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Abstract
In this paper, we target the problem of generating facial expressions from a piece of audio. This is challenging since both
audio and video have inherent characteristics that are distinct from the other. Some words may have identical lip movements,
and speech impediments may prevent lip-reading in some individuals. Previous approaches to generating such a talking head
suffered from stiff expressions. This is because they focused only on lip movements and the facial landmarks did not contain
the information flow from the audio. Hence, in this work, we employ spatio-temporal independent component analysis to
accurately sync the audiowith the corresponding face video. Proper word formation also requires control over the facemuscles
that can be captured using a barrier function. We first validated the approach on the diffusion of salt water in coastal areas
using a synthetic finite element simulation. Next, we applied it to 3D facial expressions in toddlers for which training data is
difficult to capture. Prior knowledge in the form of rules is specified using Fuzzy logic, and multi-objective optimization is
used to collectively learn a set of rules. We observed significantly higher F-measure on three real-world problems.

Keywords Spatio-temporal · Talking head · Sentiment prediction · Finite element

Introduction

Lip-reading is the task of predicting what is being said using
only visual cues [1]. This is very challenging due to the
presence of homophemes such as ‘p’ and ‘b’ that have iden-
tical lip sequences [2]. Lip-reading has many applications,
such as ‘dictation’ in a noisy environment or automated
speech recognition [3]. Phonemes are the smallest unit size
for speech processing instead of characters. This can result
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in insufficient temporal resolution and retention of spatio-
temporal information. Long short-termmemory (LSTM) has
shown good performance on lip-reading tasks [4].

Most previous approaches rely on textual data for speaker
emotion prediction. For example, common-sense databases
have been created to disambiguate the meaning of words
based on context [5]. However, emotions are better expressed
through speech or visual gestures [6]. For example, a scowl-
ing expression is commonly labelled as anger. However, the
person may just be confused or trying to concentrate. Multi-
modal algorithms hence aim to fuse features in audio and
video with text. Talking heads can generate facial expres-
sions for a piece of text [7]. This is particularly useful when
creating dynamic content in virtual reality applications. Gen-
erating future responses in a conversation is similar to playing
a game [8].

Facial expressions are also an important form of com-
munication for young children who have still not learned a
language [3, 9]. It is common for children to show contradic-
tory expressions in amatter of a few seconds. They are unable
to distinguish between complex emotions and only sponta-
neously collected data is available to train the model [10,
11]. Prior rules for different facial actions can help improve
the accuracy of predictions. Early identification of emotional
trauma in kids can prevent manifestations of autism. Par-
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ents frequently upload video recordings of their children on
YouTube or TikTok. Large-scale analysis of these videos can
help parents recognise cognitive disorders early [12].While it
is not ethical to share childhood photographs on the internet,
converting them to a numeric representation will preserve
their privacy [13].

Figure 1 compares 3D facial landmarks for happy and
angry emotions. The top row is an expression of a toddler
in the CAFE dataset. The bottom row is for an adult in the
IEMOCAP dataset. We can easily distinguish between anger
and happiness for adults. However, for children, it is difficult
for the classifier to predict emotions from landmarkpositions.
Hence, we can conclude that the ability to express emotions
is dependent on skin elasticity. The intensity of spontaneous
expression in an individual is dependent on the flexibility
of facial muscles [14]. Hence, we define a barrier function
to model the rate of increase in expression intensity for an
individual. For example, in children, the barrier may be low,
while in adults it might be higher.

Multi-objective optimisation is an ideal framework to
determine co-existing facial action units responsible for an
expression. Here, each facial action is modelled as a sepa-
rate constraint, and the model is trained to simultaneously
achieve all the objectives. For example, during happiness,
we observe a smile. To capture the change in intensity of
emotions in a face video, we use a spatio-temporal model
where the predicted emotion is a function of facial actions
spatially and over time [15]. We refer to the proposed model
as multi-objective elasticity for spatio-temporal data (MES).

To study the different parameters of MES, we first gener-
ate synthetic data for the phenomena of salt water diffusion in
coastal areas using the finite element method (FEM). Such
a synthetic simulation is ideal to study the phenomena of
spatio-temporal diffusion since all the parameters are known.
For example, in [16], the authors used FEM to predict cracks
due to stress in metals. Here, the total incremental external
force is modelled as a product of a stiffness matrix and the
vector of nodal displacements. Similarly, for a given config-
uration of well locations and pumping rates, FEMWATER
is used to simulate the diffusion of salt in groundwater by
solving the dispersion equation [17]. It lets us capture the
movement of salt through water near the seaside in the pres-
ence of forces such as wind over time. The accuracy of
the model can be measured as the difference between the
predicted salt concentration by the neural network and that
generated by FEMWATER. Further, in this paper, we show
that the proposed MES algorithm has a higher accuracy in
predicting salinity levels compared to baselines.

We can summarise the main contributions of this paper as
follows:

1. We propose the use of spatio-temporal component anal-
ysis to model the conductivity of a medium.

2. We propose a barrier candidate function that can reach
the global minima during training.

3. We propose the use of Fuzzy rules duringmulti-objective
optimisation of design parameters.

The organisation of the paper is as follows: ‘RelatedWork’
provides a literature review of articles on spatio-temporal
analysis; ‘Preliminaries’ describes the use of Fuzzy rules
to model prior information about the system; ‘Multi-objec-
tive Elasticity Framework’ details the proposed approach to
solve a spatio-temporal model using multi-objective evolu-
tion; finally, in ‘Experiments’, we evaluate our approach on
facial expressiongeneration fromspeech audio, classification
of expressions in toddlers and prediction of salt concentration
in coastal areas. Lastly, we provide conclusions in ‘Conclu-
sion’.

RelatedWork

The concept of ‘Communication Dynamism’ aims to predict
future dynamics of a sentence in a conversation [18]. Text-
based talking head generation is commonly used in animation
movies [19]. This requires generating facial expressions for
the sentiments depicted in an utterance. In this paper, we
consider a spatio-temporal approach to conserve emotions
in speech when generating the corresponding face. In [20],
the authors studied the transfer of parameters from several
unsupervised spatio-temporal models to a predictive task.
Here, we initialise the LSTM using a pre-existing speech to
the 68 facial landmark model.

Recently, point clouds are being used to model mov-
ing objects and pose estimation [21]. They can vary their
density across an object in space and time and hence are
robust to irregular sampling errors. However, their accuracy
is dependent on the number and angle of 3D images captured.
Point-net is a pre-trained model for 3D object classification.
Similarly, Matos et al. [22] used a neural network to model
the strain response of a conductive polymer that is captured at
physical nodes. The input to the model is the homogenised
strains, and the output is the change in resistance in three
principal directions. A mesh is used to visualise the initial
and deformed beam.We see that the change in resistance first
increases and then decreases. It is extremely difficult to detect
emotions in toddlers due to their hyperactivity. However, the
accuracy significantly improvedwhenwe used a facemesh of
468 landmarks extracted from a single face image. Since the
rate of stress will be different for each direction in this paper,
we propose the use of a spatio-temporal component analysis
to determine the significant directions of change over time.

The FEM model for a water aquifer defines the number
of wells, their pumping rates, and the location on the coast.
The total cost of pumping and installing the wells needs to
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Fig. 1 3D facial landmark for
happy and angry emotions. The
top row is an expression from a
toddler in CAFE dataset. The
bottom row is for an adult in
IECOMAP dataset. The ability
to express emotions is
dependent on the skin elasticity
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Fig. 2 Well pumping rates for
production wells in agricultural
lands and barrier wells at the
coast. Each vertical bar
represents a single well, and the
colormap describes the pumping
rates ranging from 0 to 1000.
The horizontal axis denotes the
index number of each well. The
top row is a sample from salty
water The bottom row is a
sample from fresh water. For
salty water, the barrier wells are
pumping at a higher rate than in
fresh water. There appears to be
a lower barrier to salt diffusion
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be minimised. In the event of salt water intrusion, the aquifer
aims to prevent contaminated water from flowing to other
parts of the aquifer. Finite element modelling was used to
solve the salt water intrusion process using the numerical
code FEMWATER [23]. However, each simulation can take
several minutes to complete due to the complexity of the
underwater terrain. The salinity level is calculated at a mon-
itoring location at the end of the simulation.

Figure2 illustrates well pumping rates for production
wells in agricultural lands and barrier wells on the coast.
Each vertical bar represents a single well and the colourmap
describes the pumping rates ranging from 0 to 1000. The
horizontal axis denotes the index number of each well. The
top row is a sample of salty water. The bottom row is a sam-
ple of fresh water. Barrier wells maintain the level of fresh
water in coastal areas. If the level falls below a threshold,
then salt water intrusion will occur into agricultural land. In
contrast, the production wells are used to pump fresh water
into agricultural land, such as for irrigation. For salty water,
the barrier wells are pumped at a higher rate than in fresh
water. There appears to be a lower barrier to salt diffusion in
salty water.

To allow for real-time salinity prediction, we can train
a neural network with pumping rates of geographically
dispersed wells as input and the salt concentration at a
monitoring well is predicted as output at the end of each
simulation. While a neural network is used to predict the salt
concentration, we can use a multi-objective genetic algo-
rithm (GA) to simultaneously optimise different constraints
for each variable. In [24], the authors showed that search
interval adaptation instead of random weight updates shows
a lower root mean square error (RMSE) during backpropaga-
tion training of FEM. Similarly, multi-objective GA search
was used to optimise an antilock brake system in [25]. Here,
the pusher position depends on the diameter of the rod that
transmits the force. The range of parameters is constrained
in the optimisation. The FEM parameters have evolved over
several generations, and the optimal solution is tested on the
bench.

The neural network trained from FEM data can easily
get stuck at a local minimum. To overcome this, we con-
sider a barrier candidate function based on elasticity that can
reach the global minima easily. Next, to study the differ-
ent parameters of the multi-objective elasticity, we define
a suitable objective function and specify constraints for the
aquifer [26]. Using expert prior knowledge of the aquifer
design, we define multiple constraints such as maximise the
pumping of production wells and minimise the pumping of
barrier wells [27]. We can also include constraints such as
maximum and minimum values of salt in fresh water [28].
Lastly, to model the uncertainty in the parameters, we apply
Fuzzy membership functions to the output from the neural
network [29]. Next, we apply the approach to emotion pre-

diction from face images. For example, during a smile, we
observe multiple facial actions such as ‘cheek raiser’ and ‘lip
stretcher’.

In summary, we conclude that past approaches to gen-
erating a talking head from speech lacked modelling of
underlying emotions. Furthermore, classification accuracy
on facial expressions of children is very low. 3D elasticity
models of the face are computationally very expensive. A
neural network trained on 3D data can also get easily stuck
in a local minima due to the complexity of the simulation.

Preliminaries

In this section, we provide the preliminary concepts to
understand the algorithm. First, we explain spatio-temporal
problems and use salt water as an example. Next, we describe
the use of Fuzzy rules as prior knowledge tomodel the uncer-
tainty in spatio-temporal problems.

Spatio-temporal Diffusion

Gradient descent is an optimisation approach to reach the
global minima of prediction error. For a non-linear time-
series model, gradient descent updates the parameters θ at
time instant t of a model using the following equation:

θ(t + 1) = θ(t) + �θ(t)

�θ(t) = λ
∂e(t)

∂θ(t)
(1)

where e(t) is the error in prediction and λ is the rate of learn-
ing.

Pretrained models for landmark detection have inherent
uncertainty depending on the shape and size of facial fea-
tures. The presence of facial action units is responsible for
different facial expressions. For example, ‘Lip corner puller’
is an action used in ‘contempt’. However, when used in com-
bination with ‘cheek raiser’, it results in a smile. A neural
network, in contrast, will extract a dictionary of features from
images and then merge them using a layered model. Human
beings look for variations of facial features over time in order
to distinguish such emotions. Hence, there is a need to use
a spatio-temporal model that can detect changes over time.
Here, in addition to the error over time, we can also con-
sider the spatial error across samples. Hence, we modify the
gradient descent using the following:

�θ(t) = λ
∂e(t)

∂θ(t)
+ γ

∂e(z)

∂θ(t)
(2)

where e(z) is the spatial error in the position of samples. For
the case of salt water, �θ is the change in salt concentration
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over time in moles/litre3, and the gradient of salt concentra-
tion at the pumping wells is given by λ and the hydraulic
conductivity or by γ .

Fuzzy Rules for Modelling Prior

Prior knowledge in the form of action units can be formulated
as rules on the position of landmarks. Rules will restrict cer-
tain combinations of features and hence tremendously reduce
the dimensionality of the problem. Here, we use a baseline
decision tree to determine significant rules for each emotion.
Next, we can specify these rules in a fuzzy neural network
for fusion of features. A fuzzy logic classifier has member-
ship functions that can range from partial positive to partial
negative. Each membership function has a set of inputs and
outputs. In this way, each input feature now has a member-
ship value in a particular function that is not as rigid as in a
conventional neural network.

Figure 3 illustrates fuzzy rules for predicting facial expres-
sions from landmarks. The first membership function is used
in rules where a landmark is lower or higher than a value.
Here, we followed an approach similar to decision trees
where the value of a landmark determines if we move to
the left or right sub-branch in the tree. Here, the data is
normalised in the range of −1 and +1. A value less than
0 is denoted by ‘Low’, and a value greater than 0 is ‘High’.
We have one input membership function for each landmark.
For example, 68 landmarks would result in 136 inputs corre-
sponding to x and y coordinates. To reduce the computational
complexity, we extract a latent representation of landmarks
with a lower dimension using a neural network. The second
membership function is used for the output emotion. Here,
we consider the intensity of the emotion so that a very strong
expression is denoted by ‘Happy’ and a week expression is
denoted by ‘Low’.

In our experiments, we only considered two output emo-
tions namely ‘Happy’ and ‘Angry’. As shown in Fig. 3, each
rule takes the form of ‘if else then’ statements. For example,
‘If ln2 is high and ln4 is high and ln3 is low then cl1 is happy’.
Here, ‘ln’ denotes a landmark index, and ‘cl’ denotes an out-
put emotion. To initialise the model, we extracted a few rules

using decision trees.Next,we used evolutionary optimisation
to learn additional rules and maximise the accuracy on the
training data. When new training data is acquired, the model
can learn new rules over existingmembership functionswith-
out altering existing rules. We can also add new membership
functions if the existing ones are completely populated with
rules. To optimise for speed, the algorithm lets you specify
the maximum number of rules learned. The output layer will
combine the outputs from all the membership functions to
predict the polarity of the face using (3).

Let us formulate each rule as a membership function
mk(x) where x is an input vector of n features and K is
the number of membership functions. Then, the change in
parameters for each membership function �θk is a weighted
average over all input features [30] as follows:

�θk =
∏n

i=1
mk(xi )

/∑K

k=1

∏n

i=1
mk(xi ) (3)

Multi-objective Elasticity Framework

In this section, we describe our proposed approach to solving
spatio-temporal problems. We first explain the spatial com-
ponent analysis method which includes a barrier function for
improved convergence. Next, we show how additional con-
straints can be added into the prediction usingmulti-objective
evolutionary optimisation.

Barrier Function

The elasticitymodel for facial landmarks can be illustrated in
Fig. 4. Here, we consider two landmarks at the corner of the
eye and themouthwith a vertical distance ofL. Thehorizontal
displacement at time t is given by the function e(z); hence,
we can constrain the movement using |e(z)|≤cwhere c is the
desired maximum movement intensity to detect an emotion.
The controlled force applied by an individual to generate an
emotion is given by �θ(t).

Fig. 3 Fuzzy rules for
predicting facial expressions
from landmarks. The first
membership function is used in
rules where a landmark is lower
or higher than a value. The
second membership function is
used for the output emotion
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Fig. 4 Elasticity model for a face. For any two selected landmarks, the
vertical distance is L and the horizontal displacement over time �θ(t)
will depend on the emotion

Then, the boundary condition for the rate of diffusion of
emotion can be given by the following equation [31]:

�θ(t) = λ
∂2e(t)

∂θ(t)
− γ

∂e(z)

∂θ(t)
(4)

where as previously explained in (2), γ is the elasticity of
the medium and λ is the rate of change of salt concentration.
This implies that for a displacement of e(z), a person has to
apply a force �θ(t) and overcome the negative acceleration
due to gravity.

The following barrier term β when included into applied
force �θ(t) will ensure that the gradient descent will reach
a global minima:

�θ(t) = β + μ

[
∂e(t)

∂θ(t)
+ ∂e(z)

∂θ(t)

]
+ λ

∂e(t)

∂θ(t)
− γ

∂e(z)

∂θ(t)
(5)

β = −
⎧
⎨

⎩
γ e(z) ∂e(t)

∂θ(t)

[
∂e(t)
∂θ(t) + ∂e(z)

∂θ(t)

]

c2 − e2(z)
− μ

[
λ

∂e(t)

∂θ(t)
+ γ

∂e(z)

∂θ(t)

]⎫
⎬

⎭
/

log
2c2

c2 − e2(z)

where μ > 0 is the gain of the controller that ensures that
enforces the constraint |e(z)|≤c on movement through the
medium. Detailed proof is described in [31].

Each training sample can be decomposed into additive
components over time using a method called independent
component analysis (ICA). In the realworld, a signalmaydif-
fuse spatially and affect other signals. Spatio-temporal ICA
can model such a phenomenon as it decomposes a signal
into sub-components that are independent of each other over
time aswell as space [32].We consider the previously defined
training data x with n features and a sequence of p time sam-
ples. Equation (6) shows that we can now define �θ(t) is a
product of o spatial sz and temporal st components. We also
define the symmetric mixingmatrices az and at of dimension

o×o.

�θ(t) = ∂e(t)

∂θ(t)
× ∂e(z)

∂θ(t)
where

∂e(t)

∂θ(t)
= st×at and

∂e(z)

∂θ(t)
= sz×az (6)

Finally, we can determine the new transformed dataset as
follows:

�θ̂(t) = (�θ(t)+ st×β×sz)×0.5 (7)

where β is a diagonal barrier matrix as defined previ-
ously in (5). Figure5 illustrates training samples from three
datasets with and without the barrier control. We can see that
by using the elasticity constraint we can significantly reduce
the variance across features resulting in better convergence.
We consider (a) pumping rates of different wells in an FEM
simulation, (b) position of different 3D landmarks in a face
image, and (c) Mel coefficients extracted from a speech sam-
ple over four video frames. In practice, we consider a weight
sum of the original sample x and transformed sample xnew
to train the model.

Algorithm 1 Predicting emotions using MES.
1: Input : Input features at time point t : x and its class label
2: Output : Predicted class label : �θ×x
3: % Spatio-temporal ICA with barrier function
4: Computer barrier potential β using (5)
5: Compute transformed xnew using (7)
6: % Feature Selection
7: Normalise landmarks in the range of [−1, 1]
8: Train a neural network using xnew
9: Features are activations in last layer
10: % Fuzzy Neural Network
11: Create input membership functions for each feature
12: Create output membership functions for each emotion
13: Learn Fuzzy Logic rules for each emotion
14: Save the trained emotion classifier
15: % Multi-objective optimisation
16: Minimise fuzzy logic output in (3)
17: Maximise constraints on input features
18: Minimise constraints on input features

Multi-objective Optimisation

The entire MES algorithm can be defined as follows using
expressions as an example: The training data is a sequence of
images for the same facial expression over time. Next, we use
spatio-temporal ICA with a barrier function to pre-process
the data and extract significant components. The landmarks
are extracted using a pre-trained model, and a decision tree
classifier is used to determine significant rules for the posi-
tion of landmarks in a particular emotion. These prior rules
are used to initialise the fuzzy logic classifier using ‘If then
Else’ statements. Lastly, we use multiple objectives to define
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Fig. 5 Training samples in three datasets with and without barrier
control. We can see that by using the elasticity constraint we can
significantly reduce the variance across features resulting in better con-

vergence. a Pumping rates of different wells in an FEM simulation. b
Position of different 3D landmarks in a face image. c Mel coefficients
extracted from a speech sample over four video frames

additional constraints such as maximisation or minimisa-
tion of a certain facial action. The Pareto front determines
possible solutions that simultaneously optimise the different
constraints.

Algorithm 1 explains the complete framework for predict-
ing emotions using the proposed model. The input consists
of facial landmarks for training images with known emo-
tion labels. We first extract significant components from the
data using a spatio-temporal ICA with a barrier function to
model the skin elasticity.Next,we performa feature selection
to reduce the number of landmarks using a neural network.
The activations in the penultimate layer are used to train a
decision tree classifier and extract rules for the presence of
different emotions. These rules are used to define the mem-
bership functions in a Fuzzy logic-based neural network. We
consider a binary classifier for each emotion against the neu-
tral emotion. Lastly, we use our prior knowledge of facial
action units to define multiple constraints on the model. The
multi-objective model is optimised using evolution, and the
fuzzy classifier is used as the fitness function. As an example,
for salt water diffusion, the aim of a salt water management
system is to (i) maximise the pumping of fresh water at pro-
duction wells and (ii) minimise the extraction of fresh water
at barrier wells. Increased pumping of production wells will

hence require a corresponding increase in pumping of bar-
rier wells to maintain the salinity levels of water below a
threshold in agricultural land.

The set of feasible solutions can be given by the following:

O =
{
x |minimize �θk×x , minimize

∑n1

i=1
xi , maximize

∑n2

i=1
xi

}
(8)

where n1 is the number of barrier wells on the shore and n2
is the number of fresh water pumping wells in agricultural
lands. Assuming the label for fresh water is 1 and salty water
is 2, we aim to mimize the class label �θ×x using Fuzzy
logic (3). ThePareto front solutions�θ from the evolutionary
model are used to predict the class label for test samples.

Experiments

A neutral expression corresponds to a static face image. On
the other hand, a facial expression is generated elastically
by the movement of face muscles. In poor illumination or
low image resolution, the dynamic information due to move-
ment is more useful in classifying a face image. This is
because movement captures a three-dimensional view of the
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face. There appear to be two independent cortical areas in
the human brain for remembering the static identity features
and dynamic social features of a face [33]. The homogenous
nature of a face image also requires a model that has high
sensitivity in low-contrast vision.

Validation of the proposed MES (available on GitHub1)
is done on three real-world datasets: (1) salt water diffu-
sion prediction, (2) talking head generation from a piece of
audio, (3) classifying facial expressions for children. The first
dataset was synthetically generated using an FEM software.
The other two datasets have been collected from human sub-
jects.

Parameters

To model the elasticity of the medium, we apply ICA with
a barrier function as described in ‘Barrier Function’. We
consider ten spatial and temporal components for the ICA.
Following previous authors [31], we set the gainμ to 0.1 and
the maximum movement intensity c to 5, the rate of change
of themediumλ is set to 100, and the elasticity of themedium
γ is set to 1. It is difficult to define fuzzy rules for a large
number of input features; hence, we perform a dimensional-
ity reduction using a NN. The NN is trained to predict the
emotions from the landmarks and has a layer of five hidden
neurons. The activations at these five neurons are used as
training features for the fuzzy logic classifier. We first con-
structed a decision tree to determine eight starting rules for
the fuzzy classifier as explained in ‘Fuzzy Rules for Mod-
elling Prior’. We also allow the fuzzy classifier to learn up
to 40 rules using genetic algorithm-based optimization with
a crossover rate of 0.2. A low crossover rate will ensure that
the model does not get stuck in a local minimum. We had to
use the parallel computing toolbox in MATLAB to increase
the speed of computation.

SaltWater Diffusion

We consider a coastal landscape where 23 barrier wells are
installed very close to the sea lines and 23 production wells
were installed close to fresh water. Using FEMWATER, we
can define the landscape in a coastal region and place the
production and pumping wells at desired locations. Next,
we specify the pumping rates of the 46 wells using random
Latin Hypercube sampling. The experiment was repeated
1000 times for a single configuration. We repeat this process
several times for different locations of wells and conductivity
ranging from 40 to 240 moles/day.

Table 1 compares theF-measure of the proposed algorithm
with baselines for the binary task of predicting ‘fresh’ or
‘salty’ water at the monitoring well. We first train the model

1 http://github.com/ichaturvedi/multi-objective-elasticity

Table 1 Comparison of F-measure of baseline classifiers on salt water
intrusion

Test data Method Fresh Salty Total

Batch1 NN 0.93 0.88 0.91

Batch1 Tree 0.79 0.69 0.74

Batch1 Fuzzy 0.68 0.5 0.59

Batch1 FuzzyB 0.92 0.86 0.89

Batch2 NN 0.77 0.6 0.69

Batch2 Tree 0.63 0.48 0.56

Batch2 FuzzyB 0.76 0.66 0.71

When trained on Batch1 and tested on Batch2, we see an improvement
of 5% on salty class
The highest F-measure for each dataset and for each water level is
highlighted as bold

on 70% of ‘Batch1’ collected from a single FEM simulation.
We then test it on the remaining 30% of ‘Batch1’. We can
see that the simple neural network (NN) has the F-measure of
91%. The proposed model given by FuzzyB also has a very
similar F-measure. However, if we do not use the barrier
constraint, then the model denoted by fuzzy has a 30% lower
F-measure of 59%.

Next, we tested the trained model on ‘Batch2’ data col-
lected from a separate FEM simulationwith different starting
parameters. Here, the proposedmethod FuzzyB has a slightly
higher F-measure of 71%compared to neural networks (NN).
The improvement is 6% on the ‘salty’ class. The F-measure
is over 15% higher than the baseline tree classifier that was
trained on ‘Batch1’. Hence, we can conclude that the pro-
posed approach has lesser overfitting and can show better
accuracy on new datasets.

Lastly, we include the constraints that we wish to max-
imise the pumping of fresh water wells near agricultural land
and minimise the pumping of barrier wells in coastal areas.
In order to model the fuzzy classifier as an objective, we
mimise the predicted label from FuzzyB. This is because
we have set ‘fresh’ to 1 and ‘salty’ to 2 in the training data.
Table 2 compares the F-measure ofmulti-objective (MO) and
the proposed MES on salt water diffusion. We can see that
MES has a higher F-measure than MOwhen considering the
constraints. MO has a higher objective value for maximising
the pumping of fresh water wells given by 2.98; however,
MES has a lower objective value of 0.19 for minimising the
pumping of barrier wells.

Talking Head: Face Audio andVideo

Next, we apply the proposed approach to the prediction of
facial landmarks from speech. This is a necessary component
of models that can generate a talking video from a piece of
text. To train the model, we used the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) which contains video
recordings of conversations between two speakers [6]. There
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Table 2 Comparison of
F-measure of multi-objective
(MO) and the proposed MES on
salt water diffusion and talking
head dataset

Method Fresh Salty Total Obj1 (max) Obj2 (min)

Batch1 MO 0.32 0.15 0.24 2.98 0.2

Batch1 MES 0.42 0.23 0.33 1.96 0.19

Angry Happy Total Obj1 (max) Obj2 (min)

Happy MO 0.01 0.62 0.32 2.13 0.28

Happy MES 0.68 0.1 0.39 2.2 0.0034

Angry MO 0.001 0.62 0.31 1.4 0.23

Angry MES 0.1 0.62 0.36 1.91 0.39

We can see that MES has a higher F-measure than MO when considering the constraints. MES also achieves
a lower value on the mimisation and a higher value on the maximisation constraint compared to MO
The highest total F-measure for each dataset among the two methods is in bold. Similarly, the bold value for
Obj 1 is the higher of two and for Obj 2 is the lower of the two for each dataset

are a total of five female and five male actors and 12h of
audio-visual data. Each video is segmented into utterances
that has an emotional label such as happy or angry. The
database was designed to capture the relationship between
gestures and speech hence most of the faces are captured
sideways. Theatre scripts were selected with the requirement
that the play conveys target emotions. Subjects were asked to
memorise and rehearse the scripts. Here, we only consider a
subset of 502 utterances that have been labelled as happy or
angry. We extracted 128 Mel coefficients for each frame in a
video and used a window size of four frames resulting in an

input vector of 512 features. We used pre-trained weights for
speech-to-landmark prediction to initialise the LSTM [34].

We test the model on an additional Lip Reading Sentences
(LRS2) dataset consisting of thousands of spoken sentences
from BBC television recorded between 2010 and 2016 [1].
Video shot boundaries were determined by comparing colour
histograms across consecutive frames. Forced alignment was
done between the video, audio, and subtitles for each shot.
Lastly, sentenceswere determinedusingpunctuations such as
full stops and questionmarks in the subtitles. Each sentence is
restricted to 100 characters in length. Figure6 shows theMel
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Fig. 6 Mel spectrum for speech and the corresponding facial landmark.
The top row is a sample for happy emotion. The bottom row is a sam-
ple from angry emotion in LRS2 dataset. The angry emotion has lower

values of Mel coefficients. The oral cavity will change shape and hence
the barrier to sound depending on the emotion
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spectrum for speech and the corresponding facial landmark.
The top row is a sample for happy emotion. The bottom row
is a sample from angry emotion in LRS2 dataset. The angry
emotion has lower values ofMel coefficients. The oral cavity
will change shape and hence the barrier to sound depending
on the emotion.

Here, we first predict the facial landmarks from speech
audio using LSTM, and then we predict the emotion label of
the predicted face as ‘angry’ or ‘happy’. Table 3 compares
the F-measure of the proposed algorithm with baselines. We
transform the speech input using the barrier function and
train the model denoted by LstmB. We can see it has a much
higher F-measure of 51% compared to the baseline Lstm of
40%. Next, we train the fuzzy classifier with the landmarks
predicted by LstmB denoted as LstmB-Fuzzy. We can see
that when tested on a new dataset LSR2, the F-measure on
‘angry’ class is much higher than baselines. This confirms
that the fuzzy model is better suited to real-world datasets.

Lastly, we introduce some constraints using facial action
units. We find that ‘anger’ emotion results in ‘lip puller’ and
‘open eyes.’ On the other hand, ‘happy’ emotion has the
action units ‘lip stretcher’ and ‘closed eyes’. The third objec-
tive is to mimise the label of the FuzzyB model so that it is
either ‘anger’ or ‘happy’ based on the constraints. Table 2
shows the F-measure of MES is higher than MO on both
emotions. It also achieves a lower minimisation and higher
maximisation on the constraints specified.

Child Facial Expressions

Lastly, we evaluate the model of facial landmarks for differ-
ent emotions in children [35, 36]. For each emotion, such as
‘happy’ or ‘surprise’, we train a binary classifier with respect
to the neutral expression. The Child Affective Facial Expres-
sion (CAFE) dataset has 90 female and 64 male children.

Table 3 Comparison of F-measure of baseline speech-to-landmark sen-
timent classifiers

Test Data Method Angry Happy Total

Iemocap Lstm 0.7 0.1 0.4

Iemocap LstmB 0.62 0.4 0.51

Iemocap NN 0.01 0.8 0.41

Iemocap Tree 0.01 0.8 0.41

Iemocap LstmB-Fuzzy 0.5 0.5 0.5

Lrs2 NN 0 0.89 0.45

Lrs2 Tree 0.01 0.76 0.39

Lrs2 LstmB-Fuzzy 0.4 0.26 0.33

When trained on Iemocap and tested on Lrs2, we see an improvement
of 37% on the Angry emotion
The highest F-measure for each dataset and for each emotion is high-
lighted as bold

Table 4 Comparison of F-measure of baseline sentiment classifiers on
facial landmarks

Test data Method Angry Happy Total

Cafe NN 0.85 0.79 0.82

Cafe Tree 0.67 0.66 0.67

Cafe Fuzzy 0.75 0.74 0.75

Cafe FuzzyB 0.8 0.74 0.77

Iemocap NN 0.69 0 0.35

Iemocap Tree 0.69 0 0.35

Iemocap FuzzyB 0.15 0.55 0.35

When trained on Cafe and tested on Iemocap, we see an improvement
of 55% on the happy emotion
The highest F-measure for each dataset and for each emotion is high-
lighted as bold

Photographs are captured from children in the age group of
2 to 8 years. Unsuccessful poses were removed from the
dataset. The FaceMesh2 byMediaPipemodel detects 468 key
face landmarks in real time. For each image, we extract 468
landmark points using FaceMesh. These landmarks define
the location of the eyes, nose, mouth, and cheeks. We refer
to FACS3 (Facial Action Coding System) to determine the
action units in different emotions. For example, when a per-
son is happy, then the mouth area will be maximised. We use
the FACS to determine multiple objectives for each emotion.

Here, we consider the subset of 420 images for ‘happy’
(215) and ‘angry’ emotions (205). Each landmark is defined
by the X , Y , and Z coordinate, resulting in 1434 input
features. Table 4 compares the F-measure of the proposed
algorithm with baselines for the binary task of predicting
‘angry’ or ‘happy’ expressions from face landmarks.We first
train the model on 70% of CAFE data images and test on the
remaining 30%. We can see that the NN has a F-measure
of 82%. The proposed model given by FuzzyB also has a
very similar F-measure. However, compared to a decision
tree classifier, the improvement is over 10%.

Next, we tested the trained model on IEMOCAP dataset
described in the previous section. This balanced dataset con-
tains 502 images of ‘Happy’ and ‘Angry’ face images of
speakers. Here the proposed method, FuzzyB has the best
result in the Happy class with a 55% F-measure. We can see
that the baselines such as NN and tree are unable to clas-
sify a new dataset, suggesting that they are overfit to the
training data. Hence, we can conclude that fuzzy rules can
adapt to new datasets. It is currently difficult to map the 468
3D landmarks to 2D facial actions; hence, we did not report
multi-objective results on this dataset.

2 https://mmla.gse.harvard.edu/tools/face-mesh/
3 https://imotions.com/blog/learning/research-fundamentals/facial-
action-coding-system/
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Conclusion

In this paper, we propose a spatio-temporal model that can
accurately predict facial expressions from landmark points.
We also apply our method to study the problem of salt water
diffusion in coastal areas. In order to capture variation spa-
tially and over time, we consider a novel feature selection
approach to the dataset that considers the muscle barriers
to increase in emotional intensity. Next, we train a multi-
objective evolutionary model that is able to simultaneously
maximise or minimise multiple constraints in the system.
The error function is determined using a fuzzy neural net-
work where prior rules are extracted using a decision tree.
We show that the proposed approach has an improvement in
the range of 5–30% compared to baselines.We also observed
a better minimisation or maximisation of objectives in a con-
strained multi-objective setting.
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