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Abstract

1. Seed-based seagrass restoration strategies demand precise understanding of the

environmental drivers influencing flowering. Flowering varies across diverse

spatial and temporal scales, yet environmental drivers' effects on these dynamics

have received less attention. Lack of knowledge regarding this life-history stage

limits the advancement of seed-based restoration efforts, especially the

establishment of shore-based seagrass nurseries to enhance seed production.

2. A systematic literature review on the flowering of the genus Zostera was

conducted to develop a conceptual model that links influential environmental

drivers with flowering. Additionally, a case study using existing survey data

supplemented by additional field surveys was designed to explore the spatio-

temporal variability of flowering along the latitudinal gradient in Australasia for

the species Zostera muelleri. Predictive models for flowering times were

developed using regional climatic variables, following hypotheses generated from

long-term mesocosm observations.

3. The review identified the direct and/or indirect effects of temperature, light, tidal

variation, nutrients, salinity and grazing pressure on flowering dynamics. Four

categories of flowering variables were identified based on their implications on

restoration, namely, timing, abundance, the ratio between reproductive and

vegetative growth and morphological characteristics. The spathe densities varied

significantly among sites along the latitudinal gradient. While first (r2 = 0.71) and

peak (r2 = 0.68) flowering times showed significant correlation with latitude, first
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flowering was equally predicted by mean winter air temperature and mean winter

solar radiation (r2 = 0.73), whereas peak flowering time was best predicted by

mean winter air temperature (r2 = 0.60).

4. Accurate predictions of flowering times can improve conservation outcomes by

enabling restoration practitioners to forecast flowering times and subsequent wild

seed harvesting. The strong correlation between flowering times and climatic

variables suggests future shifts in flowering times under climate change are likely,

which is crucial knowledge for maintaining the contribution of restoration

projects to seagrass conservation.
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1 | INTRODUCTION

Seagrasses are marine angiosperms, defined by the production of

flowers that contribute to the genetic diversity and resilience of

meadows. By producing viable seeds that germinate and grow into new

plants or remain dormant in a seed bank, flowering helps ensure the

persistence of populations in the face of natural and anthropogenic

environmental change, such as declines in water quality, extreme

temperatures, coastal development and dredging and storm events.

Seagrass phenology can be influenced by various environmental factors

(e.g. temperature, light, tidal variation and nutrients) (De Cock, 1981c;

Johnson et al., 2017; Sherman et al., 2018; Qin et al., 2020; von Staats

et al., 2021). Depending on the relative contribution of environmental

drivers, the flowering pattern can vary spatially and temporally. Large-

scale spatial variability is expected to be linked with regional, seasonal

variation in environmental conditions (e.g. changes in temperature and

day length) (Blok et al., 2018; Phillips et al., 1983), and site-specific

environmental conditions (e.g. nutrients, tidal height and physical

disturbances) may drive small-scale variability (Campey et al., 2002;

Cook, 1983; Durako & Moffler, 1987; Inglis & Smith, 1998). Spatio-

temporal variation in seagrass flowering and related drivers has not been

adequately investigated to predict the flowering cycle for most

Australasian seagrass species (York et al., 2017; Zabarte-Maeztu

et al., 2023).

Information on the phenology of Zostera Linnaeus, 1753 was

systematically explored to identify possible environmental drivers

that can be linked to flowering. Such an understanding provides

important insights into the functioning of coastal seagrass

ecosystems and better informs key stages of seed-based restoration

efforts, such as timing for flower and seed collections, which can

contribute strongly to seagrass conservation. Knowing the drivers of

flowering is also of great benefit for designing and operating cost-

effective seagrass seed nurseries that can support restoration. Most

Zostera species have a high potential for restoration in terms of

domestication in nurseries, and rewilding is viable because large

numbers of seeds can be produced over a prolonged period (van

Katwijk et al., 2021).

This review focused on the genus Zostera, which is globally

distributed and widely studied in relation to phenology. This monoecious

genus produces photosynthetic flowering shoots that usually grow

above the canopy to facilitate pollen dispersal (Ackerman, 2006; Follett

et al., 2019). Each shoot consists of multiple flattened spathes (also

called a spadix, an adjusted leaf sheath attached to the axis) from which

flowers emerge as small anther-like structures (De Cock, 1980). Spathes

have five maturity stages, namely, developing spathe (with no styles

erected), erecting styles out of the spadix, curving styles after pollination,

maturing seeds and releasing seeds when the spathe starts withering

(De Cock, 1980; Infantes & Moksnes, 2018; von Staats et al., 2021). The

plant's flowering potential is thought to relate to the plant's maturity,

and the flowering period may depend on the plant's resource availability

(Johnson et al., 2017). Flowering shoots usually first appear and mature

close to the main stem and continue to progress towards the end of the

shoot (De Cock, 1980). Zostera flowers produce negatively buoyant

seeds inside the spathes following pollination (De Cock, 1980).

Flowering shoots can be harvested for seed-based restoration efforts

when the spathes develop seeds (Infantes & Moksnes, 2018; Tan

et al., 2023).

The flowering process may be linked to external factors

(e.g. temperature, light, tidal variation and nutrients) and plant

genetics (Wang et al., 2019; Zhang et al., 2016). Depending on the
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environmental conditions and the resources allocated to flowering,

the flowering duration can vary and may result in spatial and

temporal variations of flowering even within a relatively small

geographic space of the same climatic region (Smith et al., 2016;

Suonan et al., 2017). However, the environmental drivers that

trigger or inhibit the flowering of Zostera have yet to be sufficiently

demonstrated, limiting the capacity to accurately predict flowering

phenology under different scenarios. This review analysed the

literature on natural Zostera phenology and developed a conceptual

model for Zostera flowering by analysing the suite of environmental

variables either putatively or causally linked to flowering. A pathway

for future phenological studies is also provided.

Supporting this review, a large-scale case study was conducted

in Australia and New Zealand to document the spatio-temporal

variability of the flowering of Zostera muelleri along the latitudinal

gradient in Australasia and to determine which environmental factors

appear most linked to its timing. While previous studies of the

relationship between temperature and the timing of flowering have

used mean annual air temperatures (Blok et al., 2018; Ito

et al., 2021), here the impacts of water temperature and solar

radiation were also considered. In addition, this study concentrated

on winter environmental conditions, which extended mesocosm

experiments have shown to determine the timing of Z. muelleri

flowering (Lekammudiyanse et al., 2022; Lekammudiyanse et al.,

2023a).

2 | METHODS

2.1 | Literature search methodology

Peer-reviewed publications were searched with no time constraints

on the indexed scientific databases Scopus, Web of Science and

CSIRO journals. Standardized keyword combinations (seagrass,

submerged aquatic vegetation, flower, inflorescence, sexual

reproduction, spathe) were used with Boolean and wildcards

(i.e. seagrass OR submerged aquatic vegetation AND flower* OR

inflorescen* OR sexual reproduc* OR spathe). The resulting papers

were excluded if they were non-English or unavailable in full text.

Duplicate records were removed, and cross-referencing was

conducted during the systematic search, providing 706 unique

publications. To be included, a publication had to meet the following

criteria: (a) study on the genus Zostera, (b) it addressed the topic of

seagrass flowering, (c) it discussed environmental variables driving

flowering and (d) it discussed temporal changes in flowering. Data

were extracted from the 59 studies that met these criteria to build a

database of information describing flowering phenology and

proposed/demonstrated causal environmental variables, which were

subsequently used to construct a generalized conceptual model of

Zostera flowering. Studies that explored the flowering variabilities

during discrete anthropogenic disturbances (e.g. effects of clam

harvesting and manual clearance) were not considered in building the

generalized conceptual framework.

2.2 | Case study: Z. muelleri flowering in
Australasia

2.2.1 | Data collection

Data on flowering times were assembled from literature and from

existing surveys by the authors, supplemented by additional field

surveys, which also collected data on flowering intensity using a

specifically designed protocol (Supporting Information, Protocol for

field data collection – Zostera muelleri flowering). As per this protocol,

two flowering measurements were taken (i.e. number of flowering

shoots per quadrat and number of spathes in three randomly selected

flowering shoots) by walking from the high tide level to the low tide

level of the meadow monthly over the flowering season. These

measurements were used to calculate the average number of spathes

in a square metre (hereafter known as the density of spathes). The

density of spathes during peak flowering months (where the highest

densities were recorded) was used for the analysis. Three flowering

measurements were taken at each level of the upper, middle and

lower tidal levels of the meadow to find which intertidal zone is better

for flower collection. Spathe density data were available at two

tropical and five subtropical intertidal meadows in Queensland,

Australia, and two temperate meadows in New Zealand during the

peak flowering months in the 2020–2021 flowering seasons

(Figure 1). These sites continue to be monitored by the authors.

2.2.2 | Data analysis

In each study, the timing of the first flowering was represented as the

day number of the given year. As the timing of flowering in the case

study was not always available as precise dates, the middle day of the

particular month recorded was used in the analyses (Blok et al., 2018).

We hypothesized that Zostera flowering across Australasia would be

triggered by the coldest temperatures expected to occur in the

Austral winter (June–August), based on fine-scale observations of

seagrass flowering over 5 years (2018–2022) from mesocosm

systems at the Coastal Marine Ecosystems Research Centre,

CQUniversity (Lekammudiyanse et al., 2022, Figure S1). The

relationships between first/peak flowering and three different aspects

of the winter regional climate—air temperature, water temperature

and solar radiation—was explored. Climatic data were extracted from

the closest weather stations (available as daily minimum and

maximum) and ERA5 climate data (available as hourly gridded data)

(Hersbach et al., 2019).

A set of univariate linear regression models was developed for the

timing of first and peak flowering with the predictors mean winter

air temperature, mean winter water temperature and mean winter solar

radiation (the significance level was tested with P < 0.05). Though the

environmental variables were assumed to correlate with latitudes

strongly, their relationships with the latitudes were also tested to ensure

the applicability of regional climatic variables as predictors of flowering

times (Figure S2). Because the predictors are highly correlated
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(Figure S3), univariate models were built to explore the effect of

individual environmental variables. Variation in the density of spathes

was tested with two-way analysis of variance (ANOVA) with two fixed

factors (i.e. site and intertidal depth level). The requirements of ANOVA

were checked with normalized q-q residual plots and Shapiro–Wilk's test

(P < 0.05). Spathe density at the lower level of the Delaware Inlet site

was detected as an outlier, and hence, it was removed from the analysis.

Data remained heterogenous even after transformation, so a more

conservative significant level was considered (i.e. P < 0.01) (Kutner

et al., 2004; Underwood et al., 1997). All simulations were performed in

R version 4.2.1 (Team, 2020), and data were plotted with ggplot2

(Wickham et al., 2016).

3 | RESULTS

3.1 | Systematic review results

The flowering variables were categorized and the database organized

by species, experiment type, environmental variables, flowering

metrics and the locations of these studies (Tables 1 and 2). Most

studies (>80%) were conducted in the northern hemisphere, focusing

mainly on Zostera marina Linnaeus, 1753 (Figure 2). Other studies

were focused on Zostera noltei Hornemann, 1832 (synonym Zostera

noltii), Z. muelleri Irmisch ex Ascherson, 1867 subsp capricorni

(Ascherson) S.W.L. Jacobs, 2006, Zostera japonica Ascherson and

Graebner, 1907 (unaccepted synonym Zostera americana den Hartog,

1970), Zostera caespitosa Miki, 1932, Zostera capensis Setchell, 1933,

and Zostera nigricaulis (J. Kuo) S.W.L. Jacob and D.H. Les, 2009

(synonym Heterozostera nigricaulis) (Figure 2).

3.2 | Flowering variables

Seagrass flowering was measured using variables representing timing,

flowering shoot/spathe density, the ratio between reproductive and

non-reproductive shoots/biomass and morphological characteristics

of flowering based on their importance in restoration (Table 1). The

most common flowering variable in measuring spatial and temporal

variabilities was flowering shoot or spathe density (i.e. number of

flowering shoots or spathes per unit area) (Cabaço et al., 2009;

Infantes & Moksnes, 2018; Morita et al., 2010; Potouroglou

et al., 2014). From a harvesting point of view, abundance variables will

be important (Infantes & Moksnes, 2018) and to predict the

harvesting times, knowing the duration of seagrass flowering is useful

(Blok et al., 2018). Resource allocation in flowering can be measured

F IGURE 1 Locations from which Z. muelleri flowering time data for Australasia were collected. Dots with circles are denoted for the sites that
have both flowering density data and timing data.
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by the flowering ratio and morphological characteristics (Jackson

et al., 2017; Wang et al., 2019). Combining variables from these

categories will be beneficial in measuring, interpreting and applying

the spatial and temporal variations in flowering. In addition, a

combination of flowering variables might be a good indicator of

physical disturbance as the alterations of reproductive efforts are

strongly linked with the natural/anthropogenic factors regardless of

the type of disturbance (Cabaco & Santos, 2012).

3.3 | Effects of abiotic factors

3.3.1 | Water temperature

In most previous studies, water temperature was identified as the

most influential environmental variable related to triggering and

defining the stages of the flowering cycle (De Cock, 1981c; Phillips

et al., 1983; Potouroglou et al., 2014; Qin et al., 2020; Silberhorn

et al., 1983). Temperature thresholds that trigger flowering are

thought to be similar across latitudinal gradients based on differences

in flowering times observed (Silberhorn et al., 1983). Conversely,

some studies suggested that the threshold temperature across

latitudes is different due to the adaptation to local temperature

regimes (Phillips et al., 1983). For instance, some Zostera species, like

Z. marina in northern latitudes, are found to flower even at very low

temperatures (e.g. at 0.3�C) (Silberhorn et al., 1983). In comparison,

southern populations are associated with higher threshold

temperatures (e.g. at 17�C), suggesting that temperature thresholds

can vary among the populations along the latitudinal gradient (Qin

et al., 2020; Silberhorn et al., 1983).

In the northern hemisphere, Z. marina flowering typically starts

later than in most southern populations. Blok et al. (2018) showed

that the formation of flowers is likely to be delayed by approximately

12 days with a 1�C increase in annual temperature increment. Such

differences in the timing of flowering have also been recorded in

southern hemisphere waters where tropical and subtropical Zostera

populations start flowering in mid-winter while the flowering season

begins in late spring to early summer in temperate populations

(Lekammudiyanse et al., 2022; Rasheed, 1999; Smith et al., 2016). In

contrast, differences in the timing of flowering have been observed

even within the same latitudinal region where early flowering was

observed in relatively warm areas compared with colder areas (Phillips

et al., 1983; Qin et al., 2020; Vercaemer et al., 2021). This might be

due to the differences in receiving the required temperature to trigger

flowering. Differences in flowering times in the same latitudinal

region further emphasized that temperature appears to be more

important than day length differences.

Plants are usually thought to tolerate a range of temperature

thresholds, with higher temperature thresholds likely to lower flower

production (McMillan, 1980). In contrast, a longer duration of

threshold temperatures is expected to compromise prolonged

flowering events (Qin et al., 2020), which might be due to the

difference in resource allocation between plant growth and flower

production (Lee et al., 2007; Zimmerman et al., 2017). Therefore,

temperature thresholds of flowering are unlikely to be found without

considering the thermal tolerances and ambient temperature

conditions within its local distributional range. This creates challenges

in designing experiments to find the temperature triggers of

flowering. Such temperature thresholds are available mainly for

Z. marina (De Cock, 1981c; Phillips, Stewart Grant & Peter

Mcroy, 1983; Silberhorn et al., 1983) and are rare for other species.

Antecedent conditions and fluctuations within the temperature

range are also likely to affect flowering times. High temperatures tend

to result in the plant allocating resources more towards vegetative

growth as a response to withstanding thermal stress and thus may

result in delays in flowering due to fewer resources for flower

production (Zimmerman et al., 1989; Zimmerman et al., 2017). When

temperature fluctuations are frequent and reach extremely high

temperatures beyond the plant's photosynthetic temperature

threshold, plants tend to stress quickly, even within a day, hindering

the flowering potential of the plant (Qin et al., 2020; Vercaemer

et al., 2021). Therefore, differences in flowering times can be

expected even among closely located populations if they experience

different temperature fluctuations (Qin et al., 2020).

TABLE 1 Types of flowering variables garnered from the
literature.

Category Flowering variable

Timing of

flowering

-Probability/presence of flowering

-Days of flowering (number of days to first and

peak flowering)

-Duration of flowering

-Degree of decomposition of inflorescence

-Number of days to inflorescence becomes

visible

Density of

flowering

-Number of flowering shoots per unit area

(density of flowering shoots)

-Number of spathes per unit area (density of

spathes)

Ratios of

flowering

-The proportion of spathe biomass to shoot

biomass

-Number/percentage of reproductive shoots to

total shoots

-Percentage of reproductive shoot biomass to

total shoot biomass (reproductive effort)

-The ratio between ovaries and shoot

-Sex ratio (proportion of female and male flowers)

Morphology of

flowering

-Height/length of flowering shoot

-Length of spathe

-Number of spathes per flowering shoot

-Branches per flowering shoot

-Number of spathes per branch

-Total number of spathes on the 1st branch

-Number of female and/or male flowers per

spathe

-Number of unfertilized flowers per spathe

-Stage of spathe development
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3.3.2 | Light

Light levels also affect the flowering of Zostera. Low irradiance levels

resulting from algal blooms, deeper water or high turbidity may

reduce or inhibit flowering shoot development in Zostera. The long-

term decline in light levels along urban coastlines where turbidity is

consistently elevated above historical levels can decrease the plant's

investment in sexual reproduction, even in nutrient-rich waters

(Johnson et al., 2017). Along the tidal depth gradient, light intensities

decrease, and in many estuarine and coastal habitats, tidal depth and

the associated light limitation are considered the most important

factor in limiting the vertical distribution of Zostera (Fonseca

et al., 1983; Koch, 2001; Krause-Jensen et al., 2000).

In deeper subtidal water, low light conditions can delay flowering.

If the light level received is below the light compensation point,

carbohydrate production may be diminished (Ruiz & Romero, 2001).

As a result, the above-ground biomass and shoot densities are

reduced, but canopy height can increase, which could reduce the

potential of self-shading while also assimilating greater amounts of

light energy (Collier et al., 2007; Dennison, 1987; Krause-Jensen

et al., 2000; Olesen et al., 2017). In such cases, it appears plants can

invest their resources towards sexual reproduction, resulting in

increased flowering acutely or seasonally (Kim et al., 2014;

McMillan, 1982; Olesen et al., 2017; Phillips et al., 1983; Silberhorn

et al., 1983; van Lent & Verschuure, 1994). However, prolonged light

reduction at deeper depths can reduce the resource investment in

flowering, which might be the reason for observed delays in flowering

times, low flowering densities and lengthening of the flower

maturation periods in deeper water (von Staats et al., 2021). At

shallower depths, light regimes are supposed to be more favourable

and thus may result in higher flowering intensities (von Staats

et al., 2021). In addition, heavy epiphytic fouling of seagrass leaves by

filamentous macroalgae can reduce the available light and thus result

in lower flowering intensities in shallow waters (Infantes &

Moksnes, 2018). However, low light conditions resulting from algal

phytoplankton blooms may not affect the triggering of flowering,

which is thought to be driven primarily by temperature (Qin

et al., 2020).

Across the intertidal zone, light is unlikely to be a limiting factor,

but oversaturated light during low tides can cause photo-inhibition

and stop plant metabolism (Petrou et al., 2013; Pollard &

Greenway, 2013). In the lower intertidal zone, light can be attenuated

by re-suspended sediments from turbulent flows during high tides

(Adams et al., 2016; Coles et al., 2007). Some studies have observed

that plant sexual reproduction tends to increase acutely with

environmental stressors in the intertidal zone, but it is unclear

whether these acute responses are related to tidal fluctuation and/or

the light limitation or their interaction (Fonseca & Bell, 1998;

Potouroglou et al., 2014).

Unlike light intensity, the effect of the duration of the

photoperiod was unclear. Shorter photoperiods (i.e. in winter) were

found to inhibit the formation of reproductive shoots of some Zostera

species (e.g. Z. novazelandica), even at preferable temperatures

(Ramage & Schiel, 1998), suggesting that the flower development

inhibited by short photoperiod may reduce the longevity of the

meadow by limiting sexual reproduction. Conversely, some studies

suggest that the photoperiod may not determine the reproductive

periodicity over the latitudinal gradient as the populations are

expected to be acclimatized and adapted to regional light regimes

(Blok et al., 2018; McMillan, 1980; McMillan, 1982; Silberhorn

et al., 1983). This might be due to the absence of the phytochrome C

gene in Zostera plants (e.g. Z. marina) that are linked to the

photoperiod control of flowering, suggesting that the photoperiod

may play a minor role in the timing of flowering (Olsen et al., 2016).

F IGURE 2 Locations of studies examining the phenology of Zostera and related environmental drivers.
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3.3.3 | Tidal variation

Tidal variation can affect Zostera flowering, with intertidal seagrasses

often subject to desiccation stress, hydrodynamic removal or

sedimentation with tidal movements (Fonseca & Bell, 1998;

Koch, 2001; Vermaat, 2009). The stressors associated with tidal

variation vary across the intertidal depth gradient, typically greatest at

landward intertidal levels.

At shallow intertidal depths, plants are exposed for extended

hours during low tides, resulting in high desiccation stress and photo-

inhibition from light over-saturation (Ralph et al., 2007; Silva &

Santos, 2003). These stresses change the plant's physiology and

mechanical strength. For instance, 5 h of aerial exposure reduced the

photosynthetic rate of Z. noltii by 50% due to the loss of water

content in plant tissues (Leuschner et al., 1998). In extreme

conditions, long-term desiccation stress can shred the leaves,

resulting in short canopies in the intertidal zone (Boese et al., 2003;

Vermaat et al., 1993). The desiccation stress can vary depending on

the groundwater seepage, self-shading by plant cover, shielding by

algae, air temperature and wind speed. For instance, Z. noltii was

found to tolerate extremely high air temperatures (e.g. 40�C) for 6 h

of daily tidal exposure when the plant cover is dense (e.g. >75%

cover) (De Fouw et al., 2016). During the exposure, plants can

facilitate the photosynthetic rate by enhancing the carbon dioxide

assimilation when the plant's tissues remain moist (Petrou et al., 2013;

Pollard & Greenway, 2013). At lower intertidal depths, the desiccation

stress is likely less due to relatively short-term ariel exposure,

providing more favourable conditions for plant growth (Van Lent

et al., 1991). In addition, during high tide, the intertidal zone may

experience low light conditions due to turbulent flows with re-

suspended sediments that are likely to attenuate the light (Adams

et al., 2016; Coles et al., 2007).

Plant sexual production sometimes shows slight increases with

the changes in environmental stressors in the intertidal zone

(Fonseca & Bell, 1998; Potouroglou et al., 2014). For instance,

Fonseca & Bell (1998) observed a 5% increase in flowering shoots

with a 10-fold increase in wave exposure index, calculated from wind

velocities. The weak correlation (r2 = 0.29) between the percentage

of flowering shoots and wave exposure suggested that wave

exposure might not significantly influence flowering (Fonseca &

Bell, 1998). In addition, intertidal meadows show patchiness in

flowering over scales of metres to tens of metres and vary temporally

(Campey et al., 2002; Conacher et al., 1994; Inglis & Smith, 1998).

This might be due to the plant's adaptability in allocating resources

towards sexual reproduction and vegetative growth in disturbed

regimes (Mony et al., 2011; Nelson et al., 2007). Observed spatial and

temporal variation in flowering may also be linked to local

environmental conditions as well as plant genetic factors (Campey

et al., 2002; Clavier et al., 2011; Cook, 1983; Durako & Moffler, 1987;

Inglis & Smith, 1998). For instance, Olesen et al. (2017) observed

increased flowering in mid-intertidal levels, and Ramage & Schiel

(1998) noted increased flowering in lower intertidal depths and tide

pools where the desiccation stress is expected to be lowest. In

contrast, Cabaço et al. (2009) observed no differences in flowering at

different heights of the intertidal zone, and Harrison (1982) noted

some temporal changes at different intertidal zones. These reported

changes might be due to the antagonistic or synergistic effects of the

stressors in the intertidal zone, where the combination of stressors

may have less impact than the effects of the individual stressor

(i.e. antagonistic effect) or vice versa (i.e. synergistic effect) (Brown

et al., 2014). The previous contradictory findings emphasize the need

for further studies on the factors driving the patchiness of flowering

in the intertidal zone.

At subtidal depths, desiccation stress is absent, but light might be a

crucial factor. Particularly at deep depths, limited light availability is

found to reduce and delay flowering (Olesen et al., 2017). However,

light may not be limited at shallow depths, where conditions are

thought to be more favourable for plant growth and flower production

(Inglis & Smith, 1998; von Staats et al., 2021). However, contrasting

observations are reported by von Staats et al. (2021), where less

flowering was observed in shallow subtidal depths than at deeper

depths. This might be due to the differences in the timing of the

observations or the physical damage of mature flowering shoots by

hydrodynamic disturbances, which are expected to be more

pronounced in shallow depths (Krause-Jensen et al., 2000). Further

research that employs manipulative experiments will be helpful in

determining the effects of light limitation in subtidal depths while

controlling the covarying factors that hinder the direct influence of light.

Tidal effects on flowering may further be associated with

sedimentation. At high levels of sedimentation, an acute increase in

flowering might be expected as a stress-responsive mechanism

(Henderson & Hacker, 2015). For instance, in a study on Z. japonica,

Henderson & Hacker (2015) observed that sites with low mean

monthly sediment deposition (�0.2 cm) during the flowering season

produced fewer flowering shoots than the sites with a high mean

monthly sediment deposition (�0.4–0.7 cm). However, high levels of

sedimentation over a long duration can substantially reduce the

flowering shoot density (Cabaco & Santos, 2007) and can even result

in failures in recolonization (Zabarte-Maeztu et al., 2023). On the

other hand, sedimentation can negatively affect macroinvertebrate

communities that support flowering by grazing epiphytic algae

(Siciliano et al., 2019). With these contradictory results, it is difficult

to conclude how sedimentation and hydrodynamics affect Zostera

flowering. Therefore, further investigation is required to understand

the variations of flowering observed under the influence of

sedimentation and related hydrodynamic stresses. When designing

field experiments to test the relationship between flowering and

intertidal depth, it will be important to consider the changes in depth

gradient resulting from sedimentation or erosion.

3.3.4 | Nutrients

The effects of nutrients on the flower development of Zostera can be

direct or indirect. As observed by Suonan et al. (2022), the sexual

reproduction of Z. marina increased by 1.5- to 4.6-fold under
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nutrient-rich conditions. Also, Guerrero-Meseguer et al. (2021) found

a strong correlation between Z. noltei flowering and sediment with

high silt and clay content (r2 = 54%). Sediments with high organic

matter content that supply inorganic phosphorus and nitrogen via

mineralization can promote flowering (Ankel et al., 2021; Guerrero-

Meseguer et al., 2021; Middelburg et al., 1997). This could be the

reason for the extended flowering period observed in Ria de Aveiro,

where the organic matter content was high (Ankel et al., 2021). For

the initial development of flowering shoots, water column nutrients

such as ammonium, nitrite, nitrate and phosphate and sediment

sulphide can positively influence flowering, whereas water column,

suspended solids and sediment heavy metals such as copper, lead,

cadmium, arsenic and mercury may negatively impact flowering

(Wang et al., 2019). However, spathe development is more likely to

be affected by short-term elevations of sediment nutrients such as

ammonium (Johnson et al., 2017). Adequate levels of nutrients may

increase the biomass of reproductive shoots; however, their role in

developing reproductive shoots may be regulated by other

environmental factors, like the light that drives plant growth (Johnson

et al., 2017; Qin et al., 2020). For instance, Qin et al. (2020) observed

light reduction by algal growth during the upwelling of nutrient-rich

water; however, the indirect effects of nutrients on Zostera flowering

are not clearly evident. Additional nutrients may stimulate the growth

of algae that compete with plants for light (Kim et al., 2014;

McGlathery, 2001).

3.3.5 | Salinity

The effect of salinity on Zostera flowering has not been explicitly

tested in field experiments, yet some inferences can be drawn from

the salinity data presented in some studies. For instance, Jarvis et al.

(2012) noted that flowering started when the salinity is low, and Lee

et al. (2005) and Guerrero-Meseguer et al. (2022) noted no significant

differences in salinity when the flowering starts. Effects of salinity

might be linked with rainfall. Reduction in salinity has previously been

thought to affect flowering based on the observations of stimulated

flowering and vegetative growth in low-salinity waters in laboratory

cultures (Ramage & Schiel, 1998). However, the effects of salinity on

the trade-off between vegetative growth and flowering are not clear,

suggesting that salinity might be a less influential driver in the

presence of other environmental drivers, such as temperature

(Phillips, Stewart Grant & Peter Mcroy, 1983). For instance, Ramage &

Schiel (1998) observed that the flower production of Z. novazelandica

(now known as Z. muelleri) increased by 1.5 times at 17% salinity

compared with normal seawater salinity (i.e. 33%), where flowering

was found to be inhibited at 70% salinity.

Low salinity, however, is crucial for seed germination where

freshwater pulses have been found to substantially trigger seed

germination under the presence of favourable conditions (e.g. burial

depth and temperature) (Blackburn & Orth, 2013; Cumming

et al., 2017; Greve et al., 2005; Jørgensen et al., 2019; Moore

et al., 1993). The effects of salinity might depend on other factors

related to rainfall. For instance, in the subtropical waters of Australia,

dilution of coastal waters from rainfall-induced runoff may not be

common as most frequent rains occur in summer when the plants are

usually not reproductive. Therefore, the effects of rainfall-induced

salinity may not influence or probably only have a minor influence on

the flowering of Zostera in such regions. However, future changes in

rainfall pattern caused by climate change may further affect flowering

via flood waters that carry sediment and nutrient loads (Suonan

et al., 2022) and pollutants like pesticides and herbicides. Rainfall can

also increase water turbidity and reduce light availability, leading to

flowering reductions (Munkes et al., 2015). Such flooding events are

expected to restrict the light available for seagrass growth on

Australia's east coast (Great Barrier Reef Marine Park

Authority, 2018). Conversely, groundwater seepage from rainfall can

enhance flower production by keeping intertidal plants moist during

exposure or submerged in tidal pools (Dos Santos & Matheson, 2017).

3.4 | Effects of biotic factors

3.4.1 | Grazing

The effects of grazers can be either direct or indirect. Their foraging

patterns can alter biomass, shoot density and morphological

characteristics (e.g. shoot height); variability in flowering; and thus

changes in meadow structure (Lal et al., 2010). For instance,

amphipods were found to preferentially consume flowering shoots

rather than vegetative shoots, resulting in substantially damaged

flowering shoots (approximately 85%), where the damage is

prominent in the late stages of spathe development (Reynolds

et al., 2012). On the other hand, other mesograzers can indirectly

support plant growth by grazing epiphytic algae (Carr & Boyer, 2014),

which may further facilitate flower production.

The effects of megaherbivore grazing (e.g. dugongs, turtles and

geese) are likely to differ from other grazers. Grazer foraging patterns

modify the structure of the meadow by altering primary production,

species composition and structural complexity of microhabitats,

facilitating the nutrient cycle and also changing the geomorphology of

the meadow (Aragones et al., 2006; Christianen et al., 2014; Skilleter

et al., 2007). Unlike mesograzers, megaherbivores often remove a large

amount of aboveground seagrass material (Aragones et al., 2006;

Bakker et al., 2016; Preen, 1995; Rivers & Short, 2007). Their frequency

of visit is thought to be dependent on the plant recovery times at the

local scale following the grazing (Aragones & Marsh, 1999; Scott

et al., 2020a; Scott et al., 2020b); however, large herds of

megaherbivores can cause the collapse of the meadow entirely

(Christianen et al., 2014; Skilleter et al., 2007). On the other hand, their

grazing can benefit plant growth by providing spaces for new shoots to

emerge by removing epiphytes and old leaves (Christianen et al., 2012)

or facilitating the plant's morphological traits that support survival under

grazing pressure (Ruesink et al., 2012). At monospecific meadows,

intense grazing is often expected during peak flowering periods as the

plants with flowering shoots and seeds are more digestible and richer in
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nutrients (Dall et al., 1992; Peterken & Conacher, 1997). The

consumable seeds become viable while passing through the digestive

track of herbivores, and dispersing them beyond the parent meadow

can facilitate genetic connectivity among populations (Sumoski &

Orth, 2012; Tol et al., 2016; Tol et al., 2017; Tol et al., 2021).

Megaherbivore grazing can also influence nutrient cycling by

exporting seagrasses away from their original habitats (Christianen

et al., 2012). In terrestrial ecosystems, the nutrient addition returns

via the urine and faeces of herbivores; however, such returns might

not be prominent in seagrass habitats where their faecal matter is

usually exported away from the grazed area (Balazs et al., 1993). As

estimated, the nitrogen and phosphorus exported by turtles are

13 and 1.4 mgm�2 day�1, respectively (Christianen et al., 2012);

however, the effects of the nutrient transfer via megaherbivores on

flowering have not been examined.

3.5 | Conceptual model for Zostera flowering

From the systematic review, the links between environmental variables

and Zostera flowering were identified (Figure 3). Based on the

conceptual model, temperature, light, nutrients, genetic factors and

herbivory grazing can directly or indirectly affect flowering. For

instance, tidal variation can affect flowering directly and indirectly by

limiting light availability. Similarly, the indirect effects of nutrients might

be expected via light limitation due to excess algal growth. The direct

effects of environmental variables have been reported well, and the

interactive effects are rarely evident in Zostera phenology literature.

3.6 | Flowering variability in Australasia

3.6.1 | Spatial variability of flowering

Field data collected across 10 intertidal meadows on the east coast of

Australia and New Zealand in the 2020–2021 flowering seasons

revealed a relatively low spathe density at temperate sites

(i.e. Delaware Inlet and Nelson Haven) than at tropical (i.e. Airlie Beach

and Shoalwater Bay) and subtropical sites (i.e. Black Swan, Pelican

Banks, Lilley's Beach, Rodds Bay and Urangan Bay) (Figure 4, Table 3).

The significantly different spathe density among sites suggests that the

flowering intensity may relate to the local environmental conditions.

No significant differences in spathe densities were observed among

intertidal depths within sites (Figure 4). However, compared with the

lower and upper levels, the spathe density in the middle level in most

sites was relatively high, probably due to the middle level having the

most favourable environmental conditions with regard to the

combination of desiccation stress and light limitation (Olesen

et al., 2017). The highest spathe density was reported at Lilley's Beach,

where the density of spathes in the mid-intertidal level exceeded

800 m�2. This unusually high spathe density may result from

adaptation to the high wave energy environment (Andrews

et al., 2023). Such high spathe density was noted at this site during

another monthly field survey conducted to understand the spatio-

temporal variability of flowering in subtropical intertidal meadows

(Lekammudiyanse et al., 2023b).

3.7 | Temporal variability of flowering

Based on the data collected along the latitudinal gradient of

Australasia, flowering starts in the Austral winter months in tropical

and subtropical regions, whereas flowering in the temperate region

begins in late spring. The peak flowering times are observed

approximately 2 months after the first flowering across the region,

although this was not consistent across all sites (e.g. Cairns in North

Queensland in Australia) (Figure 5). The onset of flowering always

began after the lowest mean monthly temperatures across all sites

(Figure 5). The flowering period was longer in tropical and subtropical

regions (up to 6 months) than in temperate regions (3 months). Inter-

annual variations in the timing of first flowering were noted in some

locations within the same climatic region (e.g. Moreton Bay and

Gladstone in subtropical Australia), suggesting that temporal climate

variability plays a role in determining the timing of flowering.

F IGURE 3 Conceptual model
describing the reciprocal linkages
between environmental variables and
Zostera flowering based on empirical
studies. Solid and dashed lines denote
direct and indirect pathways, respectively.
The direction of change (i.e. ‘+’, ‘-’ or
‘+/-’ where the latter is context
dependent) indicates the predicted
changes in flowering when the
environmental variable increases. The
question mark (i.e. ‘?’) indicates the
pathways that are not studied well.
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Both first and peak flowering times showed a significant negative

relationship with mean winter climatic conditions (Figure 6). Clear

latitudinal variations in the first and peak flowering times were noted

(r2 = 0.71 and r2 = 0.68, respectively), where earlier flowering times

were recorded in locations with higher winter temperatures and solar

radiation (i.e. typically low latitudes) (Figure 6, Table 4). As may be

expected, the three regional climatic variables considered were

significantly correlated with latitude (r2 = 0.89–0.97) (Figure S2). Of

the three climatic variables, mean winter air temperature and solar

radiation had the strongest relationships with the first flowering time

(r2 = 0.73) (Table 4). Mean winter water temperature showed a weaker

relationship with the first flowering (r2 = 0.67) (Table 4). Mean winter

air temperature was a significantly better predictor of peak flowering

(r2 = 0.60) than mean winter water temperature (r2 = 0.55) and solar

radiation (r2 = 0.50). Based on the model coefficients, the timing of

first and peak flowering was advanced by approximately �10 and

�8 days with each 1�C increase in mean winter air temperature,

respectively (Table 4). Also, a 1 Wm�2 increase in mean winter solar

radiation and 1�C increase in mean water temperature advanced the

first flowering by 1 and 10 days, respectively, and peak flowering by

8 and 1 days, respectively (Table 4).

3.8 | Reconstructing and predicting flowering
based on prior climatic conditions

The strong correlation between winter climate and the timing of first

flowering suggests that it may be possible to predict the

commencement of wild flowering and manipulate the timing of

flowering in seagrass nurseries. As the three climate factors

considered are highly correlated, it is difficult to determine which is

most responsible for the timing of flowering. In particular, air

temperature and solar radiation explain identical fractions of the

variability in the timing of first flowering. However, a multivariate

model including all three factors did not significantly improve the

variance explained, suggesting that it is only one factor impacting the

timing of flowering. To illustrate how this information may be applied,

the relationship between mean winter air temperature alone was used

to estimate how the timing of wild flowering may have changed along

the Australian east coast over the previous 50 years (Figure 7). The

historical air temperature used to reconstruct the first flowering times

was taken from the same ERA5 dataset discussed above. The figures

show the strong latitudinal gradient in the timing of the first flowering

and significant variations from year to year. Notably, a trend towards

earlier flowering from 1950 to the present is apparent, driven by

warming air temperatures over the same period. The potential future

change in the timing of flowering could be estimated similarly using

climate projections.

F IGURE 4 Variations in spathe density of Z. muelleri among intertidal levels during the peak flowering month (mean, SE, n = 3).

TABLE 3 Two-way ANOVA testing the effects of three intertidal
levels (upper, middle and lower) on the density of spathe (n = 3,
P < 0.01).

Density of spathes

df Mean Sq F P

Intertidal level 2 33,779 1.321 0.275

Site 8 595,239 23.281 <0.001

Intertidal level * Site 16 26,903 1.052 0.421

Residuals 53 25,567

Abbreviation: ANOVA, analysis of variance.
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F IGURE 5 Variation of Z. muelleri flowering and associated mean winter climatic conditions: (a) mean monthly air temperature, (b) water
temperature and (c) solar radiation along the latitudinal gradient in the particular year. Dots indicated the peak flowering time. Solid lines showed
the sites with both first and peak flowering information available, and the dashed line denoted the sites that only have peak flowering information
available. Subtidal locations are marked by asterisks.

F IGURE 6 Timing of first and peak flowering of Z. muelleri on the East coast of Australia and in New Zealand as a function of latitude, mean
winter air temperature, water temperature and solar radiation. Figures (a)–(d) and (e)–(h) represent the models built for first and peak flowering
times, respectively.
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4 | DISCUSSION

4.1 | Summary of the review

The review synthesized the Zostera flowering phenology literature

to provide an understanding of the likely underlying drivers of

Zostera flowering. The proposed conceptual framework classified

the direct and indirect pathways of environmental factors that

affect flowering, which will be beneficial for developing future

hypotheses and designing experiments. The framework allows the

inclusion of additional mechanisms that arise from future flowering

studies.

TABLE 4 Relationships between the flowering times and climatic variables.

Flowering variables (y) Predictor variables (x) Model P value R2

First flowering time (days of the year)

n = 30

Latitude (�S) y = �4.89x + 107.30 <0.001 0.71

Mean winter air temperature (�C) y = �9.74x + 405.96 <0.001 0.73

Mean winter water temperature (�C) y = �10.01x + 438.17 <0.001 0.67

Mean winter solar radiation (Wm�2) y = �1.07x + 402.15 <0.001 0.73

Peak flowering time (days of the year)

n = 22

Latitude (�S) y = �4.23x + 185.88 <0.001 0.68

Mean winter air temperature (�C) y = �7.73x + 435.07 <0.001 0.60

Mean winter water temperature (�C) y = �8.10x + 460.80 <0.001 0.55

Mean winter solar radiation (Wm�2) y = �0.81x + 422.35 <0.001 0.50

F IGURE 7 A reconstruction of the timing of the first flowering of Z. muelleri along the latitudinal gradient as determined from the relationship
to mean winter air temperature.
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As noted in the review, temperature fluctuations in conjunction

with temperature thresholds are critical for triggering flowering;

however, daily temperature fluctuations have rarely been considered

in phenological studies due to the limitations of fine-scale long-term

observations and simulated experiments. Past laboratory-based

studies suggested that temperature is the primary influencer on

flowering relative to other environmental variables (e.g. light);

however, it is unknown which temperature thresholds and/or their

fluctuations trigger flowering. Further studies with fine-scale

measurements are required to trigger the flowering in nurseries and

accurately predict the flowering times locally under global warming

scenarios.

Light is also recognized as an important factor in the flowering of

Zostera, but the duration of light may not be a critical factor in

triggering the flowering. However, with the establishment of

seagrasses in nurseries to aid seed-based restoration, photoperiod

may play an important role in keeping the plant growing during flower

production. The role of light, the duration of the photoperiod and

how both interact with temperature to affect the timing of flowering

need further investigation. Manipulative experiments will not only

help determine the relative effects of different factors on flowering

but also help to disentangle the covarying factors that hinder clear

causal interpretations from field-based monitoring studies.

Tidal variation was also found to affect flowering, where the

differences in environmental stressors in intertidal and subtidal zones

are likely to create offsets in phenology. This could influence the

pollination success in a meadow and create genetically different

subpopulations along the depth gradient (Kamel et al., 2012; Kim

et al., 2017). The inconsistencies in previous findings suggest that

further research is required to assess how the tidal variation and light

limitation interact to affect flowering dynamics in intertidal and

subtidal meadows (Cabaço et al., 2009). Individual effects of the tidal

variation may be studied via field experiments, but the interactive

effects of tidal variation and light limitation might need simulated

experiment designs that isolate the other co-varying influential drivers

(e.g. temperature, grazing and genetic factors).

Direct effects of nutrients on flowering were evident in field

studies; however, indirect pathways of nutrients require further

investigation. Simulation experiments might be helpful in this regard,

where the controlled conditions isolate the influence of other

influential environmental drivers. Also, further studies on the effects

of salinity reduction by intense rainfall are required to understand the

flowering patterns under future climate change scenarios.

Regarding the biotic factors, much of the knowledge on how

grazing affects seagrass flowering phenology comes from

experimentally cleared trials. Due to the effects of other

environmental factors, it is difficult to determine whether grazing-

induced observations are actually driven by megaherbivore grazing or

other habitat conditions altered by disturbances (Rasheed, 1999;

Rasheed, 2004; Ruesink et al., 2012). A recent simulation experiment

has suggested that the megaherbivores can drive the Zostera

flowering in terms of timing, abundance and ratio of flowering to non-

flowering stems (Lekammudiyanse et al., 2022); however, the direct

and indirect effects of multiple grazing events on flowering require

further investigation.

Overall, the studies on the reproductive strategy of the genus

Zostera and associated driving factors were limited in that the

majority have either considered only a small number of environmental

drivers or were derived from either laboratory approaches or field

observations. Most studies have not considered the interactive

effects of environmental variables due to the lack of explicit

differentiation of mechanistic pathways of environmental variables,

which makes it difficult to test the interactions. Testing all potential

drivers and their threshold levels in the distributional range is

logistically challenging but necessary to understand the future

resilience of a population. Further field studies that measure the

different aspects of flowering are encouraged with simultaneous

manipulative laboratory experiments that isolate the actual effects

under controlled conditions. Such simulation experiments have

advantages in terms of fine-scale measurements and high resolution,

which may be beneficial in seagrass nurseries established to support

restoration.

4.2 | Spatio-temporal variability of flowering in
Australasia

This study showed that the timing of the first flowering of Z. muelleri

along the latitudinal gradient is significantly correlated with the winter

climatic conditions. On average, the timing of first flowering is

advanced with increasing mean winter air temperature, water

temperature and solar radiation at the approximate rate of 10 days for

every 1�C increase in the air or water temperature or 1 day for every

1 Wm�2 of solar radiation. However, the relationships between

climatic variables and peak flowering times were not as strong as with

first flowering, where unit increases in air and water temperatures

advanced the peak flowering times by approximately 8 days. These

results agreed with the earlier comparison of the timing of flowering

of Z. marina and Z. japonica in the northern hemisphere, but their

relationships with air temperature are substantially weaker than the

flowering models (Blok et al., 2018; Ito et al., 2021). As hypothesized,

flowering was found to be predicted by winter conditions, and hence,

the mean winter climatic conditions better describe the flowering

times than mean annual temperatures. This is likely to be because

flower production is most strongly influenced by the climate during

the winter and because annual averages include the months following

flowering, which are unrelated to the environmental conditions

preceding the onset of flowering. This study covered Z. muelleri

populations in tropical, subtropical and temperate regions, and thus,

the findings are likely to be extended across the entire population in

Australasia. Because temperature is a key determinant of plant

growth and development, the timing of flowering could be predicted

from the model for the next decade(s) based on climate projections.

For example, the relationship to air temperature was used to

reconstruct first flowering times along the Australian east coast,

where a trend towards earlier flowering is suggested to have occurred
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over the preceding 50 years. The strong relationship between climatic

variables and latitude (Figure S2) suggests that, when predicting the

flowering times at broader scales, the latitudinal relationship is likely

to be sufficient without requiring in situ climatic data.

Similar to the temperature, there was an equal relationship

between the timing of first flowering and the mean winter solar

radiation, suggesting that the high winter temperatures and/or

solar radiation might be linked to advancing the flower triggering. As

reviewed in this study, light is found to be an essential environmental

factor for flowering, but the daylength might not be a critical factor in

determining the flowering cycle (Blok et al., 2018; McMillan, 1980;

McMillan, 1982; Silberhorn et al., 1983). Zostera plants have no

phytochrome C gene that is linked to the photoperiod control of

flowering, and hence, the populations are expected to be adapted to

the local climate regimes (Olsen et al., 2016). In subtropical climates,

low light intensities in winter (<10.8 Wm�2) were found to produce

fewer flowers in Z. muelleri under simulated intertidal and subtidal

conditions (Lekammudiyanse et al., 2023a). However, experiments

will be required to establish causal relationships and, in particular, to

discriminate between possible effects of light and temperature or test

for their interactive effects.

Furthermore high spatial variability of spathe densities along the

latitudinal gradient was observed. The spathe densities during

the peak flowering season were independent of tidal level, suggesting

that any flower collection events for restoration could theoretically be

done across multiple depths. Some sites reported substantially high

spathe densities (e.g. Lilley's Beach); however, high spathe intensities

may not reflect the production of viable seeds, which is one of the

major barriers in seed-based restoration (Vanderklift et al., 2020).

Therefore, future research may usefully focus on exploring the

likelihood of obtaining more viable seeds during peak flowering

periods.

4.3 | Implications on seagrass conservation and
future research directions

As the first comprehensive review and assessment of seagrass

phenology in Australasia, this study provides a basis to inform

seagrass seed-based restoration plans for Z. muelleri, many of which

fit within a broader conservation and habitat management framework.

Accurate predictions of flowering times enable restoration

practitioners to plan flower collection activities with improved

precision. Knowing when flowering events are expected can also

facilitate a better alignment of natural reproductive cycles with seed-

based supplements through restoration. This would likely enhance the

success of important decisions required in restoration projects, such

as critical periods to implement protective measures against

disturbances that could disrupt flower production, seed dispersal and

so on. In addition, knowledge of flowering times aids in sourcing

seeds from various meadows to disperse across populations, which

can enhance genetic connectivity and potentially increase the

resilience of the local population to disturbance.

This study further highlighted the need for continued research in

seagrass phenology to ensure the long-term sustainability and

conservation of seagrass ecosystems. Based on the review, three

priority research areas that require further investigation are proposed

to support local and regional scale restoration and seagrass nursery

setups.

1. Potential shifts in flowering times under climate change

scenarios

2. Applications of novel technologies in frequent monitoring of

seagrass flowering cycle (e.g. drones)

3. Possibility of triggering seagrass flowering artificially to

encourage greater production of viable seedsFilling these research

gaps will be important for developing adaptive management plans and

understanding the natural dynamics of meadows. For instance,

predicting how flowering times may shift is crucial to adjusting

restoration projects and conservation strategies aligned with

anticipated changes. Shifts in flowering times could also disrupt the

interdependencies among populations and, ultimately, seagrass

ecosystem functioning and resilience. Utilizing novel techniques to

capture the finer-scale variations in the flowering cycle will allow

researchers to improve modelling accuracy while providing

advantages in covering large spatial areas and cost-effective

monitoring of trends over long periods. Also, if it is possible to induce

multiple flowering within a year under manipulative conditions,

seagrass nurseries may supply sufficient seed volumes for restoration

throughout the year. This will require an understanding of the

conditions that are required to trigger the flowering artificially and

keep the plant's seed production viable. A consistent supply of seeds

will likely improve the conservation of seagrass habitats by enabling

both short-term responses to threats (e.g. a rapid re-seeding of

habitat after loss due to anthropogenic disturbance) and longer-term

planning of larger-scale habitat restoration efforts where historical

losses have been both extensive and prolonged.

In summary, the spatio-temporal models developed in this study

provide a basis to predict the timing of Z. muelleri flowering, which is

important information to guide management decisions and

conservation efforts to protect the seagrass ecosystem and may be of

considerable value under climate change scenarios. In addition,

flowering can be used as an ecological indicator of environmental

stress (Cabaco & Santos, 2012). As identified in the review, further

studies that examine the direct and indirect effects of environmental

variables on flowering are necessary to make seed-based restoration

more effective and efficient, both now and under the influence of

climate change. Applications of novel technologies that allow cheap

and frequent monitoring of changes over time are encouraged.

Simulation experiments that explore the artificial triggering and

optimum conditions for flower production are also encouraged in

designing seagrass seed nurseries that aid in restoration capacity.
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