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Abstract
We extend a previously published model for the dynamics of a single strain of an
influenza-like infection. Themodel incorporates a waning acquired immunity to infec-
tion and punctuated antigenic drift of the virus, employing a set of coupled integral
equationswithin a season and adiscretemapbetween seasons. The long termbehaviour
of the model is demonstrated by examples where immunity to infection depends on
the time since a host was last infected, and where immunity depends on the number of
times that a host has been infected. The first scenario leads to complicated dynamics
in some regions of parameter space, and to regions of parameter space with more
than one attractor. The second scenario leads to a stable fixed point, corresponding to
an identical epidemic each season. We also examine the model with both paradigms
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in combination, almost always but not exclusively observing a stable fixed point or
periodic solution. Adding stochastic perturbations to the between season map fails to
destroy the model’s qualitative dynamics. Our results suggest that if the level of host
immunity depends on the elapsed time since the last infection then the epidemiological
dynamics may be unpredictable.

Keywords Epidemiological modelling · Discrete dynamics · Dynamical systems ·
Seasonal influenza · SARS-CoV-2

Mathematics Subject Classification 37N25 · 92B

1 Introduction

Respiratory viral illnesses typically cause regular seasonal epidemics in temperate cli-
mates. The influenza viruses in particular display strong seasonal behaviour (Webster
et al. 2013), but other viruses such as RSV, coronaviruses and rhinoviruses are also
etiological causes of seasonal acute respiratory illness (Howard et al. 2013; Mandell
2005). As SARS-CoV-2, the virus that causes Covid-19, transitions out of the pan-
demic phase—characterised by transient dynamics exhibiting large scale oscillations
driven by a range of biological, behavioural and environmental factors—it too may
settle into a seasonal cyclic pattern.

Viral infection stimulates the human immune system. Taking influenza as an exam-
ple, infection elicits a strain-specific antibody immune response, that contributes to the
resolution of infection and provides long lasting strain-specific protection such that
subsequent exposure is unlikely to result in a productive infection. A similar immune
response occurs for other pathogens, including SARS-CoV-2 (Dan et al. 2021; Guo
et al. 2022), albeit with evidence that strain-specific immunity may also wane through
time (Khoury et al. 2021). Strong strain-specific immunity, combined with the inher-
ent erroneous replication of RNA viruses (Duffy 2018) drives viral evolution (entitled
‘antigenic drift’ for influenza), selecting for immune-escape variants (Guarnaccia et al.
2013). In consequence, for many viral infections, while strain-specific immunity is
long (perhaps even life-long), protection against the circulating viral strains may be
short lived (Fonville et al. 2014; Grenfell et al. 2004; Smith et al. 2004). We are
thus infected with influenza or the common cold on multiple occasions during our
life. SARS-CoV-2 shows clear signs of also establishing such transmission patterns
(Callaway 2022), which are unsurprising on theoretical grounds (Lavine et al. 2021).

From a dynamical systems perspective, multi-season epidemic dynamics arise from
the gain of immunity as a particular strain spreads, and the loss of protection due to
the induced selection pressure on the virus leading to the emergence of new immune
variants, and/or waning of the host’s strain specific immune response. Efforts to under-
stand this characteristic gain and loss of immunity, and the characteristic dynamics of
these systems have been the focus of a number of mathematical models. Kucharski
et al. (2015, 2018) investigated antibody dynamics, and how previous exposure influ-
ences a host’s response to a new strain, but did not consider the consequential epidemic
dynamics. Andreasen (2003) modelled multi-season epidemic dynamics, and in par-
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ticular a scenario in which variable infectiousness was determined by the time since
exposure. In earlier work, through construction of a hybrid continuous-time–discrete-
map model, we have considered how immunity obtained in a previous season, and
possibly lost in the inter-epidemic period, influences multi-season epidemic dynam-
ics (Roberts et al. 2019). For this model the within season epidemic was represented
by a system of ordinary differential equations and the between season changes by a
discrete map. Hence a fixed point of the map was equivalent to a periodic solution
of the model. Our analysis demonstrated that epidemic dynamics were highly sensi-
tive to parameter choices, with steady-state (i.e. period 1), periodic and complicated
dynamics displayed. In another study Kucharski et al. (2016) introduced a general
framework for multi-strain epidemic dynamics, in which cross-immunity between
strains was modelled based on past exposure history. Noting the combinatorial com-
plexity of considering all possible exposure histories (a challenge that is playing out
with SARS-CoV-2 right now (Vattiatio et al. 2022)), they proposed two alternative
approaches to reducing the dimensionality of the general system, known as ‘expo-
sure’ and ‘history’ based models (Kucharski et al. 2016).

In the present paper we provide a general model for the within- and between- sea-
son dynamics of a respiratory virus. We maintain the structure used by Andreasen
(2003) and in our previous work (Roberts et al. 2019): the within season dynam-
ics are represented by a continuous model on t ∈ (0,∞), and the between season
dynamics by a discrete map. First we present a within-season Kermack-McKendrick
type model, with the host’s susceptibility to infection taking values from a continuous
density. We present a stochastic model for the between-season dynamics, reflecting
population turnover and loss of immunity due to waning protection and antigenic drift.
We then specialise the model, with the host susceptibility taking discrete values and
deterministic between-season dynamics. In the same vein as Kucharski et al. (2016),
the long term behaviour of this model is demonstrated by examples where immunity
to infection depends on the time since the host was last infected, and where immunity
depends on the number of times that a host has been infected.

2 The within seasonmodel

We assume a population of fixed size. Let the proportion of hosts who have never been
infected with the virus at time t be S∅(t). We assume that those that have been infected
have a lesser susceptibility to infection with the virus. We index that susceptibility by
a variable θ , so that when experiencing the same force of infection, the probability that
an individual becomes infected is k(θ) times the probability that an individual in S∅
would be infected if exposed to the same degree. We assume k(0) ≤ 1 and k′(θ) ≤ 0,
where the prime denotes the derivative. We restrict θ to the range [0, 1], so that the
proportion of the population with θ in the range [a, b] at time t is

∫ b
a S(t, θ) dθ and

S∅(0)+∫ 1
0 S(0, θ) dθ = 1. Themodel does not have a removed compartment as such,

although we can model removal by setting k(θ) = 0 in some interval θ ∈ (1 − ε, 1]
for 0 < ε � 1.
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Let an epidemic take place within a time period represented by t ∈ [0,∞), in
the sense that the first transmission of infection occurs at or after t = 0, and all
transmission has ceased as t → ∞. During an epidemic the proportion of hosts who
are fully susceptible and the density of hosts with susceptibility index θ decrease
according to

S∅(t) = S∅(0) −
∫ t

0
ı∅(t ′) dt ′ S(t, θ) = S(0, θ) −

∫ t

0
ı(t ′, θ) dt ′

where ı∅(t) is the incidence of infection in fully susceptible hosts, and ı(t, θ) is the
incidence of infection in hosts with susceptibility θ at time t . If the epidemic is precip-
itated by imported cases with incidence j∅(t) or j (t, θ), according to their prior status,
and the probability mass function of infectiousness (PMF) with time since infection
is p(τ ), then

ı∅(t) = j∅(t) + R0S
∅(t)�(t)

ı(t, θ) = j (t, θ) + R0k(θ)S(t, θ)�(t) (1)

where R0 is the basic reproduction number (Diekmann et al. 2013) and the force of
infection is

�(t) =
∫ t

0
p(τ )

(

ı∅(t − τ) +
∫ 1

0
ı(t − τ, θ) dθ

)

dτ

=
∫ t

0
p(t − τ)

(

j∅(τ ) +
∫ 1

0
j (τ, θ) dθ

)

dτ

+ R0

∫ t

0
p(t − τ)

(

S∅(τ ) +
∫ 1

0
k(θ)S(τ, θ) dθ

)

�(τ) dτ (2)

For small t we approximate

�(t) =
∫ t

0
p(t − τ)

(

j∅(τ ) +
∫ 1

0
j (τ, θ) dθ

)

dτ

+ R0

(

S∅(0) +
∫ 1

0
k(θ)S(0, θ) dθ

) ∫ t

0
p(t − τ)�(τ) dτ

As
∫ ∞
0 p(t) dt = 1, the epidemic takes off if

R = R0

(

S∅(0) +
∫ 1

0
k(θ)S(0, θ) dθ

)

> 1

The susceptibility profile of the population at the end of an epidemic may be found
from S∅(∞) = S∅(0)e−R0P and S(∞, θ) = S(0, θ)e−R0k(θ)P , where P is the final
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size of the epidemic (proportion of the population infected throughout the epidemic)
and P solves

P = S∅(0)
(
1 − e−R0P

)
+

∫ 1

0
S(0, θ)

(
1 − e−R0k(θ)P)

dθ (3)

The derivation of Eq.3 may be found in Appendix A.

3 The stochastic between seasonmodel

Let the PMF of θ post-infection for those that were infected in a season and had
previously not been infected be f (θ). Let the PMF of θ post-infection for those that
were infected in a season and had previous level of immunity ξ be g(θ, ξ). Finally,
let the PMF at the end of the season for those that were not infected and had previous
level of immunity ξ be h(θ, ξ). By definition

∫ 1
0 f (θ)dθ = 1,

∫ 1
0 g(θ, ξ)dθ = 1,

and
∫ 1
0 h(θ, ξ)dθ = 1. As all those who are infected within a season have increased

(strictly not decreased) their level of immunity to infection, we have f (0) = 0 and
g(θ, ξ) = 0 if θ < ξ . Those who are not infected within a season do not increase their
level of immunity to infection, hence h(θ, ξ) = 0 if θ > ξ . In the absence of population
turnover (i.e. demographic processes of births and deaths) and antigenic drift the PMF
of susceptibility at the beginning of the next season would be F(θ) + G(θ) + H(θ)

where

F(θ) = f (θ)
(
S∅(0) − S∅(∞)

)

G(θ) =
∫ θ

0
g(θ, ξ) (S(0, ξ) − S(∞, ξ)) dξ

H(θ) =
∫ 1

θ

h(θ, ξ)S(∞, ξ)dξ

Now use the subscript n to signify this season (prior to the epidemic if it occurs), and
n + 1 for next season. Allow a proportion 1− c of the population to be replaced with
fully susceptible hosts between seasons, to allow for population turnover and antigenic
drift. The initial conditions for next season are

Sn+1(0, θ) = c (Fn(θ) + Gn(θ) + Hn(θ))

S∅
n+1(0) = 1 −

∫ 1

0+
Sn+1(0, θ) dθ

The lower limit of the integral above reflects that any individual for whom θ = 0
is assumed to have the same susceptibility as those in S∅, and the conservation rule
allocates them to that compartment. That situation can only arise in the model through
the action of the integral with kernel h(θ, ξ).

The process outlined above determines the profile of population susceptibility at
the start of year n + 1. The relative susceptibility function k(θ) then determines the

123



   48 Page 6 of 23 M. G. Roberts et al.

dynamics during that year. The conditions on k are k(0) ≤ 1, k′(θ) ≤ 0 for θ ∈ (0, 1)
and k(1) ≥ 0. Suitable example functions include k(θ) = A (1 − θr ) for r > 0 and
A ≤ 1; k(θ) = A cos(θrπ/2); and k(θ) = A

(
e−rθ − e−r

)
/
(
1 − e−r

)
, all of which

have k(1) = 0.
Some examples of the functions f , g and h are discussed below. We first suggest

suitable functions that could apply if the time since themost recent infection determines
a host’s susceptibility. We then suggest functions that could apply if the number of
past infections determines a host’s susceptibility. Finally, we discuss the general case
when both of these mechanisms apply.

3.1 The time sincemost recent infection determines susceptibility

For this example all those who are infected during the year increase their level of
immunity to θ = 1, the maximum level, and those not infected reduce their level of
immunity. An example function for f could be

f (θ) =
⎧
⎨

⎩

(θ − 1 + ε)a (1 − θ)b

εa+b+1B(a + 1, b + 1)
: 1 − ε < θ < 1

0 : otherwise

where 0 < ε � 1, a and b are positive constants, and B is a beta function

B(a + 1, b + 1) =
∫ 1

0
θa (1 − θ)b dθ

We have limε→0 f (θ) = δ(1−), a Dirac delta function. In addition, g(θ, ξ) = f (θ)

with the added constraint that ε < 1 − ξ to ensure that θ > ξ . An example function
for h could be

h(θ, ξ) =
⎧
⎨

⎩

(θ − (y − ε) ξ)a ((y + ε) ξ − θ)b

(2εξ)a+b+1 B(a + 1, b + 1)
: (y − ε) ξ < θ < (y + ε) ξ

0 : otherwise
(4)

This specifies a function in the (θ, h) plane centred at θ = yξ with base 2εξ that
integrates to one. The positive constants a and b do not necessarily take the same values
as in the definitions of f (θ) and g(θ, ξ) above. In general, y could be a function of ξ .
To ensure that θ > 0 we require y > ε, and to ensure that θ is reduced in the absence
of infection we require y + ε < 1. In the limit ε → 0 we obtain h(θ, ξ) = δ(θ − yξ).

The actions of f , g and h are illustrated in Fig. 1a. We have not discussed how the
value of θ may be determined by the PMFs f , g and h. For a purely deterministic
model we would take the limits ε → 0, realising delta functions. In this situation, and
where y is a constant, the only levels of θ realised are θ = 1 and θ = yn , where the
last infection occurred n + 1 seasons ago. For this limiting case, if θ does not vary
continuously at some initial time, it can only take discrete values at future times.
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3.2 The number of infections determines susceptibility

For this example an individual’s immunity level is increased at each infection until a
maximum value θ = 1 is reached. Those who were infected during the year increase
their level of immunity to θ > ξ , and those not infected retain their level of immunity.
An example function for f could be

f (θ) =
⎧
⎨

⎩

(θ − (1 − ε) x)a ((1 + ε) x − θ)b

(2εx)a+b+1 B(a + 1, b + 1)
: (1 − ε) x < θ < (1 + ε) x

0 : otherwise
(5)

for some x < 1/ (1 + ε). We have limε→0 f (θ) = δ(x), and require ε < 1 to ensure
θ > 0. An example function for g could be

g(θ, ξ) =
⎧
⎨

⎩

(θ − (1 − ε) z(ξ))a ((1 + ε) z(ξ) − θ)b

(2εz(ξ))a+b+1 B(a + 1, b + 1)
: (1 − ε) z(ξ) < θ < (1 + ε) z(ξ)

0 : otherwise
(6)

where z is a function with 0 < z(ξ) < 1/ (1 + ε), and z′(ξ) > 0 to ensure that θ > ξ .
One suitable function would be z(ξ) = x + (1 − x) ξ , and more generally x could be
a function of ξ . The function h(θ, ξ) = ξ . The actions of f , g and h are illustrated in
Fig. 1b.

3.3 The general case

In the general case an individual’s immunity level is increased at each infection until
a maximum value θ = 1 is reached, those who were infected during the year increase
their level of immunity to θ > ξ , and those not infected reduce their level of immunity.
The functions f and g could be as in the second example (Eqs. 5 and6), and the function
h could be as in the first example (Eq.4). Their actions are illustrated in Fig. 1c.

4 The deterministic continuous-discrete model of multi-season
epidemics

For the situations considered in Sects. 2 and 3, if θ does not vary continuously at some
initial time, θ can only take discrete values. Hence the model can be recast with m
discrete compartments S
(t) instead of S(t, θ) depending on a continuous variable θ .
The function k(θ) is then replaced with a number of factors k
 ≤ 1, with k
+1 ≤ k
.
The functions f (θ), g(θ, ξ), and h(θ, ξ) that map points to PMFs are replaced with
functions F
, G
 and H
 that map points to points, as per the illustration in Fig. 1.
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Fig. 1 Illustration of the modes
of action used to model the
immune response. a the time
since last infection determines
immunity; b the number of
infections determines immunity;
c the general case where the two
mechanisms combine. The
function f (θ) models the
response of previously
uninfected hosts to infection, the
function g(θ, ξ) models the
response of previously infected
hosts to infection, and the
function h(θ, ξ) models the loss
of immunity in the absence of
infection
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4.1 Within-season

The within-season model becomes

ı∅(t) = j∅(t) + R0S
∅(t)�(t)

ı
(t) = j
(t) + R0k
S

(t)�(t) 
 = 1 . . .m

�(t) =
∫ ∞

0
p(t − τ)

(

ı∅(τ ) +
m∑


=1

ı
(τ )

)

dτ

with

S∅(t) = S∅(0) −
∫ t

0
ı∅(t ′) dt ′ S
(t) = S
(0) −

∫ t

0
ı
(t

′) dt ′

The epidemic takes off ifR > 1 where

R = R0

(

S∅(0) +
m∑


=1

k
S

(0)

)

(7)

The total proportion of the population infected in the epidemic is

P = S∅(0) − S∅(∞) +
m∑


=1

{
S
(0) − S
(∞)

}
(8)

where S∅(∞) = S∅(0)e−R0P , S
(∞) = S
(0)e−R0k
P , and the final size of the
epidemic solves

P = S∅(0)
(
1 − e−R0P

)
+

m∑


=1

S
(0)
(
1 − e−R0k
P

)

= 1 − e−R0P +
m∑


=1

S
(0)
(
e−R0P − e−R0k
P

)
(9)

This is a generalisation of the model analysed in Roberts et al. (2019). Differentiating
Eq.9 by S j (0) for j = 1 . . .m

∂P
∂S j (0)

= e−R0P − e−R0k jP

1 − R0e−R0P − R0
∑m


=1 S

(0)

(
k
e−R0k
P − e−R0P)
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4.2 Between-seasons

Let those who were infected for the first time this season enter the compartment Su ,
those who were previously in compartment S
 who were infected this season enter the
compartment Sv(
) with v(
) ≥ 
, and those who were previously in compartment S


who were not infected this season enter the compartment Sw(
) with w(
) ≤ 
. In the
absence of population turnover and antigenic drift, the proportion of the population
in the Sσ compartment at the beginning of the next season would be Fσ + Gσ + Hσ

where

Fσ =
{
S∅(0) − S∅(∞) = S∅(0)

(
1 − e−R0P) : σ = u

0 : otherwise

and

Gσ =
∑

σ=v(
)

(
S
(0) − S
(∞)

)
=

∑

σ=v(
)

S
(0)
(
1 − e−R0k
P

)

Hσ =
∑

σ=w(
)

S
(∞) =
∑

σ=w(
)

S
(0)e−R0k
P

To account for population turnover and antigenic drift, we allow a proportion 1 − c
of the population to be replaced with fully susceptible hosts between seasons. As in
Sect. 3 we use the subscript n to signify this season, and n + 1 for next season. The
initial conditions for season n + 1 are

Sσ
n+1(0) = c (Fσ + Gσ + Hσ ) S∅

n+1(0) = 1 −
m∑

σ=1

Sσ
n+1(0)

We can write this mapping in vector form. Define sn to be the vector whose 
th

component is S

n(0) for 
 = 1 . . .m, and E(sn) = e−R0Pn where Pn is the final

size of the within season epidemic with initial conditions sn . There is no need to
explicitly model the initial condition for the fully susceptible host compartment, as
S∅
n (0) = 1 − ‖sn‖1. The mapping becomes

sn+1 = C(E(sn))sn + q(E(sn)) (10)

where C is an m × m matrix, and q is an m dimensional vector valued function. The
fixed point of the map solves

s = (
I − C(E)

)−1 q(E)

where E = exp(−R0P) and

P = 1 − E +
m∑


=1

s



(
E − Ek


)
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Stability of the map depends on the eigenvalues of the Jacobian matrix, evaluated at
s = s. Differentiating Eq.10 we find that J has components

Jσ j (sn, E(sn)) = Cσ j +
m∑


=1

∂Cσ


∂s j
s
 + ∂qσ

∂s j

= Cσ j − R0E

(
m∑


=1

∂Cσ


∂E
s
 + ∂qσ

∂E

)
∂P
∂s j

where s
 is the 
th component of the vector sn . Thefixedpoint is stable if the eigenvalues
of J(s, E) have absolute value less than one.

5 Numerical simulations of the deterministic continuous-discrete
model

We now explore four scenarios. For each we provide a general specification, with
explicit expressions and numerical results for a host population that is either fully
susceptible or has one of four levels of immunity (m = 4). For the numerical results
we present orbit diagrams showing the annual final size P (see Eq.8) and effective
reproduction number R (see Eq.7) as the parameter k1 varies from zero to one, with
k2 = k21, k3 = k31 and k4 = 0; with c = 0.9 or c = 0.7; and with R0 = 2.0 or
R0 = 4.0. Recall that the parameter k
 specifies the relative susceptibility of the
compartment S
 and c accounts for between season population turnover and antigenic
drift. Hence c = 0.9 implies that 10% of the population is effectively replaced with
fully susceptible hosts between each season, and k4 = 0 means that the S4 class is
immune to infection. In most cases the initial conditions are S∅

1 (0) = 1, S

1(0) = 0 for


 = 1 . . .m, but we also investigate alternative conditions to check for the existence
of multiple attractors.

5.1 The time sincemost recent infection determines susceptibility

For this example we choose u = m, v(
) = m for all 
 and w(
) = 
 − 1 for

 = 2 . . .m. This leads to

S

n+1(0) = cS
+1

n (0)e−R0k
+1P : 
 = 1, . . .m − 1

and

Smn+1(0) = cS∅
n (0)

(
1 − e−R0P

)
+ c

m−1∑


=1

S

n(0)

(
1 − e−R0k
P

)

= c
(
1 − e−R0P

)
+ c

m∑


=1

S

n(0)

(
e−R0P − e−R0k
P

)
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where we have used S∅
n (0) + ∑m


=1 S


n(0) = 1 and km = 0. The between season map

sn+1 = C(sn)sn + q(sn) is defined as follows. The matrix C(E) has components

Cσ
 =
⎧
⎨

⎩

cEk
 : σ = 
 − 1, 
 = 2 . . .m
c
(
E − Ek


) : σ = m, 
 = 1 . . .m
0 : otherwise

and the vector q(E) has all components zero apart from qm = c (1 − E). The fixed
point has components

s
σ = s

1

cσ−1
∏σ


=2 E
k


: σ = 2 . . .m

and

s
1 = c (1 − E)

cEk1 + (1 − cE)

(

1 +
m∑

σ=2

1

cσ−1
∏σ


=2 E
k


)

The map is illustrated for m = 4 below (recall Ek4 = 1).

sn+1 = c

⎛

⎜
⎜
⎝

0 Ek2 0 0
0 0 Ek3 0
0 0 0 1

E − Ek1 E − Ek2 E − Ek3 E − 1

⎞

⎟
⎟
⎠ sn +

⎛

⎜
⎜
⎝

0
0
0

c (1 − E)

⎞

⎟
⎟
⎠

The fixed point has components

s
2 = s

1

cEk2
s
3 = s

1

c2Ek2Ek3
s
4 = s

1

c3Ek2Ek3

and

s
1 = c (1 − E)

cE∗k1 + (1 − cE)

(

1 + 1

cEk2
+ 1

c2Ek2Ek3
+ 1

c3Ek2Ek3

)

Numerical results are presented in Fig. 2. The orbit diagram Fig. 2a shows the pro-
portion of the population infected each year P as k1 varies from zero to one. The
diagram reveals that solutions tend to a fixed point (same size epidemic each year)
for 0.39 < k1 < 0.63, but have complicated (high-period, non-recurrent or chaotic)
dynamics for 0.06 ≤ k1 ≤ 0.39. For k1 > 0.63 if an epidemic occurs it has the
same size as in previous years, but some years there is no epidemic. Figure2b shows
the variability of the effective reproduction number R as k1 varies from zero to one.
The figure reveals that for k1 > 0.63 there is an epidemic in alternate years, but for
k1 < 0.06 there is a five year cycle, with four years without an epidemic, followed by
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Fig. 2 Orbit diagrams for the model where the time since last infection determines immunity. a, c the
annual proportion of hosts infected (P) as a function of the level of partial immunity (k1), the broken line
shows an unstable fixed point; b, d–g: the effective reproduction number (R) as a function of the level of
partial immunity (k1), the horizontal line is at R = 1. a–d: R0 = 2.0, c = 0.9. e R0 = 2.0, c = 0.7.
F: R0 = 4.0, c = 0.9. g R0 = 4.0, c = 0.7. Initial conditions a, b, e, f, g: s0 = 0 = (0, 0, 0, 0)ᵀ, c, d:
s0 = s = (0.3, 0.2, 0.1, 0)ᵀ
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an epidemic in the fifth year. Figure2c, d show the dynamics with the same parameter
values but with a different set of initial conditions. These diagrams reveal the existence
of an alternative attractor for small values of k1. Figure2e–g show the dynamics with
alternative values of R0 or c. For these figures only the dynamics of the effective
reproduction number R are shown. No sensitivity on initial conditions was observed
with these parameter values. A region of complicated dynamics was observed for the
example with c = 0.9 and R0 = 4.0 (Fig. 2f), but no such region was found for the
examples with c = 0.7 (Fig. 2e, g).

5.2 The number of infections determines susceptibility

We define a finite number of compartments S
, with 1 ≤ 
 ≤ m. If each infection
results in a host increasing its immunity to the next level, and not being infected
results in immunity staying at the same level, then we have u = 1, v(
) = 
 + 1 for

 = 1 . . .m − 1 and w(
) = 
 for 
 = 1 . . .m. This leads to

S

n+1(0) = c

(
S
−1
n (0)

(
1 − e−R0k
−1P

)
+ S


n(0)e
−R0k
P

)
: 
 = 2, . . .m − 1

and

S1n+1(0) = c

((

1 −
m∑


=1

S

n(0)

)
(
1 − e−R0P

)
+ S1n(0)e

−R0k1P
)

Smn+1(0) = cSm−1
n (0)

(
1 − e−R0km−1P

)
+ c

where we have used S∅
n (0) + ∑m


=1 S


n(0) = 1 and km = 0. The between season map

sn+1 = C(sn)sn + q(sn) is defined as follows. The matrix C(E) has components

Cσ
 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c
(
E − 1 + Ek1

) : σ = 
 = 1
c (E − 1) : σ = 1, 
 = 2 . . .m
cEk
 : σ = 
, 
 = 2 . . .m
c
(
1 − Ek


) : σ = 
 + 1, 
 = 1 . . .m − 1
0 : otherwise

and the vector q(E) has all components zero apart from q1 = c (1 − E). The map is
illustrated for m = 4 below.

sn+1 = c

⎛

⎜
⎜
⎝

E − 1 + Ek1 E − 1 E − 1 E − 1
1 − Ek1 Ek2 0 0

0 1 − Ek2 Ek3 0
0 0 1 − Ek3 1

⎞

⎟
⎟
⎠ sn +

⎛

⎜
⎜
⎝

c (1 − E)

0
0
0

⎞

⎟
⎟
⎠

123



How immune dynamics shape multi-season epidemics: a. . . Page 15 of 23    48 

A fixed point of this map is

s
2 = f2(E

)s
1 = c

(
1 − Ek1

)

1 − cEk2
s
1

s
3 = f3(E

)s
1 = c2

(
1 − Ek1

) (
1 − Ek2

)

(
1 − cEk2

) (
1 − cEk3

) s
1

s
4 = f4(E

)s
1 = c3

(
1 − Ek1

) (
1 − Ek2

) (
1 − Ek3

)

(
1 − cEk2

) (
1 − cEk3

)
(1 − c)

s
1

where s
1 can be found by substituting in

s
1 = c

(
1 − E

) (
1 − s

1 − s
2 − s

3 − s
4

) + cEk1s
1

to obtain

s
1 = c (1 − E)

1 − cEk1 + c (1 − E) (1 + f2(E) + f3(E) + f4(E))

Numerical results are presented in Fig. 3. The figure is structured to enable direct
comparison with the results shown in Fig. 2. In particular, for all of the parameter
values chosen the attractor was a fixed point (period one) and no dependency on initial
conditions was observed.

5.3 The number of infections and the time since last infection determine
susceptibility

We define a finite number of compartments S
, with 1 ≤ 
 ≤ m. Then define u > 0,
v(
) ≥ 
 with v(m) = m, and w(
) < 
; u, v, w all integer.

First we consider a scenario where infection increases immunity more than non-
infection results in a decrease. For example, suppose that having been infected
increases the immunity level by two steps, but without infection immunity drops one
level between seasons. We would then have u = 2, v(
) = 
 + 2 for 
 = 1 . . .m − 2,
v(m − 1) = m, and w(
) = 
 − 1 for 
 > 1. With m = 4.

sn+1 = c

⎛

⎜
⎜
⎝

0 Ek2 0 0
E − 1 E − 1 E − 1 + Ek3 E − 1
1 − Ek1 0 0 Ek4

0 1 − Ek2 1 − Ek3 0

⎞

⎟
⎟
⎠ sn +

⎛

⎜
⎜
⎝

0
c (1 − E)

0
0

⎞

⎟
⎟
⎠

Numerical results are presented in Fig. 4a–d. We only present orbit diagrams for the
changes in effective reproduction numberR, as these are sufficient to provide a descrip-
tion of the dynamics. It can be seen that for the examples with c = 0.9 (Fig. 4a, c)
there is a period three solution for low values of k1, comprising two seasons with no
epidemic (R < 1) followed by one season with an epidemic. For the example with
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Fig. 3 Orbit diagrams for the model where the number of infections determines immunity. a, c the annual
proportion of hosts infected (P) as a function of the level of partial immunity (k1), the broken line shows
an unstable fixed point; b, d–g: the effective reproduction number (R) as a function of the level of partial
immunity (k1), the horizontal line is atR = 1. a–dR0 = 2.0, c = 0.9. e:R0 = 2.0, c = 0.7. f R0 = 4.0,
c = 0.9. g:R0 = 4.0, c = 0.7. Initial conditions a, b, e–g: s0 = (0, 0, 0, 0)ᵀ, C,D: s0 = (0.3, 0.2, 0.1, 0)ᵀ
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Fig. 4 Orbit diagrams for the general model. The effective reproduction number (R) as a function of the
level of partial immunity (k1). a–d Having been infected increases immunity more than the loss due to
escaping infection. e–hHaving been infected increases immunity less than the loss due to escaping infection.
a, e R0 = 2.0, c = 0.9. b, f R0 = 2.0, c = 0.7. c, g R0 = 4.0, c = 0.9. d, h: R0 = 4.0, c = 0.7. Initial
conditions s0 = (0, 0, 0, 0)ᵀ, the horizontal line is atR = 1
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R0 = 4.0 and c = 0.9 there is also a region of k1 with complicated (high period)
dynamics (Fig. 4c). For all other examples and values of k1 the observed attractor is a
period one solution (fixed point of the discrete map).

Nowconsider a scenariowhere infection increases immunity less than non-infection
results in a decrease. For example having been infected increases the immunity level
by one step, but without infection immunity drops two levels between seasons. We
would then have u = 1, v(
) = 
+1 for 
 = 1 . . .m−1, andw(
) = 
−2 for 
 > 2.
For example, with m = 4.

sn+1 = c

⎛

⎜
⎜
⎝

E − 1 E − 1 E − 1 + Ek3 E − 1
1 − Ek1 0 0 Ek4

0 1 − Ek2 0 0
0 0 1 − Ek3 0

⎞

⎟
⎟
⎠ sn +

⎛

⎜
⎜
⎝

c (1 − E)

0
0
0

⎞

⎟
⎟
⎠

Numerical results are presented in Fig. 4e–h. The orbit diagrams show epidemics in
alternate years for some values of k1, otherwise the fixed point is stable with an epi-
demic every year. None of the orbit diagrams show complicated high period dynamics.

5.4 Adding a stochastic component

In order to approximate solutions of the stochasticmodel, we simulated a hybridmodel
by calculating the final size of the deterministic within-season model (P , Eq. 9) and
then adding a small perturbation P → P + δP . The magnitude of the perturbation
was taken at random from a uniform distribution δP ∈ [−δ, δ], truncated if necessary
so that P ∈ [0, 1]. Realisations of the orbit diagrams for the model with immunity
determined by the time since last infection, as presented in Fig. 2a and b, but now with
the perturbations δP added at each season, are presented in Fig. 5. Comparing Fig. 2a,
b with Fig. 5 we see that when δ = 0.05 the stochastic perturbation obscures the period
five solution for k1 < 0.06 and the period one solution for 0.39 < k1 < 0.63 (Fig. 5a,
b). Orbits in these regions become virtually indistinguishable from those in the region
of k1 that leads to complicated dynamics. The period five and period one solutions are
discernible when δ = 0.02 (Fig. 5c, d) and are clearly visible when δ = 0.01 (Fig. 5e,
f). In all of the orbit diagrams shown in Fig. 5 the period two solutions for k1 > 0.63
are preserved.

6 Discussion

Wepreviously investigated amodel for a seasonal infectious diseasewhere having been
infected in one season an individual host was fully protected for the next season, and
partially protected for the season after, before becoming fully susceptible again if not
infected (Roberts et al. 2019). That model exhibited complicated dynamics for a range
of parameter values, as have a number of other models for seasonal infections with
different structures (Andreasen 2003; Bacaer andOuifki 2007; Earn et al. 2000;He and
Earn 2007; Mathews et al. 2007; Viboud et al. 2006). The focus of our present study
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Fig. 5 Orbit diagrams for the model where the time since last infection determines immunity and stochastic
perturbations have been added. A,C,E: the annual proportion of hosts infected (P) as a function of the level
of partial immunity (k1), the broken line shows an unstable fixed point of the corresponding deterministic
model; B,D,F: the effective reproduction number (R) as a function of the level of partial immunity (k1),
the horizontal line is at R = 1. A,B: δ = 0.05; C,D: δ = 0.02; E,F: δ = 0.01. Initial conditions
s0 = (0, 0, 0, 0)ᵀ

was to investigate if different dynamics would be observed if the level of immunity
was determined by the elapsed time since a host was last infected, or by the number
of infections a host had experienced. When immunity was determined by the time
since infection we observed complicated dynamics over a range of parameter values,
especially if acquired immunity resulted in stronger protection (lower values of k1
in Fig. 2). In contrast, when immunity was determined by the number of infections
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experienced the model exhibited a steady state, corresponding to an epidemic of the
same size every year (Fig. 3). When the two mechanisms were combined the steady
state attractor was predominant, although periodic or complicated dynamics were
observed for lower values of k1 in some instances (Fig. 4). Thesefindings have potential
implications for predictive modelling studies. For example, our results suggest that if
the level of host immunity depends on the elapsed time since the last infection then
the epidemiological dynamics may be unpredictable.

The model as presented includes the assumption that epidemiological parameters,
and hence R0 are constant from season to season. However, virus evolution may
result in variants presenting with different transmissibility in subsequent seasons.
Similarly, the factor allowing for population turnover and antigenic drift has been
taken as constant, but for influenza it has been shown that drift can be punctuated by
some years of increased change (Smith et al. 2004). Should Covid-19 become seasonal
then it is likely that a similar phenomenon would be observed, as different variants of
the virus have already exhibited different transmissibility (Manathunga et al. 2023).

Where annual epidemics involve multiple strains of a virus, the timing of the intro-
duction of each strain influences the within season dynamics (Roberts 2012). This
would be another source of unpredictability when modelling the long term dynamics
of seasonal infections such as influenza, for which some degree of cross-protection
between strains has been determined (Ferguson et al. 2003).Modelling epidemics with
multiple interacting viruses introduces complications (Gog and Grenfell 2002) and is
the subject of ongoing research.
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Appendix A: The final size of the within-seasonmodel

Define the Laplace transform of a function y(t, θ) by

y(s, θ) = L {y(t, θ)} =
∫ ∞

0
e−st y(t, θ) dt
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Taking transforms of Eqs. 1 and 2

L
{
ı∅(t)
S∅(t)

}

= L
{

j∅(t)
S∅(t)

}

+ R0�(s)

L
{
ı(t, θ)

S(t, θ)

}

= L
{

j (t, θ)

S(t, θ)

}

+ R0k(θ)�(s)

�(s) = p(s)

(

ı∅(s) +
∫ 1

0
ı(s, θ) dθ

)

Substituting for ı∅(t) and ı(t, θ) on the left hand side only

L
{

− 1

S∅(t)
∂S∅

∂t

}

= L
{

j∅(t)
S∅(t)

}

+ R0�(s)

L
{

− 1

S(t, θ)

∂S

∂t

}

= L
{

j (t, θ)

S(t, θ)

}

+ R0k(θ)�(s)

Now let s → 0. We have p(0) = ∫ ∞
0 p(t) dt = 1,

lim
s→0

L
{

− 1

S∅(t)
∂S∅

∂t

}

= −
∫ ∞

0

1

S∅(t)
∂S∅

∂t
dt = log

(
S∅(0)
S∅(∞)

)

lim
s→0

L
{

− 1

S(t, θ)

∂S

∂t

}

= −
∫ ∞

0

1

S(t, θ)

∂S

∂t
dt = log

(
S(0, θ)

S(∞, θ)

)

lim
s→0

ı∅(s) =
∫ ∞

0
ı∅(t) dt = S∅(0) − S∅(∞)

lim
s→0

ı(s, θ) =
∫ ∞

0
ı(t, θ) dt = S(0, θ) − S(∞, θ)

lim
s→0

�(s) =
∫ ∞

0
�(t) dt

The total proportion of the population infected in the epidemic is

P =
∫ ∞

0
�(t) dt = S∅(0) − S∅(∞) +

∫ 1

0
{S(0, θ) − S(∞, θ)} dθ

Consider now the imported cases, as
j∅(t)
S∅(t)

and
j (t, θ)

S(t, θ)
are assumed to be small, we

neglect the quantities

lim
s→0

L
{

j∅(t)
S∅(t)

}

=
∫ ∞

0

j∅(t)
S∅(t)

dt lim
s→0

L
{

j (t, θ)

S(t, θ)

}

=
∫ ∞

0

j (t, θ)

S(t, θ)
dt

We now have S∅(∞) = S∅(0)e−R0P and S(∞, θ) = S(0, θ)e−R0k(θ)P , and the final
size of the epidemic solves Eq.3.
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