wetland Pools were defined as water bodies on the floodplain of the 

Fitzroy River, adjacent to, and intermittently connected with, the Fitzroy River 

estuary or other major estuarine channels forming the Fitzroy River delta. 

Study pools were selected to cover the Fitzroy floodplain as representatively as 

possible. 

Pool environments ranged from entirely freshwater, through low salinity brackish and 

fully marine to hypersaline. 

Pools varied in the periodicity of connection to the marine environment and to 

upstream freshwaters. 

Pools varied in the duration they retained water. 

Some pools were isolated while others comprised upstream series within stream 

systems.   

 

Study Sites 

Pool Definition 

For the purposes of these studies Estuarine Floodplain Wetland Pools are defined 

as: Water bodies on a coastal floodplain, adjacent to, and intermittently connected with 

an estuary or estuarine system.  

Fitzroy Estuarine Floodplain Wetland Pools are specifically defined as: Water 

bodies on the floodplain of the Fitzroy River, adjacent to, and intermittently connected to, 

the Fitzroy River estuary or other major estuarine channels forming the Fitzroy River 

delta. For brevity this will usually be shortened to Floodplain Wetland Pools or simply 

Wetland Pools throughout the studies, except where clarity demands the full title. 
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To comply with the definition of the pools’ locations as “adjacent to the estuary”, the 

investigation was limited to pools downstream of the Fitzroy River Barrage, which marks 

the upper limit of the estuary. Defining pools as “intermittently connected” led to the 

inclusion of pools from those only cut off from the estuary at low tide to freshwater pools 

with no tidal connection.  

Because only one highly connected marine pool could be found directly adjacent to 

the Fitzroy River delta, the study was extended to include Munduran Creek. Although not 

part of the Fitzroy River delta, Munduran Creek enters the mid section of Narrows, which 

connects the Fitzroy River delta with Port Curtis. Munduran Creek also includes a 

number of freshwater pools, so, as well as providing spatial replication of a highly 

connected marine pool, including Munduran Creek provided the opportunity to study a 

connected series of pools ranging from marine to fully fresh in the one system. 

 

Selection Criteria 

The primary aim was to select sites comprising a broad representation of pool types 

and levels of physical connectivity. Ideally, the pools selected would include: 

Multiple pools in individual streams forming upstream series 

Pools with a broad range of salinity profiles 

Pools with different levels of physical connectivity 

Pools that retain water for different durations  

Multiple pools of each type to provide spatial replication of pool type 

A spread of pools that covers the floodplain representatively 

Pools that could be accessed reliably, considering physical impediments to access 

(road conditions, stream depth etc.) and willingness of owners 

Pools without major human-constructed impediments (dams, bund walls etc.) likely to 

reduce effective connections under normal circumstances 
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Site Selection 

Potential study sites were identified from aerial imagery and topographic maps. Sites 

were inspected and evaluated during a two week field trip in November 2003. Local 

knowledge and site advice were provided by Bob Packet from DNR & M, and Bill 

Sawynok from InfoFish.  

Study Sites 

Although aerial imagery (Fig. 2.1) and topographic maps suggested many potential 

sites, on-ground surveys showed that most sites were unsuitable under criterion 8 

(above). Unreliable accessibility (criterion 7) eliminated many other potential sites, while  

 

others, such as Big German Jack’s Lagoon, held no water or were unhospitable to life 

(extreme salinity and/or temperature) at the beginning of the study. Initially, 5 primary 

sites were selected: Frogmore Lagoon (Figs. 2.1, 2.2), 12 Mile Creek Brackish pool 

(Figs. 2.1, 2.3), 12 Mile Creek Upstream Fresh pool (Figs. 2.1, 2.3), Munduran Creek 

Brackish pool (sampled from February 2004 to May 2005) (Figs. 2.1, 2.4), and Munduran 

Creek Downstream freshwater pool (Figs. 2.1, 2.4). Subsequent to the initial sampling 

trip in February 2004, during which sampling protocols were tested and refined, 6 

additional sites were added. These were; Munduran Upstream freshwater pool (Figs. 2.1, 

2.4), Gonong Creek Brackish pool (Figs. 2.1, 2.5) and 12 Mile Creek Downstream  
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Freshwater pool (Figs. 2.1, 2.3) (sampled from May 2004 onwards), Big German Jack’s 

Lagoon (Figs. 2.1, 2.6), Little German Jack’s Lagoon (Figs. 2.1, 2.6) (sampled from 

November 2004 onwards), and Woolwash Lagoon (Figs. 2.1, 2.2) (sampled during 

August 04, February 2005 and May 2005). 

To extend the range of stable isotope data, samples were collected from two 

additional sites during December 2004, Blacks Lagoon, a large freshwater pool on 

Raglan Creek in the southeast of the Fitzroy floodplain (Fig. 2.1) and Munduran Snake 

Pool, upstream of Munduaran Creek Upstream pool (Figs. 2.1, 2.4).  

 

Pool Descriptions 

Descriptions of the pools’ settings and habitat types were developed from in-field 

observations. Records of patterns of stream flow, kept by Government agencies, did not 

provide the detail needed to define regularity of connection at the level of individual  
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wetland pools. As a consequence, information from local landholders and other key 

stakeholders, was married with observations from the research team and the local 

knowledge of Bob Packet (DNR & M) and Bill Sawynok (InfoFish), to develop an 

approximate classification of regularity of connection for each study site (Table 2.1). No 

definitive detail on regularity of tidal connection to the Fitzroy River estuary is provided 

here because empirical studies showed a low level of concordance between actual 

connections and predicted tidal heights. This issue is covered in detail in chapter 3. 

Frogmore and Woolwash Lagoons 

Frogmore and Woolwash Lagoons are freshwater pools situated some 3km from the 

upper Fitzroy estuary (Fig. 2.2). At their maximum non-flood levels both pools are 

approximately 2km in length and, for most of their lengths, approximately 80 m wide. 

During the study period the maximum depths of Frogmore and Woolwash Lagoons were 

4.7m and 2.8m respectively (Table 2.1). Both pools have moderately sloping cross-

sectional profiles (Fig. 2.7). The pools are usually separate entities but are connected via  

 

 

a narrow channel during major flooding (Fig. 2.2). Both pools form upstream connections 

to Yeppen Yeppen swamp during major floods, but more often receive water from the 

Scrubby Creek/Ti-tree Swamp system, or their downstream connection to the Gavial  
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Creek system, a side-branch of the Fitzroy River. Even this connection is intermittent, 

with no connection to Gavial Creek during the study period. Information from local land 

holders suggests the pools only connect to Gavial Creek with a periodicity of around 5-10 

years (Table 2.1). 

Both Frogmore and Woolwash Lagoons are situated in extensively cleared pastoral 

land, with cattle grazing to the pool edges. However, while Frogmore is completely 

surrounded by grazing land, Woolwash is bordered by a sealed road on its eastern side. 

The vegetation surrounding the pools consists mainly of grasses and small sedges 
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interspersed with large Eucalyptus and Melaluca trees. Neither pool contains any 

macroscopic aquatic vegetation. 

12 Mile Creek 

Twelve Mile Creek is situated to the south of Casuarina Creek, a major estuarine 

component of the Fitzroy River delta (Fig. 2.1), and connects to the upper reaches of 

Inkerman Creek, another estuarine component of the Fitzroy delta. During the study 

period, Twelve Mile Creek flowed two to four times a year as a result of local rainfall in its 

catchment. Substantial flow from these events persisted for no more than a week on any 

occasion. Between these times 12 Mile Creek contracted to a series of separate pools, 

the lower 3 of which were used as study sites (Fig. 2.3).  

The most downstream pool (12 Mile Brackish) is bordered on its northern side by 

pasture and on its southern side by a habitat reclamation area, of previously grazed land 

now, from which cattle are now excluded. There are few mature trees adjacent to the 

pool, although a number of saplings are established in the reclamation area. Salt couch, 

Sporobolis virginicus, and sedges line the bank but there is no macroscopic aquatic 

vegetation. Twelve Mile Brackish is situated on the landward edge of a saltpan adjacent 

to Inkerman Creek and, during the highest spring tides, is connected to Inkeraman Creek 

across some 2½km of saltpan. When full, the pool is some 800m in length 10-15m wide 

for most of its length, with a maximum depth of 4.3m (Table 2.1). The occasional 

connections to Inkerman Creek maintained hyposaline conditions in the pool throughout 

the study. 

The pool immediately upstream of 12 Mile Brackish (12 Mile Downstream) is 

separated from the brackish pool by a low concrete weir (30cm above the normal “full” 

level of the brackish pool) that prevents egress of salt water, but which is quickly 

overtopped during freshwater stream flow. The Twelve Mile Downstream pool is some 1 

km long and 5-7m wide for most of its length, and had a maximum depth of 3m during 

the study. The pool is bordered by pasture on its northern bank, and Euclayptus forest on 

its southern bank (Table 2.1), and contained extensive areas of water lilies, Nymphaea 

spp. and the invasive aquatic plant, Cabomba caroliniana.  

Immediately upstream of 12 Mile Downstream, and separated by a causeway, is the 

second 12 Mile Creek freshwater study site (12 Mile Upstream). Twelve Mile Upstream is 

some 330m in length, 2-5m wide and had a maximum depth of 4m during the study 

(Table 2.1). The pool is bordered by pasture on its southern side and by pasture with 
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scattered Euclayptus trees on its northern bank, and contained extensive areas of water 

lilies, Nymphaea spp. and the invasive aquatic plant, Cabomba caroliniana.  

Munduran Creek 

Munduran Creek is situated to the south of the Fitzroy River delta (Fig. 2.1) and flows 

into the Narrows, the body of water connecting the Fitzroy River estuary with Port Curtis. 

The upstream section of the Munduarn Creek estuary contains a series of lateral rock 

bars forming natural impoundments, the most upstream of which is only overtopped by 

the highest spring tides (Fig. 2.4). The pool formed by this natural barrier (Munduran 

saline) is approximately 350m long, about 18m in width at its widest point, and has a 

maximum depth of 1.8m. Munduran saline is surrounded by state forest (lightly grazed) 

and has a narrow mangrove border (primarily Aegiceris corniculatum, Rhizophora 

stylosa, and Avicennia marina) interspersed with grasses and Eucalyptus woodland 

(Table 2.1). Except during stream flow events (2-5 times per year), the upper end of the 

pool is separated from freshwater sections of Munduran Creek by a further rock bar and 

a lightly forested dry stream channel. Munduran saline has an erosional/depositional 

cross-sectional profile (Fig. 2.7). 

Except during stream flow events, the freshwater section of Munduran comprises a 

series of pools surrounded by Eucalyptus woodland. When full of water, the most 

downstream of these (Munduran Downstream) fills the stream channel, and is some 60m 

in length and 20m in width. It has gently sloping sides and a maximum depth of 2.1m. 

Munduran Fresh has extensive areas of aquatic vegetation, principally water lilies, 

Nymphaea spp.. Munduran Downstream has a shallowly sloping cross-sectional profile 

(Fig. 2.7). Munduran Upstream is similar but of greater length (120m) with an 

erosional/depositional cross-sectional profile (Fig. 2.7).   

A further 0.5km upstream is the “Snake Pool”. The Snake Pool is a steep-sided, 

freshwater pool, about 300m in length and 10m in width and surrounded by native 

woodland designated as State Forest. Snake Pool has a steep sided basin cross-

sectional profile (Fig. 2.7). 

Gonong Creek 

 Gonong Creek is at the upstream extremity of Connor Creek, the most southern 

major estuarine branch of the Fitzroy delta (Fig. 2.1). At the upstream end of the Gonong 

Creek estuary is a pool (Gonong saline) separated from the estuary proper by a cobble 
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and gravel bar some 50m long. As with Munduran saline, Gonong saline is only 

connected with the estuary by the highest spring tides (Fig. 2.5). The pool is 

approximately 450m long, about 20m in width at its widest point, and has a maximum 

depth of 2.1m. It is bordered on its eastern side by National Park and on its western side 

by a forestry plantation (Table 2.1). Gonong saline has an intermittent mangrove border 

(primarily Aegiceris corniculatum, Rhizophora stylosa, and Avicennia marina), 

interspersed with native grasses. Except during stream flow events (2-5 times per year), 

the upper end of the pool is separated from freshwater sections of Gonong Creek by 

further gravel and rubble bars. There are no substantial permanent freshwater pools in 

Gonong Creek. Gonong saline has an erosional/depositional cross-sectional profile (Fig. 

2.7). 

German Jack’s Lagoons 

The German Jack’s wetland comprises 2 lagoons adjacent to the northern bank of the 

middle Fitzroy estuary (Fig. 2.1). Neither lagoon has a connection to a defined freshwater 

stream. The lagoons only receive substantial inputs of freshwater during major flooding 

of the Fitzroy River. Both lagoons are connected with the Fitzroy River estuary only on 

the few largest tides of the year. Neither pool contains permanent aquatic macrophytes.  

The larger lagoon (Big German Jack’s) is bordered on its eastern side by Eucalyptus 

woodland that is used as pasture for cattle and on its western side by saltmarsh, 

dominated by the salt couch, Sporobilis virginicus. When full it is some 2km in length, 

150m wide and about 0.7m maximum depth. The major connection with the Fitzroy River 

estuary is through a shallow channel, approximately 500m in length, leading to an 

unnamed side branch of the Fitzroy River (Fig. 2.6). Big German Jack’s has a shallowly 

sloping cross-sectional profile (Fig. 2.7). 

The smaller lagoon (Little German Jack’s) is surrounded by Sporobilis virginicus salt 

marsh. It contains scattered mangroves (mainly Avicennia marina with a few Rhizophora 

stylosa), particularly around its southern end. When full, Little German Jack’s is some 

400m in length, 20m in width and 0.5m in depth. On the highest spring tides water flows 

from a small channel adjacent to the southern end of Little German Jack’s, through about 

15m of salt marsh and then into the pool (Fig. 2.6.). Under particularly high tidal 

conditions water sheet flow enters the southeastern side of Little German Jack’s directly 

from the Fitzroy River which is only some 30m from the pool at this point. Although very 

shallow in depth, in the main Little German Jack’s has a steep-sided basin cross-

sectional profile (Fig. 2.7). 
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Chapter 3 

Dynamics of the Physical Environment of Fitzroy Wetland Pools 
Marcus Sheaves and Ross Johnston 

 

Summary 
The study was conducted to gain an understanding of the physical environment of the 

Fitzroy Wetland Pools and the physical connectivities between them.  

This provides a basis for developing a understanding of biological connectivity. 

Measurements of water quality parameters, pool and connection depths, and 

analyses of aerial photography were used to investigate the pool environments 

and connectivities.  

The pools represent a spectrum of pool types from completely fresh to hypersaline. 

They also range widely in their extent and periodicity of connectivity, from pools 

connected a number of times a year to pools isolated for many years. The 

physical environment of the pools and the extent of connectivity is governed by 

rainfall and flooding regimes, the length and nature of the connecting channels, 

whether the pools have direct connections to the marine environment, and tidal 

anomalies that modify potential tidal connections. 

The complexity of physical connectivity needs to be factored in to our understanding if 

we are to successfully manage the effects of future climate and sea level 

changes. 

 

Introduction 
The nature of the Fitzroy Wetland Pools investigated during the study was outlined in 

chapter 2. This chapter documents changes in the physical environment of the pools 
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from February 2004 until May 2005 to examine the nature and extent of physical 

connectivity between the pools and between the pools and the Fitzroy River estuary. 

At the beginning of the study the physical environments of the pools, and the nature 

and extent of connectivity between them, was completely unknown. As a consequence, it 

was necessary to undertake a descriptive study as a basis for understanding physical 

and biological connectivity between the pools and for understanding the pools’ roles in 

supporting their biota. The empirical understanding gained is used to generate specific 

questions for more detailed investigations (Chapter 13).  

Aim:  

No consistent information was available on the physical nature of the study pools or 

the connectivities between them. Consequently, physical data were collected to develop 

a broad understanding of the physical nature of the pools, and the extent and periodicity 

of connectivity between pools, and between the pools and the Fitzroy River estuary. This 

broad understanding provides the context for understanding biological connectivity 

(Chapter 4) and for developing the specific conceptual models tested in Chapter 13. 

   

 

Methods 
 Nine pools, 12 Mile Brackish, Downstream and Upstream; Munduran Saline and 

Downstream; Gonong Saline; Little German Jack’s; Frogmore; Woolwash, were selected 

for detailed physical sampling.  

The salinity, temperature, pH, turbidity and depth of each pool were measured on 

each sampling occasion (February 2004, May 2004, July 2004, November 2004, 

February 2005, May 2005), except when equipment failure prevented measurements. An 

additional trip, to collect physical data, was conducted in December 2004 to match with 

predicted extreme high tides (5.5m at Port Alma, 12-14 December (Seafarer Tides 

2004)). Because pools could only be visited every 4 months, the regular cleaning 

required to ensure continuous data loggers work effectively was not feasible. 

Consequently, point sampling was used rather than continuous data logging. This 

approach was considered adequate for the purposes of gaining a broad, initial 

understanding of the physical natures of the pools and of connections between them. As 

a result, firm information is only available for each sampling occasion and understanding 



 

  

  

 

37 

of conditions between those times relies on interpolation. Other variables such as DO2 

were not measured because their high levels of temporal variability at multiple scales 

would render point measurements uninformative. 

 

Measurements of Water Quality Parameters:  

Salinity and temperature were measured using a TPS WP-84 

conductivity/salinity/temperature meter, and pH using a TPS WP-80 pH meter. Turbidity 

was measured in NTU using an Analite 152 Nephelometer. This meter produced 

unreliable data on a number of occasions, so only reliable turbidity data are included. 

Measurements of Depth and Pool levels: 

Depth profiles of each pool were recorded using a Lowrance LCX-18C Sonar and 

Mapping GPS. This information was cross referenced to depth measurements made 

manually at each cast netting location, on each sampling occasion. At the beginning of 

the study a permanent survey peg, with a height datum mark, was placed on the edge of 

each pool. The level of each pool relative to datum level was measured on each 

sampling trip, using a laser level. 

For each pool (except the 2 German Jack’s pools which could not be accessed until 

November 2004 due to unfavourable conditions on the access road), the water level in 

February 2004 was defined as the “full” level. This was an accurate description for pools 

in 12 Mile Creek, Munduran Creek and Gonong Creek because heavy local storm rainfall 

in the southern catchments of the Fitzroy floodplain during January and February 2004 

produced flow in each system, filling all the pools. Frogmore and Woolwash lagoons 

were disconnected from each other and from other systems throughout the study, so 

levels fell throughout the study period. Consequently, for these pools the “full” level at the 

beginning of the study provides a relative bench mark only. The situation in the two 

German Jack’s pools is more complex. The only substantial inputs of water into these 

pools during the study period came from connections to the Fitzroy estuary. However, 

while the duration of these connections was sufficient to fill Little German Jack’s, they 

were not of sufficient duration to fill Big German Jack’s. Consequently, while a “full” level 

could be defined for Little German Jack’s, no similar definition could be made for Big 

German Jack’s.  
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Connection depths:  

To allow investigation of connection depths and timing between the estuary and each 

of the marine and brackish pool, the end of each 7 day sampling trip was set to coincide 

with the largest tides of the month. Simple depth recorders (Figs. 3.1, 3.2) were placed at 

the connection point of each pool at the beginning of each sampling trip (ie. prior to the 

largest tides) and the maximum depth the tide reached, relative to the pool depth datum, 

measured each day. The depth recorders consisted of 30mm long vials attached  

 

sequentially, along the length of a 2m long stake set vertically into the edge of the pool, 

with the lowest vial at the pool surface. Each vial had two holes drilled into it, one hole at 

the mid-point of the vial to allow water to enter and one just below the lip of the lid to let 

air escape, so forestalling pressure build-up that might prevent water entering the lower 

hole. Because the vials were attached sequentially every 30mm, connection depths were 

automatically recorded to the nearest 30mm. Experiments prior to using the depth 

recorders in the field showed they recorded depth accurately and were not influenced by 

rainfall, which was deflected away by the overhanging lid of the vial (Fig. 3.2). 
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Results and Discussion 
 

The Physical Environment  

Salinity 

Salinities at Frogmore, Woolwash, 12 Mile Downstream, 12 Mile Upstream and 

Munduran Fresh remained at or very close to zero throughout the study (Fig. 3.3).  
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Small inputs of estuarine water from Inkerman Creek balanced freshwater input from 

local rainfall to maintain low salinities in 12 Mile Brackish (mainly 5-10l, except for 

December 2004 when salinity fell to 0.7 l) until the final sampling trip in May 2005 when 

substantial inflow from Inkerman Creek during extremely high tides caused salinities to 

increase to 35l (Fig. 3.3).  

Salinities in Munduran and Gonong saline pools tracked together throughout the 

study (Fig. 3.3). Salinities in Munduran saline were close to zero in February 2004, 

following extensive local flooding. Salinities in the two pools increased continually until 

November 2004, due to repeated tidal connections. Local rainfall at the end of 2004 and 

early 2005 reduced salinities to a measured minima of 6l in Gonong saline and 2l in 

Munduran saline in February 2005. The extreme high tides in February 2005 led to 

salinities increasing rapidly to around 40l. The high salinity levels reached in the 3 

“brackish” pools in May 2005 seem anomalous, in that they are higher than normal 

seawater salinities. However, these levels simply reflect the fact that the 3 systems 

source their tidal waters from the upstream parts of dry sub-tropical estuaries that 

typically maintain elevated salinities throughout most of the year (Ian Webster pers 

com.).  
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When first measured in November 2004 the salinity was extremely high in Little 

German Jack’s (130 l) (Fig. 3.3). Very low water levels indicated the high salinity was 

due to evaporation during an extended period of disconnection from both fresh and 

marine water. Local rainfall in November and December 2004 filled Little German Jack’s, 

reducing salinity to 9l in February 2005. The extreme high tides in February 2005 led to 

salinities increasing rapidly to around 55l, mirroring the changes in Munduran and 

Gonong saline pools. 

Overall there were 4 distinct patterns of salinity (Fig. 3.4): (1) constant freshwater 

salinities in the Frogmore, Woolwash, 12 Mile Downstream, 12 Mile Upstream and 

Munduran Fresh, the pools without direct connections to the estuary, (2) salinities 

fluctuating between fresh and hypersaline levels in Gonong and Munduran saline, the 

pools with regular connection to the estuary and regular inputs of fresh water from local 

flooding, (3) low salinites for the majority of the time in 12 Mile Brackish, reflecting  

 

regular inputs of fresh water from local flooding and restricted marine input from most 

potential marine connections due to the large distance tides have to bridge to create 

marine connectivity, (4) salinities fluctuating widely and reaching extreme levels in Little 

German Jack, a pool with infrequent inputs of fresh (not part of a stream system, so only 
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from local rainfall) and marine water (short connection but at a high topographic level that 

is only overtopped infrequently), and a very shallow depth allowing evaporation to rapidly 

reduce water levels and increase salinity.  

Temperature 

 Despite a strong pattern of seasonal change, water temperatures varied little among 

sites at any time (Fig. 3.5). On aspect of the seasonal pattern is noteworthy; 

temperatures in February and May 2005 were consistently 1-4
0
C higher than those in 

February and May 2004. Early in the study water (February & May 2005) temperatures in 

the brackish sites tended to be slightly higher than in the fully fresh sites, however 

difference became less distinct through the latter parts of 2004, and early 2005. Very 

high temperatures in Little German Jack’s in November 2004 relate to a lack of inputs of 

fresh or marine water, leading to extremely shallow water levels (29.5cm maximum 

depth) and no input of cool water to moderate temperatures.  

 

pH 

 pH showed a range of patterns through time. The low salinity 12 Mile brackish pool 

had constantly higher pH than the 12 Mile Upstream pool but followed the same pattern 
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of temporal change; levels becoming more alkaline through time but with a dip in 

February 2005 (Fig. 3.6a). The 12 Mile Downstream pools initially had similar pH to 12 

Mile Brackish but changed to be similar to 12 Mile Upsteam in November 2004 and 

February 2005, before again converging with 12 Mile Brackish in 2005. pH levels at 

Gonong saline and Munduran saline (Fig. 3.6b) were similar to those in 12 Mile Brackish 

in February 2005 and, although they increased in May 2004, the increase was less 

marked and not continued in July and November. While pH levels at Gonong saline 

remained similar through May, July and November 2004, they became increasingly acid 

at Munduran saline over the period. In a similar way to 12 Mile Creek, the pH at both 

Munduran saline and Gonong saline fell in February 2005 before increasing to similar to 

12 Mile Brackish in May 2005. pH at the highly saline German Jack’s Lagoon was only 

measured in the last 3 months of the study but followed a similar pattern to that at 

Gonong and Munduran, but at a more alkaline level (Fig. 3.6b). The pattern at Frogmore 

Lagoon (Fig. 3.6c) was quite different to that at the other sites; starting at a more alkaline 

level in February 2004 and continuing to increase until February 2005 before falling in 

May 2005. Woolwash Lagoon showed even more alkaline pH levels, but these continued 

to rise through to May 2005. 

 

Turbidity 

 Turbidities (Fig. 3.7) were low to moderate at all sites throughout the study, with 

highest turbidities in 12 Mile Brackish in February 2004. In field observations suggested 

that turbidities were a simple reflection of the wind conditions over the days prior to 

sampling. The levels of turbidity were much lower than those usually found in the Fitzroy 

estuary (Phillip Ford pers com.). 

 

Depth 

 The two saline pools, Gonong Saline and Munduran Saline were connected to their 

estuaries regularly so maintained levels when disconnected that varied by only a few 

centimetres. Gonong Saline had a maximum depth when disconnected of 2.1m and a 

maximum depth when connected of 2.7m, while Munduran Saline had a maximum depth 

when disconnected of 1.8m and a maximum depth when connected of 2.4m.  
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 Frogmore (maximum depth 4.7m, February 2004) and Woolwash (maximum 

depth 2.8m, July 2004) lagoons had no connections to other systems during the study 

and suffered continual declines in depth throughout the study until, by September 2005 

the maximum depth of Frogmore Lagoon was 1.1m while the maximum depth of 

Woolwash Lagoon was 0.3m (Fig. 3.8). The 12 Mile system had substantial freshwater 

flow in January and February 2004 and 2005, and in December 2004. As a result, 

although the two 12 Mile freshwater pools showed similar patterns of decline in depth to 

Frogmore and Woolwash through most of 2004, depth increased rapidly to “full” level in  
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December 2004. 12 Mile Brackish followed a similar pattern, but with a slower reduction 

in depth and an earlier increase in level to be close to full in November 2004 (Fig. 3.8). It 

is unclear whether this increase was due to freshwater flow or a marine connection; 

however, as there was a concomitant slight decrease in salinity (Fig. 3.3), it seems most 

likely that the increase in depth was the result of very localised rainfall. The increase in 

depth in 12 Mile Brackish at the end of 2004 also matched with marine connections at 

the times of extreme high tides. Little German Jack’s (Fig. 3.8) and Big German Jack’s 

were only a few centimetres deep in November 2004, but the same storms that filled the 

12 Mile system in December, also raised the levels in these pools. The depth of both 

pools declined throughout the rest of the study. Even though there were marine 

connections late in 2004 these were not extensive enough to do more than slow the rate 

of decline. 

 Access to Munduran Fresh was often difficult, so a consisten sequence of depth 

measurements was not possible. The pool had a maximum depth of 1.7m in February 

and a minimum depth of 0.5m in November 2004. 
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Physical Connectivity  

Fitzroy estuarine floodplain wetlands pools can be classified into 5 groups based on 

connectivity patterns (1) infrequently connected, isolated freshwater pools, (2) regularly 

connected, in-stream freshwater pools, (3) pools with frequent marine and freshwater 

connections, (4) pools with infrequent marine and freshwater connections, (5) pools with 

infrequent marine but frequent freshwater connections. 

 

(1) Infrequently connected, isolated freshwater pools 

Frogmore and Woolwash Lagoons:  

Frogmore and Woolwash lagoons are isolated systems; they are not part of a defined 

stream system, rather they are billabongs cut of from the Gavial and Scrubby Creek 

systems under all except flood situations. In addition, the two pools are in the centre of 

the floodpain in an area of low annual rainfall where heavy falls are infrequent (Fig. 3.9). 

There were no connections between Frogmore or Woolwash Lagoons during the period 

of the study, as reflected in the continued decline in water levels (Fig. 3.8). There had  
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been connection between Woolwash Lagoon and Frogmore Lagoon, and between 

Frogmore Lagoon and both upstream and downstream (estuarine) areas of Gavial Creek 

due to major flooding in early 2003. Aerial imagery shows these connections were still in 

existence in late May 2003 (Fig. 3.10). At this time there was considerable water in Bates 

Lagoon, in the downstream channel of Gavial Creek. However, by November 2003, 

when preliminary evaluations of sites were made, Bates Lagoon was greatly reduced in 

size with a maximum depth of approximately 40cm, and Frogmore Lagoon was 

disconnected from Gavial Creek, and Woolwash from Frogmore.  

 

(2) Highly connected, in-stream pools 

12 Mile Creek Freshwater Pools and Munduran Freshwater Pool  

The two freshwater pools in 12 Mile Creek (12 Mile Upstream and Downstream) and 

Munduran Freshwater are in-stream pools; they are part of defined stream systems, and 

connected to each other and upstream areas by normal stream flows. Both systems are 

in the southern part of the Fitzroy floodplain and are fed by areas with higher and more 

regular rainfall than occurs over much of the floodplain. Substantial freshwater flows at  



 

  

  

 

48 

 

all three sites in January, February and December 2004, and January and February 

2005 resulted from heavy rainfall in their local catchments. Consequently, all three pools 

were connected to both upstream and downstream areas a number of times during the 

study, refilling the pools and allowing the movement of fauna.   

(3) Pools with frequent marine and freshwater connections  

Gonong Saline and Munduran Saline 

 The “saline” pools are immediately adjacent to the estuary of Munduran Creek 

(Munduran Saline) and Connor Creek (Gonong Saline), and separated from the estuary 

by a rock (Munduran) or gravel (Gonong) bar. The tide overtops these rock/gravel bars 

during the largest tides of most lunar cycle. Both pools are also the downstream section 

of freshwater drainage streams. Consequently, both pools are highly connected to both 

their upstream section and the marine environment.  

 Both Gonong (Fig. 3.11) and Munduran (Fig. 3.12) Saline pools remained close to 

“full” level throughout the study due to regular tidal connections and a number of fresh 

water flows from local rainfall. The apparent minimum tidal height needed for connection 

was 5.2m at both sites. However, a number of tides predicted to reach this level failed to 
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produce connection. This can be explained by tidal anomalies (Ian Webster pers com.), 

resulting from variations in atmospheric pressure, wind fields and current patterns,  

 

 

That influence realised tidal levels. During much of 2004 realised spring tidal levels were 

up to 20cm below predicted levels at Port Alma (at the mouth of the estuary system 

leading to Gonong Creek) (Fig. 3.13). The effects of wind fields on the long reaches of 
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Fitzroy Delta estuaries tend to exacerbate this effect, producing even greater anomalies 

in upstream parts. Given the length of these estuaries (Fig. 2.1) substantial anomalous 

outcomes are probable (Ian Webster pers com.), explaining the unpredictable nature of 

marine connections to these pools. 

(4) Pools with infrequent marine and freshwater connections  

Little German Jack’s and Big German Jack’s 

The two German Jack’s pools do not form part of drainage systems, so their only 

substantial inputs of fresh waters are during major flooding of the Fitzroy River. 

Consequently, their fresh water inputs mirror those of the isolated freshwater pools. Even 

though their shallow depths meant that small amounts of local rainfall could produce a 

larger change in percentage volume than in the isolated pools, only the heavy local 

rainfall in late 2004 and early 2005 had any influence on volume or salinity (Fig. 3.14). 

This increase was relatively minor however, only reducing the overall rate of decline in  
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depth in Little German Jack’s (Fig. 3.8) and lowering its salinity to 9l in February 2005 

(Fig. 3.3). Inputs of marine water to the two pools are low as they only connect to the 

estuary on the highest spring tides, and then for only a short period of the time. While 

there were a number of brief, marginal connections, only on one occasion was there 

sufficient inputs to fill Little German Jack’s (Fig. 3.14). There were never sufficient inputs 

of marine water to fill Big German Jack’s during the study. The differences between the 

pools relate to differences in both their sizes and their levels of connection to the marine 

environment. Little German Jack’s is small (Fig. 2.6) and close to the Fitzroy River. 

Although the tide level needed for connection through the connecting channel is high the 

short connection distance, plus the possibility for direct connection by sheet flow from the 

Fitzroy River, mean that a reasonable volume of water can enter, particularly on 

anomalously high tides (see below). Big German Jack’s is much larger (Fig. 2.6) and 

this, together with its longer connection distance (Chapter 2), mean that the tidal influx 

never raised its level by more than a few centimetres at any time during the study.  

A minimum tidal level (relative to tidal predictions at Port Alma) for connection of 5.5m 

was calculated for Little German Jack’s, however lower tide may connect or tides at or 

above this level fail to connect due to tidal anomalies (see above). 

The shallow nature of the two pools (Chapter 2), their low inputs of marine water, 

followed by long periods of evaporation, and their low inputs of fresh water, allowed the 

two German Jack’s pools to rapidly become hot and hypersaline. 
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 (5) Pool with infrequent marine but frequent freshwater connections 

12 Mile Brackish 

 The 12 Mile Brackish pool is part of the same drainage system as the two 12 Mile 

fresh pools, so experienced the same regular freshwater flows. Additionally, the brackish 

pool was connected to the estuary of Inkerman Creek by the highest spring tides. Based 

on the predicted tidal heights at Port Alma (the nearest standard prediction site), and 

assuming the same minimum tidal level of 5.2 calculated for the 2 saline pools, there 

should have been 19 connections during the study period (Fig. 3.15a). However, the 

patterns of change of salinity and water level in the 12 Mile Brackish pool suggested that 

actual connection only occurred during 4 periods at the end of 2004 and in early 2005 

(Fig. 3.15b).  

 The 12 Mile Brackish pool had a low salinity (7.4l) and was full in February 2004, 

following freshwater flows in January and early February. The water level then fell 

consistently, while the salinity increased slowly from February 2004 to July 2004, 

indicating that no marine or freshwater connections occurred (period 1, Fig. 3.15a). The 

water level had increased in 12 Mile Brackish by November 2004 but the salinity had 

declined slightly, indicating freshwater inputs (period 2, Fig. 3.15a). As the water levels 

were still falling in the two 12 Mile Creek freshwater pools (immediately upstream of 12 

Mile Brackish) at this time (Fig. 3.8), the increase in depth at 12 Mile Brackish must have 

been due to very localised rainfall adjacent to the pool. In the period between the 

November 2004 sampling trip and the additional trip to match the large tides in 

December 2004 (period 3, Fig. 3.15a) salinity rose but the pool level fell. Although the 

water level fell, the increase in salinity was much sharper than during early 2004 

suggesting that a small marine connection may have occurred (it is unlikely that this 

salinity increase was due to salt being washed from the saltpan as this would have been 

expected during the local rains in November). Heavy storm rains between 2 visits to 12 

Mile Brackish during extra field trip in December (8/12/04 and 11/12/04) (period 4, Fig. 

3.15a), lead to extensive flooding of the 12 Mile Creek system, resulting in a sharp 

decline in salinity and a return of the pool to its full level. Between December 2004 and 

February 2005  (period 5, Fig. 3.15a)fresh inflow to 12 Mile Brackish ceased, water 

levels only fell marginally but salinity rose considerably suggesting further marine 

connections. The salt pan between Inkerman Creek and 12 Mile Brackish was dry on the 

first visit to 12 Mile Brackish in February 2005 (6/02/05), indicating no recent downstream 

connection had occurred. However, on the second visit (9/02/05) (period 6, Fig. 3.15a)  
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the saltpan was flooded and the salinity of the pool had increased indicating a marine 

connection. Water levels fell and salinity increased sharply between February and May 

2005 (period 7, Fig. 3.15a) suggesting no further connections, although very high tides of 

5.7m in March may have produced a further marine connection. 

 The unpredictability of connection at 12 Mile Brackish is partial explained by tidal 

anomalies; the upstream end of Inkerman Creek, which supplies marine water to 12 Mile 

Brackish, is even further from the entrance to the estuary at Port Alma than the top of 

Connor Creek from which Gonong Saline receives its marine water (Fig. 2.1). 

Consequently, tidal anomalies are likely to be even more amplified. In addition, for 

marine water to reach 12 Mile Brackish it must cross some 2km of saltpan. Thus the tide 

needs to remain at a sufficient level for long enough for water to flood across the salt pan 

before connection can occur. This is not just a simple function of distance because the 

water also spreads laterally across the salt pan increasing the volume of water 

necessary to produce connection and the time taken. The time taken to cross the salt 

pan depends in turn on the condition of the salt pan at the time of potential connection. If 

the salt pan is dry, a considerable amount of water will soak into the surface, and 

hydraulic friction will slow down water movement. These effects will be exacerbated if the 
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salt pan has become dry enough to form cracks (Fig. 3.16). Consequently, connection 

will occur at a much lower tidal level if the saltpan is wet or flooded from local rainfall, or 

if a previous tide has soaked the surface. 

 Overall, the pattern of connectivity of 12 Mile Brackish is complex, with 4 drivers to 

consider (a) predicted tidal height, (b) tidal anomalies that influence the actual tidal 

height (c) stream flows that produce upstream and downstream connection, and (d) local 

rainfall that, together with flow down 12 Mile Creek, wets the 2.5 km wide saltpan 

between 12 Mile Brackish and Inkerman Creek. 

 

 

 

  

CONCLUSIONS 
Physical connectivity between wetland pool, between wetland pools and other 

freshwater environments and between wetland pools and the estuary rely on a number of 

factors, many of which have not previously been recognised: 
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local rainfall producing localised stream flow: In the Fitzroy this is a much more 

common source of connection for many pools than major flooding, and because it 

is more frequent is more likely to occur at an advantageous time for biological 

connectivity. 

tidal anomalies: Tidal anomalies can greatly alter the realised tide height, 

determining whether or not the tide reaches a high enough level to cause a 

connection. 

distance: The probability of connection due to the tide is greatly dependent on the 

distance the tide has to travel. This relates to long narrow channels or particularly 

to flow across saltpans. Flow over saltpans is influenced by the distance and how 

much lateral spread is involved. 

pre-existing conditions: Movement of the tide over salt pans is also modified by pre-

existing conditions: whether the salt pan is wet or dry, whether the surface is 

smooth or rough (e.g. craze cracks). 

 

The concordance of these factors is crucial in producing a physical connection. 

Given the complexity of the situation and the high level of chance involved in bringing 

a particular series of conditions together, predicting a particular connection event is 

extremely difficult. Despite this we now know enough to understand that the 

complexity of physical connectivity needs to be factored in to our understanding if we 

are to successfully manage the effects of future climate and sea level changes.  
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Chapter 4: 

The Influence of Connectivity on Patterns of Composition and 
Density of Fish from Fitzroy Wetland Pools 
Marcus Sheaves and Ross Johnston 

 

Summary 
This component of the study sets out to investigate the fish faunas Fitzroy Floodplain 

Wetland Pools, and patterns of biological connectivity 

A variety of sampling approaches were trialed, with castnet sampling proving to be 

the most appropriate method across the range of pools sampled 

Fitzroy Estuarine Floodplain Wetland Pools provide a diverse range of environments, 

harbouring diverse fish assemblages  

Patterns of connectivity determine the natures of the pools and the natures of their 

faunas 

These connectivities are determined by patterns of freshwater flow and marine 

connection 

Because these connectivities are greatly affected by small changes in rainfall and/or 

tidal height they will be profoundly impacted by climate change.  

More extreme weather patterns will lead to more infrequent and unpredictable 

connectivites, resulting in a greater number and variety of pools moving to the 

point of ecosystem collapse. 

 

 

Introduction 
 Fish are important components of wetland faunas of tropical and subtropical northern 

Australia. These wetlands are recognised as important nursery areas for many species 



 

  

  

 

57 

of fish, including icon species like barramundi, Lates calcarifer (Sawynok 2004, 

Arthington et al. 2005). They are generally considered to benefit juvenile fish through 

reduced levels of predator-induced mortality and/or enhanced growth outcomes (Beck et 

al. 2001). Fish are in turn important faunal components, performing key functions in food 

webs, and transporting substantial amounts of nutrients between wetlands and other 

habitats during migration (Beck et al. 2001, Herzka 2005). As the focus of recreational 

and traditional fisheries, fish also contributes directly to the economic and social values 

of wetlands (Costanza et al. 1997). 

 The composition of fish faunas of Australia’s tropical and subtropical floodplain 

wetlands are poorly understood ( Blaber et al. 1989, Sheaves 2005). As with other fish 

faunas, composition probably reflects physical aspects such as salinity, habitat structure, 

and water quality (Tejerina-Garro et al. 1998, Saint-Paul et al. 2000, Levin & Stunz 

2005).  However, the discrete nature of wetland pools, and the obvious importance of 

connections between pools and other systems, suggests that the extent and history of 

connectivity are also likely to be influential in determining composition (Hoeinghaus et al. 

2003, Ray 2005). The abundance, or density, of fish is likely to reflect habitat type and 

quality (Tejerina-Garro et al. 1998, Levin & Stunz 2005), but is also likely to be influenced 

by the extent of predation (Rodriquez & Lewis 1997) and the health of habitats (McKenna 

2001).  

 The importance of fish in wetlands makes knowledge of their compositions, 

abundances and densities the basic currency for beginning to understand wetland 

pattern and process, and relating that understanding to management. Our lack of 

knowledge of these simple parameters makes determining them a necessary first step 

towards ecosystem understanding. This component of the study sets out to determine 

and compare the compositions and densities of fish faunas in floodplain wetland pools 

adjacent to the estuarine region of the Fitzroy River delta. 

 

Methods 
 Sampling was conducted in ten wetland pools; Frogmore and Woolwash Lagoons; 12 

Mile Brackish, and 12 Mile Downstream and Upsteam freshwater pools; Munduran 

Brackish, and Munduran Downstream and Upsteam freshwater pools; Gonong Brackish; 

and Little German Jack’s Lagoon (site details; Chapter 2) [Big German Jack’s was too 

shallow for efficient sampling by any gear and consistent high temperatures and salinities 
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made it inhospitable for fish throughout the study). Only three sites were sampled during 

the initial sampling trip in February 2004 (Table 4.1), when field techniques were being 

evaluated and refined. Most sites were sampled regularly over subsequent trips  

 

(February 2004 to May 2005), as long as access was possible. The only exception was 

Woolwash Lagoon. Woolwash was initially sampled in July 2004 as a spatial replicate for 

the nearby Frogmore lagoon. Because of the close similarity of the fauna to that of 

Frogmore, and because a considerable sampling effort was necessary to represent the 

fauna of such a large system, Woolwash was not sampled again until February 2005 

when it became obvious that water levels in Woolwash were becoming low. Extensive 
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faunal change had occurred in Woolwash Lagoon in May 2005, so additional samples 

were collected from Frogmore Lagoon in September 2005 when water levels had fallen 

below those of Woolwash in May 2005. A series of fish kills were reported in Woolwash 

Lagoon during August and September 2005, and although there was too little water and 

bank conditions were too muddy to allow sampling in Woolwash in September 2005, 

dead fish were collected from the banks. 

Sampling Gears 

 Initially it was planned to use four gear types; gill nets, castnets, fish traps and scoop 

nets, to provide as complete a picture of the fish fauna as possible. Other gears were 

considered but not employed, generally because they could not be used in all pool types. 

These included electrofishing (only effective in very low salinity water), seine nets (need 

shallowly sloping banks devoid of vegetation for hauling), and fyke nets (useful for 

catching fish moving between shallow habitats, but of limited effectiveness in deep 

wetland pools). The four gear types (gill, cast [6mm & 18mm mesh] and scoop nets, and 

fish traps) were all employed during the initial sampling trip, however only 18mm mesh 

castnets were employed on subsequent trips. 

Comparison of sampling gears:  

No other gears produced species not captured in the 18mm castnets, so added no 

additional information on species richness. Although fish traps are useful in sampling a 

broad range of habitats, including many inaccessible to other gears (Sheaves 1992), 

they were discarded because of their propensity to capture tortoises. Trapped tortoises 

could suffocate before traps were checked. This was considered an unacceptable risk to 

potentially endangered species. Castnets also captured tortoises, but because castnets 

are removed from the water immediately, tortoises could always be released unharmed. 

Scoop nets were discarded because their use was restricted to edges, so they could not 

provide quantitative samples over the full range of habitats. The relatively thick , heavy 

weight mesh needed to make small-mesh castnets (6mm mesh) robust enough for 

sampling, meant that only small diameter nets could be used. This, together with slow 

sink rates due to restricted passage of water through the small mesh, meant catches per 

net were relatively low. Although the small mesh net did capture fish below the lower limit 

of the larger mesh castnet, it added no additional species and represented larger size 

classes poorly. It was considered that the extra time needed to collect samples with the 

small mesh net could be more profitably spent collecting more replicate samples with the 
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large mesh castnet that captured fish over a much greater range of species and sizes.  

 Gill nets were trialed extensively, both in trial sampling in the Townsville region and 

during the initial Fitzroy sampling trip. Gill nets were evaluated more extensively than 

alternative gears because they were likely to capture large fish that might be poorly 

represented in castnets. During the initial Fitzroy sampling trips (February, May 2004) gill 

nets were set in 12 Mile Brackish, 12 Mile Upstream, Frogmore and Munduran Saline on 

the same day that castnet sampling was conducted. Two gill nets of each of 4 mesh 

sizes (25, 50, 100, 200 mm) were used. All nets were 10m in length, to allow them to be 

set in narrow pools without bunching up. Each net was set for three 2 hour daytime 

soaks and a single night time soak. The catches from gill nets were compared to catches 

from 18mm mesh castnets (see below for sample sizes and sampling protocols).   

 Gill net catches were too low at Munduran Saline to allow comparison to castnets. Gill 

net catches from the four different gill net mesh sizes were combined for the other three 

sites. This was necessary because size and taxonomic structures were too restricted for 

each individual mesh size for a reasonable comparison.  

 For all three sites 18mm castnets captured more species than the four gill net mesh 

sizes combined (Fig. 4.1). Additionally, profiles of relative abundance, for the species 

captured by the two gears, were very similar for both gears at the two 12 Mile Creek 

sites. At Frogmore Lagoon there was one discrepancy, N.erebi was caught in much 

higher relative abundance in 18 mm castnets (Fig. 4.1c). Given the similarities in relative 

abundance at the other two sites, that the castnet data from Fromore Lagoon are based 

on 150 replicate nets, and the high concentration of N. erebi in deep water in Frogmore 

Lagoon (see Chapter 11), it is hard to attribute this difference to anything but 

undersampling of N. erebi by gill nets set along the edges of the Lagoon. Because of 

these results gill nets were excluded from further sampling because they: 

 captured less species overall,  

 did not appear  to sample any group more efficiently than castnets,  

 were more taxonomically and size selective, and 

 required the integration of four different mesh sizes to produce results 

comparable to the castnets.  

 Similar difficulties with gill nets have been recorded in previous studies (Smith & 

Hindell 2005). Additionally, fish caught in gill nets are often unsuitable for dietary studies, 

which were an important aspect of the trophic component of this study (Chapter 7).  
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Because gill nets need to be set for long periods of time to capture fish, any fish captured 

early in a net soak may digest prey already in their gut to an unrecognisable state, pass 

food from their gut that would otherwise be found or regurgitate food (loss through 

defecation and regurgitation is also exacerbated by the mechanical action of squeezing 

fish during removal from the net). Thus gut content of gill net caught fish is an unreliable 

measure of diet. 

 One further aspect makes castnets a more desirable sampling tool; all fish not 

needed for laboratory studies could be released unharmed from castnets, whereas the 

need to leave gill nets in the water for extended periods, and the nature of their capture 
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method (entangling), meant gill net consistently caused collateral mortality on non-target 

fish, and had the potential to kill non-target species (e.g. waterbirds and tortoises). 

 Castnets were clearly the superior sampling gear of those trialed. Compared to other 

gears they were less taxonomically selective, produced equivalent or better 

representations of the fauna (richness, abundance and size structure), provided many 

discrete replicate samples per unit effort, were logistically simpler, produced more data 

per unit time, were usable across the full range of habitats available, except for those 

heavily vegetated with water plants or amongst fallen timber (no other gear was efficient 

in these), and eliminated collateral mortality. 

Cast net Sampling Methods and Protocols 

 At least 50 cast net samples (18mm mesh) were collected from each site whenever 

there was sufficient area for 50 independent samples. In some cases the area available 

became limited as the pool dried, in other cases the presence of water lillies, Nymphaea 

spp. or the invasive aquatic weed, Cabomba caroliniana, reduced the area that could be 

sampled. Of the 43 trip X location combinations (Table 4.1), 51% had 50 or more 

replicate samples, a further 30% between 20 and 50 replicate sample. Three more 

combinations (7%) had between 10 and 20 replicates, while only 5 combinations (12%) 

had less than 10 replicate samples. These samples came from the two Munduran fresh 

sites where dense beds of aquatic vegetation restricted available sampling area. 

Although data from these two sites extends the range of pools investigated, the low 

number of replicates means the data should be treated with caution: abundant species 

are likely to be represented reasonably well, but less common species may have been 

under represented, as are estimates of species richness. 

  For consistency, all cast net samples were collected observing the following 

protocols. Cast netting was conducted from a small boat fitted with an electric motor to 

minimise site disturbance. Cast net samples were not used if: 1) a net throw did not 

sample greater than an estimated (by eye) 85% of the actual net area, 2) the net became 

snagged on any structure, 3) it appeared that a site was disturbed during boat 

positioning, or 4) if the net operator’s shadow encroached onto the proposed sampling 

area. In this way sampling biases were reduced as much as possible and/or 

standardised. Any variability in sampling volume (i.e. differences in the surface area of 

net throws), was randomly distributed throughout the study, therefore any biases would 

have added variability to the data in a random manner. In theory the maximum sample 

area for the cast nets was 16.5 m
2
 for the 18 mm mesh (4.29 m diameter) net and 7.4 m

2
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for the 6 mm mesh (3.07 m diameter) net, but measurements from net throws on land 

indicated actual sampling area was considerably below theoretical maximum for each net 

but was not highly variable; 18 mm net mean area = 7.35 m
2
 (SE = 0.40, n = 50) and 6 

mm net mean area = 2.9 m
2
 (SE = 0.19, n = 50). As a result the empirical estimates of 

area sampled were used in subsequent analyses.  

Data and Statistical Analyses 

 Raw abundances of fish per net were averaged to produce the basic data for 

analysis: mean numbers of each species of fish per cast net, for each wetland pool, on 

each sampling trip. These data were first transformed by log(x+1), to downweight the 

influence of very common species (allowing less common species some influence 

analytical outcomes) and analysed using multivariate classification and regression trees 

(De’ath & Fabriscius 2000, De’ath 2002). Tree selection was conducted using 10-fold 

cross validation, and the 1+SE tree (the smallest tree with cross validation error [CV 

error] within 1 SE of that of the tree with the minimum CV error). Further interpretation 

was facilitated by displaying the data in 2 dimensional space using non-metric 

multidimensional scaling (nMDS) based on Bray-Curtis dissimilarities. Information on the 

strength and nature of the correlation of species with the nMDS space was added as 

vectors indicating the direction of greatest increase in density of species most highly 

correlated with the space. The directions of these vectors was determined by regression 

of each species on the nMDS space, with the length of vectors reflecting the R
2
 value for 

each regression, so indicating the strength of correlation with the space. Individual nMDS 

ordinations were done for both the whole data set as well as for 12 Mile Creek (because 

there was sufficient data for more detailed analysis and comparison of these three sites). 

Preceding analyses, the original data matrix for species was reduced to include only 

species occurring in more than 10% of samples, to remove any undue effects of rare 

species on the analysis (Gauch, 1982).  

 

Results 
 Over the course of the study 46 species of fish were captured from the 10 Fitzroy 

floodplain wetland pools (Table 4.2). 
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Species  Richness  

All pools had reasonably low numbers of species with a maximum total richness 

of 25 species at Munduran Saline (Table 4.2), and the highest in any one sampling trip of 

17 at Gonong Saline (Fig. 4.2). Lowest numbers of species were found at Munduran 

Upstream (although sample sizes were low there) and Little German Jack’s (rarely 

connected and often inhospitable). Freshwater pools tended to have fewer species than 

brackish/saline pools. The large variation in the 12 Mile Upstream pool is probably 

attributable to the restriction of sampling area on some trips due to increases in aquatic 

vegetation. Species richness of freshwater pools increased with pool rank surface area 

(or volume) [Spearman’s rs =0.8407, t=3.105, df=5, p=0.036]. Species richness was even 

more highly correlated with the number of net samples [Spearman’s rs =0.9856, 

t=11.662, df=5, p=0.0003].  
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Patterns in Fish Composition and Density  

There was a major dichotomy in fish faunal composition based on the presences 

or absence of freshwater species (Fig. 4.3), principally N. erebi,  separating Little 

German Jack’s, Gonong Saline, Munduran Saline, and the two Munduran Fresh sites 

from Frogmore, Woolwash and the 12 Mile Creek sites. Secondary splits segregate the 

Munduran Fresh sites from the three saline sites and 12 Mile Brackish from the purely 

freshwater sites. The fauna of each pool were stable over time with only one important 

change, the two February samples from 12 Mile Brackish had higher densities of N.erebi 

and lower densities of S. multifasciata than were found during the other trips. 

 

 The nMDS ordination (Fig. 4.4) provides a visual display of the similarities and 

differences in faunal composition between samples. The overall similarity within sites is 

clear, with only 12 Mile Brackish showing substantial changes between samples. The 

tight groupings of the Munduran and Gonong Saline sites; the two Munduran fresh sites; 
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the two German Jack’s samples; and Frogmore, Woolwash and the 12 Mile Creek fresh 

sites are obvious. As expected from the tree analysis, these four groups are well 

separated from each other. One aspect not clear from the tree analysis is that in 

February 2005 the fauna at 12 Mile Brackish had a similar appearance to that of the  

 

group of four freshwater sites. However, there was a return to a similar composition in 

May 2005 (Fig. 4.5). This change principally reflects a marked change in dominance of 

N. erebi (Fig. 4.6) with the appearance of high densities of small individuals following 

flooding in late 2004 and early 2005 (Chapter 5). The marine derived species, G. 

filamentosus, L. subviridis, A. australis and H. castlenaui, dominated the more saline 

sites, while high abundances of a marine derived species M.cephalus differentiated the 

Munduran fresh sites (Fig. 4.6). N. erebi was characteristic of the group of four 

freshwater sites, with increased densities of A. graeffei the major factor separating the 

Frogmore February 2005 and Woolwash May 2005 samples from other samples at those 

sites. The position of 12 Mile Brackish sites towards the centre of the ordination indicates 
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moderate levels of most species, in part a reflection of relatively high species richness at 

that site. It is notable that the largest vector in each direction represents a detritivore, N. 

erebi, L. subiviridis or M.cephalus, a pattern seen more strongly in biomass (Chapter 5). 

 An nMDS ordination including only the 12 Mile Creek sites (Fig. 4.7) provides 

additional detail on faunal relationships at the individual system level. Communities of the 

two freshwater pools were usually quite similar, and, except in February 2005, were 

distinct in structure from the community in the Brackish pool. The fauna of 12 Mile  

 

Brackish was notable for high densities of a number of marine spawning species, 

particularly L. calcarifer, L. subviridis, E. hawaiensis, G. filamentosus and S. multifacsiata 

(Fig. 4.8). While the two fresh pools usually had low densities of marine spawners, they 

tended to have high densities of freshwater species such as M. splendida and N. erebi. 

When viewed in a temporal context, there is a tendency for the communities of all three 

sites to become more similar over time (Fig. 4.9), converging along an axis in line with 

the major direction of increase of N. erebi (Fig. 4.8). However, in May 2005 the fauna at 

12 Mile Brackish rebounded (Fig. 4.9) towards a more marine dominated fauna (Fig. 

4.8). 
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Categorisation of Pools Based on Contributions of Marine and Freshwater 

Spawners  

The characters of fish faunas of the Fitzroy Wetland pools are a function of their patterns 

of connectivity (see below), resulting in four broad faunal patterns defined by the 

contributions of marine versus freshwater spawning species (Fig. 4.10, Table 4.3). One 

pool, 12 Mile Brackish (Fig. 4.10a) featured a major contribution of marine spawners 

together with a substantial input of freshwater species. Four pools, the two 12 Mile 

Freshwater pools (Fig. 4.10b) and the two Munduran freshwater pools, had faunas 

dominated by freshwater species but with important contributions by marine species. The 

two large isolated lagoons, Frogmore and Woolwash (Fig. 4.10c), had almost entirely 

freshwater faunas with only a minor contribution by marine spawners. The fauna of three 

pools Munduran Saline (Fig. 4.10d), Gonong Saline and Little German Jack’s, was 

entirely comprised of marine spawning fish. 
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The change in faunal composition in 12 Mile Brackish towards the compositions of 

the two 12 Mile fresh pools and subsequent rebound (Fig. 4.9) is clearly a reflection of 

temporal change in the percentage of marine spawners in 12 Mile Brackish (Fig. 4.13). 

 

Influence of Pool Connectivity on Faunal Composition and Change   

The three well connected pools in the12 Mile system (Fig. 2.3) showed an upstream 

gradient in faunal composition (Figs. 4.11. 4.12, Table 4.3), reflecting decreasing 

importance of marine spawning species and increasing importance of freshwater 

spawners. The fauna of 12 Mile Brackish (Fig. 4.11) had a substantial marine 

component, emphasising its regular connection to the estuary. Marine spawners, like M. 

cephalus and S. multifasciata were important in 12 Mile Brackish (S. multifasciata was 

probably in higher densities in February 2004 than those actually recorded, because 

non-quantitative cast netting among very shallow weed beds produced large catches of 

small individuals [>50mm FL]). While such species made increasingly lower contributions 

with distance upstream in the two freshwater pools, their presence at a low level 

indicates a degree of connection with the brackish pool. In contrast, the contribution of 

freshwater species, like M. splendida and L. unicolor, increased upstream. The faunas of 

the two Munduran Creek freshwater pools, that like the 12 Mile freshwater pools are 
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regularly connected to downstream marine environments, had similar faunal 

compositions to the 12 Mile fresh pools. The freshwater spawning N. erebi made an 

important contribution to the fauna of all three pools, including the brackish pool, 

underlining that there were high levels of connectivity in both upstream and downstream 

directions. 

 The fauna of the two isolated pools, Fromore and Woolwash Lagoons (Fig. 2.2), were 

similar to those of the other freshwater pools, comprising mainly freshwater spawners 

(Fig. 4.14, Table 4.3). However, unlike the other freshwater pools, the small contribution  

 

of marine spawners, like M. cephalus, was a reflection of connections a considerable 

time in the past, with the smallest fish present apparently entering during the last flood 

connection in early 2003 (Chapter 3). In contrast, Munduarn (Fig. 2.4) and Gonong (Fig. 

2.5)  Saline pools, that are highly connected to the marine environment, had completely 

marine-derived faunas (Fig. 4.15). 

 Little German Jack’s had a marine fauna (Fig. 4.6) that appeared following 

connection but disappeared over time as the pool became inhospitable and dried out 

(Chapter 3). Frogmore and Woolwash lagoons demonstrated the same type of faunal 

change at a larger scale and over a longer time frame. Frogmore and Woolwash had  
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similar faunal compositions until February 2005 (Fig. 4.14), dominated by N. erebi.  

However, in May 2005 Woolwash had become very shallow (Chapter 3) and its fauna 

had diverged from that of Frogmore to be dominated by the ariid catfish, A. graeffei. By 

September 2005 the water level in Frogmore was below that of Woolwash in May 2005 

and, despite 50 castnet samples, only 6 fish (4 N. erebi, 1 A. graeffei, 1 C. 

stercusmuscarum) were captured. At this time Woolwash was too shallow and its banks 

too muddy to permit sampling, but dead N. erebi,(1) A. graeffei (31) and L. calcarifer (11) 

were collected from its banks. A series of fish kills had been reported at Woolwash 

during August and September 2005. 

 

Discussion 

Patterns of Diversity 

 Despite consisting of 10 pools, of a variety of types including some highly connected 

with the estuary, the total species richness of fish from the Fitzroy Floodplain Wetland 

pools was low, with only 46 species recorded from all the pools over the entire study. 

This is surprising because tropical and sub-tropical estuarine faunas in the same 

biogeographic region typically have high species richnesses (91-128 species) compared 

to those in other parts of the world (Robertson & Blaber 1992). This low richness was 

also reported in a previous study of wetland pools in the Fitzroy region (InfoFish 2005), 

and is consistent with the low species richness reported for the Fitzroy River (Johnston in 

prep.).  

 The overall low species richness of Fitzroy Floodplain Wetland pools was reflected at 

the individual pool level, with a maximum total richness of 25 species at Munduran 

Saline, and a maximum for any one sampling trip of 17 at Gonong Saline. Species 

richness was apparently correlated with rank pool surface area or volume, as would be 

expected given our understanding of species-area relationships (McArthur & Wilson 

1967, He & Legendre 1996). However, this may be misleading (Chittaro 2002) because 

species richness had an even stronger correlation with total number of net samples 

taken.  
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Community Composition and the Influence of Connectivity  

 Different pools had distinctly different faunas. At the broadest level these differences 

in composition were a function of the proportion of the community comprised of marine 

spawned species compared to freshwater spawned species.  

 Regular connections to the marine environment allowed free access of marine fish to 

Gonong and Munduran Saline pools resulting in faunal composition similar to that in the 

main estuary. In contrast, both large and small freshwater pools, that lacked direct 

connection to the marine environment, had less diverse faunas, reflecting the limited 

diversity of Australian freshwater fish (Allen et al. 2002) compared to estuarine species 

(Robertson & Blaber 1992).  

 Although of relatively small size and isolated from the estuary during most of the 

study, direct connectivity to both the estuary and freshwater resulted in a relatively high 

species richness at the 12 Mile Brackish pool. 

 The distinctly different natures of the fish fauna of different pools was a reflection of 

the extent of connectivity to freshwater and marine systems. This connectivity 

determined both the physical nature of pools (principally the salinity regime) (Chapter 3) 

and the sources of faunal supply; pools with more direct connections to the marine 

environment had extensive marine components, pools without direct connections to the 

marine environment were dominated by freshwater fish. Many of these pool faunas were 

stable over time, and when change did occur it again reflected patterns of connectivity. 

 

Connectivity and Patterns of Faunal Change 

 Major patterns of temporal change in fish diversity, community composition and 

abundance were the product of the extent and nature of connectivity. As well as 

influencing the supply of new fish to the pools, connectivity interacted with weather 

patterns to determine the trajectory of in-pool conditions over time. These two forces, the 

supply of fish and changes in pool conditions, combined to produce quite different faunal 

outcomes in different pool types; saline and freshwater pools that were components of 

stream systems, maintained stable fish faunas over time, but isolated pools showed 

extensive faunal change. 

 Free access of marine fish to Gonong and Munduran Saline pools resulted in stable 

faunal compositions. In contrast, the four study pools that were not components of 
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stream systems nor regularly connected to the marine environment either dried out 

completely or became extremely shallow. Irregular connection to the marine environment 

and little freshwater inflow led the two German Jack’s pools to dry out during the study. 

As water levels fell evaporation produced hypersaline conditions (Chapter 3) and by the 

time the pools dried completely all fish had died and been consumed by predators such 

as piscivorous birds. Frogmore and Woolwash lagoons were much larger in area and 

deeper than the German Jack’s pools leading to a slower decrease in water levels. 

Moreover, as these were freshwater pools there was no substantial increase in salinity 

and adverse conditions were slow to develop. However, by May 2005 (Woolwash) and 

September 2005 (Frogmore) water levels had become very low, with little water over 1m 

in depth (Chapter 3), and large flocks of predatory birds had moved in (Chapter 12). The 

decline in depth seems to have greatly advantaged these avian predators, leading to a 

change in dominance of the fish fauna of Woolwash by N. erebi through most of the 

study to dominance by the much larger, and apparently more difficult to catch and 

consume, A. graeffei in May 2005. Frogmore retained deeper water for longer than 

Woolwash, but by September 2005 water levels had declined greatly and fish reduced to 

very low densities. By this time Woolwash was almost dry and experienced a series of 

“kills” of its remaining fish, which were principally larger species such as A. graeffei and 

L. calcarifer. 

 The four isolated pools moved to faunal decline at different rates. The extent to which 

a pool approaches its end point (ie. ecosystem collapse), the time taken to reach the end 

point, and the number and size of pools reaching that point, are principally a function of 

climatic patterns (Fig. 4.16). This study was conducted during a drought, when a lack of 

major flooding prevented any substantial biological connections with other systems, and 

prevented pool water levels being recharged. There are a number of consequences. 

Firstly, the decline in water levels, and subsequent ecosystem collapses in even large 

pools like Frogmore and Woolwash Lagoons, suggests that the faunas of even the 

largest floodplain pools may not be immune to the effects of drought. Secondly, 

ecosystem services normally supplied by the pools to other ecosystems are disrupted or 

lost (Rosenberg & McLeod 2005). After a pool’s fauna is reset to initial levels during 

connection events, its plants and animals grow and are involved in complex ecological 

interactions. The outcomes of this are such things as, the growth of juveniles to adult 

stages, read for export to other environments (eg. estuary fish populations); large 

numbers of young individuals that can move during connections to replenish other pools; 

the sequestration of nutrients and energy from the pool environs and their storage as 
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plant and animal biomass, that can be exported to other ecosystems (eg. estuaries or 

further offshore to reefs).  When a pool drys out and its aquatic fauna is consumed by 

predators from outside the pool, all these ecosystem services are lost or, in the case of 

 

nutrients and energy, redirected to quite different ecosystems. Thirdly, there are 

beneficiaries of ecosystem collapse. As pools dry flocks of piscivorous birds move 

sequentially from pool to pool (Chapter 12) as shallowing water apparently makes the 

capture of fish easier. This both connects pools independently of aquatic connections, 

and supports waterbird populations (Roshier et al. 2002). The support of waterbird 

populations is likely to be extensive because the sequential shallowing of pools allows 

them to access a much greater proportion of the fish in each pool than would be possible 

if deep water was maintained. It seems likely that this results in larger waterbird 

populations than would otherwise be possible. 

 Even under drought conditions, the diverse nature of connectivities means that there 

are a diversity of faunal outcomes. Unlike the isolated pools the three pools at 12 Mile 

Creek are part of a stream system.  These pools are small but even without major floods 

moving down the Fitzroy River, local rainfall repeatedly replenished water levels in the 12 

Mile freshwater pools, maintaining faunal composition throughout the study. The 12 Mile 
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Brackish pool was the only available example of a low salinity brackish pool on the 

Fitzroy floodplain (similar pools that were accessible had bund walls preventing ingress 

of marine water), but probably reflects the situation for a large number of saltpan pools 

prior to extensive agricultural development. Although usually dominated by marine 

spawning fish, limited connections with the marine environment meant there was 

considerable change over time. Both low salinities and a strong freshwater fish 

component were maintained throughout most of the study by downstream flow due to 

local rainfall. In contrast, marine connectivity was unpredictable. This was due to tidal 

anomalies, and the large distance the tide needed to span to reach the pool, coupled 

with hydraulic friction imparted by the saltpan surface (Chapter 3). However, when 

extensive marine connection occurred, the faunal composition quickly moved back to 

domination by marine species. Despite the resilience of the12 Mile Brackish pool, its 

extensive faunal variability shows that there is no guarantee that connectivities will 

always occur frequently enough or predictably enough in this type of pool to maintain a 

diverse fauna. Additionally, the more extreme case of the German Jack’s pools indicates 

that only small changes in connectivity could lead to such pools becoming inhospitable to 

fauna or even drying out. 

 Obviously, the details of these models would be different during non-drought times, 

and the present study can do little to make firm predictions of the structure or outcomes 

of such models. However, the climate of the Fitzroy region is unpredictable, and below 

average rainfall is common (BOM 2005). An irregular and unpredictable climate means 

that maintaining a diversity of pools types and sizes is crucial in supporting healthy and 

extensive bird populations, ensuring there are refuge areas from which the diversity of 

pool faunas can be re-supplied, and maintaining a continuity of delivery of ecosystem 

services from floodplain wetland pools to other ecosystems. The pivotal role of 

connectivities in the structure and functioning of floodplain wetland pools (and floodplain 

wetlands in general) means that it is not enough to preserve the pools themselves it is 

just as critical to preserve healthy connectivities between them. 

 

 

Conclusion 
 Fitzroy Estuarine Floodplain Wetland Pools provide a diverse range of environments, 

harbouring diverse assemblages of fish. Patterns of connectivity between pools, between 
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pools and other freshwater environments, and between pools and the estuary, determine 

both the natures of the pools and the natures of their faunas. These connectivities are 

determined by patterns of freshwater flow and marine connection, both of which are 

influenced by climatic factors; freshwater flow by local rainfall and major flooding, marine 

connections by the tidal patterns modified by tidal anomalies and the moisture conditions 

of connecting channels or saltpans. Because these connectivities are greatly affected by 

small changes in rainfall and/or tidal height it is clear that they will be profoundly 

impacted by climate change. The impacts on connectivity of small changes in tidal level 

(cms), due to anomolies, underscores that global warming induced sea level change will 

impact substantially on both connectivity and pool salinity regimes. Similarly, it is clear 

that more extreme weather patterns will lead to more infrequent and unpredictable 

connectivites, resulting in a greater number and variety of pools moving to the point of 

ecosystem collapse. 
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Chapter 5: 

Size Structures and Biomasses of Fish from Fitzroy Wetland 
Pools 
Marcus Sheaves and Ross Johnston 

Introduction 
 Comparisons of compositions of fish faunas and the density of their component 

species provide information on diversity and overall faunal differences, and the 

ecological relationships between wetland pools and other ecosystems (i.e. biological 

connectivity). However, much more information is available in size structures and 

biomasses. For instance, differences in size structures provides information on 

differences in patterns of reproduction between sites or recruitment to sites, while 

understanding patterns of biomass gives much more information on the importance of 

species and the functional importance of species in food chains. 

 This component of the study investigates patterns of size structure and biomass to 

add detail and depth to the understanding of similarities and differences in the fish 

faunas of Fitzroy Floodplain Wetland Pools, and consequently enhances the 

understanding of biological connectivity. 

 

Methods 
 Study sites and sampling methods have been detailed in previous chapters. Most fish 

captured were released unharmed, except for a small number of fish retained for 

laboratory studies (Table 5.1). The fish that were retained (Ethic approval number: 

A852_03) were euthanised in an ice-water slurry, where they were kept until they could 

be returned to the laboratory for dissection. To keep the number of fish retained as low 

as possible, the same fish were used to supply samples for stable isotope, condition and 

gut content studies, and to supply accurate length-weight relationships. Measuring all 

fish that were released would have meant less samples could be collected and 

prevented rapid release, thereby compromising the chances of survival of fish from large 

catches. Instead, released fish were categorised by eye into 10mm size classes (fork 
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length), using experienced observers. This categorisation was checked by taking 

accurate measurements whenever a small enough sample was collected to allow 

measurement without endangering the health of the fish.  

 

 

Size 

 Numbers per size class were used to calculate mean fork length ("SE) for each pool 

for species with 10 or more individuals captured in that pool throughout the study. Size 

data for each species were grouped into 50mm size classes to allow comparisons of 

changes in size structure over time at each site. Data are only presented for pools where 

sufficient numbers were available to provide precise estimates of size parameters. 

Biomass 

 Length-weight relationships did not vary over space and time for any species. 

Consequently, data for sites and trips were pooled to produce an overall length-weight 

relationship for each species. These length-weight relationships were used to convert 

abundances per 10mm size class to estimates of biomass per 18mm cast net sample. 

These biomass estimates are biased in respect to smaller individuals that are not well 

represented in the 18mm cast nets samples. However, samples using the 6mm cast net 

suggested that smaller fish were not in high densities at any site so probably would not 
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contribute greatly to biomass. Overall biomasses for trophic groups included all species. 

Percentage contribution to trophic groups was calculated for all species with average 

biomass > 5g at any site on any trip (Table 5.2). Standard error bars for biomass 

estimates were usually extremely small so have not been added to figures displaying 

percentage contribution by species. 
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Trophic groups are defined as follows (see Chapter 7 for validation): 

Benthivores: feed on sedentary benthic prey [mainly infaunal invertebrates], 

Epibenthivores: feed on mobile prey living on or near the bottom [mainly epifaunal 

invertebrates] 

Predators: feed on large mobile prey [fish & mobile macro-invertebrates] 

Herbivores: feed principally on living plant material 

Detritivores: feed principally of decomposing organic material 

Omnivores: consume prey from a broad range of trophic groups  

Micro Omnivores: consumes small prey from a broad range of trophic groups 

Planktivores: feed principally on micro-invertebrates in the water column 

 

 Non-metric Multidimensional Scaling (MDS) was used to investigate relationships 

between pools based on both biomass by trophic group and biomass by species. Data 

were transformed (log(1+x)) before analysis and analysed using Bray-Curtis 

dissimilarities. Preceding analysis, the original data matrix for species was reduced to 

include only species with average biomass > 5g at any site on any trip, to remove any 

undue effects of rare species on the analysis (Gauch, 1982).  

 

           

Results 

Size 

12 Mile Creek 

 The diverse assemblage at 12 Mile Brackish was dominated by small species (Fig. 

5.1a) particularly the freshwater spawning detritivore Nematolosa  erebi and the marine 

spawning herbivore Selenotoca multifasciata, but included larger marine spawners, 

principally the detrivore Mugil cephalus, and the carnivores Lates calcarifer and E. 

hawaiensis. In contrast, the assemblages of two 12 Mile freshwater pools were 

comprised almost entirely of small freshwater species, principally N. erebi (Figs. 5.1b,c), 

with the only marine spawners being low numbers of small S. multifasciata and 
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Megalops cyprinoides in the downstream pool and M. cyprinoides in the upstream pool 

(Table 4.2). 

 The change in size structure of S. multifasciata over time in 12 Mile Brackish  

documents the pool’s history of biological connection to the estuary (Fig. 5.2), and links 

closely with the understanding of physical connectivity (Chapter 3). The size structure 

was heavily skewed towards smaller sizes, indicating connection event(s) prior to the 

beginning of the study; probably during flooding in early 2004 (Chapter 3). The lack of 

any marine connection during the majority of 2004 (Chapter 3), is reflected in a lack of 

small S. multifasciata, and a progressive shift towards dominance by the larger size 

classes. Even though there were marine connections at the end of 2004, small S.  

 

multifasciata did not appear until the May 2005 sampling trip when large numbers of 

small individuals were again present. 

 The changes in size structure of N. erebi in the 12 Mile system documents the pools’ 
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histories of inter-pool biological connectivity. While densities of N. erebi in 12 Mile 

brackish fell through 2004 (Fig. 4.11a), the size structure shifted progressively towards 

larger size classes (Fig. 5.3a). In contrast, densities in 12 Mile Upstream increased 

through 2004 (Fig. 4.12) with little change in size structure (Fig. 5.3b), a pattern repeated 

in 12 Mile Downstream (Figs. 4.11b, 5.4). Mature females were present in all three 

locations in February and May 2005, indicating the potential for reproduction in all three 

pools. The continued presence of small N. erebi in the two freshwater pools indicates 

reproduction occurred throughout the early part of 2004. In contrast, the lack of the 

smallest size classes in 12 Mile Brackish in May and July 2004 suggests that 

reproduction was not successful there. Small individuals (Fig. 5.3a) were present in 12 

Mile Brackish in high densities (Fig. 4.11) in February and May 2005, suggesting that 

either spawning was initiated by very low salinities following flooding in late 2004 and 

early 2005 (Fig. 3.13) or that large numbers of juveniles entered the pool from upstream 

during the flooding. 
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Pools with regular estuarine connections  

 In contrast to the 12 Mile Brackish pool, but similar to the two 12 Mile fresh pools, few 

large fish were captured from Gonong and Munduran Saline, the two pools with regular 

connections to the estuary (Fig. 5.5). As in 12 Mile Brackish the detritivore, M. cephalus, 

was the largest species in the saline sites, but with a much smaller mean size 

(Munduran: 166mm, Gonong 163mm, 12 Mile Brackish 315mm)(Table 5.3, Figs. 5.6a). 

This difference probably reflects more infrequent exchange of individuals at the two 

saline sites compared to a lower frequency of replenishment of small marine spawned 

individuals at 12 Mile Brackish and growth of those already in the pool into larger size 

classes. The same situation exists for a second detrivore, L. subviridis (mean sizes: 

Munduran: 118mm, Gonong 96mm, 12 Mile Brackish 145mm)(Table 5.3, Figs. 5.6b). In 

fact, M. cephalus were smaller in Gonong and Munduran Saline pools than any of the 

less regularly connected pools except for Munduran Downstream and 12 Mile Upstream 

(Table 5.3). Although the means were higher for the two saline pools, few M. cephalus 

were captured at either site (Table 4.3), leading to high variances and so little likelihood 

of detecting a difference if one existed. Catches at the other freshwater sites were also 
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low but the large size of fish meant that clear differences were detected.  

 

 

 

Isolated freshwater pools   

 Few species were captured in high densities in Frogmore or Woolwash Lagoons 

(Table 4.2). Sizes of the abundant species were similar at the two sites with the size 

structure (Fig. 5.7) dominated by the ariid catfish, Arius graeffei, a generalist omnivore.  

 The size structure of N. erebi in Frogmore Lagoon over time (Fig. 5.8a) was again 

quite different to that in 12 Mile Brackish (Fig. 5.8b), with small individuals present 

throughout the year. This is a similar situation to that in the two 12 Mile freshwater pools 

(Fig. 5.4a,b), suggesting that reproduction continued for most of the year in these 

freshwater sites, but not in 12 Mile Brackish. 
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Biomass 

 With one major exception, biomass in all pools was always dominated by detritivores 

(Figs. 5.9a-5.17a), and in all cases by only one or two species of detritivores (Figs. 5.9b-

5.17b) [the situation was the same in Munduran Upstream but no figure is presented 

because one species, M.cephalus comprised 99% of biomass]. In fresh pools this was 

invariably N. erebi, in saline pools M. cephalus and L. subviridis, and in 12 Mile Brackish 

N. erebi, M. cephalus and L. subviridis. The only major exception to this pattern was at 

Woolwash Lagoon (Fig. 5.17). In July 2004, like all the other freshwater sites, biomass 

was greatly dominated by N. erebi. In February 2005 the situation had changed, with the 

large omnivore, A. graeffei co-dominant with N. erebi. By May 2005 A. graeffei 

dominated completely.  

 Besides the exceptional case of Woolwash Lagoon, there were few cases where 

there was any substantial contribution to fish biomass by any species outside the three 

major detritivores. Only at 12 Mile Brackish (Fig. 5.9) were other trophic groups well 

represented; with the herbivore S. multifasciata, and the carnivores L. calcarifer and E. 
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hawaiensis prominent on a number of occasions. 

 The initial ordination of trophic group biomass (Fig. 5.18) featured a compact, 

centrally located group of sites, and three outliers very dissimilar to the other sites. One 

of these was Woolwash in May 2005, the other two were the two Little German Jack’s 
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samples. The Woolwash sample was extreme because of the marked temporal change 

in trophic composition there (Fig. 5.17), while the Little German Jack’s samples had 

extremely low biomasses (Fig. 5.15). By causing the majority of sites to cluster close to 

the centre of the ordination, the presence of these outliers made it difficult to investigate 

relationships at the other sites. Consequently, the ordination was run again with these 

three samples omitted. The resulting ordination (Fig. 5.19) shows that the points for each 

site form fairly compact units. There is a complex grouping of freshwater sites, differing 

mainly in their biomasses of Detritivores, Omnivores and Predators. The two saline sites 

form a distinct group, segregated from the freshwater sites by the presence of relatively 

high biomasses of benthivores. The 12 Mile Brackish pool is distinct from all other sites, 

with a consistently high biomass of predators. The distinctness of the groups 

demonstrate the consistency of compositions in each pool over time, and the order of 

points around the polygons indicate a lack of any consistent patterns of temporal change 

within the pools. 

 When broken down to the species level the biomass data show even more distinct 

patterns (Fig. 5.20). Even though the May 2005 Woolwash sample and the two Little  
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German Jack’s samples are still outliers, distinct, logical compact groups of sites are 

evident. The saline sites group closely with high biomasses of the detritivore L. 

subviridis, and the benthivore G. filamentosus, as do the two 12 Mile Creek freshwater 

sites which are dominated by N.erebi. The two adjacent freshwater lagoons, Frogmore 

and Woolwash are in close proximity in the ordination, and while they also have high 

biomasses of N. erebi they have more substantial influences of A. percoides and A. 

graeffei. Munduran Downstream is more similar in composition to the two saline sites 

than to the freshwater pools, emphasising the importance of M. cephalus and L. 

subviridis at all three sites. 12 Mile Brackish takes up an intermediate location between 

the fresh and saline sites, reflecting substantial biomasses of a number of species (Fig. 

5.9b). 

 One important aspect of the species biomass ordination (Fig. 5.20) is that the three 

longest vectors (ie. the species with the highest R
2
 values) are all detritivores and define 

the major differences between groups; most freshwater sites high biomasses of N. erebi, 

saline sites and the connected Munduran Downstream freshwater pool high biomasses 

of M.cephalus and L. subviridis, Little German Jack’s and Woolwash May 2005 very low 

to no biomasses of all detritivores. 
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Discussion 

Trophic Dominance 

 The fauna of Fitzroy Wetland pools were dominated by detritivores. Except in one 

instance, this dominance prevailed regardless of pool type, size, season or 

connectedness. The pervasive impact of detritivores provides a clear indication of the 

basic similarity of the pools’ ecosystems and ecosystem processes. The identity of the 

detritivores varied between pool types, N. erebi in freshwater pools, and M. cephalus and 

L. subviridis in marine pools, but all were relatively large species, despite their low 

trophic position. While by no means unique, this situation is unusual. In many marine 

systems basal food resources (plants or detritus) are fed on primarily by small individuals 

(Robertson et al. 1992), often invertebrates (Robertson 1991), which are in turn the food 

of larger prey.  
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 The trophic domination by large detritivores has far reaching consequences.  The 

large biomass of detritivorous fish and the low abundance of other primary consumers 

(herbivorous fish, detritivorous or herbivorous invertebrates), suggest that most of the 

biological production in the pools is based on detritus rather than terrestrial plants. This 

reliance on detritus, despite type of pool or pools setting (forest, saltpan, pasture etc. 

(Chapter 2)), suggests strongly that the ecosystems are not critically reliant on one type 

of primary producer but utilise whatever sources of carbon are available to maximise 

productivity. The direct use of a basal food resource by relatively large animals, that are 

then fed on directly by top predators (birds and fish) (Chapter 7), means that food webs 

leading to predators are short and simple. Consequently, energy is transferred efficiently 

to organisms at the top of the food web with a minimum of thermodynamic loss. The 

conversion of detritus to a large biomass of fish provides the opportunity for large 

amounts of productivity to be exported from the pools, either through migration of the 

detritivores themselves or the movement of the predators that consume them. This 

situation is quite different to our understanding of many other marine wetland systems in 

northern Australia, where tight recycling retains organic carbon in mangrove forests 

(Robertson 1986; Robertson et al. 1992). The apparent high predatory impact on these 

detritivore populations by birds (Chapter 12) means that carbon isn’t only exported to 

marine or upstream systems during stream flow or marine connection events, but is 

transported to physically unconnected pools and terrestrial systems through the 

movements of birds. 

 

Beyond Overall Dominance 

 Despite the overall domination of detritivores the pools could be organised into 

groups based on their trophic compositions. In freshwater pools domination by 

detritivores was strong. In contrast, the more diverse saline pools had a small but 

significant component of benthic feeding fish, while the 12 Mile Brackish pool was 

distinguished by relatively high biomasses of predators. When biomasses are viewed at 

a species level it is clear that connectivity and salinity are major forces determining the 

details of the patterns of biomass. Fresh and saline pools had quite different species 

biomass profiles, while pools with strong connections to each other had similar patterns 

of species-specific biomass; adjacent sites have similar detritivore species. 

 Of the wetland pools studied, only at Woolwash Lagoon was there a major departure 

from the domination by detritivores. Although in July 2004 the trophic structure in 
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Woolwash was indistinguishable from that in the nearby Frogmore Lagoon or other 

freshwater pools, by February 2005 omnivores had become unusually important and by 

May 2005 completely dominant. This corresponded to a fall in water level in Woolwash to 

a point where large flocks of predatory water birds moved in and apparently consumed 

large numbers of the dominant detritivore N. erebi, but had less impact on the much 

larger bottom dwelling A. graeffei. This shift from domination by detritivores to domination 

by omnivores represents a major shift in trophic structure, inevitably leading to a 

complete change in ecosystem function; essentially ecosystem collapse. Even if rainfall 

had partially refilled Woolwash, averting complete faunal loss as the pool finally dried 

out, the extreme reduction in detritivores means that the functionally different ecosystem 

in Woolwash would remain until reproduction reinstated the dominance of N. erebi or 

Woolwash was reconnection to other systems. 

 

Connectivity 

 Details of changes in size structure of fish in Fitzroy Wetland Pools provide a basis 

for a deeper understanding of biological connectivity. They provide information on the 

processes that link physical and biological connectivity, and that modify the potential 

links provided by physical connectivity to produce outcomes of biological connectivity.  

 Most pools remained isolated (eg. Frogmore, Woolwash) or were regularly connected 

(eg. Munduran and Gonong Saline) so only provide information on the extreme senarios. 

In contrast, because of its complex physical connection patterns during the study period, 

the 12 Mile Creek system provides details of intermediate states. The fish assemblage 

there comprised a mix of marine and freshwater species, apparently maintained in the 

pool by connections to both the estuary and freshwater pools in the 12 Mile system. 

However, the faunal mix, and its changes over time did not simply mirror the patterns of 

physical connectivity but reflected the modifying effects of biological processes.  

 Except on one occasion, the marine spawner S. multifasciata was found only in saline 

or brackish pools (Table 4.3). Small individuals were present in the 12 Mile Brackish pool 

in February 2004 (Fig. 5.2), following connection to the estuary during flooding earlier in 

the year. Small individuals were then absent for the rest of 2004, and there was a 

progressive shift towards larger size classes. These changes were presumable the result 

of growth, and perhaps predation of small individuals. Small individuals were not 

captured again until May 2005, when they were captured at high densities (Fig. 4.11a). 
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This influx of small individuals coincides with, and is presumable the result of, 

connections to the estuary in early 2005 (Chapter 3). The lack of small S. multifasciata in 

early 2005, despite connection at the end of 2004, emphasises that physical connection 

only leads to biological connection if it occurs at appropriate times. Although details of 

the spawning season of S. multifasciata are lacking (Froese & Pauly 2005), it is probable 

that like a majority of marine species (Longhurst & Pauly 1987) it spawns over the 

warmer months of the year. Consequently, there were probably no juveniles available to 

recruit into 12 Mile Brackish during the marine connections that occurred late in 2004.  

 The one occasion that S. multifasciata was captured in a freshwater pool was in the 

12 Mile Downstream pool, the pool directly upstream of 12 Mile Brackish, in May 2005, 

indicating that marine species were capable of passing upstream beyond the tidal 

influence if physical connections were suitable.  

 Details of downstream connectivity is exemplified by the abundant N. erebi. Although 

small N. erebi were captured at all freshwater sites throughout most of the year, small 

individuals were absent from in 12 Mile Brackish during mid 2004, suggesting they did 

not spawn, or spawning was unsuccessful there, possibly as a result of elevated 

salinities. The presence of large numbers of small individuals in early 2005 suggests that 

either spawning was initiated when salinities fell to very low levels following flooding, or 

that juveniles from upstream were washed into the brackish pool during flood connection. 
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Chapter 6: 

Densities and Trophic Roles of Invetebrate Fauna of Fitzroy 
Wetland Pools 
Marcus Sheaves, Ross Johnston, Katya Abrantes, Janine Sheaves 

 

Introduction 
 Although fish and birds are the most conspicuous components of wetland pools  they 

typically contain a diversity of smaller, less obvious organisms. These have a range of 

habits and occupy a range of habitats, from infauna buried in the sediment, through 

epiphauna occupying sediment or plant surfaces to mobile fauna and plankton in the 

water column. Moreover, these animals are important contributors to ecosystem function, 

performing key roles in food webs, recycling of organic material, mediating nutrient flows, 

contributing to overall productivity and so on. 

 Typically, pool faunas reflect their salinity regimes (Blinn et al. 2004; Hart & Lovvorn 

2005); freshwater pools have a rich fauna of insects, and specialist freshwater 

crustaceans and molluscs, while marine pools have a diversity of marine crustaceans, 

molluscs and polychaete worms.  While there is an expectation that invertebrate faunas 

of Fitzroy Wetland Pools will reflect their salinity regimes, no detailed understanding of 

the invertebrate components of such pools exists for Australia’s dry tropical or sub-

tropical areas. Gaining a more region-specific understanding is particularly important as 

the study is dealing with pools of mixed and variable salinity as well as pools that are 

strongly marine or freshwater influenced. The extent to which invertebrate fauna of these 

mixed salinity pools are of freshwater and marine origin is unknown.  

 This chapter investigates the invertebrate fauna of Fitzroy Wetlands pools. 

 

Methods 
 Invertebrate samples were collected in February, May, July and November 2004. 

Sampling focussed on a selection of pools (Table 6.1) to represent the range of pool 
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types present: 12 Mile Brackish [mixed salinity pool], 12 Mile Upstream [in-stream 

freshwater pool], Frogmore [isolated freshwater pool], Gonong Saline [highly connected  

 

marine pool] and Munduran Saline [highly connected marine pool, possibly having a 

greater freshwater influence than Gonong Saline].  

 Two sampling approaches were used. A van Veen grab (2 litres capacity) was used 

to collect animals living in or on the substratum. At least 10 samples were taken at each 

site on each occasion. For Frogmore 20 samples were collected to provide adequate 
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representation of its larger area. No grab samples were collected from 12 Mile Upstream 

because its substrate was too hard for penetration by the grab. Grab samples were 

collected from 12 Mile Brackish and Munduran Saline in February, May and July 2004, 

Gonong Saline in May and July 2004, and Frogmore in May 2004. 

 Scoop nets were used to collect small fauna associated with submerged vegetation. 

At least 10 scoop net sweeps were made through submerged bank-side vegetation 

whenever it was available. Scoop samples could be collected from 12 Mile Upstream on 

all trips in 2004, from Frogmore in February, May and July 2004, from 12 Mile Brackish in 

February and November 2004 and Gonong Saline in July 2004.  

 Although many animals could be identified to species a large number of others were 

larval or juvenile forms preventing confident allocation to a particular species. 

Consequently, for consistency all taxa are reported at the level of family or sub-family. 

Taxonomic compositions were compared between sites for both grab and scoop net 

samples using non-metric multidimensional (MDS) scaling of Bray-Curtis dissimilarities, 

after data were first log (1+x) transformed. Multiple regression of invertebrates on the 

MDS dimensions was used to determine the relationships between the invertebrates and 

the configuration of points in the MDS ordination space. The directions of greatest 

increase were defined by the regression coefficients for the dimensions and the lengths 

of vectors were set  proportional to the R
2
 values, to indicate the strength of the 

relationships (Sheaves & Molony 2000). Where grouping was suggested by the position 

of points the coherence of the groups was investigated using hierarchical cluster 

analysis, on Bray-Curtis dissimilarities with Ward’s linkage method. 

 Invertebrate were classified into trophic groups using all available literature. If there 

was conflict between sources Gooderham & Tsyrlin (2002) was used as the standard. 

MDS using Bray-Curtis dissimilarities on row standardised data was used to investigate 

patterns of invertebrate trophic composition among wetland pools. Standardising by row 

totals converted the data into proportional contribution of trophic groups at each site. 

Under this standardisation two sites would be similar if they had similar proportional 

contributions by the various trophic groups. Where grouping was suggested by the 

position of points the coherence of the groups was investigated using hierarchical cluster 

analysis, on Bray-Curtis dissimilarities with Ward’s linkage method. 
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 Trophic groups are defined as follows [NOTE: This varies from the groups defined for 

fish but is in line with literature discriptions]: 

Predators: by capturing other animals 

Herbivores: feed principally on living plant material 

Omnivores: consume prey from a broad range of trophic groups [plant and animal] 

Omnivorous Detritivores: feed on plant and animal prey as well as detritus 

Phyto-Detritivores: consume both plants and detritus 

Scavengers: feed on dead animals 

 

Trophic levels are defined as:  

  

Plants and Detritus 

Herbivores and Phyto-Detritivores  

Omnivores, Scavengers and Omnivorous Detritivores  

Predators 

 

Results 

Taxonomic Composition 

 Forty-one invertebrate taxa and one fish were recorded from grab and scoop net 

sampling (Table 6.1).  Although sampling quite different habitats in quite different ways, 

both grab (Fig. 6.1a,d,f,h) and scoop samples (Fig. 6.1b,c,e,g) showed a dominance of 

insects at freshwater sites. Insects were particularly diverse at Frogmore (Fig. 6e), 

contributing substantially to the high taxonomic richness there.  Insects, crustaceans and 

molluscs occurred at all sites, although taxonomic details differed between sites (Table 

6.1). The other major group, polychaete worms were confined to sites with some marine 

influence. Although 12 Mile Brackish had both marine and freshwater components its 

overall diversity was only comparable with the  marine sites and, at least in terms of 

scoop net samples, lower than the freshwater sites (Fig. 6b,c,e,g). 

 Scoop net samples were dominated by insects and shrimps (Table 6.1), and showed  
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considerable change over time (Fig. 6.2) that can be largely explained by changes in 

submerged vegetation (Table 6.2). High densities of insect larvae, planorbid snails and 

atyid shrimps were recorded from Frogmore in February and May 2004, when there were 

areas of submerged grass along the waters edge. These taxa were also high in 12 Mile 

Upstream in May and July 2004, when pool levels were low enough to sample around 

water lilies (Nymphaea spp.) and the invasive aquatic plant, cambomba (Cabomba 

caroliniana). Even though the grass edges of the pool could be sampled in February and 

November catches of these species were low, suggesting that they remained among the 

submerged vegetation.  In July 2004 Gonong Saline and in November Frogmore had 

relatively high densities of palaemonid shrimps. No suitable habitat was available for 
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scoop netting in Munduran Saline or in Gonong Saline except in November 2004. 

  In contrast to the scoop net data, grab samples showed relatively low levels of 

change over time and clear differentiation of saline sites from brackish and freshwater 

sites (Fig. 6.3). The brackish site was distinguished by consistent high densities of sialids 

(alderflies), hydorbiids  (freshwater snails) and gammarids (amphipods), while saline  
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sites were distinguished by high densities of nereids (polychaete worms). The one truly 

freshwater site, Frogmore, had very high densities of chironomids (non-biting midges) 

compared to the other sites.  

 

Trophic Composition  

 In general both sampling techniques produced similar trophic composition at each 

site. In general 12 Mile Brackish had reasonably similar densities of most trophic groups 

besides scavengers (Table. 6.4). In contrast, freshwater sites tended to have greater 

densities of phyto-detritivores, and saline sites higher densities of omnivores and 

omnivorous detritivores than other trophic groups. The differences are clearer when the 

data are viewed as proportional contributions (Fig. 6.4), emphasising the clear 

dominance of phyto-detritivores in fresh sites and omnivores in saline site. Ordination 

and cluster analysis (Fig. 6.5), clearly differentiated the pools into three groups on the 

basis of their trophic compositions. 

 

 The nature of the trophic data (densities of different mixes of taxa, sizes etc. between 

sites) makes formal statistical comparison of dubious validity, overall scoop net densities 

per trophic group tended to be higher in brackish and freshwater sites than at the one 

saline site where scoop netting was possible (Table 6.4). In contrast, grab densities per 

trophic group tended to be higher at the saline sites. 

 Even though information from the two gears was not directly comparable, both gears 

showed similar proportional contributions by trophic group at sites where both gears 

could be used successfully (Fig. 6.4). Consequently, densities per trophic group were 

averaged across gears and sites to estimate approximate proportional contributions per 
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trophic group to construct invertebrate sub-food web models for freshwater (Fig. 6.6) and 

saline (Fig. 6.7) pools, and for 12 Mile Brackish (Fig. 6.8). Scavengers made up only a 

minor component at one site, so were excluded from food web models. 

 

Discussion 

Taxonomic Composition 

 Fitzroy wetland pools have rich invertebrate faunas, largely in line with expectations 

based on their salinity regimes, their habitat settings and their levels of connectivity to 

other systems. As in other tropical and subtropical freshwater environments (Williams  
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1998), insects, crustaceans and freshwater molluscs were abundant in both isolated and 

in-stream freshwater pools faunas. Saline pools had typical estuarine faunas (Bolduc & 

Afton 2003) of polychaete worms, and marine molluscs and crustaceans, but small 

numbers of insect larvae were also present. The 12 Mile Brackish pool had a varied 

fauna with both marine and freshwater components, but despite its varied nature it was 

no more diverse that the faunas of saline or fresh pools.  

 Benthic grab samples showed strong and consistent faunal differences among the 

three types of pool. In contrast, there was considerable variation in the composition of 

scoop net catches over time. However, this variation is probably an artefact. Unlike the 

constant availability of the soft sediments needed for benthic grab samples, the 

availability of aquatic vegetation varied with water level and season making inconsistent 

representation of the associated fauna unavoidable. 

 With a few exceptions (eg. lycosid spiders, predatory nereid worms) the invertebrates 

captured fulfil trophic roles low in food webs, feeding directly on plants or detritus, or on 

the bacterial films associated with decaying matter.  

 

Trophic Roles 

 The division of invertebrate taxonomic compositions into distinct fresh, brackish and 

saline faunas was unsurprising. It does, however, have considerable consequences for 

the trophic composition of these faunas. This can be seen most clearly in the extreme 

cases, with invertebrate fauna of saline pools mainly comprised of omnivores and 

omnivorous detritivores, while those of freshwater pools were dominated by phyto-

detritivores. These trophic consequences lead to quite different models of the 

invertebrate sub-food webs for the different types of pools, and consequently different 

implications for the relationship between invertebrate sub-food webs and the complete 

food webs of the pools.  

 Invertebrate sub-food webs of freshwater pools feature a substantial phyto-detritivore 

component as the major pathway for nutrition to pass into and through the web (Fig. 6.6), 

and a smaller, but significant, herbivore component. There is also a substantial density of 

predators. This predator component serves to complicate the sub-web, redirecting 

energy to a greater diversity of invertebrates and increasing the number of trophic 

transfers within the sub- web. Thus more energy is lost within the sub-web in producing 

the suite of invertebrates present, than would be the case if there was no invertebrate 
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predator component and energy simply passed to herbivores and detritivores that were 

then fed on by predators from outside the sub-web (eg. fish).  

 The sub-food web of saline pools (Fig. 6.7) is quite different. Neither plant feeding 

group is prominent [ie. herbivores and phyto-detritivores]. Rather, most of the energy 

passes through the two omnivore groups [omnivores and omnivorous detritivores], 

suggesting a much greater importance of detritus relative to living plants in the saline 

than freshwater pools. The invertebrate predator component was very small. This means 

that paths of energy flow within the sub-web are less complex than in freshwater pools, 

and probably that less energy is lost in trophic transfers within the sub-web. Additionally, 

the lack of invertebrate predators suggests that this role is taken over by predators from 

outside the invertebrate sub-web.  

 In contrast to the other two sub-webs, the 12 Mile Brackish invertebrate sub-web (Fig. 

6.8) is much more complex. All five trophic groups are well represented indicating a 

much more complex sub-web than for the other two pool categories, probably with more 

substantial energy loss due to greater numbers of trophic transfers. Both plants and 

detritus seem to be important nutritional bases, with a diversity of organisms using a 

diversity of feeding modes. As with freshwater pools invertebrate predators were 

important, contributing a similar proportion of invertebrate density. The sub-web of 12 

Mile Brackish could be viewed as combination of the fresh and saline webs, or perhaps 

as an intermediate state. This intermediate status is interesting; it may confer 

opportunistic resilience on the brackish pool. The invertebrate sub-web may be able to 

swap between the saline and fresh sub-web structures when pool salinities swing 

towards particular extremes, thereby switching functionality.  

 These webs are based on the standing crop of invertebrates; essentially a snapshot 

in time, with no consideration of the real dynamics of the sub-webs. For instance, 

knowledge of the longevities of the various components would be necessary to 

determine the true relative densities of the different trophic groups; despite a small 

biomass, a group with a short life-cycle and therefore rapid turn-over, can make 

contribution to trophic exchange disproportionate to its instantaneous density. 

Consequently, such things as the extent to which phyto-detritivore biomass passes to 

invertebrate predators can not be fully understood without an extensive understanding of 

the ecology and biology of all the major components.  
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Chapter 7: 

Diets of Fish from Fitzroy Wetland Pools 
Marcus Sheaves and Ross Johnston 

 

Introduction 
 Fish occupy Fitzroy Wetland pools at high densities (Chapter 4) and biomasses 

(Chapter 5), and thus are likely to be important contributors to ecosystem function. 

Beyond this, wetlands around the world (Laffaille et al. 2000; Manson et al. 2005) and in 

the Fitzroy itself (InfoFish 2005) are important nursery habitats for many species of fish. 

The most direct way in which fish interact with other ecosystem components is through 

feeding relationships.  

 The types of food eaten, and changes in food supply over time, directly impact the 

nutrition of the fish, their rates of growth and patterns of mortality, and therefore impact 

on nursery ground value. Furthermore, the availability of particular food types can 

structure fish communities (Grenouillet et al. 2002; Wildhaber & Lamberson 2004). 

Looking at it from the other direction, fish predation can be a significant source of 

mortality on both invertebrates (Wilson & Sheaves 2001) and other species of fish (Baker 

& Sheaves 2005). In this way fish feeding influences community structure and 

community change (Skov et al. 2002). Through both their effects on other community 

members and on the fish themselves, food type and food availability are critical to 

ecosystem productivity and the export of energy in the form of the biomass of emigrating 

animals. 

 This component of the study investigates the diets of fish from wetland pools in detail. 

 

Methods 
 All fish used for detailed biological analyses [diet (this chapter), stable isotope, 

(Chapter 8), biochemical condition (Chapter 10)], were chilled on ice immediately 

following capture, and dissected on return to the laboratory. Ice chilling was used, 

instead of more usual formalin fixation, because applying formalin to samples in the field 

is a time consuming process. To use it in this study would have compromised the ability 
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to release fish surplus to laboratory requirements quickly enough to ensure a high 

likelihood of survival (see Chapter 4). For dietary analysis the gut (stomach + intestine) 

was removed and, if dietary analysis was not immediately possible, stored frozen until 

detailed analysis could be conducted. 

 Both stomachs and intestines were cut open and their contents identified to as low a 

taxonomic level as possible. As intestines provided no additional useful information only 

data from the more identifiable stomach content were used for further analysis. In 

addition to recording the presence of all taxonomic groups, relative proportions of 

different prey categories were determined by the following method (Hislop 1980). The 

stomach content was spread thinly over a petri dish inscribed with a series of 50mm 

transect lines marked at 1 mm intervals. The proportion of intervals intersecting particular 

prey types was used as an estimate of proportional dietary contribution. These data were 

not used in final analyses because the great variety of food types [detritus and plant cells 

to whole fish] and differences in decomposition [undigested invertebrates and fish to 

pairs of fish otoliths] meant that it was impossible to use the data comparatively. As a 

result the presence of prey types was used in the analysis, with the basic data being the 

number of fish of a species with each prey category collected on each sampling trip from 

each wetland pool. Because numbers for many prey species were very low they were 

aggregated into broad groups to facilitate analysis (Table 7.1). 

 Four common species, Nematalosa erebi, Mugil cephalus, Liza subviridis and 

Selenotoca multifasciata, fed extensively on “phyto-detritus”; a combination of living plant 

cells and dead organic particles. These species comprised the greatest biomass of fish 

in the pools (Chapter 5), so understanding their diets in detail was a clear priority. 

However, the literature is not explicit on the important issue; the extent to which each 

species consumes detritus as opposed to living plant material. To address this important 

issue a new, simple method of separating detritus from living plant material by 

centrifuging, was developed. The steps in this process were as follows:  

Centrifuge separation method: 

Remove foregut contents (oesophagus and gizzard, or muscular 

oesophagus/stomach in fish without gizzard [eg. S. multifasciata]).  

Place gut content in a test tube and dilute and mix thoroughly with a 1:6 Ludox:water 

solution.  

Centrifuge for 5 mins @ 4,000rpm.  
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This produces sediment and detrital layers at the bottom of the tube, and leaves 

fresh/live plant cells as well as any residual gut lining at the surface of the liquid. 

Measure thickness of the sediment and detrital layers. 

Decant (with pipette) fresh vegetation from solution, residual gut lining material can be 

removed at this point. 

Place fresh vegetation in a clean tube, bringing across as little Ludox solution as 

possible. Add approximately 8 mls water, mix then spin at 4,000rpm for 5 

minutes.  

This should produce a layer of compressed vegetative matter at the base of the tube 

(now “packed” equivalently to sediment and detritus). If vegetation has not 

compressed into a discrete layer (this may happen if too much Ludox is carried 

over to the second tube), decant as much liquid as possible, add another 8 mls of 

water and spin again. If the vegetation contains rigid structure (eg. stems), it may 

need to be broken up with a sharp instrument and spun a third time to gain 

equivalent “packing” to the sediment and detrital layers. 

Measure thickness of the vegetative layer. 

 This produces layers of plant cells, detritus and sediment that are discrete and 

equivalently packed. Although the equivalence of packing is subjective, microscopic 

examination shows it is similar between fractions (ie. plant, detritus, sediment) and 

repeatable for a sample. Thus although, direct comparison of the exact amount of each 

component is not possible, comparisons of relative contributions of detritus and plant 

material between individuals, species, sites and/or times is reasonable. 

   

Statistical analysis  

 Diet data were analysed using multivariate and univariate classification and 

regression trees (De’ath & Fabriscius 2000; De’ath 2002), fitted using 10-fold cross-

validation (Breiman et al. 1984). Multivariate results were displayed graphically using 

principal coordinates analysis, based on Bray-Curtis Extended Dissimilarities. Before 

analyses data were (x+1) transformed to prevent undue influence of highly abundant 

dietary items in the analysis (Gauch, 1982, Jongman et al. 1995). 
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Results 
 Of the common fish of Fitzroy Wetlands pools (Chapter 4), the guts of enough of the 

individuals (5 or more) of 14 species contained prey for some level of meaningful dietary 

analysis (Table 7.1). 

General Diet  

 Overall, diets could be differentiated into two broad groupings on the basis of the 

percentage of fish that consumed animal prey (Fig. 7.1).  A group of 6 species 

[Arramphus sclerolepis, Chanos chanos, Liza subviridis, Mugil cephalus, Nematalosa 

erebi, Selenotoca multifasciata] had consumed less than 20% animal prey. Substantial 

proportions of all these species had consumed phyto-detritius (Table 7.1). On the basis 

of low presence of animal prey and high levels of phyto-detritus this group of species 

was designated as phyto-detritivores. While most of the phyto-detritivores ingested large  
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amounts of inorganic matter (Fig. 7.1) both S. multifasciata and, particularly, A. 

sclerolepis had ingested very little. The pelagic nature of A. sclerolepis and the absence 

of inorganic material suggests that it is a herbivore [probably a herbivorous omnivore as 

a reasonable proportion of individuals had consumed insects (Table 7.1)], rather than a 

detritivore. The low level of sediment ingested by S. multifasciata and centrifuge analysis 

(below) suggests it is also a herbivore. Except for four obvious predators [Elops 

hawaiensis, Lates calcarifer, Megalops cyprinoids, Strongylura krefftii] most individuals of 

all other species had also consumed phyto-detritus (Table 7.1), but in all these cases 

60% or more individuals had consumed animal prey (Fig. 7.1), indicating they were 

higher level consumers. As is always the case when phyto-detritus is consumed together 

with other prey it is difficult to determine the extent to which the presence of phyto-

detritus reflects use as a food source or is simply the result of accidental ingestion. 

 

 

Dietary Details from Stomach Content Analysis  

 Regression tree analysis (Fig. 7.2) indicated four dietary groups. (1) the six phyto-

detritivores defined above, which consumed little but phyto-detritus (Figs. 7.2, 7.3ab). (2) 
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medium to large omnivores [Arius graeffei, Amniataba percoides] regularly selecting a 

broad range of prey types, particularly insects, insect larvae and micro-crustanceans 

(Figs. 7.2, 7.3ab). (3) The four predators defined above (Figs. 7.2, 7.3ab). (4) a pair of 

small carnivores [Gerres filamentosis, Melanotaenia splendida] which fed on a variety of 

prey (Figs. 7.2, 7.3ab). Although these two species formed a single group they occurred 

in different environments (G.filamentosis: marine, M. splendida: fresh), and their 

grouping together seem to relate simply to the occurrence of insects in both diets (Table 

7.1, Fig. 7.2). Previous detailed studies suggest that G. filamentosis feeds mainly on 

benthic prey within the substrate (Wilson & Sheaves 2001), which is supported by 

relative high occurrences of inorganic sediment particles in fish in the present study (Fig. 

7.1). In contrast, low levels of sediment particles (Fig. 7.1) and a diet of insects and 

insect larvae (Table 7.1, Fig. 7.2)(Froese, & Pauly 2005), suggest  M. splendida is more 

accurately classified as an epibenthic feeder.  

 Although location and trip were included in the regression tree analysis, neither was 

indicated as important in the 1-SE, 4-leaf regression tree [generally considered the most 

appropriate tree under 10-fold cross-validation (Breiman et al. 1984), usually providing a 

similar result to that of an ANOVA ("= 0.05), in cases where ANOVA is appropriate]. No 

split was made on location until the 6 leaf tree and none on trip until an 8 leaf tree, 

indicating a lack of substantial dietary differences between pools or trips. 
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Details of the Diets on Phyto-detritivores from Centrifuge Separation  

 There were sufficient guts from L. subviridis (39), M. cephalus (49), N. erebi (56) and 

S. multifasciata (27) available to allow meaningful centrifuge analysis. A univariate 

regression tree clearly separated the phyto-detritivores into 3 groups based on the ratios 

of plant material/detritus in their diets (Fig. 7.4). Selenotoca multifasciata, the most 

herbivorous with 60% of individuals consuming only live plant material (Figs. 7.4, 7.5c), 

was at one dietary extreme. The herbivorous, rather than detritivorous, nature of the diet 

of S. multifasciata is supported by the low occurrence of inorganic sediment ingested 

(Table. 7.1). All other phyto-detritivores, except the pelagic A. sclerolepis, ingested large 

amounts of inorganic matter. The opposite extreme was represented by L. subviridis, N. 

erebi and small M.cephalus (Figs. 7.4, 7.5 a,b,d) where few individuals consumed high 

ratios of living plant material and most individuals consuming moderate to high 

proportions of detritus. Between the extremes was large M. cephalus with a highly 

variable plant/detritus ratios and a moderate percentage (35%) consuming only plant 

material (Figs. 7.4, 7.5e). Again there were no detectable influences of pool or trip.  
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Discussion 
 Overall, the diets (Table 7.2) of major fish species of the Fitzroy Wetland pools were 

similar to those reported for the same species from other environments (Blaber 1976; de 

Silva & Wijeyaratne 1977; Whitfield & Blaber 1978). Despite many species being present 

 

 in pools with a variety of salinities and a range of levels of connection to other marine or 

freshwater environments, there was no evidence of spatial variation in diet of any 

species. Similarly, despite sampling throughout the year there was no indication of 

marked temporal change in diet.  
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 Across all the pools biomass was dominated by the 6 phyto-detritivores  (Chapter 5) 

A. sclerolepis, C. chanos, L. subviridis, M. cephalus, N. erebi, S. multifasciata. Such 

species generally consume a mixture of small, living plant cells and decaying organic 

material (along with its associated microbial film) (Michaelis 1993). Typical gut content 

consists of thousands of these fine particles, usually well mixed together. The large 

number and high degree of mixing makes their separation into component fractions 

difficult; not only must individual cellular components be identified but each particle 

needs to be separated from other particles. Consequently, determining the extent to 

which such species consume living plant material as opposed to detritus is a vexed 

problem. However, in the present study, by the use of a simple centrifuging protocol, it 

was possible to clearly differentiate detritivores from herbivores based on the percentage 

of plant versus detritus cells they consumed. Four of the species, C. chanos, L. 

subviridis, M. cephalus, and N. erebi, were detritivores (Table 7.2), while only one S. 

multifasciata was almost completely herbivorous. The final species, A. sclerolepis was 

designated a herbivorous omnivore because it included a reasonable proportion of 

animal prey in its diet and previous studies have (Robertson & Klumpp 1983) shown 

related species switch from herbivorous feeding during the day to feeding on micro-

invertebrates at night. 
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Chapter 8: 

Trophic Support of Fitzroy Wetland Pool Ecosystems 
Marcus Sheaves, Andrew Revill, Katya Abrantes, Ross Johnston 

Introduction 
 While gut content analysis gives direct information on prey consumed by animals it 

does not give information on what is actually assimilated. In many cases (eg. predators) 

gut content information may be sufficient, but in the case of phyto-detritus feeders gut 

content analysis gives relatively diffuse information, essentially limited to the relative 

extent to which they consume detritus, living plant material and animal matter (Chapter 

7). The dominance of fish biomass by phyto-detritivores in the Fitzory wetland pools 

(Chapter 5) means that understanding their diet is a key to understanding the nutritional 

basis of food webs in the pools.  

 Stable isotope analysis is one technique that can be used to specifically investigate 

the identity of carbon actually assimilated, and thereby determine the primary producers 

most important in underpinning food webs (Peterson & Howarth 1987, Hesslein et al. 

1992). The two isotopes are most commonly used are carbon (ratio of 
13

C/
12

C: denoted 

as 
13

C) and nitrogen (ratio of 
15

N/
14

N: denoted as 
15

N). Carbon isotopic ratios provide 

information on the identities of primary producers because they are set during 

photosynthesis and are specific to the primary producer. Nitrogen isotopic ratios depend 

on the source of nitrogen utilised and change in specific steps at each trophic transfer, 

providing information on the number of trophic steps an animal is above the primary 

producers; its trophic level.  

 The primary aims of this study are (1) to determine the extent to which sources of 

primary production supporting phyto-detritivores change between pools, and (2) to gain 

an understanding of the length of food chains in the wetland pools. 

 

Methods 

Stable isotope signatures: Samples of fish, invertebrates and primary producers for 

carbon ( 
13

C) and nitrogen ( 
15

N) stable isotope analyses were collected from the pools 
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throughout the study period. Small animals were analysed whole, but for larger animals 

(principally fish and large crustaceans) white abdominal muscle tissue was used for 

stable isotope analysis, and was separated from exoskeletal and intestinal material 

under a dissecting microscope using fine forceps. 

 All available plants and sources of detritus were collected. Estimates of the relative 

abundance of all macroscopic plants in and around the pools were made. Higher plants 

and green filamentous algae were collected by hand at each site.  Two size fractions of 

seston, which included living plankton and suspended particulate organic matter, were 

collected by pumping the water with a bilge pump through a 250 m and a 53 m 

plankton net. Where a conspicuous layer of microphytobenthos (MPB) was present, 

samples were collected by carefully removing the layer from the substrate, then washing 

it through a 5 m filter with distilled water and removing all residual sediment particles 

under a dissecting microscope. Where no obvious layer of MPB was present, MPB was 

collected by scrapping the surface sediments with a spatula and filtering the material 

through a 53 m sieve into a glass bottle. Colloidal silica (LUDOX
TM

) was added to a 

density of 1.2 and about two hours later the surface material was collected and washed 

into a 5 m GF/F Whatman filter. Inspection under a microscope revealed that this 

fraction was composed mainly of diatoms and other microalgae together with a small 

amount of detritus. A coarse fraction of benthic particulate organic matter (cPOM) (250-

1000 m) was obtained by carefully disturbing the water just above the sediment with a 

spatula and collecting the suspended material by pumping it with a bilge pump through a 

1000 m and then a 250 m sieve.  A finer fraction (fPOM) was collected by passing the 

filtrate through a 125 m sieve. The collected material placed in a glass vials with 

colloidal silica (LUDOX
TM

, density = 1.2) for two hours, after which the layer of floating 

material was pipetted off and washed through a 53 m sieve. 

 All samples were processed within a day or two of collection. Basal carbon sources 

(primary producers and detritus) and animal tissues were dried to a constant weight at 

60
0
C, then homogenized with a mortar and pestle. Samples were analysed by CSIRO 

Tasmania, and Griffith University, Queensland, where the isotopic signatures were 

determined using a mass spectrometer coupled with an element analyser. Results are 

expressed as per ml deviations from the standards, as defined by the equation: 
13

C, 
15

N 

= [(Rsample/Rreference)-1] x 10
3
, where R = 

13
C/

12
C for Carbon and 

15
N/

14
N for Nitrogen. PDB 

limestone and atmospheric dinitrogen served as reference standards for 
13

C and 
15

N, 

respectively. Duplicates were run every 12
th
 sample and two standards were also run 

after every 12 samples. Results had a precision of  0.3 ‰ (1 SD) for 13C and  0.1 ‰ 
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(1 SD) for 15N, which was maintained with reference samples of calibrated Australia 

National University (ANU) cane sucrose for 
13

C, and atmospheric dinitrogen for 
15

N. The 

Nitrogen and Carbon content of each sample were also measured. 

 

Statistical analysis:  The IsoSource mixing model of Phillips and Gregg (2003) was 

used to determine the relative importance of different producers to the nutrition of 

penaeids at each site. This model uses mass balance assumptions and calculates the 

possible combinations of the different autotrophs that can explain the isotopic signatures 

of consumers, by analyzing small increments (2% in this case) of each of the autotrophs’ 

possible contributions, from 0 to 100%. The combinations that correspond to a result 

within a small distance of that of the consumer are considered feasible solutions, with the 

results being a distribution of feasible solutions for each of the autotrophs (Phillips & 

Gregg 2003). Based on the estimates of relative abundance producers present in low 

abundance at a pool were omitted from analyses. Producers, possessing similar 

signatures, were grouped to minimize the number of sources and hence narrow the 

range of possible solutions (Phillips et al. 2005). Fractionation values of phyto-

detritivores were set equivalent to one trophic level. This was obviously suitable for the 

plants consumed directly but not necessarily for plants consumed after decomposition 

into detritus. However, preliminary studies suggested it was the most parsimonious to 

assume no additional fraction during decomposition to detritus (see below). 

 Trophic fractionation values of 1.3 
13

C and 2.9 
15

N [mean values for muscle tissue 

(McCutchan et al. 2003)] were assumed for all fish and crustaceans where isotopic 

signatures were estimated from muscle tissue. Ratios of stable isotopes can change 

between diet and consumer due to differential digestion or fractionation during 

assimilation and metabolic processes (McCutchan et al. 2003), and the exact degree of 

fractionation assumed has a substantial bearing on the interpretation of the contribution 

of specific dietary components. Consequently, it was important to validate the 

fractionation values assumed for phyto-detritivorous fish. When it has been attempted, 

fractionation values are usually validated experimentally. However, this was not a 

realistic option with phytodetritivores because if detritus was provided in an experimental 

situation there was no way of determining what components of the detritus were actually 

assimilated, and consequently what the correct dietary stable isotope values were. 

Consequently, an indirect approach was used, in which the stable isotope signature of 

the large predatory fish, Lates calcarifer, was related to its possible dietary sources in an 
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IsoSource model, using the assumed fraction values, and the results compared to its diet 

as detailed in Chapter 7. 

 Fractionation values of 0.3 
13

C and 2.1 
15

N [mean values for whole animals 

(McCutchan et al. 2003)] were used for all invertebrates analysed whole. In contrast to 

fish, where trophic fractionation values have been determined experimentally 

(McCutchan et al. 2001) and been applied successfully in many experimental studies, 

specific fractionation values for most invertebrate groups are poorly understood. 

Consequently, there is no certainty that the average fraction adjustments used 

(McCutchan et al. 2001) were appropriate for particular invertebrate groups, and no data 

were available for independent evaluation.  

 

Assumptions 

Isotope signatures of decomposed plant material: Evaluation of the contribution 

of different sources of primary production, in systems dominated by detritus feeders, is 

complicated for three reasons: (a) it is difficult to unambiguously identify the original 

source of much of the decomposed material,(b) the extent to which detritivores derive 

nutrition from the decomposing material itself, rather than the microbial community using 

the material as a substrate, is unclear, and (c) the extent (and even the direction) of 

changes in producer isotopic signatures due to secondary processing by decomposers, 

such as microbes and fungi, is unknown. These problems make it difficult to determine 

appropriate source values to assign to potential primary producers and difficult to 

determine the correct number of trophic steps, and levels of fractionation at each step, to 

assume between detritivores and the original producer isotopic signatures.  

 The first problem was addressed by investigating the change in stable isotope profiles 

from fresh to decomposed leaves of the mangrove, Aegiceras corniculatum, a species 

for which decomposed leaves could be unambiguously identified from a number of pools. 

 The second and third problems (use of decomposing material versus attached 

microbial component, and effect of secondary processing) are generally unresolved for 

any system necessitating the pragmatic assumption, that the source material is the major 

contributor to nutrition and that any bacterial component assimilated by the detritivore 

has the same signature as the substrate on which it is growing [i.e. fractionation is 

assumed to be zero].  
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Detailed isotope signatures: The cost of analyses meant that extensive temporal 

and spatial replication was not possible at all sites. Consequently, more extensive 

sampling was concentrated at one site, the 12 Mile Creek brackish site, which had 

physical conditions intermediate between other sites and had a mixture of marine and 

freshwater derive fauna. More detailed studies concentrated on this pool. The results of 

these studies were assumed to apply to the other pools. 

 

Results 

Producer stable isotope profiles: The suites of potentially important primary 

producers varied among sites, however, six producer groups [the saltbush, Atriplex 

muelleri, the salt couch, Sporobolis virginicus, MPBs (micro-phytobenthos), seston 

(suspended organic particles including organic detritus, inorganic particles and 

phytoplankton), green filamentous algae, fPOM (fine particulate organic matter)] 

occurred at 3 or more sites (Fig. 8.1), allowing investigations of changes in producer 

isotope profiles. The clearly identifiable plant species, A. muelleri and S.virginicus, 

showed little variation in 
13

C as did MPBs (Fig 8.1a), while the other 3 groups showed 

considerable variability in 
13

C. This variation probably reflected contributions of different 

decaying plants to the seston and fPOM at different sites, and a mixture of different 

species in the case of green filamentous algae. In contrast, N
15

 values varied greatly for 

A. muelleri and to a lesser extent for other producer groups. The variation in nitrogen 

sources among sites, and the indication of different composition of the complex producer 

groups (seston, fPOM, green filamentous algae) between sites meant that IsoSources 

modelling of stable isotope ratios could only sensibly be investigated on a site-by-site 

basis. 

Isotope signatures of decomposed plant material: There was no indication that 

decomposed A. corniculatum leaves differed substantially from fresh leaves in either 
13

C 

or N
15

 (Table 8.1, Fig. 8.2), a result consistent with other work on decomposing 

mangrove leaves (Schwamborn et al 2002). Because it was not possible to clearly 

identify the source of most other decomposing material, this result was assumed to hold 

for other plants and a single trophic step was assumed between sources of detritus and 

detritivores. 
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Temporal variation in isotope signatures: In the 12 Mile Brackish pool, where 

temporal variation in isotopic signatures was investigated, 8 consumers (the 

crustaceans: Caridina nilotica, Corophium sp., the fish: Elops hawaiiensis, Lates 

calcarifer, Liza subviridis, Mugil cephalus, Nematalosa erebi, Selenotoca multifasciata) 

were captured on more than 3 sampling occasions, providing useful data for temporal 

comparisons. 

 Most comparisons showed little indication of temporal variation, but there were some 

exceptions. For both 
13

C (Table 8.2) and 
15

N (Table 8.3) 2 species showed substantial 

temporal variations and one species showed weak evidence of temporal change. Both 


13

C (Fig. 8.3a) and 
15

N (Fig. 8.3b) varied substantially over time for the shrimp Caridina 

nilotica, with both values differing for each month when the shrimp was captured. In 

contrast, Corophium sp. showed substantial differences in 
15

N only between May 2004, 

and November 2004 and February 2005 (Fig. 8.4), and only a weak indication of 

variation in 
13

C. There was a substantial difference in 
13

C for Liza subviridis only between 

July 2004 and September 2005 (Fig. 8.5) but no difference in 
15

N. The only other 

indication of difference was a weak indication of change in the 
15

N
 
value of Lates 

calcarifer. 
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General patterns in isotope signatures: As is usually the case, consumers tended 

to be more enriched in 
13

C and 
15

N than most producers for brackish (eg. 12 Mile 

brackish Fig. 8.6), freshwater (eg. 12 Mile upstream Fig. 8.7) and saline (eg. Gonong 

saline Fig. 8.8) sites. However, while consumer and producer signatures were well  
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separated in saline sites, there was considerable overlap in freshwater and brackish 

sites, particularly in the case of gastropods and insects. Across all types of pools fish 

tended to be more enriched in 
15

N than other consumer groups. This should not be taken 

as an unambiguous indication that fish occupy higher trophic positions, as is often the 

interpretation, because the degree of fractionation depends on the type of consumer and 

the type of tissue analysed, as well as the number of trophic steps between producer and 

consumer. However, when species details are considered (eg. 12 Mile brackish (Fig. 8.9) 

it is clear that food chains in the pools were short. Predatory fish, like E. hawaiiensis and 

L. calcarifer, were only 1 trophic step above phyto-detritivores (assuming fraction of 2.9 


15

N per trophic step) making a 2 step food chain (Fig. 8.9). The omnivorous benthic 

invertebrate feeders A. australis, G. filamentosus and A. reinhardtii had values about ½ a 

step above polychaete worms, about 1 trophic step above crustaceans like M. adscitum, 

and about 2 steps above a variety of insect larvae, all of which are typical prey.  These 

prey are a mixture of primary and secondary consumers indicating that food chains 

leading to these species were no more than 3 steps long. Other benthic feeders, like A. 

telkara, had lower 
15

N signatures, an indication of preferential targeting of different parts 

of the resource. 
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 There was little clear pattern in 
15

N values (Fig. 8.10). However, particularly for 

fish(Fig. 8.10a) and crustaceans (Fig. 8.10b), freshwater in-stream pools tended to have 

more depleted 
13

C values than large freshwater lagoons, while saline pools had 

intermediate levels, suggesting differences in the types of producers at the bases of food 

chains in the different types of pools. At a more detailed level there were clear 

differences in sources of primary production among pools over and above taxonomic 

differences. While there were clear differences in the sources of nutrition for different 
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species of phyto-detritivorous fish within any pool, the sources of nutrition of each 

species varied more greatly between pools (Fig. 8.11), and signatures of different 

species from each pool formed distinct clusters. At Gonong saline M. cephalus and L. 

subviridis differed substantially from the other phyto-detritivores but their signatures were 

highly enriched in 
15

N compared to producers at Gonong brackish suggesting these two 

species may have only recently entered the pool (see below). When these two points are 

ignored the data indicate clear differences in nitrogen sources between major pool types;  
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freshwater pools (Munduran fresh, 12 Mile upstream and downstream, Frogmore, 

Woolwash) had intermediate 
15

N values, while the two saline pools had relatively 

depleted values and 12 Mile brackish relatively enriched values. 

 

IsoSource Models 

Box 8.1 summarises the appropriate approach to interpreting IsoSource output. 

 

Lates calcarifer from 12 Mile brackish  

 While predators were in low abundances in most sites, there was sufficient dietary 

data for Lates calcarifer from 12 Mile brackish for informative IsoSource analysis that 

could be compared to dietary analysis (Chapter 7) as a means of investigating the 

usefulness of the assumed fraction values. Eight animal taxa were possible contributors 

to the diet of L. calcarifer (Fig. A). Fractionation estimated for a single trophic step moved 

the isotopic signature to the centre of the polygon of the possible contributors (Fig. 8.12), 

which were principally primary consumers, suggesting two trophic steps from phyto-

detritus to the top of the food chain. IsoSource modelling (Fig. 8.12) indicated reasonable 

feasible contributions from most sources, with corixids and insect larvae contributing to 

most models, and, despite a broad range of possible contributions, C. nilotica and M. 

cephalus having substantial inputs (over 60%) to a number of models. This outcome 
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aligns closely with dietary analysis (Chapter 7) supporting the assumption that the 

fractionation values assumed for fish (1.3 
13

C and 2.9 
15

N) are appropriate in this study. 
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IsoSource models of producer importance to primary consumers  

12 Mile brackish: Samples were collected from thirteen potential primary producer 

groups at the 12 Mile brackish pool (Fig. 8.9).Two species, Halosarcia indica and Atriplex 

muelleri, had stable isotope signatures very different from all other producer groups. 

However, these species were only present in low abundances at the site, so were not 

included in IsoSource models. Sesuvium portulacastrum and Sclerolaena muricata had 

almost identical signatures, so were combined as a single group. Similarly, seston, 

phytoplankton and benthic filamentous algae sp1, had very similar signatures so were 

combined into a single group represented by the group means. Thus eight producers or 

producer groups were included in IsoSource models for 12 Mile brackish (Figs. 8.13-

8.17, 8.19-8.22).  

 

 With its mixture of fresh and marine species, the 12 Mile Creek brackish pool had a 

richer fauna of phyto-detritus feeding fish (ie. primary consumers) than any other pool. 

The four species that primarily fed on detritus, the mullet Liza subviridis, Mugil cephalus 

and juveniles of an unidentifiable Valamugil species, and the bony bream Nemalatosa 

erebi demonstrated two different dietary compositions. Liza subviridis (Fig. 8.13) and 

Valamugil sp. (Fig. 8.14) had relatively enriched 
13

C signatures, leading to IsoSource  
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models with a broad range of feasible contributions by the salt couch, Sporobolus 

virginicus and the reed Juncus sp. The phytoplankton/benthic filamentous algae/seston 

group, fine and coarse POM, cattle faeces, and benthic filamentous algae type 2, had 

relatively small ranges of feasible contributions with median contributions at or close to 

zero, indicating they were unlikely to be major contributors to nutrition. In contrast, 

although the Sclerolaena muricata/Sesuvium portulacastrum group had relatively low 

feasible contributions, for both species the median was well above zero, indicating that a 

small contribution by one or both of these species was likely. This was especially the 

case for Valamugil sp., where the range of feasible contributions did not include zero, 

indicating that all feasible IsoSource compositions included this group. In contrast, M. 

cephalus (Fig. 8.15) and N. erebi (Fig. 8.16) had relatively depleted 
13

C signatures, with 

the most likely feasible contributions from  the S. muricata/S. portulacastrum group and 

the phytoplankton/benthic filamentous algae/seston group, with all models for N. erebi 

containing the S. muricata/S. portulacastrum group. Selenotoca multifasciata (Fig. 8.17) 

had a 
13

C signature close to those of M. cephalus and N. erebi but a more enriched 
15

N 

signature (Fig. 8.9). Like L. subviridis and Valamugil sp., only S. virginicus, Juncus sp. 

and the S. muricata/S. portulacastrum group had substantial feasible contributions to the 

nutrition of S. multifasciata (Fig. 8.17), but in contrast to L. subviridis and Valamugil sp., 

all feasible models had a substantial contribution from the S. muricata/S. portulacastrum 

group. Gut content analysis (Chapter 7) showed S. multifasciata consumed substantial 

amounts of green plant material, apparently filamentous algae. Although most IsoSource 

models suggested only low contributions of filamentous algae, the different 
15

N level of S. 

multifasciata from the other primary consumer fish supports the idea of dietary 

difference. On these grounds the value for the filamentous algae/seston/phytoplankton 

group (the algal group with the largest feasible contributions) was set at its 99
th
 percentile 

value (10% contribution) and other sources re-evaluated. Under this senario only 

Sclerolaena/Sesuvium (54%) and S. virginicus (38%) made additional feasible 

contributions.  

 The 
15

N signatures of many invertebrate primary consumer groups from 12 Mile 

brackish were too depleted, compared to any of the primary producer set, to allow 

IsoSource models to be developed. In fact many were too depleted even without any 

fractionation adjustment applied (Fig. 8.9).  

 After adjustment for fractionation, invertebrate primary consumers showed a range of 


13

C values somewhat greater than (but including) those of phyto-detritivorous fish (Fig. 

8.18). In contrast, 
15

N signatures of the invertebrates were lower than those of fish.  
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These relatively depleted 
15

N signatures mean that in contrast to fish, where models 

suggested nutrition based largely on higher plant detritus, IsoSource models for 

invertebrates indicated that algae, and similar sources, were usually the principal 

contributors to nutrition (Figs. 8.19-8.22). However, models for some taxa did indicate a 

substantial input by cattle faeces or higher plants (eg.the gastropod Pymanisus sp. Fig. 

8.21).  

 

12 Mile upstream: The 9 producers sampled from the 12 Mile Creek upstream pool 

(Fig. 8.7, 8.23) represented a quite different producer suite to that at the 12 Mile brackish 

pool (Fig. 8.6, 8.11), with only 5 producers (seston, green filamentous algae, S. virginicus 

and Juncus sp.) in common. Sesuvium portulacastrum and seston had similar isotopic 

signatures so were combined for IsoSource modelling, while benthic filamentous algae 

was uncommon at the site and so excluded from the models.  

 Again the shrimp C. nilotica had a similar 
15

N signature to the phyto-detritivorous fish 

(Fig. 8.23) but in this case was more enriched in 
13

C, indicating a somewhat different 

dietary composition to the fish. IsoSource models suggest the nutrition of both fish  
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primary consumers at 12 Mile upstream, N. erebi (Fig. 18.24) and, M. cephalus (Fig. 

8.25) was based primarily on the bullrush, Typha orientalis, the waterlily, Nymphaea 

violacea and the saltmarsh succlent, Sesuvium portulacastrum, or seston, while that of 

the C. nilotica (Fig. 8.26) was likely to have other components, particular the reed Juncus 

sp. As with 12 Mile brackish, insects and gastropod snail primary consumers (Fig. 8.27) 

had 
15

N signatures lower than those of phyto-detritivorous fish. Once again a number of 

species had signatures too depleted in 
15

N for IsoSource modelling. Models for the snail 

Physastra sp. (Fig. 8.28)  included substantial contributions from Nymphaea violacea 

and the saltmarsh grass Sporobolus virginicus, and a likely minor contribution from 

MPBs, quite different to the models for that species at 12 Mile brackish.  

 

Gonong saline: The Gonong saline pool presented a different suite of 11 possible 

sources of primary productivity (Fig. 8.29), with only 5 (S. virginicus, S. portulacastrum, 

MPBs, POM and filamentous algae) common at the 12 Mile Creek sites. In particular the 

Gonong site had a substantial presence of fringing mangroves, principally Aegiceras 

corniculatum, Avicennia marina and Rhizophora stylosa, along one bank. The mangrove 

A. corniculatum and the spreading nuthead, Epaltes australis had almost identical 

isotopic signatures, but as E. australis was uncommon around the pool it was omitted 

from analysis. Similarly the succulent saltmarsh plant Suaeda australis was uncommon 

and so also omitted. The mangrove R. stylosa and Acacia sp. had similar signatures and 

were combined for IsoSource modelling. Casurina equisetifolia had a signature too 

distant from the primary consumers to have meaningful feasible contributions and was 

omitted. 

 The phyto-detritivorous fish at Gonong saline formed 2 distinct groups. The first (S. 

multifasciata, Valamugil sp1, Valamugil seheli) were in the expected position; more 

depleted in 
15

N than the fish at higher trophic levels. In contrast, the other 2 phyto-

detritivores, M. cephalus and L. subviridis had 
15

N values similar to the fish at higher 

trophic levels, and too high to produce feasible IsoSource models with the producer 

group present.  

 Most of the producer groups had a range of feasible contributions to IsoSource 

models for both S. multifasciata (Fig. 8.30) and V. seheli (Fig. 8.31). However, while the 

median of most models was close to zero, the bulk of the feasible contributions of both S. 

virginicus and green filamentous algae were greater than zero, indicating that these were 

probably both important contributors to the nutrition of these species. Valamugil sp1.  
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demonstrated a similar pattern (Fig. 8.32), but in this case all feasible models had a 

moderate influence of filamentous algae and a major influence of S. virginicus, with little 

likelihood of contributions by other sources. Notably, mangroves did not appear to be 

likely to be important contributors to the nutrition of any of the species. 

 Only two invertebrates, Sesarma sp. and Uca signata had isotopic signatures close to 
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the primary producer groups (Fig. 8.33). The IsoSource modelling for Sesarma sp. (Fig. 

8.34) indicated a substantial contribution of MPBs to all models with a likelihood of 

feasible contributions from S. portulacastrum and particularly S. virginicus, while Uca 
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signata (Fig. 8.35) was more similar to Valamugil sp. with a substantial feasible 

contribution by S. virginicus and a smaller, but important contribution by filamentous 

algae. 

 

Munduran saline: Eleven producer groups were collected from the Munduran saline 

pool (Fig. 8.36). Of the primary producers collected, only Suaeda australis and Epaltes 

australis were omitted from IsoSource analysis due to low levels of occurrence, while the 

signatures of Rhizophora sytlosa and Acacia sp. were very similar and so grouped. 

 

 At Munduran saline phytodetritivores occupied lower trophic positions (ie. lower 
15

N 

values) than other fish species (Fig. 8.36). However, unlike other sites the more 

hebivorous species (S. multifasciata, Siganus lineatus, Chanos chanos) had substantially 

lower 
15

N values than the less herbivorous mullet (L. subviridis, M. cephalus). IsoSource 

analysis indicated that the two mullet (Figs. 8.37, 8.38) had diets based on green 

filamentous algae and S. virginicus with only minor contributions likely from other 

producers. S. virginicus was also important for S. multifasciata (Fig. 8.39) and S. lineatus 

(Fig. 8.40), with MPBs and/or S. protulacastrum also likely to be important. In contrast, 

the nutrition of C. chanos (Fig. 8.41) seemed to be based mainly on S. portulacastrum 

with a minor contribution of coarse particulate organic matter, and possible MPBs. Again 

it was noticable that mangroves appear not to be feasible important contributors to the 

nutrition of any of the species. 
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Frogmore Lagoon: Frogmore Lagoon presented a smaller array of potentially 

important primary producers, with 8 groups (Fig. 8.42). Four of these (Alternanthera  sp., 

Glinus lotoides, Polygonum plebeium, Heliotropium indicum) had similar signatures and 

were grouped for IsoSource analysis as C3 herbs. The 2 phytodetritivorous fish took up 

lower trophic positions (lower 
15

N) than the other fish species.  

 There was a broad range of feasible models for the nutrition of N. erebi (Fig. 8.43) but 

all included fPOM and most included pasture grass. Many models also included C3 

herbs and the green alga Cladophora sp. In contrast, M. cephalus (Fig. 8.44) showed a 

narrow range of feasible dietary models, all of which contained a large component of 

fPOM and a small component of Cladophora sp. 

 

Summary of producer importance to primary consumers  

 Despite considerable variations in signatures between sites the overall pattern of 

importance of sources of primary production is consistent (Table 8.4). Over half the 

sources, including notably mangroves and terrestrial plants, had no instances where they 

made a major feasible contribution among the 26 IsoSource models. In contrast, green 

filamentous algae type 1 and the marsh plants S. virginicus and S. portulacastrum were 

important in most models in which they appeared. Other groups, notable MPBs (at saline 

sites), and T. orientalis (at freshwater sites), were present at only a few sites but 

contributed to a number of models for consumers at each site. In contrast, despite 

occurring in as many models as T. orientalis, the depleted 
15

N values or N. violacea 

meant it was important in few models. Similarly, Juncus sp. occurred in many models but 

was important in few. Overall, with the exception of mangroves and Juncus sp., 

production utilised at each site seemed to reflect the common aquatic, and pool edge 

plants present at the site, with S. virginicus and S. portulacastrum particularly important. 

The lack of a strong mangrove signal also indicates little input from terrestrial trees, 

which being C3 plants would have signatures similar to mangroves (eg. the similarity of 

Acacia sp. and R. stylosa, and the position of C.equisetifolia (Fig. 8.29)). In general 

IsoSource models of suggested isotopic signatures were more highly aligned with 

original plant sources of organic carbon than POM, suggesting the POM collected from 

pool edges was largely refractory material, while most nutrition was obtained from “fresh” 

detritus in earlier stages of decomposition, possibly found in deeper parts of the pools. 

This negative decomposition shift is likely due to the removal of more positive  
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components (eg. sugars) which are readily and easily utilized. Where sequences of pools 

were sampled in upstream gradients (Munduran & 12 Mile Creeks), phyto-detritivorous 

fish in downstream sites (Munduran saline, 12 Mile brackish) had very different isotopic 
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signatures from their upstream counterparts (Fig. 8.10). 

 

Discussion 
 The suites of potentially important primary producers varied among sites, depending 

on environmental setting; pastoral, native forest, mangrove lined etc. As expected there 

was little variation in 
13

C signatures for higher plants occurring at multiple sites because 

carbon isotopic ratios are taxon specific depending on the plant’s particular 

photosynthetic pathway. In contrast, 
15

N signatures varied greatly among sites indicating 

utilisation of different sources of nitrogen. While much of this difference seemed to relate 

to pool type (fresh Vs saline Vs brackish), a more detailed analysis of nitrogen sources 

may be useful to determine the extent to which these difference are a consequence of 

anthropogenic nitrogen entering pool food chains (eg. from agri-chemicals).  

 Food chains in the Fitzroy wetland pools are quite short. Stable isotope analysis, as 

well as dietary studies (Chapter 7), indicate that top predators like L. calcarifer derived 

most of their nutrition from feeding directly on primary consumers (2 trophic steps above 

producers), and omnivorous fish had 
15

N signatures that were unlikely to be more than 3 

steps away from sources of primary production. Short food chains are expected in 

habitats like the Fitzroy pools that have relatively small areal extents (Brose et al 2004). 

Notwithstanding this, domination of the fauna by phyto-detritivores (Chapter 5) and the 

importance of these in the diets of apex predators like barramundi (Chapter 7), suggests 

that a considerable amount of energy is transferred via this 2-link food chain. This 

suggests efficient transfer of productivity and energy to the top of the food chain because 

simple thermodynamic constraints mean energy lost is proportional to the number of 

trophic transitions (Kaunzinger & Morin 1998).  

 

The bases of pool food webs: isotope signatures of primary consumers 

 In a broad sense there was a clear split between fish and shrimp primary consumers, 

with nutrition based largely on higher plants, and other invertebrates that gained the bulk 

of their nutrition from algal sources. However, the situation with many invertebrates is 

unclear because they were too depleted in 
15

N to produce feasible IsoSource mixing 

models. This could be due to unrecognised sources of nutrition (eg. microbial 

productivity), or be a result of poorly defined fractionation values (see above).  
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 While there was little change in isotopic signatures of most pool flora and fauna over 

time, there was considerable spatial variation, with the same species deriving the 

majority of their nutrition from different sources in different pools. In fact, there were clear 

differences in sources of primary production among pools that transcended taxonomic 

differences; despite inter-species differences in sources of nutrition, there was greater 

similarity between different species at a site than between the same species at different 

sites, with species-specific signatures showing distinct clusters based on pool identity. In 

general the major sources of nutrition were derived from plants common in or close to 

the pools. The exception to this was mangroves which showed only low feasible 

contributions at both Gonong and Munduran saline, despite fringing most of one pool 

edge (particularly in the case of Munduran). In contrast, the saltmarsh grass, S. 

virginicus and the saltmarsh succulent, S. protulacastrum, appeared to be major 

contributors at most sites where they occurred, similar to the situation for estuarine 

wetland pools in other systems (Sheaves et al. in review). MPBs are important in many 

estuary systems (Cook et al 2004a,b), including the Fitzroy estuary proper (Ford et al 

2005), and this importance was reflected for a number of consumers in Gonong and 

Munduran saline pools. In contrast, MPBs had relatively low importance in the freshwater 

and brackish pools, probably because these pools had only small areas of shallow edge. 

 Material derived from higher plants seemed to comprise a major component of the 

nutrition of phyto-detritus feeding fish right across the spectrum of wetland pools. These 

plants were either specialised still-water plants (eg. N.violacea) or plants of the littoral 

fringe (eg. S. virginicus). Detritus from such plants would be much less abundant in the 

main body of the Fitzroy estuary due to high tidal movement and saline conditions, and 

because of the much lower ratio of riparian edge. This suggests that the pools can 

provide a much greater level of nutrition per volume than is available in the estuary 

proper. This together with the energy efficient short food chains provides at least part of 

the explanation for the high densities (Chapter 4) and biomasses (Chapter 5) of fish in 

the pools. In addition, juvenile fish require much greater quantities of nutrients than 

adults (Yañez-Arancibia et al 1994) making habitats with abundant supplies of nutrients 

particularly important. Thus the floodplain wetland pools probably make a much greater 

contribution to the nutrition of the whole Fitzroy estuary system than suggested by their 

areal extent, particularly in a system like the Fitzroy where estuarine waters are often 

heterotrophic (Ford et al 2005). 

 No conceptual models of the importance of various sources of organic matter to the 

support of food webs of tropical estuarine floodplain wetland pools exist. The closest 
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analogue are three competing models developed for large rivers and floodplain systems 

in temperate and sub-tropical areas of the United States; the flood pulse concept (Junk 

et al. 1989), the river continuum concept (Vannote et al. 1980), and the riverine 

productivity model (Thorp & Delong 1994) [see Box 8.2]. Although the wetland pools only 

flow intermittently and are at a much smaller scale than the systems these models were 

developed for, the models form a useful starting point. Despite differences in detail, food 

webs across all the Fitzroy wetland pools were supported by within-pool productivity 

(benthic algae) and riparian vegetation (largely S. virgincus and S. protulacastrum). 

There was little evidence of important inputs from upstream sources of carbon (phyto-

detritivorous fish in Munduran saline and 12 Mile brackish had very different isotopic 

signatures to those in upstream parts of the same systems) or from sources distant from 

pool edges (no evidence of inputs from terrestrial trees that were common in woodlands 

adjacent to most pools), making a strong match to the riverine productivity model. 

Furthermore, POM signatures were rarely important suggesting that much of the POM 

was refractory, again in accord with the riverine productivity model (Thorp et al. 1998).  

 

 Under the riverine productivity model (RPM) the majority of organic matter supporting 

foodwebs comes from local autochthonous production (waterplants, algae) or direct 

inputs of material from riparian vegetation. The variety of environmental settings of the 

Fitzroy floodplain pools means that the exact identity of the contributors varies from pool 

to pool (Fig. 8.45) but the dominance of inputs from autochthonous and riparian 

production remains. This input is likely to be take two forms, more or less continuous 

input from waterplants, whenever they are available and pulsed inputs from littoral 

vegetation (eg. saltmarsh plants) due to rainfall or wind. Inputs from surrounding 

woodlands, fields etc. and upstream pools is apparently small and/or of a refractory 

nature. Although mangroves are an important component of the riparian vegetation of the 

saline pools they seem to contribute little to food webs, a situation reported from an 
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increasing number of studies (Stoner & Zimmerman 1988; Primavera 1996; Loneragan 

et al 1997; Schwamborn et al 2002).  

 

 The suite of phyto-detritivorous fish occupying the Fitzroy wetland pools are only 

equipped to consume live plant material by grazing (Bellwood 2003; Karpouzi & Stergiou 

2003), and so not equipped to feed on the hard tissues of living higher plants. Thus the 

importance of terrestrial plants in IsoSource models of all species indicates the 

consumption of considerable amounts of detritus, which is supported by gut content 

analysis (Chapter 7). Despite this, it is clear that feeding on detritus was not 

indiscriminate; detritivores in all pools showed a range of isotopic signatures relating to 

different mixtures of the available simple plants and higher plant detritus. Therefore, even 

though detritus would seem to be a simple, homogeneous resource, there was 

considerable partitioning. This partitioning could be the result of different sizes of 

different fish species (Chapter 5), different species feeding in specific parts of the pools 

(Chapter 11) or the active selection of organic particles of particular sizes or shapes 

during feeding (Blaber 1976).  
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Implications 

 The clear shifts to different sources of organic carbon at different pools shows that 

the detritus-based food webs of the Fitzroy wetland pools are adaptable and labile, they 

shift to utilise whatever useful sources of organic carbon are abundant at a site. From 

this point of view pool food webs are likely to be resilient to many changes in vegetation 

type, making them adaptable to many types of agricultural, and perhaps even urban 

(Connolly 2003), development. However, the fact that sugar cane and invasive pasture 

grasses contribute little nutrition to aquatic food webs (Bunn et al. 1997) suggests that 

situations where pools become surrounded by monoculture of poor nutritional value 

should be avoided. The likely resilience of detritus-based food webs contrasts with 

herbivore-based food webs which may be reliant on specific sources of primary 

productivity. At least from the point of view of nutrient supply the presence of these 

detritus-based food webs means that the wetland pool ecosystems will be buffered from 

some of the possible effects of Global Climate Change.  

 Despite the broad spectrum of sources of nutrition accessed, saltmarsh plants made 

considerable feasible contributions to most models. This could be because these are 

particularly nutritious or simply because they were among the most abundant plants 

surrounding these pools. Regardless of the reason, it is likely that one thing the pool 

ecosystems are sensitive to is the loss of this apparently innocuous vegetation type, with 

occurrences like grassfires likely to present a particular danger to ecosystem function. 
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Chapter 9: 

 

Food Webs of Fitzroy Estuarine Floodplain Wetland Pools 

 
Marcus Sheaves  

Introduction 
Together information on the densities and compositions of pool fish fauna (Chapter 4), 

patterns of difference in fish biomass (Chapter 5), abundance and trophic roles of 

invertebrates (Chapter 6), diets of fish (Chapter 7), and investigation of  the producer 

base of pool ecosystems (Chapter 8), provide a broad spectrum of information on the 

structure of food webs of Fitzroy Estuarine Floodplain Wetland Pools. In this chapter I 

combine that information to develop a general model of the structure of pool food webs 

and investigate the nature of food webs under 4 different scenarios: food webs of (1) 

saline pools with regular connections to the Fitzroy estuary, (2) brackish pools with 

irregular connections to the Fitzroy estuary, (3) freshwater pools when isolated from 

other pools or streams, and with maximum water depth exceeding about 1.5m, and 

(4) freshwater pools when isolated from other pools or streams, and with maximum 

water depth less than about 1.5m.  

 

Results and Discussion 

The Basic Food Web 

The Fitzroy Estuarine Floodplain Wetland Pools comprise a diverse range of pool types, 

in a range of geographic settings, (Chapter 2), and with a variety of levels of connectivity 

and trajectories of temporal change (Chapter 3). However, the food webs of these 

disparate pools have a common general structure (Fig. 9.1) comprised of short food 

chains, with much of the productivity flowing through a very short, 3-link food chain 

[detritusödetritus feeding fishöcarnivorous fish or birds]. Short food chains are important 

in tropical mangrove estuaries (Sheaves & Molony 2000). Because a considerable 
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amount of energy is lost at each trophic transfer (Cousins 1996), the presence of short 

food chains means that a great proportion of the energy derived from primary productivity 

is transported to the top of the food web (Sheaves & Molony 2000), providing the 

opportunity for high levels of export to other habitats (Deegan 1993, Sheaves & Molony 

2000).  

 

Across all the pools there are 5 groups of potentially important primary producers 

[terrestrial plants, mangroves, saltmarsh plants, flowering water plants, algae] that grow 

in or around the pools and, although the importance of each group varies from pool-to-

pool, saltmarsh plants and algae are important contributors of nutrition wherever they 

occur. The importance of contributions from further afield is unknown because inputs 

from these sources are very difficult to trace.  There are also periodic inputs from the 

Fitzroy estuary or other pools and waterways during connection events, as well as 

imports and exports of organic carbon in the form of the biomass of animals migrating in 

and out of the pools.  

At times of aquatic connection the movement of animals and plant material can influence 

food web structures. In non-connection periods food webs in many pools are reasonably 

stable. This stability is highest in “saline” pools that are regularly connected with the 

estuary proper, meaning water levels remain fairly constant and conditions fairly stable. 
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At the other extreme are isolated pools (eg. freshwater Frogmore Lagoon, saline German 

Jack’s Lagoon) that connect to water bodies only infrequently, where fluctuating pool 

levels can produce a series of effects leading to ecosystem change (Chapter 5). Despite 

various levels of physical isolation from other aquatic systems, the pools are connected 

by the predatory activities of piscivorous birds that move freely between the pools 

(Chapter 12).  

There are many different scenarios under which food webs could be modelled. Many are 

very transitory so may not be profitable to study (eg. German Jack’s fills on very high 

tides then is disconnected for long periods. It is always shallow (allowing heavy predation 

by piscivous birds) and dries quickly becoming rapidly hypersaline and inhospitable to 

fauna), or too difficulty to collect data on (eg. pools during flooding). In contrast, the 4 

scenarios investigated are either the “usual” situation for each major type of pool (saline, 

brackish, fresh) or illustrate the important changes in function as pools dry out. 

Scenario 1: Saline pools with regular connections to the Fitzroy estuary 

Saline pools (Fig. 9.2), like Gonong and Munduran Saline, are regularly connected with 

estuarine waters (Chapter 3), with some level of connection on the highest tides in most 

tidal cycles. This means the pools are continually close to full, tend to have relatively 

stable, saline conditions; with reductions in salinity due to flooding only prevailing until 

the next tidal connection. Most organic carbon supporting the food web is contributed by 

saltmarsh plants and algae, with the contribution from mangroves surprisingly low 

(Chapter 8). The majority of plant material is converted to detritus and energy flows from 

it to higher trophic levels largely through detritus feeding fish. There is a second 

important contribution from algae, with energy passing along herbivore food chains via 

grazing fish and invertebrates. Energy from algae, grazed by herbivorous invertebrates, 

is passed up the web mainly via invertebrate feeding fish, including both omnivores and 

specialized invertebrate feeders. Because substantial water depth is maintained by 

regular tidal connections predation by piscivorous birds is not excessive. Additionally, 

predation within the pools is compensated for by emigration from the estuary proper. 

Pool productivity is exported at a low, but constant level both by birds and by fish and 

invertebrates leaving the pool. An additional source of organic carbon comes from fish 

migrating into the pool during tidal connections. 
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Scenario 2: Brackish pools with irregular connections to the Fitzroy 

estuary 

Brackish pools (Fig. 9.3), like the 12 Mile Creek brackish pool, are occasionally 

connected with estuarine waters (Chapter 3), with connection only on the highest tides of 

the year. Pool levels fluctuate more than for saline pools, but if they are part of a stream 

system, flow from local rainfall together with occasional tidal inputs mean water levels 

are usually reasonably high. The joint influences of fresh and salt means that brackish 

salinities are maintained most of the time. As with saline pools much of the energy 

supporting the food web is contributed by saltmarsh plants and algae, with the majority of 

plant biomass converted to detritus and energy derived from it flowing largely through 

detritus feeding fish. However, in contrast to saline pools most of the grazing of live algae 

is by fish herbivory. Maximum water depth rarely reaches critically shallow depths 

because it is maintained by irregular tidal connections as well as downstream flows from 

local rainfall. Piscivorous birds are not unusually advantaged, so losses from bird 

predation can be compensated for by reproduction and immigration during connections 

to other pools and the estuary. Pool productivity is exported at a low but constant level by 

birds, and on occasions by fish leaving the pool during connection events. Additional 
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source of organic carbon comes from fish migrating into the pool during tidal connection 

and material washed in during stream-flow events. 

 

Scenario 3: Isolated freshwater pools with high water levels 

Isolated freshwater pools (Fig. 9.4), like Frogmore and Woolwash Lagoons, are rarely 

connected with other freshwater systems, and only rarely and indirectly connected with 

estuarine waters by stream flow or during major flooding (Chapter 3) but not by direct 

tidal connection. This means the pool water levels continually fall during disconnection 

periods, with the potential to dry completely if isolated long enough. Again most organic 

carbon is contributed by flowering water plants and algae, and energy from these 

sources is passed up the food chain through detritus via detritus feeding fish, and via 

direct the grazing of fish and invertebrates. Energy from algae, grazed by herbivorous 

invertebrates, is passed up the web through both fish and carnivorous invertebrates. 

When water levels are high (greater than about 1.5 m maximum depth) there is enough 

deep water that fish have a refuge in depth from the heaviest predation from piscivorous 

birds, so losses due to bird predation do no exceed replenishment through reproduction. 

There is no interchange of pool fauna other than birds because the pool is isolated from 
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other aquatic systems. Pool productivity is only exported at a low, but constant level, to 

other systems via birds. 

 

Scenario 4: Isolated freshwater pools with low water levels 

When maximum water depths in isolated freshwater pools fall below about 1.5 m (Fig. 

9.5) there is little refuge in depth and fish are forced into an ever decreasing volume of 

water. Piscivorous birds are greatly advantaged and congregate to take advantage of the 

abundant food supply. The first group to be impacted are the abundant, relatively small 

phyto-detritivores, and their abundance and density decreases rapidly, to the extent that 

they become a minor faunal component. Phyto-detritivorous fish are the major agents 

through which energy stored in the detritus pool and contained in living algae is passed 

into the food web. Consequently, their demise severely disrupts normal trophic 

functioning, eventually leading to ecosystem collapse. If phyto-detritivorous fish are 

totally eliminated, refill by local rainfall, without reconnection to other systems, will not 

result in re-establishment of normal ecosystem function, which can only be restored by 

connected to a source from which phyto-detritivorous fish can be replenished. The large 

number of piscivorous birds taking advantage of the abundant supply of fish export of 

much of the productivity tied up in fish biomass to other parts of the floodplain. 
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Implications and Uncertainties 
These food chain models are not precise statements of fact only interpretations based on 

information in the previous chapters, so depend on the various explicit and implicit 

assumptions made in those chapters. However, at a general level they seem robust and 

sensible consequences of the combined body of information. While they probably 

represent the general situation reasonably well, there are many potentially important 

aspects glossed over due to a lack of information (eg. the role of bacteria, the importance 

of organic material imported from beyond the immediate area of the pools). Obviously, 

more detail on temporal change and spatial differences would enhance the usefulness of 

the models.   

A number of specific issues are also likely to be important. For instance, the role of 

bacteria, details of the pathways of detritus formation and the patterns of isotopic 

fractionation are unknown and difficult to determine, but crucial to evaluating the 

importance of different dietary sources using stable isotopes (see Chapter 8). A second 

issue that needs to be addressed is the role of omnivory in food web structure. Omnivory 

is common in marine ecosystems and can introduce considerable complexity to 

apparently simple food webs (Polis 1991, Hall & Raffaelli 1993). 
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Chapter 10 

Spatio-Temporal Patterns of Fish Condition 
Marcus Sheaves and Ross Johnston 

 

Summary 
Standardised liver lipid vacuole area was evaluated as an indicator of sub-lethal 

changes in the health of fish in Fitzroy wetlands pools 

Estimates did not vary between pools but showed a consistent pattern of season-

related temporal change, negatively correlated with water temperature 

Evaluation of lipid vacuole area suggest it has the potential to be a sensitive indicator 

of fish nutritional status, with the potential for development into a useful index of 

sub-lethal impacts on fish health 

 

Introduction 
Periodic fish kills occur in both natural and constructed wetland pools. These events 

are catastrophic for the fauna, leading to massive decreases in abundance of 

ecologically important species that can lead to substantial changes in ecosystem 

functioning. These changes in function can lead to ecosystem collapse, and usually 

persist until the pool is again connected with a source of replacement fauna. In a broader 

context, fish kills often lead to greatly reduced nursery ground function.  

Fish kills also present a problem for humans in the vicinity of pools. Large numbers of 

rotting fish present a potential health hazard, and the odour of rotting fish usually leads to 

the implementation of an expensive clean-up operation.  

Fish kills are a symptom of poor environmental conditions in the pools. Some fish kills 

occur rapidly, with little warning (for instance when a storm cause a sudden input of 

water to a pool, redistributing anoxic bottom water throughout the water column, leading 
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to low oxygen levels throughout the water column). In other cases fish kills are the end-

point of slowly worsening conditions in a pool, for example, where salinity, temperature 

or pollution slowly increase to lethal levels. In such cases detection of degrading 

conditions is usually based on measured levels of physical parameters or pollutants. 

Unfortunately, in most situations the lethal levels of these parameters are poorly 

understood. There is even less understanding of the levels at which degradation of 

ecological function begins, or at which the point-of-no-return is reached. Moreover, levels 

of physical variables and pollutants are not evenly distributed in pools, and the 

behavioural patterns of mobile animals, such as fish, can result in individuals being 

exposed to a greater or lesser extent than would be suggested by measured levels. On 

top of this, the influence of chronic, low level inputs of pollutants or extended periods of 

slightly adverse environmental conditions are unknown.  

At the moment management is usually reactive; cleaning up dead fish or attempting 

to “save” distressed fish by translocating them to another site (there is little 

understanding of the effectiveness of this approach although it seems likely that many of 

the transported fish are already too badly affected to survive). Much more effective 

management could be implemented if forewarning of adverse changes was possible. 

However, the difficulties of linking levels of environmental parameters to faunal 

outcomes, makes it difficult to reliably detect environmental degradation before serious 

damage occurs. One promising option is to develop techniques of detecting sub-lethal 

effects on the fauna itself; measurements of changes in “health” or “condition”. Such 

detection could provide early warning of adverse changes before major faunal 

degradation occurred.  

Detecting changes in the condition (health) of fish has usually relied on measures 

based on the length-weight relationship. However, except in extreme cases, reductions 

in weight at a particular length are difficult to differentiate from natural variation. Beyond 

this problem, the relationship between length and weight is slow to change, meaning that 

fish kills often occur before there is any detectable change in the length-weight 

relationship. Consequently, more sensitive measures of condition are required. Among 

the most promising of these are measurements of biochemical condition that reflect 

changes in the nutritional status of the fish. This approach has been demonstrated to 

posses the necessary attributes of rapid, sensitive response to known changes in 

nutritional status (Molony & Sheaves 1998a,b, Green & McCormick. 1999).  
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Traditionally, the measurement of biochemical condition of fish has relied on 

biochemical assays of the level of lipids (the main storage product of fish) in the liver (the 

main site of lipid storage). However, this approach is expensive and time consuming, 

both in analysis and in the collection and storage of samples. A much cheaper and 

quicker option is to approximate lipid storage levels by estimating the relative proportion 

of the liver composed by lipid storage vacuoles.  

While this approach has promise of providing early warnings of the development of 

conditions likely to lead to fish kills, it has not previously been applied to this problem. 

Before it can be applied successfully it is necessary to know/understand; (a) the natural 

levels of variability within a species in one site at one time, (b) the sample size necessary 

to detect change, and (c) the normal, background patterns of variability due to natural 

(eg. seasonal) change.  

Aims  

This study represents the initial step in developing histological evaluation of lipid 

storage levels as an indicator of sub-lethal change in fish condition in wetland pools. In 

particular, it investigates the extent to which the biochemical condition of fish varies 

between wetland pools, how it responds to seasonal and environmental change, and the 

extent to which it might be useful to detect recognised environmental degradation. 

 

 

Methods 

Study Sites 

 Samples were collected from 10 wetland pools on the Fitzroy River floodplain, 

Frogmore and Woolwash Lagoons, Twelve Mile Brackish, Twelve Mile Downstream, 

Twelve Mile upstream, Munduran Saline, Munduran Downstream, Munduran Snake 

Pool, Gonong Saline and Little German Jack’s Lagoon (see Chapter 2 for pool 

descriptions).  

Sampling 

Initially livers of all predatory fish were collected from each pool at each sampling 

occasion for histological preparation.  A maximum of 7 of each species was collected 
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from each pool, at each time, to reduce the chance of adversely impacting the 

populations within the pools. At the completion of the third sampling trip (July 2004), it 

was clear that the abundances of predators were too low to reliably provide sufficient 

numbers of samples.  Only two species, the barramundi, Lates calcarifer, and the giant 

herring, Elops hawaiensis, occurred in reasonable numbers, and even these were 

abundant at only particular sites (Table 10.1). As a consequence, subsequent collections 

were expanded to include samples of the most abundant species in the pools, 

Nematolosa erebi, Mugil cephalus, Liza subviridis. Lates calcarifer was captured from 12 

mile brackish pool in all months, and E. hawaiensis in all months except February 2004, 

allowing investigation of changes in condition over the whole study period. Sufficient 

samples of N. erebi, M. cephalus, L. subviridis were also available from 12 mile brackish, 

for meaningful analysis in November 2004, February 2005 and May 2005. Some 

additional samples of a number of species were also available for these months for other 

sites (Table 10.1). 

 

Fish collected for analysis were kept in an ice-water slurry until dissection. They were 

returned to the laboratory as quickly as possible where the livers were dissected out and 

fixed in 10% Formalin for 2 weeks, then stored in 90% ethanol until histological 
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processing. Two samples of each liver were placed in wax and sectioned at a thickness 

of 6Fm, placed on glass slides and processed using a Haemotoxin and Eocene stain.  

Prepared slides were photographed at a magnification of 40x and stored as digital 

images, each representing an equal area of liver tissue. Lipid vacuoles appeared in the 

image as well defined round to oval bodies of lighter colour than the surrounding tissue 

(Fig. 10.1). The digital images were imported into the image analysis software, 

SigmaScan7Pro which was used to measure the total area of each image comprised of 

lipid vacuoles. Image intensities between the upper and lower intensities of the vacuoles 

were assumed to represent lipid material. Careful manual evaluation of 100 random 

images indicated that the amount of non-lipid material included between these thresholds 

was invariably small. Lower threshold levels used varied between 129 and 250 upper 

threshold levels between 67 and 210. The exact threshold levels varied from slide to 

slide because of slight differences in the thickness of sections.  

 

To overcome any biases introduced by the use of differing thresholds, the area of 

vacuoles on each slide was evaluated twice, with the slides processed in random order 

and with each slide identified by a numeric code that gave no direct information about the 

species, location or time of the section. If the estimated area of the two random 

measurements was within 1% the mean of the two estimates was used. If the estimates 
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varied by more than 1% two further estimates were made. If both of these were within 

1% of either original estimate, the outlying value was discarded and the mean of the 

other 3 estimates used. If the variability was still greater than 1%, the data was 

discarded.  The mean of the estimates from the 2 sections from each fish was used as 

the final estimate of vacuole per section for that fish. 

Statistical analysis  

For each species the influence of location, trip, salinity, water temperature, turbidity, 

pH and Dissolved Oxygen (DO) on estimates of vacuole area per section was evaluated 

using regression trees (De’ath and Fabricius 2000). The final trees were selected under 

the 1+SE rule using 10-fold cross validation (De’ath and Fabricius 2000). The 

relationship between the physical variables and mean vacuole area per section of L. 

calcarifer and E. hawaiensis at 12 mile brackish was further investigated using 

crosscorrelation.  

 The sample size needed to detect a difference in mean vacuole area per sections 

was estimated using the Power Analysis module in STATISTICA. For each species, 

estimation was based on detecting ½ the maximum difference between mean vacuole 

area per liver section using a t-test for independent samples (power = 0.8, " = 0.05) 

observed for fish from Fitzroy Wetlands Pools. Estimation was conducted for the (a) 

highest, (b) mean, and (c) lowest observed standard deviations for samples of fish 

comprising 5 or more individuals. 

 

Results 

Spatial and Temporal variation in Mean Liver Lipid Vacuole Area per 

section 

The final regression trees for all species indicated that location, salinity, water 

temperature, turbidity, pH and DO had little influence on vacuole area, with most of the 

variance explained best by timing of sampling (eg. N.erebi Fig. 10.2). In all cases fish 

from November 2004 had the lowest vacuole areas and May 2004 and 2005 the highest. 

February samples sometimes grouped with November 2004 and sometimes with May 

samples.   
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Nematolosa erebi showed very similar patterns of change in vacuole area from 

November 2004 to May 2005 at all sites where they occurred (all three 12 mile Creek 

sites, Frogmore and Woolwash Lagoons) (Fig. 10.3). Vacuole area was lowest in 

November 2004 and increased through February and into May. 

Although the data are more limited, the situation was similar for L. subviridis (Fig. 

10.4) and M. cephalus (Fig. 10.5). Where data were available, vacuole areas of fish were 

similar among sites at one time (the high value for L. subviridis in Munduarn brackish 

should be disregarded because that value is based on data from a single fish), and 

increased from November 2004 through February 2005 to May 2005. 

As with the previous species, L. calcarifer showed similar patterns in vacuole area 

between sites at any one time (Fig. 10.6).  

Although L. calcarifer was only captured in sufficient numbers to investigate temporal 

patterns at 12 Mile brackish, and E. hawaiensis was only captured at 12 Mile Brackish 

pool, they were captured in numbers at this location on all sampling occasions except 

February 2005 (when only 1 L. calcarifer was captured), providing a long time series of  
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data (Fig. 10.7). Again, the two species showed parallel patterns of change in vacuole 

area through time.  

Even though regression tree analysis showed an effect of trip but no overall effect of 

temperature on vacuole area, the situation is different when the sequence of mean 

vacuole areas is crosscorrelated with the sequence of water temperatures, with a clear 

negative correlation for both species (Fig. 10.7). The greatest vacuole area 

corresponded to times of low water temperature and the least to times of high 

temperature.  The crosscorrelation at a lag of 0 explains a substantial part of the effect of 

trip for both L. calcarifer (r = -0.82) and E. hawaiensis (r= -0.75). Mean vacuole area 

showed no substantial crosscorrelation with any other physical variable.  

 

Sample Sizes needed to detect changes in Lipid Vacuole Area per section 

The sample sizes needed to detect a difference in mean vacuole area per section at 

½ the maximum difference between mean vacuole area per liver section (t-test for 

independent samples, power = 0.8, " = 0.05) were estimated based on observed 

standard deviations from sample sizes of 5 or more (Table 10.2). Estimated sample sizes 

varied between 60 (M. cephalus) and 14 (L. subviridis and N. erebi) for the highest 

observed standard deviations, down to 19 (M. cephalus) and 3 (L. subviridis), with 



 

  

  

 

185 

estimated sample sizes between 36 (M. cephalus) and 7 (L. subviridis) for the mean 

standard deviation. 

 

 

 

Discussion 

Variation in Biochemical Condition of Fish in Fitzroy Wetland Pools 

Even though the Fitzroy Pools represent an eclectic group of environments, differing 

in salinity regime, physical connectivity, location and environmental setting, there was no 

indication of systematic variation in biochemical condition (as measured by vacuole area 

per standard section of liver) between sites. Furthermore, biochemical condition showed 

the same distinct pattern of seasonal change across pools, with high values of liver 

vacuole area corresponding to times of lowest water temperature (Fig. 10.7).  

Experimental evidence shows that the biochemical condition of fish is strongly 

influenced by physiological stressors, such as poor nutrition (Molony & Sheaves 

1998a,b). Thus, the similarities between diverse sites in the present study suggest that 
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the fish, and the food webs and wetland pools that support them, were healthy and 

functioning within environmentally suitable limits.  

This does not mean that the fish faunas of all Fitzroy wetland pools are equally health 

or that the pools and their fauna are not under threat from forces that cause degradation 

but do not produce changes in health. The study pools were chosen because they 

appeared to have no major barriers to physical connectivity, and because they could be 

accessed reliably. Consequently, the study can not be taken to represent the situation in 

poorly connected pools or pools where conditions or land holders made access difficult; 

exactly the types of pools likely to provide unhealthy environments for reasons such as 

poor exchange of water, high levels of pollution or eutrophic conditions. Additionally, 

conditions such as reducing water levels may lead to less habitat space but no 

detectable reduction in condition, because shallowing depths make the fish more 

vulnerable to bird predation so keeping fish numbers in balance with the available 

feeding area or volume. Similarly, the study pools that did develop adverse conditions 

(the 2 German Jack’s Lagoons developed very hot and hypersaline conditions) likely to 

lead to decreased health of their faunas, were very shallow meaning their fish fauna was 

consumed by piscivorous birds before conditions became extreme.  

 

Usefulness of Biochemical Condition as a Tool for Detecting Adverse 

Faunal Change 

The similarity in liver lipid vacuole area between sites indicates it is a reliable, 

repeatable measure. The clearly detectable pattern of temporal change, strongly 

correlated with water temperature, an important driver of physiological processes (Begon 

et al. 1990), suggests that this measure of biochemical condition reliably reflects real 

physiological changes. It also indicates that this measure varies substantially and 

predictably, prerequisites for any useful measure of change. The strong cross-

correlations at a lag of 0 further indicate that the responses are rapid. The ability to 

reflect seasonal change strongly suggests that lipid vacuole area should provide clear 

indications of adverse changes in health of fish in wetland pools because such changes 

should be greater than the observed seasonal change, which by definition is within 

natural variation. Previous studies have shown substantial changes in liver vacuolation 

resulting from changes in nutritional status (Green & McCormick 1999, Salhi et al. 1999, 

Caballero et al. 2004) and pollution (Saleh & Hamza 1986, Arellano et al. 1999) above 
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those produced by seasonal effects such as temperature (Molony & Sheaves 1998a,b). 

These factors point to liver lipid vacuole area as a useful tool for detecting stress-induced 

changes in fish in wetland pools at a sub-lethal level, and therefore a potentially useful 

index of pool biological health. The response to seasonal change has one further 

consequence; any study of biochemical condition would need to account for this water 

temperature related variation. 

Despite this potential usefulness, lipid vacuole area of N. erebi, the dominant fish in 

all the freshwater sites, showed no difference in May 2005 at Woolwash lagoon 

compared to the other wetland pools (Fig. 10.3). This was despite a massive reduction in 

numbers in Woolwash that led to fish kills beginning in September 2005. This is not 

surprising, because liver lipid levels reflect nutritional status (Green & McCormick 1999, 

Salhi et al. 1999, Caballero et al. 2004). The reduction in numbers in Woolwash occurred 

when the pool level fell to a point where piscivorous birds, such as pelicans, Pelecanus 

conspicillatus, became very effective (in May 2005 numbers were so low that it was 

difficult to collect the small number of fish needed for lipid vacuole studies). 

Consequently, the numbers of N. erebi were probably kept to a level where resources 

were not limiting, so unlikely to produce a response in lipid levels. Clearly, lipid vacuole 

area, or any other measure of biochemical condition, is an unsuitable index of pool 

health in such a situation. However, its ability to reliably reflect physiological change 

make it potentially very useful for the detection of degradation due to effects such as 

pollution or low oxygen levels, in situations where events such as increased predation 

due to reducing water levels do not complicate the situation. 

Based on the range of standard deviations observed during the study, the sample 

sizes needed to detect a reasonably conservative change (1/2 the maximum change 

seen in the study) is manageable (between 7 and 36 samples for the average standard 

deviation, depending on species). The actual sample sizes needed may be even lower 

because the standard deviation of the estimates is likely to fall as operators become 

more experienced.  

 

Conclusion 
This study represents the initial step in developing histological evaluation of lipid 

storage levels as an indicator of sub-lethal change in fish condition in wetland pools. 

More work is needed, but the results so far indicate the approach may provide a reliable 



 

  

  

 

188 

and cost effective tool for detecting changes in the health of fishes in wetlands pools, in 

response to such stressor resulting in changes in nutritional status, before the stresses 

become critical. 
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Chapter 11: 

Within-Pool Distribution of Aquatic Vertebrates 
Ross Johnston and Marcus Sheaves 

 

Introduction 
 The most noticeable and contentious byproducts of human developments of 

waterways are habitat degradation and loss (Holland et al. 2004). As a consequence, 

understanding habitat preferences of fish is central to managing waterways and 

wetlands. Understanding how fish are distributed relative to available habitat types has 

another benefit; it allows sampling to be more directly focused on target species, so that  

population parameters (density, species richness, relative abundance) can be more 

reliably estimated because sampling can be tailored to best represent the range of 

habitats and species available in a target area.  Additionally, because distribution is 

frequently inter-related with trophic function (Sheaves & Molony 2000), understanding 

distribution, in conjunction with knowledge of diet, enhances the understanding of energy 

flows through and within systems. 

 Prior wetland research in tropical Australia has examined in-stream fish assemblages 

while off-stream/isoloated pools have been largely ignored. At best, studies have 

examined the compositions of fish assemblages in isolated pools and related differences 

in composition among pools to differences in broad scale habitat characteristics of the 

pools (e.g. Arthington et al. 2005). Globally, studies investigating spatial distributions of 

fish within pools have been focused on specific interactions among biota such as 

predator/prey relationships (e.g. Skov et al. 2002), have only considered a small range of 

habitats (e.g. Romare et al. 2003), were single species studies, or focused on a single 

spatial scale (Essington & Kitchell 1999). Studies mapping the spatial distribution of fish 

assemblages within lakes/pools and encompassing all habitat types and spatial scales 

are rare, particularly for shallow waterbodies such as those on the Fitzroy River 

floodplain. 

  This component of the study sets out to examine and describe the within-pool spatial 

distribution of the numerically dominant fish species in the Fitzroy Floodplain Wetland 

Pools. To achieve this, predictive models will be developed from existing literature and 

tested in the Fitzroy Wetland pools. Available literature predominately relates to large, 
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deep, stratified waterbodies in the northern hemisphere (eg. Mehner et al. 2005).  

While it is unlikely that information from those systems is wholly appropriate for 

tropical and sub-tropical, pools with little or no stratification, the absence of more 

appropriate literature models derived from these systems provide the best 

starting point available.  

 Previous literature suggests open water and deeper habitats are likely to 

contain a mix of pelagic planktivores (Skov et al. 2002), detritivoresand large 

benthivores (Diekmann et al. 2005) and pelagic piscivores (Mehner et al. 2005). 

In shallower edge-associated habitats we may expect to see pelagic planktivores 

(Lewin et al. 2004) and detritivores (Pusey and Kennard 1996) again as well as 

small (Lewin et al. 2004) and large (Pusey and Kennard 1996) benthivores and 

large site attached piscivores (Skov et al. 2002). Clearly, there is substantial 

overlap of trophic categories across habitat types. Moreover, different studies 

report different habitat preferences for the same species in different regions 

(Skov et al. 2002; Lewin et al. 2004). Such inconsistency in distributions within 

temperate regions makes biomasses and/or density distributions for tropical/sub-

tropical systems difficult to predict. Moreover, extrapolating from these studies to 

Australian tropical/sub-tropical systems at a taxonomic level provides little useful 

information. Fortunately, fish sampling conventions in Australian freshwater 

studies provide some useful clues to build on. Most Australian freshwater fish 

studies restrict sampling to edge habitats (e.g. Arthington et al. 2005) thus tacitly 

implying that there are few fish in deeper, more open waters. If this is the case, 

with the exception of pelagic piscivores (generally low abundance species), both 

biomass and abundance in a given pool is likely to be concentrated around 

shallow edges (Fig. 11.1). A model such as this is convergent with models based 

on the distribution of estuary fish assemblages in tropical Australia (Blaber et al. 

1989; Johnston & Sheaves unpublished data) (Fig. 11.2). Given this, these 

estuary models seem appropriate conceptual starting points for understanding 

fish distribution in the Fitzroy Floodplain Wetland pools. 

 

Methods    

Sampling gear 

 Cast nets (18 mm monofilament mesh; 4.29 metre diameter) were used to 

sample fish in the pools under the net use protocols set out in Chapter 4 and 

Johnston et al., (submitted). 
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Sampling design 

 Nets were deployed in pairs along transects across the pool. Transects were 

spaced approximately evenly along the navigable length of the pools, and 

between nine and fifteen transects (depending on pool length and depth at the 
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time of sampling) were sampled on each sampling occasion. For Munduran and 

Gonong Saline pools, 12 Mile Brackish and Woolwash Lagoon three pairs of 

nets were collected along each transect (one pair from each edge and one pair 

mid-pool). The greater width of  Frogmore Lagoon allowed the collection of five 

pairs of net samples  spaced along each transect (one pair from each edge and 

one pair from quarter, one from half and one from three quarter distance along 

each transect). The sampling design was first employed in Frogmore in July 

2004. Initial success led to its introduction for subsequent trips to 12 Mile 

Brackish, and Munduran and Gonong Saline (Table 11.1). Sampling was only 

carried out in Woolwash Lagoon on one subsequent occasion and the sampling 

design was also applied there. These five pools were used because they were 

wide enough to allow cross-pool transects to be sampled with sufficient distance 

between edge and middle areas to maintain the spatial independence of 

samples.  

 

Statistical analysis 

Univariate C&RTs (De’Ath & Fabricius 2000) were used to examine the taxon 

specific responses to the predictor variables for each of the pools. 

Independent/predictor variables used in C&RT analyses were: Trip, longitudinal 

position in pool (transect), cross-pool position (coded as 0-50-100 where 0 = one 

bank, 50 = mid pool, 100 = the opposite bank), size class and depth.  For all 

models response variables (counts) were log(x+1) transformed to limit the 

influence of occasional nets with very high abundances (Gauch, 1982). Final 

C&RT models were selected using cross validation and the 1-SE rule (De’Ath 

and Fabricius 2000), or where the 1-SE tree only produced a single split 

(suggesting  an overly simplistic model) the next largest tree was chosen. 
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Results 

Frogmore Lagoon 

 The distribution of Nematolosa erebi in Frogmore Lagoon was primarily 

determined by depth, with most fish captured in  water depths greater than 0.95 

m; mean abundance per net 0.086 at depths less than 0.95 m and 0.37 at depths 

greater than 0.95 m (Fig. 11.3). Although cross-pool position was highly 

correlated with depth, position was not an important variable for describing the 

distribution of N. erebi. Secondary splits indicated there was little detail in the 

February and May 2005 samples, when few fish were recorded or for fish over 

100 mm (FL) for July and November 2004. However there was a high level of 

detail for the smaller size classes (< 100 mm FL) in the July and November 2004 

samples. During those months small fish (< 100 mm (FL) were more abundant in 

transects at the downstream end of the Lagoon (transects 1-4), and generally at 

depths greater than 1.65 metres. The depth-related pattern of distribution of N. 

erebi remained fairly consistent in the July and November 2004 trips and in May 

2005 (Figs. 11.4,5). However distribution patterns were less distinct in May 2005 

and possibly different in February 2005, trips when numbers of fish were quite 

low so any interpretation must be treated with caution. 
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 Low numbers of large N. erebi (> 100 mm FL) mean descriptions of their 

distribution are less conclusive than those of the small fish, however there were 

clearly and consistently higher abundances recorded from the deeper water in 

the central part of the Lagoon (Figs. 11.6,7).  

 Depth also played a pivotal role in the distribution of Amniataba percoides 

(Fig. 11.8), and the short-necked tortoise, Emydura krefftii (Fig. 11.9). Amniataba 

percoides were recorded in highest numbers at depths less than 0.85 metres 

particularly in transects associated with the highest densities of trees along the 

shoreline (transects 5-10). Emydura krefftii were most abundant at depths less 

than 0.75 metres, particularly the eastern edge (positions 0 & 25) of the 

downstream portion (transects 1-8) of the Lagoon. 
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Woolwash Lagoon 

 The initial split in data for Nematolosa erebi in Woolwash Lagoon separated 

the large (> 100 mm FL) from the small (< 100 mm FL) size classes (Fig. 11.10). 

Secondary splits indicated that depth was the most important explanatory 

variable for the larger fish, followed by longitudinal location in the pool. Highest 

abundances occurred at depths greater than 1.15 metres, and particularly in the 

downstream transects (1-7). However the lack of deep water in most of those 

transects meant that almost all fish were concentrated between transects 5 & 7 

(Fig. 11.10). Smaller fish were most influenced by longitudinal location (transect 

9 had highest abundances) (Fig. 11.10). The highest abundances of both large 

and small N. erebi coincided with the deepest water in the Lagoon at the time of 

sampling; the only transects with depths over one metre were transects 7, 8 and 

9, and fish were only recorded from the middle (50) cross-pool position. There 

seems little doubt that depth was the reason why fish were so concentrated at 

the centre of the pool. 
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12 Mile Brackish pool 

 The initial division of Nematolosa erebi data was based on size class, with 

size classes of 50 mm FL and greater placed on the low abundance left hand 

tree (Fig. 11.11). For the small (< 50 mm FL) N. erebi in the 12 Mile Brackish 

pool depth was the most important factor. Highest abundances were recorded 

from the deeper upstream transects 8-17 at depths less than 2.6 metres. 

 Selenotoca  multifasciata were initially split by size class, providing an 

indication that there were relatively few fish in size classes larger than 100 mm 

FL (Fig. 11.12). For the smaller individuals (< 100 mm FL) higher abundances 

were apparent down the western side of the pool, particularly towards the ends 

of the pool. 

Munduran Saline pool 

 Few Liza subviridis were present in Munduran Saline in February 2005 (first 

split), and few larger fish (> 125 mm FL) were present in any trip (Fig. 11.13). 

The smaller fish were most abundant in the downstream half of the pool 

(transects 1-10) and at depths less than 1.25 m. Gerres filamentosus distribution 

was most strongly influenced by depth, with highest abundances at depths less 

than 0.45 metres (Fig. 11.14).  
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Gonong Saline pool 

 In the Gonong Saline pool, the factors with the strongest influence on the 

distribution of Liza subviridis and Gerres filamentosus were not the same as in 

the Munduran Saline pool. Depth exerted the stronger influence on the 

distribution of Liza subviridis in the Gonong Saline pool with depths less than 
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0.25 metres holding highest abundances (Fig. 11.15). The principal influence on 

G. filamentosus was longitudinal position in the pool, with most fish in transects 2 

& 3. Depth had a minor influence on G. filamentosus distribution in Gonong 

Saline (higher abundances at depths greater than 0.45 metres) (Fig. 11.16), the 

opposite response to that in Munduran Saline. 

Summary of spatial factors influencing distribution and revised 

distribution models 

 Depth was the most influential factor across the range of species 

investigated, however there were some inconsist patterns for some species 

among pools (Table 11.2). Depth was important for small  Nematolosa erebi in 

Frogmore and large and (probably) small N. Erebi in Woolwash  (moderately 

sloping basins [Chapter 2]). Transect (position along the pool) was more 

important for small N. erebi in the 12 Mile Brackish pool. Depth was not 

important for Liza subviridis in Munduran Saline, but was important in Gonong 

Saline. For Gerres filamentosus, depth was important in Munduran Saline but not 

in Gonong Saline. Transect (position along the pool) and position (cross-pool) 

was more influential than depth in 12 Mile Brackish, a steep-sided basin 

(Chapter 2) and the two erosional/depositional pools, Munduran and Gonong 

Saline (Chapter 2). 
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 In general, the estuary model of fish distribution (Fig. 11.2) adequately 

described the distribution of most species of fish in each of the pools examined 

but there was one important deviation from the predicted model. When N. erebi 

were present in pools (freshwater and brackish pools only) they produced a 

strong spatial shift in the distribution of abundances and biomass; N. erebi 

dominated numbers and biomass in most pools where they were present 

(Chapter 5), but their preferred habitat was the deeper open water areas of pools 

and they were rarely recorded from shallow edges. For species other than N. 

erebi, the estuary models provide useful descriptions (Fig. 11.2). 

  

Discussion 
 For many species of fish that use tropical/sub-tropical estuaries, highest 

abundances of small individuals (< 100 mm FL) are found in water less than 1.5 

metres deep along channel edges(Johnston & Sheaves unpublished data). 

Consequently, taking into consideration fish sampling conventions from 

Australian freshwater fish studies, a model of fish distribution was predicted for 

floodplain pools on the Fitzroy River delta (Fig. 11.1) based largely on fish 

distribution patterns from tropical estuaries (Fig. 11.2).  

 As predicted by the model availability of shallow water was important for most 

species in the floodplain pools of the Fitzroy River delta. Barred grunter, 
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Amniataba percoides, and short-necked tortoise, Emydura krefftii, each had 

distribution patterns in line with the preliminary conceptual model (Fig. 11.1), and 

thus similar to most estuarine fishes; they were strongly associated with shallow 

water along pool edges (Figs.11.11. 8,9).  

 In the saline pools, Munduran and Gonong, mullet, Liza subviridis, and whip-

fin silver biddy, Gerres filamentosus, were influenced by different factors in each 

pool (Figs. 11.13-16). Such inconsistency in results could indicate that those two 

species were not responding to any of the factors analysed. Previous studies 

have shown that in tropical estuaries both species occur in high abundances in 

water less than 1.5 metres deep along channel edge s(Johnston & Sheaves 

unpublished data). However, because there were few areas in either Munduran 

or Gonong Saline where water depth exceeded 1.5 metres (Chapter 2) it is likely 

that depth-related distribution patterns break down and alternative factors 

influence distribution.  

 In contrast to the other species, and not predicted by the conceptual model 

(Fig. 11.1), bony bream, Nematolosa erebi, showed a clear preference for 

deeper water in Frogmore (> 0.95 metres) and Woolwash (> 1.15 metres) 

Lagoons (Figs. 11.3-7, 10).That deeper water association was evident across the 

spectrum of fish size classes although depth appeared to be less important for 

small (< 100 mm FL) N.erebi in Woolwash Lagoon. However N. erebi in 

Woolwash were only found in the small remaining area of deeper water 

(maximum depth 1.4 metres). Although this is not a definitive argument for a 

depth effect, few fish were present in water less than one metre deep.  Although 

depth was not the most influential factor for N.erebi in all pools where they were 

present, the contour plots indicate that they are rarely recorded from water less 

than one metre deep. Moreover, it was clear that the preference of N. erebi for 

deeper water was consistent among pools and over time.  

 Depth was important for small N. erebi (< 50 mm FL) in 12 Mile Brackish, but 

whether this result indicated a preference for shallow or deep water was not 

clear (Fig. 11.11). The C&RT analysis indicated a preference for water less than 

2.6 metres deep, however the 12 Mile Brackish pool differs structurally from the 

other pools where N. erebi were present because this pool is a steep sided basin 

(Chapter 2) that lacks extensive areas of shallow water. Given this, if shallow 

water was the preferred habitat of N. erebi there should be high abundances of 

small fish in the shallow water that is available. This was not the case and high 

abundances were concentrated in the deeper upstream end of the pool. 

Examination of more complex tree models than the model presented indicated 
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that small N. erebi are most abundant at depths between 0.8 and 2.6 metres.  

 It is often stated that shallow water provides an advantage for small fishes 

because shallow water excludes large piscivorous fishes (Moreton et al.. 1987; 

Patterson & Whitfield 2000). The preference for deeper water indicates that N. 

erebi probably do not use shallow water as a refuge from piscivorous fishes. 

However, there are indications that N. erebi populations may be susceptible to 

high mortality from piscivorous birds when deep water is not available. By the 

concluding months of this study Woolwash and Frogmore Lagoons had dried out 

to a point where there was little water over one metre deep remaining in the 

pools (Chapter 3). Once water levels reached those low levels, abundances of N. 

erebi dropped markedly (Chapters 4, 5) and that drop in abundance coincided 

with the presence of large flocks of pelicans (Chapter 12). Because pelicans feed 

from the water surface (Derby & Lovvorn 1997; Kaeding 2002) it appears that 

fish can gain refuge from predation by pelicans by remaining in deep water 

(Pusey et al. 2004) because substantial declines in abundance were only 

recorded once maximum pool depths dropped to a little over one metre (Chapter 

3). Consequently, if predation risk is an important factor in determining the 

distribution of N. erebi it appears that refuge from piscivorous birds is more 

important than refuge from piscivorous fishes.  

 The preference N. erebi has for deeper water also raises the possibility that 

their relative abundance has been under represented in earlier studies because 

fish sampling was frequently limited to pool and stream edges. Had sampling 

been confined to edges in the present study the number of N. erebi recorded 

would have been substantially lower. Failure to adequately represent a species 

that had such a major contribution to pool faunas (N. erebi dominated both 

numbers and biomass in pools where they were present) would have major 

implications for interpretation of assemblage composition, trophic structure and 

food web dynamics. 

 

Conceptual models of fish distribution in floodplain pools: 

 The distribution of fishes in the floodplain pools of the Fitzroy River delta can 

be described by relatively simple models, with initial separation of the models 

based on the presence or absence of N. erebi (Figs. 11.17- 11.19). For most 

species depth was the most important factor in determining where fish occurred 

in a pool (Table 11.2). Consequently, pool profile (Chapter 2) is also an important 

consideration because it interacts with the availability of different depths within a 
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pool. In response to this models are included to account for the different pool 

profiles. 

Species other than Nematolosa erebi (Fig. 11.17): 

 Pools with shallowly sloping, steeply sloping and erosional/depositional 

profiles tend to have highest abundances and highest biomass of most species 

in the shallow edge habitats and have few fish in deeper open water areas.  In 

addition, biomass and abundance of most species is higher along depositional  

(lower angled) banks than on erosional banks when pools have 

erosional/depositional profiles. However this pattern is disrupted when pools lack 

extensive areas deeper than 1.5 metres. Irrespective of pool profile, when depths 

are less than 1.5 metres fish abundance and biomass are likely to be relatively 

evenly distributed around the pool because species with a strong shallow water 

preference may disperse more generally throughout the pool. 

 

Nematolosa erebi (Fig. 11.18): 

 The spatial distribution of N. erebi differed markedly from the predicted model 

which suggested highest abundances and biomass would be associated with 

shallow edges(Fig. 11.2). Instead, N. erebi abundances and biomass were 

concentrated in the deeper open water areas of shallowly sloping and steeply 

sloping pools (Chapter 2). However, N. erebi in were also recorded from pool 

edges in steep-sided basins where deep water was available up to the edge, 
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thus it was clear that spatial distribution was driven by depth rather than being a 

preference for open water. Consequently, should a pool have an 

erosional/depositional profile then highest abundances and greatest biomass 

should occur towards the steeper/deeper erosional bank. 

Pools with a species mix that includes N. erebi (Fig. 11.19): 

 Nematolosa erebi usually dominated both numbers and biomass when they 

were present in pools. Therefore, because they have a strong preference for 

deeper water, pools that hold populations of N. erebi have highest abundances 

and highest biomass in deeper water. This means shallow and steeply sloping  

 

 

 

basins have peak abundance and peak biomass around the middle of the pool, 

or towards the erosional bank in erosional/depositional pools. However those 

deeper habitats are likely to be low in species diversity compared to the 

shallower edge habitats. When pool profile is a steep sided basin and deeper 

water is available up to edges (e.g. 12 Mile Brackish pool) N. erebi distribution 

patterns become less distinct. As a consequence abundances and biomass are 

likely to be more evenly distributed around such a pool. Moreover, in the 
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absence of shallow water, species with a shallow water preference may also 

disperse more widely than they would when shallow water is available. It is also 

probable that shallow water/edge associated species will be concentrated in any 

areas of shallow water that are present in the pool but this is unlikely to have 

much influence on the overall model because of the extent to which N. erebi 

usually dominate abundances and biomass and because of the relatively small 

area of shallow water. 
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Chapter 12: 

Assessment of the role of bird predation on fish 
assemblages within floodplain wetlands of the lower 
Fitzroy River 

 

Wayne Houston 

 

Introduction 
Bird piscivores have the capacity to be a major pathway for consumption of 

freshwater fish stocks and the assessed importance of this consumption in 

removal of economic fish stocks ranges from high (e.g. Madenijian and Gabrey 

1995, Veldkamp 1995, Johnson et al. 2002) to a relatively minor impact (e.g. 

Nilsson and Nilsson 1976, Linn and Campbell 1992, Hebert and Morrison 2003).  

There has been extensive debate as to the importance of bird piscivores as 

significant consumers of fish stocks and the assumptions upon which many 

studies are based (e.g. Draulans 1988).  In Europe, cormorants are thought to 

contribute positively to ecosystem functioning by keeping eutrophic waters free 

from dense fish stocks (Van Eerden et al. 1995). 

Bird piscivores may have an important role in export and movement of fish 

biomass from floodplain wetlands to other ecosystem components (e.g. Bulla et 

al.1990, Hebert and Morrison 2003, Stevens and Montague 2005).  Such 

movements provide trophic linkages that may be important to the ecology of the 

ecosystems within which they occur and are likely to be of intrinsic value in 

ecosystem functioning over and above any detrimental impacts on fish stocks.   

Substantial populations of waterbirds occur in association with lower Fitzroy 

River floodplain wetlands (including river backwaters) and numbers around 

30,000 have been found in two surveys (October 1994 – Houston and McCabe 

1996; October 2003 – Jaensch 2004).  These waterbirds included several 

species that use fish for food (piscivores) including pelicans, raptors, grebes, 

darters, cormorants, terns, egrets and herons.  Some of these species were 

abundant (populations > 100) and would be capable of causing heavy losses in 
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single wetlands.  However, the impact of birds on wetland fish populations is 

likely to be highly temporally variable at any single wetland and spatially variable 

across the wetlands within the region (over one hundred wetland sites have been 

identified, Houston and McCabe 1996).  As an example, cormorants have been 

found to be highly aggregated at all scales of observation and were associated 

with short-term patches of food and therefore patterns of abundance follow 

boom-bust cycles linked to their prey (Dorfman and Kingsford 2001). Thus, it is 

unlikely that direct observational techniques on fish predation by bird piscivores 

would be likely to succeed in quantifying the impact of bird predation on fish 

populations.  However, it is possible to link patterns of fish abundance within 

wetlands to patterns of bird piscivore abundance (Kushlan 1976, Bulla et al 

1990, Stevens and Montague 2005) and this approach will be used in this study 

as a tool for assessing the importance of bird predation on fish stocks. 

Another approach for assessing the importance of bird piscivores to fish 

consumption is to use traces such as droppings or regurgitated pellets to assess 

the diet of target species.  Fish hard parts within both droppings and pellets such 

as otoliths have been used extensively in bird piscivore dietary studies enabling 

fish species composition and relative abundance to be quantified (Blaber and 

Wassenberg 1989, Marquiss and Leitch 1990, Platteeuw and Van Eerden 1995, 

Veldkamp 1995, Johnson and Ross 1996, Johnson et al. 2002, Casaux 2003).  

Current isotopic studies by other CRC members using strontium and / or carbon 

isotopes may also contribute to an understanding of bird diets and origin of 

primary production upon which they depend.   

The broad aim of the study is to contribute to a better understanding of the 

ecology of delta floodplain wetlands in tropical Queensland and their role in 

supporting fish stocks important to Barramundi production.  Objectives are: 

1. To provide an improved basis for understanding the ecology of bird piscivores 
associated with delta floodplain wetlands; 

2. To provide a quantitative basis for estimating bird piscivore abundance, 
seasonality and habitat usage in delta floodplain wetland habitats during the late 
dry to post-wet season corresponding to usage of these wetlands as nursery 
areas for Barramundi; 

3. To provide a basis for estimating relative importance of bird piscivores as fish 
consumers, their ecological role and contribution to potential fish consumption 
rates within these habitats;  

4. Collect droppings and pellets (regurgitated hard parts) which will then be 
available for colleagues to determine their potential for identifying species and 
relative abundance of fish eaten e.g. by identification of hard parts such as 
otoliths, or isotopic analysis (strontium, carbon); 
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5. Develop a model describing the ecology of the wetlands and associated bird 
piscivores. 

Literature Review 
Waterbird assemblages present within the lower Fitzroy River wetlands including 

delta floodplain wetlands were surveyed in October 1994 and October 2003 

(Houston and McCabe 1996, Jaensch 2004).  Both studies reported about 

30,000 waterbirds and 70 species of waterbirds from around 60 sites although 

sites surveyed varied as a consequence of differences in sites with and without 

water.   

Two broad ectotypes were sampled during these Fitzroy River floodplain surveys 

– freshwater wetlands above tidal influence and delta wetlands bordering the 

estuarine section of the river representing an area of overlap between freshwater 

and marine wetlands (Fitzroy Delta floodplain wetlands).  These wetlands were 

characterised by Wright (1968, p. 134) as "...extensive back plains traversed by 

a dense network of distributary channels and discontinuous linear depressions".  

Several wetlands in this sector were created by damming drainage lines at the 

head of tidal influence. 

The importance of the Fitzroy Delta floodplain wetlands is demonstrated by a 

substantial contribution to waterbird abundance in both the 1994 and 2003 

censuses (25% and 16% respectively).  Contribution by piscivorous species was 

similar in both studies 14 to 15 % and restricting analysis to the Fitzroy Delta 

wetland component in 2003 showed that 11% of waterbirds were piscivores.  

Most abundant piscivores were Australian Pelicans, Little Black Cormorants and 

Little Pied Cormorants with substantial contributions also from Gull-billed terns, 

White-faced Herons, White-necked Herons, Australasian Grebes, Great Egrets, 

Intermediate Egrets, Darter and Brolga. 

A post-wet season study targeting egret distribution and abundance on floodplain 

wetlands was carried out in May 1996 to complement these two dry season 

censuses (Houston and McCabe 1996).  Great Egrets doubled in numbers 

compared with October 1994 while Intermediate Egrets increased 5-fold 

indicating their potential to be significant piscivores under favourable seasonal 

conditions.  Great Egrets were largely concentrated on shallowly inundated 

floodplain swales in open water plus drainage lines connecting deeper wetlands 

and were probably targeting fish moving upstream.  Intermediate Egrets were 

largely concentrated on shallowly inundated floodplain wetlands with emergent 

vegetation where frogs were abundant. 
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Relevant findings from these studies were: 

• The large area and numbers of wetlands present in the lower Fitzroy River 
region (over 150 sites comprising in excess of 10,000 ha); 

• The relatively large pool of waterbirds present within the region including 
substantial populations of piscivores (at least 4000 to 5000); 

• The importance of seasonal triggers such as inundation events following 
good wet season rains in influencing waterbird abundance; 

• That there is substantial interannual variation in the extent of the wet and dry 
seasons in this region; 

• Dominance of piscivore assemblages by Australian Pelicans and Little Black 
Cormorants. 
An assessment of the potential for direct predation of bird piscivores on 

Barramundi was undertaken.  Only one Australian study reported predation on 

Barramundi by bird piscivores – White Bellied Sea-eagles (Breeden & Wright 

1990).  Examination of overseas literature showed one Australian-occurring 

species with Barramundi in their gut contents – Darter in India (Mukherjee 1969).  

Clearly, direct predation on Barramundi is not likely to comprise a significant 

impact by bird piscivores on Barramundi stock.   

Predation on fish stocks that comprise Barramundi food fish by bird piscivores is 

the most likely impact by reducing the food supply for fish piscivores such as 

Barramundi.  Many common fish species within target wetlands in this study 

(Marcus Sheaves unpub. data) were also reported from stomach analysis 

studies of feeding habits of waterbirds in Australia.  Fish species found most 

frequently in gut contents of bird piscivores commonly found in central 

Queensland were the genera Carassius (goldfish), Anguilla (eels), Nematalosa 

(bony bream), Melanotaenia (rainbow fish), Acanthopargus (sea bream), 

Neosilurus (catfish) Leiopotherapon (grunter) plus Mugilidae (mullet) (Table 

12.1). 

Seasonal variation in dietary composition was demonstrated in Little Black 

Cormorants associated with inland lagoons in New South Wales (Miller 1979).  

Little Black Cormorants preyed primarily on Goldfish (Carassius auratus) during 

late summer and autumn with crustaceans (yabbies Cherax destructor) and fry of 

Redfin Perch (Perca fluviatilis) dominating in spring and early summer.  

Resource partitioning was demonstrated with Little Black Cormorants and Little 

Pied Cormorants targeting different prey species during the same season (Miller 

1979).  These species also fed in different parts of wetlands with Little Black 

Cormorants mostly in more open deeper water than Little Pied Cormorants that 

fed mostly in shallow vegetated wetland margins. 
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Size of fish taken as food was crudely estimated by examination of the HANZAB 

review compilation (Marchant & Higgins1990, Marchant & Higgins 1993, Higgins 

& Davies1996).  Most species took prey fish up to 18-23 cm length – cormorants, 

darters, Caspian Terns and Great Egrets.  Exceptions were larger waterbirds 

capable of taking larger fish prey such as Australian Pelicans, Great Cormorants, 

Whistling Kites and probably storks, Brolgas and sea-eagles (Table 12.2).  Some 

species took smaller fish up to about 8 -12 cm e.g. herons, Little and 

Intermediate Egrets, Whiskered Terns, and probably grebes.  However, for all 

species where average size data is available, preferred prey size, as indicated 

by average size data, was skewed towards the lower end of the size range of 

fish prey taken e.g. Darter average size range is 3 to 11 cm compared with 2 to 

20 cm size range of fish caught and Little Black Cormorants is 4 to 13.5 cm 

compared with 2 to 22 cm (Table 12.2). 

In order to provide an estimate of fish consumption rates by bird piscivores, a 

review of fish predation studies was also undertaken (Table 12.2).  Estimates of 

the percentage body weight that an average sized individual of a species 

consumed daily varied widely.  For example, estimates for Great Cormorants 
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varied from 9.5% to 21% and Draulans (1988) noted that much variation was due 

to problematic assumptions being made.  Barlow (1994) reviewed daily intake of 

fish in cormorants and found a similar range in variation for European studies of 

Great Cormorants to that found by Draulans (11.4% to 27%).  Estimates for 

another cormorant species, Double-crested Cormorants in North America, 

ranged from 8% when feeding chicks to 15% during the non-breeding season 

(Johnson et al. 2002).  As some of the Australian estimates (Table 12.2) were 

comparable to the figure of 20% daily consumption of body weight in food, stated 

by Barlow as the best estimator of food consumption for cormorants, it has been 

used in this study to estimate potential consumption of fish stocks.  However, 

given doubt regarding the derivation of these rates of food intake they should be 

treated with caution and provide a guide only.  For larger birds such as pelicans, 

no Australian data was available and so overseas estimates were used.  For 

African Great White Pelicans estimates of percentage body weight consumed 

per day ranged from 8.8 to 11.5% (Guillet & Furness 1985, Shmueli et al. 2000).  

Guillet and Furness (1985) suggest that a figure of 10% is appropriate for larger 

piscivores and this has been applied here.  For smaller birds, only one estimate 

for Little Terns was available (Brenninkmeijer et al. 2002) and this was 32% so a 

figure of 30% has been applied to smaller piscivores.   

Some general paradigms on waterbird abundance and environmental factors 

have been found: 

• A relationship between waterbird abundance and inundation following rainfall 
triggering breeding events (Halse and Jaensch 1989, Kingsford and Norman 
2002); 

• Waterbirds in the tropics breed predominantly in the wet season in 
association with increased food abundance (Kingsford and Norman 2002); 

• Size of wetland – larger sized wetlands supported higher densities of 
waterbirds (Breininger and Smith 1990, Kerekes et al. 1994); 

• Relationships between wetland vegetation structure and waterbird species 
assemblage composition (Hoyer and Canfield 1994, Halse et al. 1993). 
Bellio et al. (2004) noted that food supply, weather, habitat, predators and 

pathogens, nesting site availability and competition were all possible ecological 

drivers of waterbird population dynamics.  Kushlan (1976) in a study of bird 

wader piscivores (including Great Egrets) in shallow marsh wetlands in Florida 

found a relationship between water depth and wader density.  Wader 

aggregations increased greatly once pools were isolated and water depth fell 

below 0.75 m. Kushlan identified draw-down periods during the dry season as 

key drivers for increasing fish availability to piscivores and subsequent increases 

in wader density and fish consumption rates.  
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Similar findings were found in South American tropical wetlands with large 

increases in waterbird piscivore abundance as pools dried out (Bulla et al. 1990). 

Studies of saltmarsh wetlands in Florida identified marsh flooding as a 

consequence of tidal connection to the estuary and/or surface runoff from rainfall 

as key ecological drivers (Stevens and Montague 2005).  These connection 

events allowed fish migration into the marsh followed by a peak in bird piscivore 

density.  Stevens and Montague, like Kushlan, also identified draw-down of 

water levels below a certain depth causing concentration of fish in shallow 

waters as contributing to peaks in bird piscivore density although the relationship 

was not as strong as the initial connection to the estuary. 

A direct relationship between fish numbers and piscivore bird densities in lakes 

has been found (Whitfield 1978, Kerekes et al. 1994). 

Methods 

Waterbird Habitat Usage 

Six sites were selected (Figs 12.1 – 12.8) to coincide with fish study sites 

(Marcus Sheaves pers. comm).  These were classified according to level of 

connection to the estuary: 

• lower with frequent connection to the estuary (Gonong and Munduran 
Creeks); 

• middle with infrequent connection to the estuary during large tidal events 
(Twelve Mile Creek and German Jack’s Lagoon); and  

• upper with rare connection to the river, usually only during larger flood events 
(Frogmore and Woolwash Lagoons).   
Waterbird species and composition was surveyed monthly in the last week of 

each month from August 2004 to April 2005 and then again in July 2005 to 

encompass the late dry, wet and post-wet seasons coinciding with breeding and 

nursery usage by Barramundi.  An exception was January 2005 when German 

Jack’s lagoon was inaccessible due to weather conditions.  Waterbird surveys at 

the two lower estuary sites (Gonong and Munduran Creeks) were discontinued  
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Figure 12.1 Location of study sites 
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Figure 12.2 Munduran Creek  
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Figure 12.3 Gonong Creek 

 

Figure 12.4 Twelve Mile Creek - brackish pool 
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Figure 12.5 German Jack’s in October – November showing extensive draw-down and 

relatively gentle gradients.  Note the dead coolabahs. 

 

Figure 12.6 Waterbirds perching at the Woolwash.  Note the relatively steep sides 
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Figure 12.7 Frogmore Lagoon showing elongated shape and relatively steep sides 

 

Figure 12.8 Dead mussels exposed during draw-down period at Frogmore Lagoon in 

February - March 2005 

 

after January 2004 as waterbird numbers were consistently low at these two 

sites reflecting differences in ecology to the other sites. 
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When possible, salinity was measured using a field refractometer (BS Ellipse) 

and the % active wetland area (defined as the % of the wetland full level that is 

holding water including the muddy margins) recorded.  The latter is a surrogate 

for water depth. 

Pellet Collection 

In the 2005 wet season, searches for nesting piscivores were undertaken and 

two sites identified, one at Nankin Creek for Darters and Little Pied Cormorants 

and one at Murrays Lagoon for egrets (Great, Intermediate, Little and Cattle 

Egrets).  Circular flat pods lined with small-meshed shadecloth (Fig. 12.9) (0.6 to 

0.8 m diameter) were suspended under Darter and Little Black Cormorant nests 

at Nankin Creek and initially were checked daily for pellets and/or droppings but 

thereafter every second day over a fortnight.  At the egret colony at the Botanic 

Gardens, tarpaulins were suspended below target species (Great Egrets) but 

these were unsuccessful at collecting the target species. 

Pellets and droppings were sent to Marcus Sheaves for further analysis and will 

not be reported on further in this report (Appendix 1). 

Analysis 

Piscivores were classified according to their mode of feeding: 

1. Divers – Darters, cormorants and grebes; 

2. Scoopers – pelicans; 

3. Waders - egrets, herons, Brolgas and storks; 

4. Plungers – terns and kingfishers; and  

5. Raptors – White-bellied Sea -eagle, Osprey, Brahminy Kite, Whistling Kite. 
Months were classified into seasons based on long-term rainfall average data 

(BOM): 

1. Dry season – August to November 2004, and April 2005, July 2005; 

2. Wet season – December 2004 to March 2005. 
Fish consumption rates for waterbirds were based on body size (see literature 

review): 

1. small: < 300 g – 30% of body weight per day (small terns and kingfishers); 

2. medium: 300 – 3000 g – 20% of body weight per day (cormorants, darters, 
egrets, herons and most raptors); 

3. large: 3000 g – 10% of body weight per day (Australian Pelican, Brolga, 
Black-necked Stork and White-bellied Sea-eagle). 
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Ordination was used to graph relationships among sites based on waterbird 

composition and abundance. An ordination technique known as non-metric multi-

dimensional scaling (NDMS) was used (Clarke and Gorley 2001) to group sites 

based on their similarity. To remove the excessive influence of abundant species 

on similarity measures (Clarke 1993), abundance data were transformed 

(square-root) and sites compared using a Bray-Curtis similarity index (Clarke and 

Gorley 2001).  This type of analysis produces a scattergram where the distance 

between sites represents their dissimilarity and sites closer together are more 

similar than sites further apart.  The scattergram is considered interpretable in 

two dimensions if the stress level of the iterative process is < 0.20 (Clarke and 

Gorley 2001).  Combined with the ordination, a numerical classification (based 

on the same similarity index and appropriate transformation as used in the 

ordination plus group-average sorting) was used to define site groups (Clark and 

Warwick 1994). Cluster analysis aims to find groupings of sites such that sites 

within a group are more similar to each other than to sites in different groups 

(Clark and Warwick 1994).   

A multivariate equivalent to analysis of variance, ‘analysis of similarity’ (ANOSIM, 

Clarke and Gorley 2001), was used to test for effects of site group and season 

on waterbird species abundance assemblages.   

 

Results 

General 

Fifty-eight waterbird species of which 27 were regarded as piscivores were found 

during the study.  Greatest waterbird and piscivore abundance was at German 

Jack’s Lagoon while both Munduran and Gonong Creeks had very low waterbird 

abundance, piscivore abundance (all surveys < 10) and species richness 

compared with the other sites (Fig. 12.10).  Waterbird species richness reached 

peaks of 25 – 30 species for all four middle and upper estuary sites.  German 

Jack’s had the greatest range in abundance and species richness with few 

waterbirds present in October and November 2004.  
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Figure 12.9 Pellet collecting device suspended under a Darter nest, Nankin Creek 
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Figure 12.10 Monthly waterbird abundance, piscivore abundance and species richness at 

all sites  
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Divers were the most abundant guild (44% of total piscivore abundance) followed 

by scoopers (30%), plungers (13%), waders (10%) and raptors (3%) (Fig. 12.11). 

Scoopers and divers were the two dominant guilds within the middle and upper 

sites while lower sites were dominated by either raptors (Gonong Creek) or 

raptors and plungers (Munduran Creek) (Fig. 12.12).  Waders were important 

only at the two middle sites and this corresponded to wetlands that had large 

areas of relatively shallow edges making fish more accessible to this guild.  The 

substantial contribution of waders at Gonong Creek is misleading as it 

represents three Mangrove Herons only out of a total abundance from four 

surveys of 12 piscivores. 
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Figure 12.11 Guild composition of piscivores – Fitzroy Delta wetlands (% composition of 

total piscivore abundance) 
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Excluding the two lower floodplain sites (Gonong and Munduran Creeks), 

Australian Pelican and Little Black Cormorants were found in greatest average 

monthly abundance (approximately 30 per site) (Fig. 12.13).  All remaining 

species averaged < 10 per site (Figs 12.13-12.16) with Little Pied Cormorants, 

Pied Cormorants, Darters, Great Egrets, Gull-billed Terns and Caspian Terns 

averaging > 4 individuals per site.  Of the raptors, Whistling Kites and White-

bellied Sea-eagles were the most abundant (average of < 2 individuals per site). 

Population Ecology 

Of the dominant species (i.e. those with combined monthly totals for all sites > 

20) (Figs 12.17-12.31), only a few showed relatively constant monthly total 

numbers –Darter, Whistling Kite and White-bellied Sea Eagle.  The majority of 

species fluctuated in numbers from month to month.  This does not necessarily 

mean that these species left the region, as these species may have remained in 

the region but had moved to non-target wetlands.   
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Figure 12.12 Guild % composition of total abundance at each site 
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Figure 12.13 Average monthly abundance of scooper and diver guild species at each 

middle and upper site 
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Figure 12.14 Average monthly abundance of wader guild species at each middle and 

upper site 
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Figure 12.15 Average monthly abundance of plunger guild species at each middle and 

upper site 
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Figure 12.16 Average monthly abundance of raptor guild species at each middle and 

upper site 
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Three species had a seasonally significant change in abundance when 

abundances during wet and dry season months were compared – Australian 

Pelicans and Australasian Grebes were in greater abundance during the dry 

season while Pied Cormorants were more abundant in the wet season (t-test, P 

< 0.05).  Reasons for these patterns are not fully understood but may relate to 

breeding patterns and changes in habitat requirements when breeding. 

Some species were either largely confined to a single site or were dominant at a 

single site: 

• German Jack’s – Little Pied Cormorants, Gull-billed Tern, Caspian Tern,  

Great Egret, Little Egret and White-faced Heron; 

• Woolwash – Pied Cormorant, Sacred Kingfisher. 

 
The relatively greater number of species mostly restricted to German Jack’s 

reflects the unusual conditions provided at this site including: 
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1. relatively greater proximity to the sea; 

2. the relatively greater shallowness of this system compared with upper sites 

and therefore it has a greater expanse of shallow waters < 1 m providing  

greater accessibility for waders to their food; and 

3. greater salinities encountered at this site meant that it shared more in 

 common with lower estuary sites. 

 
Little Black Cormorants were extremely variable in their abundance with two 

peaks of > 300 birds with remaining months < 100.  This partly reflects this 

species feeding ecology whereby it forms large feeding flocks.  This species 

remained relatively abundant within the region with reports of several sightings of 

feeding aggregations in excess of 100 at non-target wetlands in the area (Robert 

Black, Rob McFarlane, Allan Briggs unpub. data). 

Scoopers 

Figure 12.17 Monthly counts of Australian Pelicans at each middle and lower site 
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Divers 

Figure 12.18 Monthly counts of Little Black Cormorants at each middle and lower site 
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Figure 12.19 Monthly counts of Little Pied Cormorants at each middle and lower site 
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Figure 12.20 Monthly counts of Pied Cormorants at each middle and lower site 
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Figure 12.21 Monthly counts of Darters at each middle and lower site 
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Figure 12.22 Monthly counts of Australasian Grebes at each middle and lower site 
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Waders 

Figure 12.23 Monthly counts of Great Egrets at each middle and lower site 
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Figure 12.24 Monthly counts of Little Egrets at each middle and lower site 
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Figure 12.25 Monthly counts of White-faced Herons at each middle and lower site 
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Plungers 

Figure 12.26 Monthly counts of Gull-billed Terns at each middle and lower site 
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Figure 12.27 Monthly counts of Caspian Terns at each middle and lower site 
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Figure 12.28 Monthly counts of Whiskered Terns at each middle and lower site 
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Figure 12.29 Monthly counts of Sacred Kingfishers at each middle and lower site 
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Raptors 

Figure 12.30 Monthly counts of Whistling Kites at each middle and lower site 
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Figure 12.31 Monthly counts of White-bellied Sea-eagles at each middle and lower site 
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Community Ecology 

Univariate Analyses 

Rockhampton rainfall was lower than average during the 2004-05 wet season 

(Fig. 12.32), with November 2004 and March 2005 much lower.  The same 

pattern of a reduced wet season in 2004-05 was found elsewhere in the region 

although differences in timing of rainfall can be expected for sites >20 km from 

the weather station (e.g. German Jack’s and Twelve Mile). 

Figure 12.32 Rockhampton rainfall August 2004 to July 2005 with long-term average (65 

years) 
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Twelve Mile Creek 

A combination of rainfall in early December 2005, and tidal ingress, indicated by 

an increase in salinity, led to inundation of the downstream area of Twelve Mile 

Creek in December (Fig. 12.33).  This corresponded to an upsurge in piscivore 

abundance.  Whether this was a response to inundation and fish breeding, 

recruitment of fish from the estuary or a combination of both is not known at this 

stage.  Smaller peaks in piscivore abundance were observed in April and May as 

water levels fell in response to evaporative processes. 
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Australian Pelicans were the dominant piscivore in most months including the 

December peak.  Little Black Cormorants and Darters were also relatively 

abundant from February 2005 as water levels fell. 

Figure 12.33 Monthly piscivore abundance (total and by dominant species) plus waterbird 

species richness at Twelve Mile Creek plus some salinity data and an index of inundation 

extent of the wetland (% wetland active) 
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As German Jack’s dried rapidly in the late dry season it became extremely 

hypersaline (160 ppt in October 2004) and this corresponded to a loss of all 

piscivores in October and November prior to the wet season rains (Fig. 12.34).  

Late December-January rainfall and a probable connection to the river in the 

same months led to an increase in the active area of the wetland and a fall in 

salinity from 160 ppt to 20 ppt in January 2005.  This corresponded to a peak in 

piscivore abundance.  Lesser peaks occurred in September 2004 and March – 

April 2005.  The March – April peak corresponded to a gradual drying of the 

wetland following inundation in January.  

The peak in January 2004 coincided with an influx of Little Black Cormorants 

(300+).  No single species dominated in other months and substantial 

contributions were made by Australian Pelicans, Great Egrets, Little Pied 

Cormorants and two species of tern (Gull-billed and Caspian).  The latter three 

species were relatively more abundant during the draw-down periods 

corresponding to minor peaks in September 2004 and March – April 2005.  
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Australian Pelicans also made substantial contributions to piscivore abundance 

in September and April 2005. 

Figure 12.34 Monthly piscivore abundance (total and by dominant species) plus waterbird 

species richness at German Jack’s plus some salinity data and an index of inundation 

extent of the wetland (% wetland active) (arrow indicates month not sampled) 
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Of all four regularly monitored sites, the Woolwash had the lowest potential for 

an inundation event and during regular wet seasons would be dependent on 

input via overflows from Frogmore when it received surface flows from Gavial 

Creek or in extreme flood events.  Some surface flow from its own small 

catchment was received in October 2004 resulting in a stabilized active area in 

October – November 2004.  Subsequent local surface flows associated with wet 

season rainfall either did not occur or were over-ridden by high evaporation 

associated with high summer temperatures. 

Piscivore abundance peaked in August 2004 with a flock of 400+ Little Black 

Cormorants observed feeding on Bony Bream.  After this large peak, reflecting 

the lack of inundation events (indicated by stable or falling active wetland area), 

piscivore numbers remained at stable level until February 2005 followed by a 

rapid decline in March – April associated with very low water levels.   

Australian Pelicans were relatively abundant from August to November 2005, 

peaking in November but with few or none found after that.  Pied Cormorants 
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seemed to follow an opposite trend and did not become important until 

December 2005 with a peak in February followed by a fall in numbers. 

Figure 12.35 Monthly piscivore abundance (total and by dominant species) plus waterbird 

species richness at Woolwash Lagoon plus some salinity data and an index of inundation 

extent of the wetland (% wetland active)  
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Frogmore is a much deeper system than Woolwash providing greater deepwater 

refugia for fish.  It also receives local catchment surface flows from Gavial Creek 

and at times connects to the river under extreme flood or tidal events.  October 

rainfall produced an increase in the active area in November 2004 and water 

levels fell only marginally during the remainder of the study period either 

reflecting local inputs and/or relatively low evaporation rates due to a greater 

degree of shading and deepness providing a lower surface to volume ration than 

at the Woolwash. 

Two peaks in piscivore abundance were observed, one in October – November 

2004 and one in April - July 2005.  These months corresponded to an inundation 

event following October rainfall (indicated by increase in % active wetland area) 

and draw-down following evaporative losses in April 2005. 

Figure 12.36 Monthly piscivore abundance (total and by dominant species) plus waterbird 

species richness at Frogmore Lagoon plus some salinity data and an index of inundation 

extent of the wetland (% wetland active)  
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Australian Pelicans were the dominant piscivore and maintained a relatively 

stable population of between 20 and 45 birds from August to November 2004 

followed by a decline and then resurgence to a peak in April 2005 and July 2005 

associated with draw-down.  Another dominant species at this site was Little 

Black Cormorants, particularly from August to November 2004 (20 – 40 birds).  

Pied Cormorants also made a contribution from October 2004 to April 2005 

(mostly between 4 and 6 birds). 

  

Overall the two upper floodplain sites, Woolwash and Frogmore, showed a 

similar successional sequence of piscivores: 

1. Little Black Cormorant; 

2. Australian Pelican. 
Using limited water depth data (Marcus Sheaves unpub. data) from each upper 

floodplain site to estimate depth at each sampling event, Little Black Cormorants 

peaked in abundance at approximately 3 m depth and Australian Pelicans at 

approximately 2 m depth in both sites (Fig. 12.37).  This suggests that foraging 

success of these two species may be linked with water depth of these upper 

floodplain wetlands with their target prey becoming accessible to them at certain 

depths.  
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Multivariate Analyses 

Analysis of similarity showed that both wetland location in the floodplain (upper, 

middle or lower) and season (wet or dry) significantly influenced piscivore 

species composition and abundance of sites (ANOSIM, R=0.502, P=0.001, 999 

random permutations and R=0.135, P=0.023, 999 random permutations 

respectively).  These results are shown graphically for floodplain location (Fig. 

12.38) and there is a clear difference between lower sites that have good 

connectivity (lower floodplain sites Gonong and Munduran Creeks) compared 

with the others.  The cluster analysis (Fig. 12.39) shows that both middle 

floodplain sites formed strong site groups (Twelve Mile and German Jack’s) 

while upper floodplain sites formed a mixed grouping.  There were exceptions 

and these were mainly those sites with < 10 piscivore individuals in a survey (all 

Gonong and Munduran Creek samples plus two German Jack’s (October and 

November 2004) and one Woolwash (April 2005)).  Removing these outliers 

helps to clarify the site relationships to highlight seasonal influences (Fig. 12.40).  

Dry season sites had less scatter indicating that they were more similar in their 

bird piscivore composition than the wet season piscivore composition of sites. 

 

Fish Consumption Estimates 

Based on estimates of percentage body weight consumed per day (< 300 g – 

30%, 300 to 3000 g – 20%, and > 3000 g – 10%), the fish biomass consumed at 

each of the four main wetlands was estimated. 

Guild overview 

The scooper guild accounted for over 50% of the estimated fish biomass 

removed and was the most dominant guild at all middle and upper sites except 

the Woolwash (Fig. 12.41). This site was dominated by the diver guild and this 

guild was the second greatest contributor to the removal of fish biomass.  The 

other three guilds were minor contributors. 
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Figure 12.37 Abundance of dominant species of piscivores at upper floodplain sites 

(upper panel) Woolwash and (lower panel) Frogmore as a function of depth at each 

site over time 
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Figure 12.38 Scattergram of the NMDS ordination (Bray-Curtis similarity index on 

square root transformed data) to show site relationships and influence of the relative 

degree of connection of sites to the river (lower=connects regularly, middle=connects 

on high spring tides; upper=connects rarely during flood events) 
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(GC=Gonong Ck, MC=Munduran Ck, TM=Twelve Mile Ck, GJ=German Jack’s, WW=Woolwash, 

FM=Frogmore) 
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12.39 Cluster analysis (group average sorting) to show grouping of sites 

(GC=Gonong Ck, MC=Munduran Ck, TM=Twelve Mile Ck, GJ=German Jack’s, WW=Woolwash, 

FM=Frogmore) 
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Figure 12.40 Scattergram of the NDMS ordination (excluding outliers = sites with 

piscivore abundance < 10) to show influence of season (wet and dry) 

(GC=Gonong Ck, MC=Munduran Ck, TM=Twelve Mile Ck, GJ=German Jack’s, WW=Woolwash, 

FM=Frogmore) 
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Overview by species 

Australian Pelicans comprising the scooper guild removed the greatest amount 

of fish biomass at all middle and upper sites (Fig. 12.42).  The remaining 

important species were all members of the diving guild and were Little Black 

Cormorant, Pied Cormorant and Darter.  An additional four species made 

substantive contributions at German Jack’s – Little Pied Cormorant, Great Egret, 

Gull-billed tern and Caspian tern. 

Figure 12.41 Estimated fish consumption by guild for each site 
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Figure 12.42 Estimated fish consumption by species 
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Seasonality 

Only one site showed a seasonal pattern of fish consumption by piscivores – 

Frogmore with greatest fish predation in the dry season (t-test, P < 0.05) (Figs 

12.43-12.46).  Peaks in Australian Pelicans at both the Woolwash and Frogmore 

corresponded to draw-down to about 2 m water depth. 

Figure 12.43 Estimated monthly fish consumption at Twelve Mile Creek and contribution 

by dominant piscivore species 
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Figure 12.44 Estimated monthly fish consumption at German Jack’s Lagoon and 

contribution by dominant piscivore species 
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Figure 12.45 Estimated monthly fish consumption at Woolwash Lagoon and contribution 

by dominant piscivore species 

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Aug-04 Sep-04 Oct-04 Nov-04 Dec-04 Jan-05 Feb-05 Mar-05 Apr-05 May-05 Jun-05 Jul-05

Dry Wet Dry

Season / Month

E
s

ti
m

a
te

d
 f

is
h

 c
a

tc
h

 (
g

)

Pied Cormorant

Little Black Cormorant

Australian Pelican

total catch (g)

 

Not sampled 

Inundation Hypersalinity 

Draw-down  to 

2 m 



 

 

    

 

 

247 

247 

Figure 12.46 Estimated monthly fish consumption at Frogmore Lagoon and contribution 

by dominant piscivore species 
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Discussion 

General 

Three bird piscivores have been identified as contributing most to fish predation 

in middle and upper floodplain wetlands of the Fitzroy River Delta – Australian 

Pelicans, Little Black Cormorants and Pied Cormorants.  The peak in Pied 

Cormorant abundance in January to March 2005 at the Woolwash coincided with 

loss of Bony Bream from this system (Nematalosa erebi) (Marcus Sheaves 

unpub. data).  Decline in water quality my also have been a contributing factor to 

fish stock decline during this period of low water levels and high temperatures, 

particularly within the Woolwash which was at very low levels in 2005. 

These findings are suggestive of these species as important regulators of fish 

biomass.  Removal of fish stocks in the late draw-down period may be beneficial 

for fish stocks.  As fish stocks concentrate during the late draw-down period, 

oxygen depletion can lead to extensive fish-kills and loss of all fish stocks as 

documented by Kushlan (1976). 

Proximate Drivers 

Proximate drivers of bird piscivore predation within target wetlands are those that 

contribute directly to bird piscivore density within a wetland system and several 

Draw-down  to 

2 m 
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factors appear to be important in Fitzroy Delta floodplain wetlands – 

hypersalinity, connection events to the river, inundation events and draw-down.  

These will be examined separately for both middle and upper wetland sites. 

Hypersalinity was an important factor at one of the middle floodplain sites - 

German Jack’s Lagoon and an increase in salinity from 118 ppt in September 

2004 to > 160 ppt in October 2004 resulted in loss of all piscivores from the 

system, most likely as a consequence of fish mortality.  Situations favouring 

hypersalinity appear to develop where there are evaporative losses during a 

draw-down period combined with tidal intrusion but may also be linked with relict 

salinity levels within soils that are estuarine in origin such as occur on estuarine 

margins along the lower Fitzroy River (Wright 1968). 

Connection to the estuary appears to allow recruitment of fish populations and 

corresponded to peaks in bird piscivore numbers within both of the middle 

floodplain sites - Twelve Mile Creek (December 2004) and German Jack’s 

(January 2005).  The same pattern was also found in Florida saltmarsh wetlands 

(Stevens and Montague 2005).  Inundation by surface run-off associated with 

wet season rains may also have contributed to these peaks in production.  

However, the overlap of connection events and inundation by surface run-off 

events within these middle floodplain sites made it impossible to differentiate 

between the potential effects of these factors within wetlands in this part of the 

floodplain.    

The effect of draw-down within middle sites appears to be important at German 

Jack’s Lagoon which is embedded in a estuarine plain of very low relief and it is 

likely that even at its greatest depth this site is < 2 m deep.  This was reflected in 

the relatively greater importance of the shallow-water dependent wader guild at 

this site.  The situation at Twelve Mile Creek was much more complex with a 

main brackish pool that remained > 3 m deep at all times but with seasonally 

extensive shallow waters < 1 m deep downstream of this main brackish pool.  

Bird piscivore populations were very low in the deep main brackish pool 

matching patterns found in lower floodplain sites such as Gonong and Munduran 

Creeks. 

The brackish pool at Twelve Mile Creek differs from other wetlands in the region 

in that water levels in this pool are more stable.  This probably reflects the 

coincidence of inputs of water from both inundation events and river connection 

events during the wet season increasing the reliability of inflow events to this 

wetland compared with other wetlands depending mainly on one source of 
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surface water.  The relative deepness of the brackish pool and its steep sides 

also contribute by giving it a large volume to shallow edge ratio that reduces 

evaporative processes. 

For upper floodplain wetlands, connection to the river is much rarer and other 

factors assume greater importance such as draw-down effects making certain 

groups of fish available to bird piscivores at species-dependent depths.  Such 

was the case for wader piscivores in Florida in which wader densities increased 

when water depths fell below 0.7 m (Kushlan 1976).  In the current study, peaks 

in Little Black Cormorant and Australian Pelican abundance coincided with draw-

down in water levels at both the Woolwash and Frogmore to approximately 3 m 

and 2 m respectively.  It is suspected that below this depth pelicans are able to 

access fish populations previously unavailable to them due to the availability of 

deeper waters providing fish refugia.   

Although a small increase in bird piscivores was observed at Frogmore Lagoon 

following the first substantial rains of the year in October 2004, the importance of 

inundation by surface run-off to promoting bird piscivore abundance was not 

possible to gauge because substantial inundation events did not occur at the 

upper floodplain sites during the survey period.  If inundation was important it 

would presumably be a result of an increase in nutrients and upsurge in food 

chain components supporting fish abundance and reproduction. 

In summary, the most important proximate drivers of bird piscivore abundance in 

Fitzroy delta floodplain wetlands were: 

• for middle floodplain sites - hypersalinity, connection to the river (plus 
possibly inundation by surface flows linked with rainfall) and drawdown events; 

• for upper floodplain sites - drawdown events and possibly inundation by 
surface flows linked with rainfall. 

 
These factors interact with wetland depth and bathymetry to determine depth 

distribution, refugia for fish and accessibility of fish populations to various 

piscivore species depending on guild or feeding mode. 

 

 

Indirect Drivers 

Indirect drivers of bird piscivore predation within target wetlands are those that 

contribute to the maintenance of a reservoir of piscivores in the region including: 
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• The extensive floodplain system with a large area of wetlands; 

• Variable hydroperiod and bathymetry of these wetlands as a consequence of 
landscape complexity and derivation of wetland types.  The variable bathymetry 
within each wetland means that there is always a wetland somewhere in the 
region of suitable depth for a range of bird piscivore guilds. 
Together these factors help retain high numbers of piscivores in the region.  As 

an example, while numbers of Little Black Cormorants were low in several 

months compared to peaks of 400+ in two months, they were most likely retained 

within the region and counts of 100+ were observed at freshwater wetlands 

elsewhere in the lower Fitzroy River floodplain (Robert Black pers. comm.). 

Conceptual Model 

 

Middle floodplain sites (Fig. 12.47) 
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Upper floodplain sites (Fig.12.48) 

 

 

 

Appendix 1: Pellet Collection 
Pellet collection was successful at Nankin Creek where Darters and Little Pied 

Cormorant were nesting but not at the Botanic Gardens where Great Egrets 

were nesting. 

Pellets and droppings collected at Nankin Creek from collecting pods: 
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Chapter 13:  

General Discussion 

 
Marcus Sheaves  

Important Features of the Fitzroy Wetland Pools 
The Fitzroy Estuarine Floodplain Wetland Pools have extensive ascetic, cultural 

and recreational values to the people of the region. They also provide a variety of 

crucial ecological functions, ranging from the role as crucial links in the life-cycles 

of animals using them as nursery grounds, to providing fertile feeding grounds 

for a variety of birds, including critically endangered species. The full spectrum of 

ecological processes operate in the pools at a variety of levels, and while in 

many cases these processes are typical of other systems and operate in similar 

ways, some processes are particular characteristics of the wetland pool 

ecosystems that possess a variety of novel features not previously detailed.  

Connectivity 
Perhaps the most important and pervasive of these processes is connectivity; 

both the biological connectivity that connects the pools in the life-cycles of 

animals and the physical connectivity within which biological connectivity is set. 

Physical connectivity is governed by rainfall and flooding regimes, the length and 

nature of the connecting channels, whether the pools have direct connections to 

the marine environment, and tidal anomalies that modify potential tidal 

connections. The degree of pool isolation interacts with their salinity regime to 

produce a diverse variety of environments for aquatic fauna (Fig. 13.1).The 

particular nature of each pool determines the extent to which, and length of time 

the pool provides a useful habitat to its various inhabitants. This in turn 

determines the extent to which the pools are valuable as nursery grounds. While 

the nursery ground role of wetland pools is now widely accepted by the public, 

this study underlines that nursery ground provision is not an unchanging feature 

but determined by the interplay of geomorphology and climate. Consequently, 

the central role of climate in regulating connectivity ensures that the nursery 
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ground value of wetland pools will be one of the ecological processes most 

directly impacted by the rapid advance of global climate change (Lough 2001).  

Beyond its role in nursery ground function, connectivity is a conduit through 

which the productivity of wetland pools is exported to other ecosystems. 

Although yet to be demonstrated for Fitzroy Wetland Pools, the physical 

transport of nutrients from wetlands around the world donates considerable 

quantities of nutrients to other habitats, often providing a major component of 

their total nutrient budget. Over and above this, the migration of juveniles away 

from their wetland nurseries can export a substantial proportion of the nutrients 

generated in the wetlands (Deegan 1993). The importance of this biologically 

mediated export is increased by the efficient transport of nutrients through the 

short food chains that dominate the pools’ trophic structures. 

 

While fish rely on aquatic connections to facilitate their movements between 

pools, and to and from the estuary, fish-eating water birds to not suffer this 

restriction. Water birds are able to fly between pools, producing biological 

connectivity independent of physical connections. This action of birds connecting 

pools across the whole floodplain has far reaching consequences for both the 

birds and the fish they feed on. Predatory birds are particularly effective at 
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feeding on fish when water depths become very shallow (around 1.5 m or less). 

Being able to fly between pools that reach these shallow depths at different 

times, means the birds are regularly able to find abundant supplies of fish that 

are easy to catch. In this way, as a connected unit, the wetland pools support 

large populations of water birds. At the same time, the movement of birds to feed 

in pools at times when the fish become vulnerable has a considerable impact on 

patterns of mortality of fish in the pools. Small, open water fish (like bony bream), 

that are the dominant species when pools are full, are more susceptible to attack 

by birds than larger bottom feeding fish (such as catfish). So when pools become 

shallow, preferential feeding on the smaller species can lead to profound 

changes in the fish community (ie. change in dominance by detritus feeders 

[bony bream] to dominance by omnivores [catfish]). This results in a major 

change in pool food web structure, which represents ecosystem collapse. These 

changes in function can not be redressed until the pools are reconnected to 

another pool from which the detritivore population can be replenished.  

Trophic Functions 
The broad spectrum of pool environments provides the opportunity for a diversity 

of trophic function. Despite this the wetland pools have two striking features in 

common; a dominance of biomass by phyto-detritus feeding fish, and the 

pervasive importance of wetland plants as the major contributors of primary 

productivity.  

The dominance of phyto-detritivorous fish is particularly important for two 

reasons. Firstly, in systems where invertebrates are the major consumers of 

primary production food chains tend to be long. The majority of invertebrate 

primary consumers are small and fed on by primary carnivores, which are in turn 

consumed by secondary consumers, perhaps leading to tertiary consumers: 

producing food webs with often as many as 4 trophic steps. In contrast, the 

phyto-detritivorous fish in the pools are mainly moderate to large individuals that 

are primarily consumed by apex predators. This results in short food chains 

(often with only 2 transfers) that lead to efficient transport of the energy produced 

in the pools to the top of the food web. Secondly, phyto-detritivores can exist on 

organic matter from a variety of sources making pool food webs rather 

insensitive to changes in the type of organic matter available, thus conferring a 

high degree of resilience on the systems. This is likely to be an important factor 

given the likelihood of substantial changes wrought by ecosystem change and 

other human impacts. 
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Diets of both phyto-detritivorous fish and invertebrates were based on algae, 

water plants, and littoral plants found around the pools. While this means that 

pool food webs are likely to be fairly independent of changes away from the 

immediate vicinity of the pools, it also means direct impact on water or wetland 

plants around the pools may have severe consequences. 

.  

Conclusions & Implications 
Fitzroy Estuarine Floodplain Wetland Pools provide a diversity of special and 

often unique habitats, with each class of pool harbouring a particular fauna 

reflecting its salinity and connectivity regimes. Pools vary in the duration that 

they provide hospitable habitats for fauna, and when isolated for too long 

develop adverse conditions and eventually dry out. Different classes of wetland 

pools are functionally different and each provides different outcomes for its 

fauna. Together these factors mean that different pool types are not ecologically 

interchangeable: the loss of any one pool is likely to be much more important 

than suggested by the fraction of the total number of pools or the total pool area 

it represents.  

Wetland Pool habitats are fragile; their unique characters are determined by 

small difference in height relative to tidal levels and by specific climatic patterns. 

But small changes in tidal levels or climate are likely to significantly change the 

nature of the pools and their quality as habitats. More extreme weather patterns 

will lead to more infrequent and unpredictable connectivities, resulting in a 

greater number and variety of pools moving to the point of ecosystem collapse. 

Consequently, global warming-induced climate change and sea-level rise are 

likely to profoundly influence the total area of pools available, the natures of 

individual pools and their quality as habitats. These changes will not just 

compromise species directly utilising the pools but will flow on to affect coastal 

and offshore ecosystems that are linked to the wetlands by the movement of 

organisms, nutrients and productivity.  

There are many possible impacts of global climate change on wetland pools and 

the connectivity their biota depend on. One likely impact is alteration of the 

distribution of organisms, with communities moving to new areas as climatic 

conditions shift. To take one example, sea level rise will increase the extent of 

marine connectivity by making connections deeper and more frequent, and 

eventually making marine connections to freshwater pools that currently have no 

direct connection to the marine environment. Consequently, brackish pools will 
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become more saline, the likelihood of saltwater intruding into in-stream 

freshwater streams will increase converting the more low-lying into brackish 

pools, isolated hypersaline pools will be more likely resist drying out due more 

regular connection and isolated freshwater lagoons may be converted into saline 

or hypersaline lagoons if saltwater intrudes (Fig. 13.2). Changes in rainfall 

patterns may either enhance or alleviate this effect depending 

 

on the details of the rainfall changes. These changes in pool character will 

obviously impact substantially on the fauna of particular pools, and therefore 

have far reaching local impacts. Whether or not these changes in pool 

characteristics are important in a broader context will largely depend on the 

outcomes of these changes on the total area or number of the various pool types 

in a region. Whatever happens, the greatest impacts of climate change are most 

likely to result in the interaction between change and human attempts to mitigate 

change. For instance, the most likely short-term local response to sea-level rise 

is to build levee banks and weirs to prevent the intrusion of seawater. The 

reduction in effective connectivity that results is likely to have much more 

pervasive and far reaching impacts on pool communities than the sea-level 

induced changes themselves. Thus the challenge for management is not to 

prevent climate change but to manage responses to climate change in a way 

that minimises the impacts of mitigation on ecosystems. 
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The complexities of biological connectivity need to be factored in to our 

understanding if we are to successfully manage the effects of future climate and 

sea level changes. Careful management of habitat loss and rehabilitation of 

degraded pools is crucial to prevent further loss of ecological function in the face 

of climate change and adverse human intervention. Additionally, while clear 

shifts to different sources of organic carbon at different pools shows that the 

detritus-based food webs of the Fitzroy wetland pools are adaptable, labile and 

resilient to many changes in vegetation type, situations where pools become 

surrounded by monoculture of poor nutritional value should be avoided.  
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