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Abstract

Ecological forecasts are becoming increasingly valuable tools for conservation

and management. However, there are few examples of near-real-time forecast-

ing systems that account for the wide range of ecological complexities. We

developed a new coral disease ecological forecasting system that explores a

suite of ecological relationships and their uncertainty and investigates how

forecast skill changes with shorter lead times. The Multi-Factor Coral Disease

Risk product introduced here uses a combination of ecological and marine

environmental conditions to predict the risk of white syndromes and growth

anomalies across reefs in the central and western Pacific and along the east

coast of Australia and is available through the US National Oceanic and

Atmospheric Administration Coral Reef Watch program. This product
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produces weekly forecasts for a moving window of 6 months at a resolution of

~5 km based on quantile regression forests. The forecasts show superior skill

at predicting disease risk on withheld survey data from 2012 to 2020 compared

with predecessor forecast systems, with the biggest improvements shown for

predicting disease risk at mid- to high-disease levels. Most of the prediction

uncertainty arises from model uncertainty, so prediction accuracy and preci-

sion do not improve substantially with shorter lead times. This result arises

because many predictor variables cannot be accurately forecasted, which is a

common challenge across ecosystems. Weekly forecasts and scenarios can be

explored through an online decision support tool and data explorer,

co-developed with end-user groups to improve use and understanding of

ecological forecasts. The models provide near-real-time disease risk assessments

and allow users to refine predictions and assess intervention scenarios. This work

advances the field of ecological forecasting with real-world complexities and, in

doing so, better supports near-term decision making for coral reef ecosystem man-

agers and stakeholders. Secondarily, we identify clear needs and provide recom-

mendations to further enhance our ability to forecast coral disease risk.
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INTRODUCTION

Forecasting coral disease outbreaks is critical for the
timely management of reef ecosystems, but developing
such early warning systems is challenging when disease
dynamics are not well understood and data are sparse
and irregularly updated. Coral reefs and their associated
threats are a prime example of a complex system that pre-
sents challenges for ecological forecasting. Coral reefs are
dynamic, heterogeneous environments characterized by
their diversity of species and species interactions and
physical and chemical factors that can affect their health.
Diseases are a major threat to coral reefs, causing up to
95% mortality in dominant coral species during outbreak
events such as the white band disease epidemic in the
1980s and 1990s and the Stony Coral Tissue Loss Disease
outbreak in the 2010s and 2020s in Florida and the
Caribbean (Aronson & Precht, 2001; Rosales et al., 2020;
Walton et al., 2018). Thus, innovative approaches to sup-
port effective management strategies for coral disease
transmission, prevention, and mitigation are urgently
needed. Modern forecasting can now combine mechanis-
tic understanding, statistical and machine learning
models, and the quantification of uncertainty to make
more accurate predictions. However, developing accurate
and reliable forecasts requires overcoming several key
challenges, including the sparse availability of high-
quality data and limited understanding of the underlying

complexity of biological and environmental drivers of
coral disease outcomes.

Developing early warning systems for coral diseases is
a relatively recent endeavor that aims to help managers
and decision makers take preventive actions and mitiga-
tive measures. Given the widespread consensus linking
coral disease to thermal condition (Burke et al., 2023),
early disease forecasts focused on using temperature to
predict suitable conditions for disease. The US National
Oceanic and Atmospheric Administration Coral Reef
Watch (NOAA CRW) program developed the first coral
disease forecast in 2010 for white syndromes on the Great
Barrier Reef (GBR) in Australia (hereafter V1), which
uses a decision tree framework based on a series of
anomalous thermal metrics (Heron et al., 2010). This sys-
tem leveraged NOAA CRW’s established satellite sea
surface temperature (SST) monitoring data (~50 km reso-
lution, twice weekly) refining previous information about
the relationship between thermal condition and disease
(Bruno et al., 2007; Selig et al., 2006). Subsequently,
NOAA CRW adapted the thermal condition metrics from
the GBR to produce a complementary, experimental, pre-
dictive tool for coral disease in the Hawaiian archipelago
(incorporated into V1). V1 was further developed to
incorporate finer resolution (~5 km, daily) SST data
(hereafter V2). A retrospective analysis of V2 demon-
strated that machine learning algorithms that used prod-
uct metrics (i.e., summer Hot Snaps) combined with
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additional biotic data could robustly reproduce disease
prevalence patterns for two coral diseases across three host
species (Caldwell, Heron, et al., 2016). The ability to
nowcast and forecast some of these reef stressors has led to
new and innovative conservation practices and provided
clarity to managers seeking to set priorities. While we
know of no examples yet where management officials have
taken action in response to disease forecasts, we have seen
responses to NOAA CRW bleaching forecasts (Raymundo
et al., 2022), and we expect complementary actions
(Beeden et al., 2012; Neely et al., 2021) will be taken in
response to disease forecasts as managers become more
familiar with the system. Managers could mitigate disease
risk and impacts with a variety of local-scale actions such
as implementing fishing and fishing gear restrictions,
reducing land-based pollution runoff, or reducing the
abundance of known disease vectors (e.g., corallivorous
gastropods) or predators (e.g., Acanthaster planci) from
vulnerable reefs. Other experimental approaches could
be effective, including probiotics, phage therapy, or tem-
porarily relocating at-risk colonies to aquaria.

Moving beyond thermal conditions, the next genera-
tion of coral disease early warning systems needs to
better incorporate an expanded suite of conditions
known or hypothesized to affect disease dynamics.
Previous research has statistically linked a range of condi-
tions with impaired coral health, including colony size and
density, thermal condition, water quality, human population
density and land use, and fish densities and predation
(Aeby, Williams, Franklin, Haapkyla, et al., 2011; Aeby,
Williams, Franklin, Kenyon, et al., 2011; Bruno et al., 2003;
Caldwell et al., 2020; Carlson et al., 2019; Greene et al., 2020;
Haapkylä et al., 2011; Pollock et al., 2014; Redding
et al., 2013; Renzi et al., 2022). However, the mechanistic
underpinnings of these multiple contributing factors are
often poorly understood due to their complex and nonlinear
behavior, which can vary by host species and disease type
(Clemens & Brandt, 2015; Shore & Caldwell, 2019; Vega
Thurber et al., 2014). An additional challenge for any
early warning system is whether the predictor variables
themselves can be forecasted (Clark et al., 2001; Oliver &
Roy, 2015), and this is especially true of the diverse drivers
of coral disease. These challenges must be addressed to
incorporate a wider range of putative disease drivers into
forecasting models.

Over the last decade, ecological forecasting and moni-
toring tools have advanced considerably, making it possi-
ble to integrate multiple data streams and more robustly
consider various scenarios and sources of uncertainty
(Clark et al., 2001; Dietze et al., 2018). Machine learning
algorithms are particularly useful in this context, as they
can identify complex nonlinear relationships between
variables and make predictions in data-poor

environments (Jordan & Mitchell, 2015). These advance-
ments have enhanced the capability for identifying rela-
tionships that should be tested further, allowing
incremental improvements in forecasting efforts (Dietze
et al., 2018). Exploring likely scenarios within a forecast-
ing framework can help create more robust approaches
for managing ecosystems. Plausible scenarios with alter-
nate conditions are developed using a combination of sci-
entific information and models, stakeholder input, and
expert opinion. Scenarios can then be used to explore the
potential impacts of different management strategies,
account for additional spatial variation in predictor vari-
ables, and/or refine predictions to a specific set of condi-
tions. By incorporating scenarios into ecological forecasts
and management plans, managers and decision makers
can better understand the potential outcomes of different
decisions and identify strategies that are more likely to
be effective under a range of possible futures (Clark
et al., 2001). These models also need to be incorporated
into easy-to-use tools for managers to test and compare
different management actions.

In this paper, we present the next-generation NOAA
CRW coral disease forecasting product (i.e., V3) that
addresses some of these challenges and applies new,
innovative approaches to ecological forecasting. By inte-
grating data from multiple sources and using machine
learning algorithms to identify patterns and make predic-
tions, the system provides early warnings of coral disease
risk and could help managers and decision makers take
proactive measures to protect reefs across much of the
Pacific Ocean. This new Multi-Factor Coral Disease Risk
product expands the previous product in several ways
through (1) a broader geographic scope, (2) consideration
of two distinct groups of diseases, (3) inclusion of a suite
of disease drivers, (4) generation of weekly forecasts with
up to a 3-month lead time, (5) provision of measures of
uncertainty, (6) consideration of multiple scenarios, and
(7) capacity for users to visualize forecasts and modify
scenarios through an interactive online dashboard used
to explore management strategies. The results of this
study have broader implications for making predictions
in other complex, data-poor systems and highlight the
need for continued research and innovation in the field
of ecological forecasting.

METHODS

The Multi-Factor Coral Disease Risk product (i.e., V3) is
an experimental regional product, currently providing
ecological forecasts for multiple locations in the Pacific
Ocean. Areas include American Samoa, Guam and the
Commonwealth of the Northern Mariana Islands
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(CNMI), Australia’s Great Barrier Reef (GBR), Hawaii,
and the US Pacific Remote Islands Marine National Mon-
ument (PRIMNM, also called the Pacific Remote Island
Area, PRIA) encompassing seven islands and atolls:
Baker, Howland, and Jarvis Island; Johnston, Wake, and
Palmyra Atolls; and Kingman Reef. In this product, we
assess disease risk based on satellite remotely sensed,
modeled, and in situ data to provide nowcasts and near-
term forecasts based on current conditions, recent condi-
tions, and subseasonal-to-seasonal forecasts from NOAA
operational climate models. We defined disease risk sepa-
rately as a density (number of diseased colonies/75 m2

ranging from 0 to infinity) in Australia and as a preva-
lence (percentage of colonies affected ranging from 0% to
100%) in the US Pacific (more details below), which maps
to different NOAA CRW warning levels ranging from
low risk to Alert level 2 for visualization purposes in the
decision support tool. We determined the thresholds sepa-
rating warning levels based on historical disease observa-
tions and expert elicitation; the thresholds vary by disease

type and region (Appendix S1: Table S1). We optimized
the modeling system using a Pacific-wide data set of over
42,000 coral disease surveys (more details below).

DATA

We identified a suite of potential predictor variables to
forecast coral disease risk based on prior observational,
experimental, and modeling efforts for two disease
types: white syndromes and growth anomalies (Table 1,
Appendix S1: Table S2). White syndromes refer to a suite
of tissue loss diseases that cause coral mortality and
range from acute to chronic based on the speed at which
the infection progresses (Bourne et al., 2015). Growth
anomalies are chronic diseases that persist at low levels
year round and manifest as changes in skeletal morphol-
ogy, usually through abnormal increases in skeleton
secretion and disorganization of corallites, affecting
colony growth and fecundity (Palmer & Baird, 2018). The

TAB L E 1 Variable inclusion and importance differs for each disease-by-region model.

Predictor variable

White syndromes Growth anomalies

GBR US Pac GBR US Pac

Time-invariant predictors

Coral cover 51 0.8 487 X

Median colony size ; 2.3 ; 5.3

Colony size variability ; X

Herbivorous fish density 68 1.2 641 2.3

Parrotfish density ; 0.6

Butterflyfish density ; X

Long-term Kd(490) median X 2.2 X 1.9

Long-term Kd(490) variability X 1.9 399 X

Coastal development X 3.1

Seasonally changing predictors

Three-week Kd(490) median X 1.3 350 1.8

Three-week Kd(490) variability 59 1.7 345 X

Month 37 1.1 310 2.5

Regularly changing predictors

90-day SST mean 413 5.6

Hot Snap 53 X

Winter condition 62 0.8

Note: Variables tested and selected, as well as their importance, differ for each region (Great Barrier Reef or US Pacific) and disease type (white syndrome or
growth anomalies). A cell with a value indicates that the variable was selected for the model and the value represents the percentage increase in mean squared
error (MSE) of out-of-bag cross-validation predictions across permutations in that predictor variable, with higher values indicating more important predictor
variables. (Note that MSE is sensitive to units even though the percentage increase in MSE is unitless; thus, values for the GBR models that predict disease

density will typically be much larger than values for the US Pacific models that predict disease prevalence). An X indicates a variable was tested but not
selected; a blank cell indicates that the variable was not tested for that model because it is not a hypothesized predictor variable whereas ; indicates that a
variable was not tested because data were not available. Metrics that measure Kd(490) are a proxy for turbidity.
Abbreviations: GBR, Great Barrier Reef; SST, sea surface temperature; US Pac, US Pacific.

4 of 20 CALDWELL ET AL.

 19395582, 2024, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2961 by E

ddie K
oiki M

abo L
ibrary, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



etiological agents of both groups of diseases are
unknown. Across a variety of host species, disease types,
and regions, some factors such as coral cover, coral col-
ony size, and specific ranges of temperature have been
consistently associated with certain coral diseases,
although the functional relationships may differ slightly
(Bruno et al., 2007; Caldwell et al., 2020; Greene
et al., 2020; Heron et al., 2010; Ruiz-Moreno et al., 2012).
Thus, we considered appropriate derivations of these var-
iables for all diseases and regions, based on data avail-
ability. For instance, we considered accumulation of
anomalous temperatures for white syndromes because
of statistical associations across multiple large-scale stud-
ies (Bruno et al., 2007; Burke et al., 2023; Heron
et al., 2010; Howells et al., 2020; Maynard et al., 2011)
but focused on seasonal mean temperature for growth
anomalies because it has been experimentally associated
with lesion development and growth (Stimson, 2011).
Additionally, several potential predictor variables were
unique to each disease type because the ecologies of
white syndromes and growth anomalies differ substan-
tially. White syndromes often exhibit strong seasonality
due to ocean conditions, notably winter and summertime
thermal stress and changes in water quality (Haapkylä
et al., 2011; Heron et al., 2010; Maynard et al., 2011;
Ruiz-Moreno et al., 2012). White syndromes have also
been associated with fish densities, but the effects are not
consistent across studies and the underlying hypothesis
for this effect varies by fish functional group (Aeby,
Williams, Franklin, Kenyon, et al., 2011; Caldwell
et al., 2020; Clemens & Brandt, 2015; Greene et al., 2020;
Renzi et al., 2022; Williams et al., 2010). Thus, we
included available metrics of fish density for multiple fish
types and water quality (turbidity) in the white syndrome
models. For growth anomalies, previous studies indicate an
association with low fish abundance, limited water motion,
and poor water quality via nutrient enrichment, coastal
development, and proximity to dense human populations
(Aeby, Williams, Franklin, Haapkyla, et al., 2011; Caldwell
et al., 2020; Yoshioka et al., 2016). Therefore, we
included metrics of fish populations, turbidity, and
coastal development in the growth anomaly models.

From a forecasting perspective, the predictor vari-
ables, or environmental conditions, that we considered in
this study can be roughly divided into three types based
on their variabilities through time: (1) time-invariant,
(2) seasonally changing, and (3) regularly changing. We
consider time-invariant conditions as any predictor
variable that does not change regularly through time or
information about such change is unavailable or sparsely
updated. We consider seasonally changing conditions as
predictor variables that depend on time of year but
are not date-specific. Most of these variables have

been developed in a way that represents repeated
seasonal patterns developed from multiyear data sets
(i.e., climatologies). Finally, we consider regularly chang-
ing conditions as predictor variables that change and can
be measured and evaluated, over some regular time inter-
val. We used point estimate predictor variable data for
model development based on the time and location of
coral disease surveys, whereas we use gridded predictor
variable data for forecasts.

Time-invariant data

We collated time-invariant data from in situ surveys and
remotely sensed data. For each predictor variable
described below, which we used in at least one of the four
region-by-disease models, we provide further details,
including data sources and spatial resolution, in
Appendix S1: Table S2. To characterize benthic cover, we
used metrics of coral cover (0%–100%), coral colony size,
and population-level colony size variability (based on
coefficient of variation). For these metrics, we developed
the models using data collected concurrently with coral
disease surveys. We aggregated these metrics by host
family for both US Pacific models and by morphology for
the GBR white syndromes models to be consistent with
data collection methodology (more details below). In the
forecasts, we used a combination of survey data and
gridded data from long-term monitoring programs. For
coral cover in the GBR and coral colony size in the US
Pacific, we calculated ~5-km pixel-specific mean values
across the reef grid from long-term survey data (multiple
sources listed in Appendix S1: Table S3), while for coral
cover in the US Pacific, we used sector-level benthic
cover data from the NOAA National Coral Reef Monitor-
ing Program (NCRMP). As fish surveys were rarely
conducted in coordination with benthic surveys, we used
fish density layers from long-term monitoring programs
for both model development and forecasting. We used
~2-km gridded fish count data based on manta tow sur-
veys from the Australian Institute of Marine Science
(AIMS) Long Term Monitoring Program (LTMP)
Sweatman et al. (2008) for the GBR and sector-level fish
data from NOAA NCRMP for the US Pacific. These long-
term data sets represent the most comprehensive current
estimates of coral cover and size available for the reef
grid, but they inherently will not contain information
about recent or future changes in these variables. Thus,
periodic updates to the reef grid as data become available
would be beneficial. As a proxy for coastal development
in both model development and forecasting, we used
NASA’s Black Marble product, which is a time-
aggregated map of artificial light intensity (high gain)
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(range = 0–255, where 0 = black and 255 = white) at
3-km resolution from the Visible Infrared Imaging
Radiometer Suite (VIIRS) instrument aboard the
Suomi-National Polar-orbiting Partnership (NPP) satellite
(Rom�an et al., 2018). To characterize chronic water qual-
ity conditions in both model development and forecast-
ing, we aggregated the diffuse attenuation coefficient at
490 nm, Kd(490), as a proxy for turbidity from VIIRS data
(Kirk, 1994). We calculated long-term Kd(490) median
and variability for each reef pixel by overlaying aggre-
gated data from 2012 to 2020 (i.e., all data available at the
time of study) within a five-pixel buffer (750 m becomes
~8.25-km resolution), following methods from Geiger
et al. (2021), to increase data availability, as nearshore
ocean color data are notoriously patchy. These metrics
are indicative of spatial differences in water quality
across reefs, providing information on locations that have
chronically good or poor water quality and those that are
exposed to a large range of water quality conditions
throughout the year versus those with more consistent
conditions.

Seasonally changing data

We use month of year and two turbidity metrics (mean
and variability) to capture seasonally changing conditions
that are relevant to disease risk. To characterize typical
seasonal water quality patterns, we calculated mean and
variability of VIIRS-derived Kd(490) for a 3-week moving
window (resulting in new values each week) across a
9-year time span (2012–2020) using the same five-pixel
buffer described above. These metrics repeat annually
and are indicative of how water quality changes through-
out the year at a given location. We used the mean
(i.e., climatology) and associated variability in Kd(490) to
represent seasonal changes because, to date, these
values are too highly variable and too infrequently
available in the coastal zone to use actual, or even
3-week composite, values. Additional details on the
derivation of these metrics and their accuracy can be
found in Geiger et al. (2021). We include month in the
model as a proxy for all other seasonally changing
conditions.

Regularly changing data

We include three temperature-based metrics in the dis-
ease models that update at regular intervals: 90-day SST
mean, Hot Snap, and Winter Condition. In contrast to
the seasonally changing data, the regularly changing data
yield different values each year for the same time period

(e.g., the first week of January) based on observed and/or
forecasted conditions. The daily previous 90-day mean
SST is the average daily SST values for the 90 days pre-
ceding the current date. The Hot Snap and Winter Condi-
tion metrics were developed for NOAA CRW’s Coral
Disease Outbreak Risk Product V1 and V2 and continue
to be used in V3 to represent thermal conditions on time
scales relevant to coral disease. The Hot Snap metric
accumulates hot temperature anomalies through time,
relative to the locally/pixel-specific long-term expected
summer season temperature (summer season climatology)
(Heron et al., 2010), providing an indication of exposure to
thermal stress. The Winter Condition metric accumu-
lates both hot and cold temperature anomalies during
the winter season relative to locally specific, long-term
average temperature (Heron et al., 2010), representing
cold season variability. Mild winters have been linked
to white syndromes (Caldwell, Heron et al., 2016;
Heron et al., 2010), perhaps because such conditions
allow pathogens to persist and grow throughout the
winter season.

The data underlying these three temperature metrics
differ for satellite observed temperatures, which we used
for model development and near-real-time nowcasts, and
forecasted temperature, which we use for disease fore-
casts. For observed SST, we used CoralTemp version 3.1
(Skirving et al., 2020), which provides daily data at a
global resolution of ~5 km (0.05�). For forecasted SST, we
used output from the NOAA National Centers for
Environmental Prediction’s operational Climate Forecast
System Version 2 (CFSv2) (Saha et al., 2014). Each day,
the CFSv2 generates an ensemble of four SST forecasts
out to 9 months at ~50 km (0.5�) resolution. We use this
output to form 28 ensemble member predictions each
week (4 daily start times × 7 days) for each predicted
temperature metric and to predict the metric for each
future week up to 3 months following the prediction
date. The data were downscaled from ~50 to ~5 km using
a nearest-neighbor algorithm and then bias-corrected to
match the 5-km satellite SST measurements during the
overlap between satellite observations and CFSv2 over
the weekly time period when the 28 ensemble members
were collected. Predicted SST values typically relax
toward the climatology as lead time increases and there-
fore demonstrate decreased variability in time for indi-
vidual ensemble members; thus, predicted SST anomaly
values for the metrics were correspondingly adjusted to
match the variability of the SST data. At the same time,
initial condition variation among the ensemble mem-
bers, along with uncertainty of the prediction models,
gave rise to differences in SST predictions that accumu-
lated through time, leading to increased variability at
longer lead times among the ensemble members.
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Coral disease survey data

We assembled a Pacific-wide coral health monitoring
data set, which we used to develop region- and disease-
specific predictive models of disease risk. In total, we
assembled over 42,000 coral health monitoring surveys
between 2012 and 2020. Data came from the NOAA
NCRMP, University of Guam, Hawaii Coral Disease
Database (Caldwell, Burns, et al., 2016), and the Great
Barrier Reef Marine Park Authority (GBRMPA; referred
to as Reef Authority in other contexts) Reef Health and
Impact Surveys (Beeden et al., 2014). The different survey
protocols used to collect these data were described in
detail previously (Beeden et al., 2014; Caldwell, Burns,
et al., 2016; Winston et al., 2020). For the research
described in this paper, there are notable methodological
differences between surveys conducted in Australia and
the US Pacific; therefore, we modeled disease risk in
these two regions separately. Specifically, surveys
in Australia indicated morphology-specific disease
density (i.e., number of diseased colonies in a given area),
while the US Pacific surveys provided information to
quantify family-specific disease prevalence (i.e., percent-
age of coral colonies affected by disease); therefore, the
risk prediction is for disease density in Australia and dis-
ease prevalence in the US Pacific. While the US Pacific
models are technically generated at the family level
(Acroporidae for white syndromes and Poritidae for
growth anomalies), in practice, the data predominantly
describe genus- or species-specific patterns with
various genera/species represented in different regions
(Appendix S1: Table S4). We used these data to develop
predictive models of disease risk (i.e., disease density or
prevalence) rather than outbreak risk, which we believe
is more appropriate as the data arise from regular moni-
toring surveys rather than outbreak response surveys
(outbreaks defined in Raymundo et al., 2008). If multiple
surveys were conducted in close proximity in time
(i.e., in the same month) and space (the same survey
area), we randomly selected one of those surveys to keep
in the data set to avoid artificially overrepresenting
certain conditions.

Balancing data with SMOTE

To create disease models that would produce reliable pre-
dictions of all levels of disease risk, particularly of high
disease levels, we used a synthetic sampling technique to
balance the data used in model development. The obser-
vational surveys available to create the disease models
were highly unbalanced, with most surveys reporting
zero or low levels of disease (Appendix S1: Table S5);

using unbalanced data would optimize disease-free
predictions. Therefore, we balanced the data set before
model creation using the Synthetic Minority Over-
sampling TEchnique (SMOTE; Chawla et al., 2002;
Figure 1a). We used the observed disease surveys with
their associated predictor variables to create additional
synthetic disease surveys (using a k-nearest neighbor
algorithm) to produce a balanced data set (e.g., approxi-
mately equal number of disease and disease-free surveys
with all predictor variables). We created multiple SMOTE
data sets for each disease and region based on different
disease level thresholds because it is unknown whether
the same environmental conditions that precede observed
disease are responsible for low and high levels of disease
risk. In other words, we oversampled surveys with any
disease and oversampled surveys with greater than some
specified level of disease, allowing the model selection
process to determine the best threshold to use. We
tested several disease level thresholds: 1, 5, and
10 colonies/75 m2 for white syndromes in the GBR and
1%, 5%, and 10% prevalence for white syndromes in the
US Pacific; 1, 5, 10, and 15 colonies/75 m2 for growth
anomalies in the GBR and 1%, 5%, 10%, 15%, and 20%
prevalence for growth anomalies in the US Pacific. We
chose these thresholds based on a combination of natural
breaks in the data and expert opinion. The threshold
units align with the survey data collected (i.e., density or
prevalence) and therefore differ between the GBR and
US Pacific. For each SMOTE data set of disease surveys,
we split the data into training and test data using a 75/25
split. We used the training data for model creation and
then the withheld test data for model selection and
assessment (described below).

Quantile regression forests

We created predictive models of disease risk using
quantile regression forests (Meinshausen, 2006; Figure 1b).
Quantile regression forests use a decision tree frame-
work, allow for nonlinear relationships between
response and predictor variables, and have shown high
predictive ability across a range of systems. Briefly,
quantile regression forests are created by developing an
ensemble of quantile decision trees (i.e., random forests),
with each tree created from a bootstrapped resample of
the data set. Quantile decision trees differ from standard
decision trees in that they predict the distribution of target
values rather than the mean target value from the training
data. This approach uses an ensemble of uncorrelated
decision trees, which tend to outperform any individ-
ual tree, and each tree uses a random subset of predic-
tors to increase variation among trees. The result of

ECOLOGICAL APPLICATIONS 7 of 20
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this process is that the final predictive model is more
robust because it is created from many trees that are
trained on different subsets of response data and
predictor variables.

Model selection

We selected the most parsimonious model for each
disease and region among a suite of candidate models

Predictor 1

Predictor 2

Predictor 3

F I GURE 1 Legend on next page.
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based on predictive skill on a withheld portion of the
data. For each disease-by-region pair, we ran a model that
included all hypothesized predictor variables (Table 1) from
a training data set (75% of surveys) and then used a back-
ward selection approach to iteratively remove predictor var-
iables of least importance. We calculated the relative
importance of each predictor variable as the percentage
increase in mean squared error (MSE) of out-of-bag cross-
validation predictions across permutations in that predictor
variable, with higher values indicating more important pre-
dictor variables. The exception was for the predictor vari-
able Month, which we retained in the model regardless of
its relative importance because it captures additional sea-
sonal variation. At each model iteration, we predicted dis-
ease risk from a withheld test data set (25% of the surveys)
and assessed predictive ability based on the R2 value that
arose from linearly regressing those predictions with obser-
vations. We followed this approach of backward selection
for each SMOTE data set. The selected (most parsimonious)
model was the model with the fewest predictor variables
that produced an R2 value within 1% of the best model
(i.e., model with the highest R2 overall).

Model assessment

To determine how well the models performed at retro-
spectively predicting disease risk for each disease-
by-region pair, we compared retrospective predictions by
the models described here with archived nowcasts from
previous versions of the models where available (i.e., V2
predictions for the GBR and Hawaiian archipelago) and
how forecast ability changes with different lead times.
For both assessments, we quantified predictive ability
using the withheld test data. To assess predictive
ability for white syndromes, we compared retrospective
disease predictions from models described in this paper

(V3) with models supporting V2 using predictor data
available from the corresponding week of observations.
The V3 models predict disease density or prevalence,
whereas the V2 models produce risk levels based on Hot
Snap values (units = �C-weeks, range = 1–15); therefore,
we visually compared these results but did not directly
compare their ability quantitatively. Since there were no
previous models in production for growth anomalies, we
assessed the retrospective model ability on the withheld
test data alone. Additionally, we were interested in
whether and to what extent forecast prediction accuracy
and precision changed as we get closer to the observation
date (i.e., shorter lead times). To assess this relationship,
we predicted disease risk at weekly intervals for each
observation date in the withheld data, with lead times
ranging from 12 weeks prior (e.g., in advance of a survey)
to 0 weeks (i.e., nowcast). We calculated accuracy as the
difference between the 75th quantile prediction and
the observation, resulting in zero if there was perfect
accuracy, negative values if the models predicted lower
disease risk than observed, and positive values if the
models predicted higher disease risk than observed. We
used the 75th quantile prediction (upper range of disease
likelihood) as the primary indicator of disease risk
throughout this work, which was the metric selected by
the product end users to err on the side of potentially
overpredicting disease in an effort to further capture rare
disease events. To assess predictive precision, we calcu-
lated the difference between the 90th and 50th quantile
predictions: Larger differences indicate less precise esti-
mates and smaller differences more precise estimates.

Weekly updating predictions

The overarching objective of this research was to develop
a product that provides weekly updated, near-real-time,

F I GURE 1 Methodological overview for model development and weekly update for each disease-by-region model. (a) Graphical

illustration of Synthetic Minority Over-sampling TEchnique (SMOTE), where the minority class (i.e., surveys with disease; large gray circles)

is used to create synthetic surveys of predictor and response data (i.e., small gray circles) based on k-nearest neighbors (i.e., black lines

connecting surveys in n-dimensional parameter space), resulting in approximately equal numbers of surveys with (gray) and without (green)

disease present. In this study, we tested different thresholds for inclusion in the minority class. (b) We built the model using quantile

regression forests, an algorithm that creates many decision trees based on a subsample of predictor variables (example shows each tree using

two of three possible predictor variables) and produces a distribution of target values rather than a mean value. We selected the most

parsimonious model across the different SMOTE data sets and quantile regression forests (i.e., with different combinations of predictor

variables) based on a withheld portion of the data, using the models with the smallest number of predictor variables with superior predictive

ability. The selected models are used in the weekly update for (c)–(e). (c) Each week, we update predictor variables for the reef grid.

Time-invariant predictor variables are held constant, seasonal predictor variables update each week or month, near-real-time data reflect

recent satellite observations, and forecasted data come from 28-member ensemble CFSv2 sea surface temperature (SST) forecasts. (d) Using

the updated predictor data, we rerun the model to produce a new near-real-time prediction and 12 weeks of forecasted data, which we

amend to the prior 11 weeks of historical nowcast predictions for a total of 6 continuous months of disease risk assessments. (e) We also vary

the predictor data across a gradient of values to produce scenarios, to explore how disease risk changes with different input variable values.

ECOLOGICAL APPLICATIONS 9 of 20
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and subseasonal-to-seasonal disease risk forecasts. The
workflow for this process follows. First, we developed a
reef location database based on an ~5-km gridded reef
location data set currently used by NOAA CRW (Heron
et al., 2016) to set the spatial extent of the disease risk
forecasts described in this paper. This reef location data-
base encompasses all known shallow-water reefs within
the US Pacific Islands and atolls and along the east coast
of Australia, the majority of which fall within the GBR
Marine Park. To allow users to assess short-term tempo-
ral evolution of disease risk at each reef pixel, we provide
a moving window of 6 months of weekly predictions: the
first 3 months with weekly nowcast predictions based on
observed environmental conditions (i.e., time-invariant,
seasonally changing, and nowcast predictor variables
identified in the model selection process described above)
up to the current calendar week, and the second
3 months with weekly forecast predictions based on a
combination of historically observed (time-invariant data
and seasonally changing data) and forecasted environ-
mental conditions. The models and environmental condi-
tions we used vary by disease and region, as described
earlier and in the Results section. For each week of pre-
dictions, we updated the environmental input data
(Figure 1c). The nowcast predictions (Figure 1d) that we
produced for each reef pixel were based on a single set of
observed environmental conditions, and prediction
uncertainty arose solely due to model uncertainty. In
contrast, we produced 28 ensemble forecast predictions
for each reef pixel (Figure 1d) using 28 sets of SST-based
metrics derived from the 28 different CFSv2 model runs,
so uncertainty was composed of both model uncertainty
and SST forecast uncertainty. In this product, we chosed
to present predictions using the 50th, 75th, and 90th
quantile predictions for the reasons stated above (though
any quantiles could be used). We also aggregated the risk
predictions for different management areas, which we
collated from marine management agencies. We did this
by quantifying the 90th quantile values across all ~5-km
reef pixels that fall within the specified management area
of the risk predictions (i.e., the 75th quantile modeled
risk). The use of the 90th quantile to spatially summarize
risk predictions is consistent with other regional summaries
produced by CRW (Heron et al., 2016), with this value
selected to alert users to regional-level risk while preventing
potential exaggeration (e.g., by reporting the maximum
value across the region).

Weekly updated scenarios

To allow users to customize predictions to localized and
current environmental conditions and help determine

the most appropriate intervention strategies, we also
produced weekly updated scenario-based disease risk pre-
dictions (Figure 1e). The predictions for various scenarios
show how adjusting current environmental conditions
would change current disease risk predictions. We calcu-
lated the change in disease risk by rerunning the models
iteratively, varying a single environmental condition by
specified amounts and holding all other location-specific,
current environmental conditions constant. The resulting
scenarios allow users to (1) refine predictions considering
local conditions (e.g., a reef of interest) known to the user
that may vary from the mean conditions of the entire reef
pixel or management zone and (2) consider how an inter-
vention (e.g., a program to reduce turbidity) would affect
disease risk. Following the format we used to present
near-real-time and seasonal disease risk predictions, we
also calculated changes in disease risk for scenarios based
on the 75th quantile disease predictions and aggregated
the results to management areas in the same way we
described earlier.

RESULTS

Performance evaluation

The new Multi-Factor Coral Disease Risk product
(V3) described in this study predicts disease risk relatively
well and qualitatively demonstrates superior predictive
accuracy compared with V2 for both the GBR and
Hawaiian archipelago (Figure 2). All versions have diffi-
culty predicting no or very low disease levels (i.e., below
the selected SMOTE thresholds). V3 is the first product to
calculate uncertainty and can therefore represent this
lack of predictability with large uncertainty values, as
shown around many low disease values. The major
improvement can be seen at mid and high levels of dis-
ease (i.e., above the selected SMOTE thresholds, which
vary by disease and region). While the previous algorithm
predicted some high disease events well, many were
predicted to have no disease risk, suggesting that factors
other than thermal condition are key for predicting dis-
ease events.

Lead time

Both accuracy and precision improved as lead time
decreased, but not as drastically and consistently as
we expected (Figure 3), indicating that as the survey date
approached, the predictions improved slightly. Positive
values for accuracy indicate an overprediction of disease in
the forecast (as shown for white syndromes on the
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GBR), while negative values indicate underprediction
(growth anomalies in both regions). Accuracy improved
with shorter lead time for predictions in the GBR for
both diseases, while there was almost no improvement
with lead time for predictions in the US Pacific. In
contrast, precision was largely unaffected by lead time,
with marginal improvements for white syndromes in
the GBR and growth anomalies in the US Pacific. Given
that the variability in SST forecasts decreased with
decreasing lead time, these results suggest that the
prediction uncertainty is largely a function of model
uncertainty rather than SST forecast uncertainty.

Coral disease drivers

The most influential disease drivers were primarily time-
invariant or seasonally changing predictor variables
(Table 1), which may explain why the V3 product pre-
dicts disease with relatively high accuracy for observa-
tions from a range of locations and years (Figure 2), but
those predictions do not change substantially with chang-
ing lead times (Figure 3). The most parsimonious models
for each disease-by-region pair varied slightly from each
other but broadly reflected relationships found in the lit-
erature (Appendix S1: Figures S1–S4). In short, both
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F I GURE 2 Accuracy of disease nowcast predictions demonstrates improved predictive capabilities for V3 compared with its

predecessor. We show comparisons of disease observations (x-axes) with disease predictions (y-axes) for the current model (V3). Points that

fall on the gray line indicate a perfect fit between observations and predictions. For white syndromes (left column), we compare disease

predictions from V3 with V2 (note that predictions are only available for Hawaii in the US Pacific). For growth anomalies, where no

predecessor product exists, we show results for V3 only. V3 predicts disease density (in colonies/75 m2) for the Great Barrier Reef (GBR) (top row)

and disease prevalence (percentage of host colonies exhibiting signs of disease) for the entire US Pacific (bottom row). The V3 product

shows the 75th quantile predicted risk (points) and 50th–90th quantile predictions (lines). V2 predicts risk levels based on Hot Snap

values (units = �C-weeks, range = 1–15). The validation data shown in these plots were not used in model creation or training.
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diseases were primarily influenced by temperature and
water quality, coral cover or size, and fish density. White
syndromes were strongly influenced by seasonal conditions,
whereas growth anomalies were more strongly driven by
chronic conditions. A major contribution of this study is

the inclusion of multiple metrics of chronic and seasonally
changing water quality, which have been shown to influ-
ence disease risk in both small-scale correlative and experi-
mental studies (Haapkylä et al., 2011; Pollock et al., 2014;
Vega Thurber et al., 2014; Yoshioka et al., 2016), but, to

F I GURE 3 Lead time-dependent predictive accuracy and precision of forecasts. Barplots show predictive accuracy (left column;

calculated as difference between 75th quantile prediction and observation) and predictive precision (right column; calculated as difference

between 90th and 50th quantile predictions) with different lead times (0–12 weeks prior to observation date). In these plots, perfect accuracy

and precision marked by horizontal dashed lines indicate zero difference. Results are shown in eight panels for each of the paired disease

types (white syndromes and growth anomalies) and regions (GBR and US Pacific). Predictions (y-axes) calculated as disease density

(in colonies/75 m2) for the GBR and disease prevalence (percentage of host colonies exhibiting signs of disease ranging from 0% to 100%) for

US Pacific. For example, a median value of 10 for the GBR would indicate that, on average, the model predicts 10 more colonies as diseased

than were observed. Similarly, a median value of −20 in the Pacific would indicate that, on average, the model underpredicts disease

prevalence by 20%. The validation data shown in these plots were not used in model creation. Month, seasonal turbidity, and sea surface

temperature (SST) metrics varied with lead time (in weeks), whereas all other predictor variables stayed the same (e.g., benthic

characteristics of site).
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date, have not been possible to include in large-scale
studies. Thus, this research demonstrates a consistent
influence of water quality on disease risk across a broad
geographic region and two disease types. Fish density
and winter condition were the best predictors of white
syndromes in the GBR, followed by variation in seasonal
turbidity, summer thermal condition, and coral cover.
For white syndromes in the US Pacific, median colony
size and chronic and seasonal turbidity metrics (both
median and variability for each) were most important.
Predictor variables for growth anomalies in both regions
were similar to each other and included 90-day SST
mean, fish density, benthic cover metrics, and seasonal
and chronic water quality. Within-site water quality var-
iability was more important for growth anomalies in the
GBR, whereas average water quality conditions along
with coastal development were more important in the
US Pacific.

The model selection process revealed that the predic-
tor variables used are better suited for differentiating
between lower and higher levels of disease risk rather
than presence–absence. We found that the models were
able to predict the gradient of observed disease risk best
when oversampling surveys in the SMOTE balancing
process with relatively high levels of disease risk. For
white syndromes, oversampling surveys with >10 dis-
eased colonies/75 m2 in the GBR and >10% disease prev-
alence in the US Pacific was optimal; for growth
anomalies, oversampling surveys with >15 diseased
colonies/75 m2 in the GBR and >20% disease prevalence
in the US Pacific models was optimal (Appendix S1:
Figure S5).

Decision support tools

The experimental Multi-Factor Coral Disease Risk product,
a new tool within NOAA CRW’s decision support system
for coral reef management, provides a regional ecological
nowcast and forecast of white syndromes and growth
anomalies for multiple locations in the Pacific Ocean. Via
an online interface on the CRW website (https://
coralreefwatch.noaa.gov/product/disease_multifactor/index.
php), users can access and explore coral disease forecasts
for their region of study, management, and/or interest in
the Pacific, to prepare for, monitor, and respond to elevated
coral disease risk (Appendix S1: Figure S6).

Data explorer

To allow users to explore near-real-time, weekly, and sea-
sonal disease predictions more closely, we produced an

interactive data explorer tool to complement the NOAA
CRW Multi-Factor Coral Disease Risk tool. Users can
access the data explorer through https://coralreefwatch.
noaa.gov/product/disease_multifactor/index.php or at
https://coraldisease.com. The data explorer has four com-
ponents: (1) a disease risk page visualizing nowcasts and
forecasts across time and space (Figure 4); (2) a scenarios
page where users can adjust environmental conditions to
assess corresponding changes in the nowcast of spatially
explicit disease risk (Appendix S1: Figure S7); (3) a histor-
ical data page that provides information about survey
data used to build the models; and (4) an information
page with explanatory information and additional
resources. Users can explore forecasts and scenarios at
multiple spatial scales, ranging from an individual ~5-km
reef pixel to various management zones (containing
multiple reef pixels).

DISCUSSION

The Multi-Factor Coral Disease Risk product (V3) offers
many improvements over its predecessors, providing a
more holistic assessment of disease risk for reefs through-
out the Pacific Ocean. In addition to expanding the
geographic scope and types of diseases assessed, V3 pro-
vides weekly updated nowcasts and forecasts with up to
3 months of lead time. The predecessor products funda-
mentally differed in their forecasting approach; V1 and
V2 provide winter preconditioning risk outlooks at the
end of winter based on wintertime metrics derived from
satellite remote sensing data, and then, for pixels that are
preconditioned for risk, refined near-real-time predic-
tions are based on satellite monitoring of Hot Snap accu-
mulation throughout the summer months. Thus, within
the summer, these prior products produce nowcasts and
do not make future predictions; the only prediction com-
ponent is for the following summer and only at the con-
clusion of a winter season based on thermal conditions
from the entire winter. Operationally, V3 requires
constructing regular predictions of SST-based metrics
from climate models rather than relying entirely on near-
real-time satellite remote sensing (as in V1 and V2). The
3-month lead time in V3 aims to provide local stake-
holders with more time to organize and execute a
response to potential elevated disease risk. The accuracy
and precision of disease risk forecasts demonstrate a mar-
ginal level of bias in applying the data-based model rela-
tionships with predicted values, which may result from
variable ability to predict inputs (which here are the
temperature-based metrics) rather than in the model
itself (see following discussion). Through the online
dashboard, users can vary current or predetermined
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environmental conditions to refine disease risk predic-
tions to better reflect local conditions within the data grid
and/or to assess impacts of potential interventions. The

most fundamental difference between V1/V2 and V3 is
that the new product assesses disease risk based on a
suite of ecological conditions in combination with

F I GURE 4 Data explorer for Multi-Factor Coral Disease Risk product, accessed on 23 May 2022. (a) Spatial view of overall color-coded

disease risk nowcast for the main Hawaiian islands. The thresholds that separate disease risk levels vary by region and disease type

(Appendix S1: Table S1). (b) Nowcast risk summary for geographic regions and diseases assessed. (c) Pixel-specific time series of nowcasted

and forecasted risk on southern coast of Lanai (white arrow in panel a) for growth anomalies and white syndromes over a 5-month period.
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temperature conditions, rather than temperature alone.
Some of these new variables, such as turbidity, were pre-
viously unavailable before the incorporation of VIIRS
data into these models. Given the relative importance of
these new predictor variables (Table 1), we can conclude
that, although suitable temperature conditions are neces-
sary for elevating the risk of white syndromes and growth
anomalies, other conditions like colony size and water
quality are important driving factors. As a result, the new
models that consider a suite of conditions, alongside tem-
perature, have demonstrated better performance in retro-
spectively predicting disease risk in both the GBR and US
Pacific.

While this analysis demonstrates that a suite of condi-
tions are associated with white syndromes and growth
anomalies, challenges in forecasting these predictor con-
ditions directly limits capacity for disease prediction. The
only predictor variables that are truly forecasted in
the Multi-Factor Coral Disease Risk product are the SST-
based metrics. For all other variables, we created
seasonal climatologies or rely on time-invariant layers
based on long-term aggregated data. For most of the
time-invariant variables, such as coral cover, fish
densities, and coastal development, we do not expect
conditions to change regularly. However, a single event
can drastically change biotic conditions on a reef (e.g., a
mass bleaching event), and such changes would not be
reflected in the forecasts with the predetermined condi-
tions, although they may be assessed (at least to some
degree) by adjusting scenarios based on updated informa-
tion. We anticipate the data may be updatable every 5 to
10 years. We foresee a similar issue for water quality met-
rics: Although we expect that the seasonal climatology
and associated variability metric used in these models are
fairly robust in the long term, the current models do not
capture acute events caused by intense rainfall and
associated runoff, which are known to influence disease
(Haapkylä et al., 2011). Although we attempted to mea-
sure acute events with ocean color data (procedure
described in Geiger et al., 2021), we found that the avail-
able data were too sparse to use in the models, with no
satellite coverage for ~80% of the corresponding survey
data. More importantly, the ocean color data unavailable
during events were not random but aggregated during
cloudy days; in other words, days that are most likely
associated with rain events that can increase disease risk.
An alternative approach to forecasting water quality con-
ditions could be to create a model based on precipitation
forecasts. However, precipitation forecasts are less precise
than temperature forecasts and would require accurate
prediction of the timing, intensity, and location of rainfall
at fine scales, which must be incorporated into fine-scale
hydrologic models with accurate topography and

well-predicted initial surface conditions (i.e., soil moisture).
Such fine-scale hydrologic modeling is generally lacking
for most tropical coasts. For this reason, seasonally vary-
ing water quality climatologies are the most reliable
measurements currently available for coastal coral reefs
and applicable for our models. However, we see this
process as analogous to early temperature forecasts,
which began as almanacs of past conditions (climatol-
ogies) and now show high prediction ability through the
deployment of increasingly sophisticated statistical and
dynamical models.

The extent to which temperature-based metrics are
influential in models determines how well predictions
reflect spatial and temporal variability in disease risk. For
white syndromes on the GBR, for example, both Winter
Condition and Hot Snaps are relatively influential vari-
ables. As a result, in the retrospective analysis, accuracy
and precision varied spatiotemporally—and improved
with shorter lead times (consistent with the performance
of predicted temperature). In contrast, white syndromes
in the US Pacific are less strongly driven by any of the
temperature metrics tested in this study, and therefore
variability in disease risk is more apparent spatially than
temporally. It is worth noting that several white
syndrome outbreaks in the US Pacific have occurred in
winter (Aeby et al., 2016; Caldwell et al., 2018; Greene
et al., 2023; Williams et al., 2011), suggesting that other
factors may be more important than temperature in this
region and/or that some aspect of temperature not
captured by the metrics used in this study is important.
For all disease–region pairs, particularly those with less
reliance on temperature-based metrics, developing
and/or improving climatologies and forecast variables
other than temperature would be the most effective way
to improve predictability within this forecasting system.
A complementary and useful way of leveraging informa-
tion from V3 is to explore the spatial variability in disease
risk to identify locations that are most promising for
interventions to improve reef health and target interven-
tions to the most influential variables. For instance, for
white syndromes on the GBR, fish density and seasonal
turbidity variability were identified as some of the most
important predictor variables, indicating that interven-
tions directed at those factors may be most effective for
improving reef health. From this perspective, users can
explore spatial variability in disease risk and then track
any intervention-associated improvements through time
without concern over ephemeral conditions that will
elapse with weekly updating.

Ecological forecasting presents a variety of ways sci-
entists, managers, and decision makers can address the
rising number of ecological challenges. We provide
multiple pathways to explore model predictions and
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suggest that major improvements going forward will be
as dependent on understanding the biological relation-
ships as they are on additional monitoring and surveil-
lance data. The model outputs and associated online
Multi-Factor Coral Disease Risk product and data
explorer were codeveloped with many relevant manage-
ment agencies and scientists. Through multiple focus
groups with stakeholders in Australia, American Samoa,
Hawaii, and Guam, planning meetings, and workshop
demonstrations at several scientific conferences over the
course of 6 years, we created an online decision support
tool that provides regional overviews aligned with other
NOAA CRW tools with which our intended audience is
already familiar. The method of delivering regional over-
views is also preferred by users with slow or intermittent
Internet connection, as is common in some Pacific
islands. The data explorer complements this tool in sev-
eral ways. First, it provides predictions aggregated to rele-
vant management zones and allows users to explore
forecasts at these various spatial scales through time. This
addresses two key concerns of our users as they need to
distill information at scales relevant to their respective
agencies or work mandates and to understand trends
through time in those specific locations. We addressed a
suite of other concerns through the use of scenarios.
Broadly, users who interacted with the tools as they were
being developed and tested found it difficult to translate
mean conditions at the finest spatial scale (~5 km) avail-
able to an individual reef of interest, especially when they
knew conditions at that one location were different from
the surrounding region. Thus, we made it possible for
users to change individual input conditions in the scenar-
ios page of the interactive tool to see how predicted
disease risk may correspondingly change in a specified
area of interest. The same scenarios tool can alternatively
be used as an exercise to assess the predicted impacts of
an intervention that would affect the relevant input
conditions (e.g., an intervention to reduce resuspended
sediments via turbidity) to determine how that might
affect disease risk.

Going forward, the forecasting models could be
substantially improved by replacing phenomenological
relationships with biological ones and potentially by cali-
brating the models differently. Ideally, biological relation-
ships could replace phenomenological ones using a
combination of lab and natural experiments. This
approach would ultimately help reduce uncertainty, par-
ticularly for undersampled conditions. In terms of cali-
bration, we made several decisions that increased the
likelihood of false positives (i.e., predicting higher disease
levels than would be observed). Specifically, using
SMOTE to compensate for scarce data on the conditions
associated with elevated disease risk resulted in an

overrepresentation of those conditions in the model data.
Further, we used the 75th percentile when communicat-
ing the model results in an effort to guard against missing
a major disease event. The impact of these decisions plays
out as expected with a large number of false positives in
the validation exercise (Figure 2). While we made these
choices based on stakeholder input, it might be prefera-
ble in future work to calibrate the models in a way that
systematically assesses a broader suite of assumptions
and allows for optimization of those decisions. For
instance, future efforts might include performing a for-
mal parameter sweep across a broader range of SMOTE
data frequencies and prediction quantiles. Alternatively,
if enough information is known about the disease system,
one could use informative priors in a Bayesian analysis
or consider adding a base rate correction.

The overall modeling approach we used to create V3
could be replicated to predict disease risk for other reef
regions and diseases, with appropriate consideration
given to the transferability of input variables to these
model systems. To expand this framework, a model
would need to be developed tailored to the new location
and/or disease. This would require the collation of coral
health survey data and concurrent environmental condi-
tions for model development and collating gridded envi-
ronmental covariates, including climatologies and SST
forecasts, for the appropriate reef grid for forecasting.
Diseases most suited for a forecasting framework like the
one described in this study are those impacting widely
distributed hosts, where the burden shifts seasonally
between endemic and epizootic states. For example,
stony coral tissue loss disease has caused widespread
mortality in multiple species in the Caribbean and would
be an ideal candidate disease for expanding the current
framework if it were introduced to the Pacific basin or
through the expansion of this tool to the western
Atlantic.

Many of the issues that make it challenging to fore-
cast coral disease risk are issues that encumber ecological
forecasts more broadly. In many ecological systems, the
greatest obstacle has to do with limitations of the data.
For example, while we had extensive coral disease survey
data that spanned a large geographic range in the Pacific
Ocean and a broad time horizon, very few of the data
points contained useful information about disease density
or prevalence, as most surveys exhibited low or disease-
free conditions. This problem is likely to arise in other
attempts to forecast low-occurrence events such as infes-
tations, invasive species, tipping points, and extreme
events. Although the historically low occurrence of dis-
ease is good ecologically, these data limitations inhibit
both our ability to develop initial ecological forecasts
and to create a workflow with continual validation
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and updates, which has been key to improving forecasts
in other systems, such as weather, storm, and fire fore-
casting (Dietze et al., 2018). A complementary issue is the
reliance on forecasted data as inputs to an ecological fore-
casting model, which may have their own set of uncer-
tainties and challenges. An important question then
arises from these shared obstacles across systems: Is there
something inherently different and currently unknown
about developing forecasts in systems where data cannot
be regularly updated and validated? Thus, this ecological
forecast and many others will benefit from community-
wide progress in the field of ecological forecasting.

CONCLUSIONS

Herein, we present the next-generation NOAA CRW
coral disease forecasting product and an associated data
explorer tool. It possesses many advantages over its pre-
decessors, including near-term forecasts of coral disease
risk in many major reefs in the Pacific Ocean. The Multi-
Factor Coral Disease Risk product predicts disease risk
for white syndromes and growth anomalies with greater
precision and accuracy than previous products based on
temperature alone and provides information for more
diseases and regions. Codeveloping the user interface
with the intended user base of scientists and managers
resulted in a user-friendly online data explorer tool that
includes the assessment of disease risk at different scales,
quantification of uncertainty in predictions, and the ability
to adjust input conditions to assess effects on disease out-
comes. Although this iteration represents a major improve-
ment over existing NOAA CRW coral disease forecasting
products, largely thanks to numerous advances in the eco-
logical forecasting community and data availability, there
remain numerous limitations for forecasting coral disease
risk. As data availability, forecasting capabilities, and our
biological understanding of the system improve, so will
future versions of this product.
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Takabayashi, B. Vargas-Ángel, et al. 2016. “Hawaiʻi Coral

Disease Database (HICORDIS): Species-Specific Coral Health
Data from across the Hawaiian Archipelago.” Data in Brief 8:
1054–58.

Caldwell, J. M., M. J. Donahue, and C. D. Harvell. 2018. “Host Size
and Proximity to Diseased Neighbours Drive the Spread of a
Coral Disease Outbreak in Hawai’i.” Proceedings of the Royal
Society B: Biological Sciences 285(1870): 20172265. https://doi.
org/10.1098/rspb.2017.2265.

Caldwell, J. M., S. F. Heron, C. M. Eakin, and M. J. Donahue. 2016.
“Satellite SST-Based Coral Disease Outbreak Predictions for
the Hawaiian Archipelago.” Remote Sensing 8(2): 93.

Caldwell, J., G. Liu, E. Geiger, S. Heron, C. M. Eakin, J. De La
Cour, A. Greene, et al. 2024. “Multi-Factor Coral Disease Risk:
A New Product for Early Warning and Management.” In
Ecological Applications. Zenodo, Software. https://doi.org/10.
5281/zenodo.10530327.

Carlson, R. R., S. A. Foo, and G. P. Asner. 2019. “Land Use Impacts
on Coral Reef Health: A Ridge-to-Reef Perspective.” Frontiers
in Marine Science 6: 562. https://doi.org/10.3389/fmars.2019.
00562.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002.
“SMOTE: Synthetic Minority Over-Sampling Technique.” Journal
of Artificial Intelligence Research 16: 321–357.

Clark, J. S., S. R. Carpenter, M. Barber, S. Collins, A. Dobson, J. A.
Foley, D. M. Lodge, et al. 2001. “Ecological Forecasts: An
Emerging Imperative.” Science 293(5530): 657–660.

Clemens, E., and M. E. Brandt. 2015. “Multiple Mechanisms of
Transmission of the Caribbean Coral Disease White Plague.”
Coral Reefs 34(4): 1179–88.

Coral Reef Ecosystem Program and Pacific Islands Fisheries Science
Center. 2015. National Coral Reef Monitoring Program.
Honolulu, Hawaii: NOAA National Centers for Environmental
Information https://www.fisheries.noaa.gov/inport/item/
28844.

Dietze, M. C., A. Fox, L. M. Beck-Johnson, J. L. Betancourt, M. B.
Hooten, C. S. Jarnevich, T. H. Keitt, et al. 2018. “Iterative
Near-Term Ecological Forecasting: Needs, Opportunities, and
Challenges.” Proceedings of the National Academy of Sciences
of the United States of America 115(7): 1424–32.

Geiger, E. F., S. F. Heron, W. J. Hern�andez, J. M. Caldwell, K.
Falinski, T. Callender, A. L. Greene, et al. 2021. “Optimal
Spatiotemporal Scales to Aggregate Satellite Ocean Color Data
for Nearshore Reefs and Tropical Coastal Waters: Two Case
Studies.” Frontiers in Marine Science 8: 643302. https://doi.org/
10.3389/fmars.2021.643302.

Greene, A., M. J. Donahue, J. M. Caldwell, S. F. Heron, E. Geiger,
and L. J. Raymundo. 2020. “Coral Disease Time Series High-
light Size-Dependent Risk and Other Drivers of White
Syndrome in a Multi-Species Model.” Frontiers in Marine
Science 7: 601469. https://doi.org/10.3389/fmars.2020.601469.

Greene, A., T. Moriarty, W. Leggatt, T. D. Ainsworth, M. J.
Donahue, and L. Raymundo. 2023. “Spatial Extent of Dysbiosis
in the Branching Coral Pocillopora damicornis during an
Acute Disease Outbreak.” https://www.researchsquare.com/
article/rs-3064933/latest.

Haapkylä, J., R. K. F. Unsworth, M. Flavell, D. G. Bourne, B.
Schaffelke, and B. L. Willis. 2011. “Seasonal Rainfall and
Runoff Promote Coral Disease on an Inshore Reef.” PLoS One
6(2): e16893.

18 of 20 CALDWELL ET AL.

 19395582, 2024, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2961 by E

ddie K
oiki M

abo L
ibrary, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-6220-918X
https://orcid.org/0000-0002-6220-918X
https://orcid.org/0000-0002-6220-918X
https://orcid.org/0000-0002-4946-790X
https://orcid.org/0000-0002-4946-790X
https://orcid.org/0000-0002-4946-790X
https://orcid.org/0000-0002-7529-001X
https://orcid.org/0000-0002-7529-001X
https://orcid.org/0000-0002-7529-001X
https://doi.org/10.1007/978-94-017-3284-0_2
https://doi.org/10.1111/ele.14266
https://doi.org/10.1098/rspb.2017.2265
https://doi.org/10.1098/rspb.2017.2265
https://doi.org/10.5281/zenodo.10530327
https://doi.org/10.5281/zenodo.10530327
https://doi.org/10.3389/fmars.2019.00562
https://doi.org/10.3389/fmars.2019.00562
https://www.fisheries.noaa.gov/inport/item/28844
https://www.fisheries.noaa.gov/inport/item/28844
https://doi.org/10.3389/fmars.2021.643302
https://doi.org/10.3389/fmars.2021.643302
https://doi.org/10.3389/fmars.2020.601469
https://www.researchsquare.com/article/rs-3064933/latest
https://www.researchsquare.com/article/rs-3064933/latest


Heron, S. F., L. Johnston, G. Liu, E. F. Geiger, J. A. Maynard, J. L.
De La Cour, S. Johnson, et al. 2016. “Validation of Reef-Scale
Thermal Stress Satellite Products for Coral Bleaching Monitor-
ing.” Remote Sensing 8(1): 59.

Heron, S. F., B. L. Willis, W. J. Skirving, C. M. Eakin, C. A. Page,
and I. R. Miller. 2010. “Summer Hot Snaps and Winter Condi-
tions: Modelling White Syndrome Outbreaks on Great Barrier
Reef Corals.” PLoS One 5(8): e12210.

Howells, E. J., G. O. Vaughan, T. M. Work, J. A. Burt, and D.
Abrego. 2020. “Annual Outbreaks of Coral Disease Coincide
with Extreme Seasonal Warming.” Coral Reefs 39(3): 771–781.

Jordan, M. I., and T. M. Mitchell. 2015. “Machine Learning: Trends,
Perspectives, and Prospects.” Science 349(6245): 255–260.

Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems.
Cambridge, UK: Cambridge University Press.

Maynard, J. A., K. R. N. Anthony, C. D. Harvell, M. A. Burgman, R.
Beeden, H. Sweatman, S. F. Heron, J. B. Lamb, and B. L.
Willis. 2011. “Predicting Outbreaks of a Climate-Driven Coral
Disease in the Great Barrier Reef.” Coral Reefs 30(2): 485–495.

Meinshausen, N. 2006. “Quantile Regression Forests.” https://www.
jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf.

Neely, K. L., C. P. Shea, K. A. Macaulay, E. K. Hower, and M. A.
Dobler. 2021. “Short- and Long-Term Effectiveness of Coral
Disease Treatments.” Frontiers in Marine Science 8: 675349.
https://doi.org/10.3389/fmars.2021.675349.

NOAA Pacific Islands Fisheries Science Center, Ecosystem Sciences
Division. 2018a. National Coral Reef Monitoring Program:
Stratified Random Surveys (StRS) of Coral Demography (Adult
and Juvenile Corals) across American Samoa. Honolulu,
Hawaii: NOAA National Centers for Environmental Informa-
tion. Dataset. https://doi.org/10.7289/v579431k.

NOAA Pacific Islands Fisheries Science Center, Ecosystem Sciences
Division. 2018b. National Coral Reef Monitoring Program: Strati-
fied Random Surveys (StRS) of Coral Demography (Adult
and Juvenile Corals) across the Hawaiian Archipelago.
Honolulu, Hawaii: NOAA National Centers for Environmental
Information. Dataset. https://doi.org/10.7289/v5c24trh.

NOAA Pacific Islands Fisheries Science Center, Ecosystem Sciences
Division. 2018c. National Coral Reef Monitoring Program: Strati-
fied Random Surveys (StRS) of Coral Demography (Adult and
Juvenile Corals) across the Mariana Archipelago. Honolulu,
Hawaii: NOAA National Centers for Environmental Informa-
tion. Dataset. https://doi.org/10.7289/v53n21q5.

NOAA Pacific Islands Fisheries Science Center, Ecosystem Sciences
Division. 2018d. National Coral Reef Monitoring Program:
Stratified Random Surveys (StRS) of Coral Demography (Adult
and Juvenile Corals) across the Pacific Remote Island Areas.
Honolulu, Hawaii: NOAA National Centers for Environmental
Information. Dataset. https://doi.org/10.7289/v5zw1j8b.

Oliver, T. H., and D. B. Roy. 2015. “The Pitfalls of Ecological Forecast-
ing.” Biological Journal of the Linnean Society 115(3): 767–778.

Pacific Islands Fisheries Science Center. 2024. Pacific Reef Assess-
ment and Monitoring Program: Stratified Random Surveys
(StRS) of Reef Fish, Including Benthic Estimate Data at Coral
Reef Sites across the Pacific Ocean from 2007 to 2012. Honolulu,
Hawaii: NOAA National Centers for Environmental Informa-
tion https://www.fisheries.noaa.gov/inport/item/34515.

Palmer, C. V., and A. H. Baird. 2018. “Coral Tumor-like Growth
Anomalies Induce an Immune Response and Reduce Fecun-
dity.” Diseases of Aquatic Organisms 130(1): 77–81.

Pollock, F. J., J. B. Lamb, S. N. Field, S. F. Heron, B. Schaffelke, G.
Shedrawi, D. G. Bourne, and B. L. Willis. 2014. “Sediment
and Turbidity Associated with Offshore Dredging Increase
Coral Disease Prevalence on Nearby Reefs.” PLoS One 9(7):
e102498.

Raymundo, L., M. Andersen, C. Moreland-Ochoa, A. Castro, C.
Lock, N. Burns, F. Taijeron, D. Combosch, and D. Burdick.
2022. Conservation and Active Restoration of Guam’s Staghorn
Acropora Corals (168). Guam: University of Guam.

Raymundo, L. J., C. S. Couch, and C. D. Harvell. 2008. Coral Disease
Handbook: Guidelines for Assessment, Monitoring & Management.
Coral Reef Targeted Research and Capacity Building for Manage-
ment Program. St. Lucia: The University of Queensland.

Redding, J. E., R. L. Myers-Miller, D. M. Baker, M. Fogel, L. J.
Raymundo, and K. Kim. 2013. “Link between Sewage-Derived
Nitrogen Pollution and Coral Disease Severity in Guam.”
Marine Pollution Bulletin 73(1): 57–63.

Renzi, J. J., E. C. Shaver, D. E. Burkepile, and B. R. Silliman. 2022.
“The Role of Predators in Coral Disease Dynamics.” Coral
Reefs 41(2): 405–422.

Rom�an, M. O., Z. Wang, Q. Sun, V. Kalb, S. D. Miller, A. Molthan,
L. Schultz, et al. 2018. “NASA’s Black Marble Nighttime
Lights Product Suite.” Remote Sensing of Environment 210:
113–143.

Rosales, S. M., A. S. Clark, L. K. Huebner, R. R. Ruzicka, and E. M.
Muller. 2020. “Rhodobacterales and Rhizobiales Are Associ-
ated with Stony Coral Tissue Loss Disease and its Suspected
Sources of Transmission.” Frontiers in Microbiology 11: 681.

Ruiz-Moreno, D., B. L. Willis, A. C. Page, E. Weil, A. Cr�oquer, B.
Vargas-Angel, A. G. Jordan-Garza, E. Jord�an-Dahlgren, L.
Raymundo, and C. D. Harvell. 2012. “Global Coral Disease
Prevalence Associated with Sea Temperature Anomalies and
Local Factors.” Diseases of Aquatic Organisms 100(3): 249–261.

Saha, S., S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D.
Behringer, et al. 2014. “The NCEP Climate Forecast System
Version 2.” Journal of Climate 27(6): 2185–2208.

Selig, E. R., C. Drew Harvell, and J. F. Bruno. 2006. “Analyzing the
Relationship between Ocean Temperature Anomalies and
Coral Disease Outbreaks at Broad Spatial Scales.” In Coral
Reefs and Climate Change: Science and Management, edited by
J. T. Phinney, O. Hoegh-Guldberg, J. Kleypas, W. Skiving, A.
Strong. Washington, DC: American Geophysical Union.

Shore, A., and J. M. Caldwell. 2019. “Modes of Coral Disease Trans-
mission: How Do Diseases Spread between Individuals and
among Populations?” Marine Biology 166(4): 45.

Skirving, W., B. Marsh, J. De La Cour, G. Liu, A. Harris, E. Maturi,
E. Geiger, and C. M. Eakin. 2020. “CoralTemp and the Coral
Reef Watch Coral Bleaching Heat Stress Product Suite Version
3.1.” Remote Sensing 12(23): 3856.

Stimson, J. 2011. “Ecological Characterization of Coral Growth
Anomalies on Porites Compressa in Hawai‘i.” Coral Reefs
30(1): 133–142.

Sweatman, H. P. A., A. J. Cheal, G. J. Coleman, M. J. Emslie, K.
Johns, M. Jonker, I. R. Miller, and K. Osborne. 2008. Long-
term Monitoring of the Great Barrier Reef, Status Report (8).
Townsville, Australia: Australian Institute of Marine Science.

Vega Thurber, R. L., D. E. Burkepile, C. Fuchs, A. A. Shantz, R.
McMinds, and J. R. Zaneveld. 2014. “Chronic Nutrient Enrich-
ment Increases Prevalence and Severity of Coral Disease and
Bleaching.” Global Change Biology 20(2): 544–554.

ECOLOGICAL APPLICATIONS 19 of 20

 19395582, 2024, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2961 by E

ddie K
oiki M

abo L
ibrary, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf
https://www.jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf
https://doi.org/10.3389/fmars.2021.675349
https://doi.org/10.7289/v579431k
https://doi.org/10.7289/v5c24trh
https://doi.org/10.7289/v53n21q5
https://doi.org/10.7289/v5zw1j8b
https://www.fisheries.noaa.gov/inport/item/34515


Walton, C. J., N. K. Hayes, and D. S. Gilliam. 2018. “Impacts of a
Regional, Multi-Year, Multi-Species Coral Disease Outbreak in
Southeast Florida.” Frontiers in Marine Science 5: 323. https://
doi.org/10.3389/fmars.2018.00323.

Williams, G. J., G. S. Aeby, R. O. M. Cowie, and S. K. Davy. 2010.
“Predictive Modeling of Coral Disease Distribution within a
Reef System.” PLoS One 5(2): e9264.

Williams, G. J., I. S. Knapp, T. M. Work, and E. J. Conklin. 2011.
“Outbreak of Acropora White Syndrome Following a Mild
Bleaching Event at Palmyra Atoll, Northern Line Islands,
Central Pacific.” Coral Reefs 30(3): 621.

Winston, M., C. Couch, B. Huntington, and B. Vargas-Ángel. 2020.
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