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Abstract

Background: Spatial information about the location and suitability of areas for native plant and animal species under different climate
futures is an important input to land use and conservation planning and management. Australia, renowned for its abundant species
diversity and endemism, often relies on modeled data to assess species distributions due to the country’s vast size and the challenges
associated with conducting on-ground surveys on such a large scale. The objective of this article is to develop habitat suitability maps
for Australian flora and fauna under different climate futures.

Results: Using MaxEnt, we produced Australia-wide habitat suitability maps under RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and
RCP8.5-SSP5 climate futures for 1,382 terrestrial vertebrates and 9,251 vascular plants vascular plants at 5 km? for open access. This
represents 60% of all Australian mammal species, 77% of amphibian species, 50% of reptile species, 71% of bird species, and 44% of
vascular plant species. We also include tabular data, which include summaries of total quality-weighted habitat area of species under
different climate scenarios and time periods.

Conclusions: The spatial data supplied can help identify important and sensitive locations for species under various climate futures.
Additionally, the supplied tabular data can provide insights into the impacts of climate change on biodiversity in Australia. These
habitat suitability maps can be used as input data for landscape and conservation planning or species management, particularly
under different climate change scenarios in Australia.
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Introduction the challenge of conservation planning during climate change

Rich spatial and temporal information about the effect of cli-
matic and environmental change on species distributions is nec-
essary to ensure robust species management and conservation
policy more broadly [1-4]. Identifying areas where species oc-
cur now, as well as areas that may be suitable in the future,
is a crucial aspect of decision-making under uncertainty [4].
The availability of resources for conservation, including finan-
cial, staffing, and land availability, is limited and exacerbates

[3]. These constraints have sparked the need for more strate-
gic landscape and conservation planning methods, such as spa-
tial prioritization, to identify the most effective conservation so-
lutions [5]. Spatial information on where species are now and
where suitable areas may be in the future is the foundation
of efficient planning for conservation action, particularly in ar-
eas where local conditions are more sensitive to climate change

[4].
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Australia is a hyperdiverse country with high levels of species
endemism [6, 7]. Unfortunately, Australia also has some of the
highest recorded numbers of contemporary extinctions world-
wide, and more than 1,900 species and ecological communities are
under threat [8, 9]. Given the extensive and severe range and pop-
ulation declines of many threatened species [9-11], many more
species are also predicted to have a high risk of extinction in the
future [12]. To ensure the conservation of Australia’s unique bio-
diversity, identifying and protecting important areas for species
such as climate refugia is key to planning for resilience and adap-
tive capacity [13]. To fulfill this task, underlying data on species
location and the habitat suitability of areas for species under dif-
ferent climate futures are required.

There are many ways to assess suitable areas for species, and
one popular approach is to use the maximum entropy method
(henceforth, MaxEnt). MaxEnt is a niche-based general-purpose
machine learning method with a simple and precise mathemati-
cal formulation thatis particularly well suited for species distribu-
tion modeling with presence-only data [14, 15]. Generating Max-
Ent models for individual species at continental scales presents
challenges around the processing and storage of large volumes
of data. A comprehensive spatial dataset known as “CliMAS” [16]
modeled 1,872 terrestrial and freshwater vertebrate species dis-
tributions using the Intergovernmental Panel on Climate Change’
s (IPCC’ s) Coupled Model Intercomparison Project 3 (CMIP3) fu-
ture climate projections [17] which were freely available through
a web-based portal. Although the CliMAS models led to many ap-
plied outcomes [18, 19, 20], the website was retired in 2020, in
recognition of the fact that there have been 2 major updates by
the IPCC and the current projections are based on CMIP6. For con-
servation planning to progress, an improved and enlarged suite of
freely available spatial data, based on up-to-date climate projec-
tions and extended for a much broader range of species including
vascular plants, is needed.

We developed habitat suitability maps for Australian flora and
fauna under different climate futures using a MaxEnt approach.
We produced freely accessible Australia-wide habitat suitability
maps for 1,441 terrestrial vertebrates and 9,251 vascular plants.
This represents 60% of all Australian mammal species, 77% of am-
phibian species, 50% of reptile species, 71% of bird species, and

ALA point data

44% of vascular plant species. We fit these models using 7 bio-
climatic variables and 11 soil and landscape variables under 4 cli-
mate scenarios, 8 general circulation models (GCMs) and 1 ensem-
ble average, and 5 time periods. These habitat suitability maps are
best used as input data to represent species or biodiversity values
for conservation planning and assessment, particularly under cli-
mate change in Australia.

Methods

The workflow for this study was adapted from the CliIMAS project
[16] (Fig. 1). The first step involved compiling and collecting the in-
put data, which consisted of occurrence point data and environ-
mental variables. We then used MaxEnt to fit models of habitat
suitability using climate, soil, and landscape variables. We used a
variable selection procedure, which considered the statistical and
ecological importance of variables to refine the predictor variables
as well as validating the models. We then used the lambda files
produced in the model-fitting step to project species habitat suit-
ability under future climate scenarios.

Input data
Species occurrence points

Species occurrence records, which were used to fit the historical
climate models, were sourced from the Australian Atlas of Living
Australia (ALA) [21], the Queensland Museum, and CSIRO. Vascu-
lar plant occurrence point data were acquired from the Queens-
land Museum. Vertebrate species occurrence were records ac-
quired through ALA went through an additional data-cleaning
process prior to modeling [21]. We used the points originally ap-
plied in the ClIMAS project as of 2012 for vertebrates and the vas-
cular plant points that were compiled for the CliMAS project but
never modeled. Through these sources, we obtained occurrence
point data for 197 mammals (60% coverage), 523 birds (71% cover-
age), 530 reptiles (50%), 191 amphibians (77%), and 9,200 vascular
plants (44% coverage). Across all species, the median number of
occurrence points was 123 and the distribution of the number of
occurrence points ranged based on the following quantiles: 0% =
1, 25% = 43, 50% = 123, 75% = 410, 100% = 78,503 (Fig. 2).

Background point data

MaxEnt modelling procedurs

I Model fitting Model validation

Model projection: |——3» Ensemble averaging
—

WorldClim bioclimatic data
Soil and Landscape Grid data

\\i
Ecologial importance

Figure 1: Workflow of the MaxEnt modeling procedure. Input data are represented as green, variable selection procedure is represented as purple,
MaxEnt modeling procedure is represented as gray, and the output files are represented as orange.
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Figure 2: Distribution of occurrence points (n) for species models.

MaxEnt uses background sample points as pseudoabsences
and recommends the use of target groups in sample selection to
help overcome potential spatial biases [22, 23]. To create the target
group background files, we combined all occurrence points for all
species within a taxonomic group and sampled the background
points from this space. Each target group background file con-
tained between 60,000 and 250,000 points depending on the taxo-
nomic group, in which MaxEnt takes a subsample of 10,000 points.

Environmental variables

We used a combination of bioclimatic, soil, and landscape vari-
ables as predictors to fit the MaxEnt models. For the climate vari-
ables, we downloaded spatial data at a 5 km? resolution on his-
torical and future CMIP6 modeled bioclimatic variables through
the WorldClim database [24]. Bioclimatic variables summarize
monthly temperature and rainfall values into 19 more biologically
meaningful variables (Table 1). Bioclimatic variables were down-
loaded for 8 GCMs: BCC-CSM2-MR [25], CNRM-CM6-1 [26], CNRM-
ESM2-1 [27], CanESMS [28], IPSL-CM6A-LR [ 29], MIROC-ES2L [30],
MIROCS6 [31], and MRI-ESM2-0 [32], for 4 shared socioeconomic
(SSP) [33] and representative concentration pathway (RCP) com-
binations, RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and RCPS8.5-
SSP5, and 5 time periods (1990, 2030, 2050, 2070, and 2090). As we
did not have access to the following 2 files, IPSL-CM6A-LR SSP2-4.5
2030 and MRI-ESM2-0 SSP5-8.5 2030, we linearly interpolated val-
ues. All climate scenarios and bioclimatic variables were clipped
to the extent of Australia prior to modeling.

We downloaded 15 environmental variables from the Soil and
Landscape Grid of Australia [34] to use as environmental predic-
tors of habitat suitability. Additionally, we downloaded the Interim
Biogeographic Regionalisation for Australia [35] (IBRA) as an in-
dication of the inherent spatial differences in biome across Aus-
tralia. Soil and landscape variables were clipped and masked to
the extent of Australia and scaled to the same resolution as the
bioclimatic data (Table 1).

Model fitting

All habitat suitability models were fit in MaxEnt Version 3.4.1 us-
ing the command line. MaxEnt models were first run with 10 repli-

cates (replicates = 10) validated using a cross-validation method
to train the model and to compute model validation statistics. At
this stage, habitat suitability values were calculated as values be-
tween 0 and 1 with no threshold applied and were later converted
to values between 0 and 100. An example of the full MaxEnt model
specification can be found in the GitHub or Zenodo repository af-
filiated with this article [36]. Important outputs of the MaxEnt
modeling procedure include a .csv file containing statistical infor-
mation to inform variable selection and model validation as well
as the “lambdas file,” which is a text file containing the regression
coefficients or lambdas fit by MaxEnt during modeling.

Variable selection

The variables included in the final MaxEnt model runs were in-
formed by analyzing the variable contributions and importance
percentages calculated using a full MaxEnt model run, informa-
tion about variable complexity [37], and ecological knowledge
based on several published models of terrestrial vertebrate and
vascular plant climate and habitat suitability. The goal of vari-
able selection was to reduce the number of predictor variables
from the initial 35 variables chosen as potential environmental
predictors to avoid overfitting. Although MaxEnt is robust to mul-
ticollinearity among variables [38], including excessive numbers
of predictors can affect the model’s ability to make inferences out-
side of the training data.

We reviewed variables included within several Australian bio-
diversity modeling efforts of terrestrial vertebrates [16] and vas-
cular plants [39, 40]. We then performed a full MaxEnt model run,
which included the 35 variables described in the above section,
for each species. We reviewed the importance of variables based
on the average percent contribution and percent importance val-
ues across all species. The percent contribution is a measure of
the contribution of each variable toward model fit after each it-
eration of the MaxEnt model, while the percent importance is a
measure of the importance of each variable toward model fit for
the final MaxEnt model. We also categorized bioclimatic variables
based on complexity and favored simple variables as they tended
to be less correlated with one another [37].

This combined approach to variable selection resulted in 18
variables that moved through to the model-fitting stage (Table 1):
7 bioclimatic variables and 11 soil and landscape variables. All
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Table 1: Summary of the bioclimatic, soil, and landscape variable selected in the final MaxEnt model

Code Variable name Contribution? Importance? Ecological rationale

Bioclimatic variables

BIO1 Annual Mean Temperature 8.72 18.21 Influences thermal tolerances of species.

BIOS Max Temperature of Warmest 6.33 9.92 Influences upper thermal tolerances of

Month species through extreme temperatures.

BIO6 Min Temperature of Coldest Month 4.30 8.66 Influences lower thermal tolerances of
species through extreme temperatures.

BIO12 Annual Precipitation 8.60 10.81 Average annual rainfall, which influences
water availability.

BIO13 Precipitation of Wettest Month 17.67 7.77 Maximum rainfall in the wettest month,
which influences maximum water
availability.

BIO14 Precipitation of Driest Month 14.93 8.45 Minimum rainfall in the driest month,
which influences minimum water
availability.

BIO15 Precipitation Seasonality 12.13 13.20 Standard deviation of rainfall in the
annually, which influences the variation in
water availability.

Soil and landscape variables

AWC Available Water Capacity 0.94 0.68 The amount of water held by the soil for
future use.

BDW Bulk Density (Whole Earth) 0.89 1.17 Soil’s ability to function for structural
support, water and nutrient and microbial
life movement, and soil aeration.

CLY Clay 1.04 0.95 Promotes water retention and reduces air
circulation in soil.

DES Depth of Soil 2.00 1.29 Defines the root space and volume of soils
available.

ECE Electroconductivity 3.39 5.21 Movement of nutrients within the soil,
which influences the availability of soil
nutrients.

elev Elevation 2.37 1.57 Elevation influences soil properties and air
pressure.

pHc pH 5.43 4.30 Affects the amount of nutrients that are
water soluble in soil.

slope Slope Relief 1.81 1.00 Influences soil properties and creates
varying microclimates.

SLT Silt 2.63 2.10 Promotes water retention and creates
relatively porous soil conditions.

SND Sand 1.60 1.60 Promotes water drainage and air circulation
in soil.

SOC Organic Carbon 5.17 3.05 Promotes soil structure by providing a food

source for micro-organisms.

! Average (mean) percent contribution in the final models for each environmental variable across all species. A measure of the contribution of each variable toward

model fit after each iteration of the MaxEnt model.

2 Average (mean) percent importance in the final models for each environmental variable across all species. A measure of the importance of each variable measure

depends the resulting decrease in training AUC on the final MaxEnt model.

bioclimatic variables selected for this study were included in
ClIMAS models [16] and similar modeling efforts for Australian
plants [39], and all bioclimatic variables with the exception of
BIO15 were considered simple climate variables [37] (Table 1).
All bioclimatic variables except for BIOO5 had high or moderate
importance values in the full model. Similarly, we included
additional soil and landscape variables [41] based on their use in
recent biodiversity models [39], and we favored soil and landscape
variables that were simpler.

Model validation

Once variables were selected, models were rerun, and model per-
formance was assessed based on the area under the curve (AUC;
i.e., the area under the receiver operating curve [ROC] curve) and
the Boyce Index. The AUC is a widely used model validation met-
ric used within the MaxEnt literature [42]. The AUC metric mea-

sures the predictive accuracy of the model and represents the
probability that a randomly selected occurrence point is ranked
higher than a randomly selected background point. The Boyce In-
dex is another method that can be used to evaluate model per-
formance and does so by assessing the magnitude in which the
model predictions differ from random distribution of the observed
presences across the prediction gradients [43, 44]. The Boyce Index
value is represented by the Spearman rank correlation coefficient,
which assesses the increase in the prediction/expected (P/E) plot
[45].

The median AUC across all models was 0.97, and generally, AUC
values of 0.7 or below indicate poor performance (Fig. 3). We as-
sess that 99.6% (n = 10,566) of species have an AUC value above
0.7 AUC, and 0.4% (n = 38) of species have an AUC value below the
0.7 threshold (33 birds, 4 vascular plants, and 1 mammal). Boyce
Index values can vary from —1 to 1, and we find that the median
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Figure 3: From left to right, the plots are the distribution of AUC values, the distribution of Boyce Index (BI) values, and a scatterplot between AUC and
BI values for species models. The median AUC and Boyce Index value is represented by a dashed line. On the AUC plot, the 0.7 threshold is presented
using a solid vertical line. On the BI plot, the 0.5 threshold is presented using a solid vertical line. These thresholds are also represented by solid lines

on the scatterplot.

Boyce Index across all models in this study was 0.97 (Fig. 3). A
Boyce Index closer to 1 indicates that suitability predictions are
consistent with the occurrence point distribution, and values of
0.5 or below generally indicate poor performance [43, 44]. We as-
sess that 99.3% (n = 10,509) of species have a value over 0.5, 0.65%
(n = 69) species had a value between 0.5 and 0, and 0.05% (n = 5)
species had a value below 0 (1 bird and 4 vascular plants).

We have also provided a scatterplot summary of AUC in re-
lation to the Boyce Index. Based on the 0.7 threshold for AUC
and the 0.5 threshold for the Boyce Index, we find that 98.99%
of species meet both thresholds. We find that 0.69% (n = 73) meet
the AUC threshold but not the Boyce Index threshold, 0.32% (n
= 34) species meet the Boyce Index threshold but not the AUC
threshold, and 1 species did not meet either threshold (brown fal-
con, Falco berigora). Prior to using species data, please ensure you
check the AUC and the Boyce Index value, which are contained
within the species folder within the maxentResults.csv and the
boyce_index_score.csv file.

Model projections

Using the best model selected in the model-fitting procedure,
we projected species-level MaxEnt models under the future
climate scenarios (RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and
RCP8.5-SSP5) and 8 GCMs for 1 historical time period (1985) and 4
future time periods (2030, 2050, 2070, 2090) using the lambda files
produced in the model-fitting step. Using the predicted habitat
suitability data, we then calculated an ensemble average (mean),
minimum, and maximum habitat suitability (to capture model
variance) across 8 GCMs for each species, climate scenario, and
time period.

Geospatial calculations

To describe the patterns of habitat suitability across time in an ac-
cessible tabular format, we calculated the total quality-weighted
sum of habitat suitability for each species under different climate
scenarios at each time period (Equation (1)). We first adjusted the
resolution of the rasters to 1 km?; therefore, the quality-weighted
habitat area (qwHA) sum corresponds to the “habitat area” in km?.
For example, if the probable habitat suitability in a cell is equal to
1, the cell is equivalent to 1 km?, whereas if the probable habitat
suitability in a cell is equal to 0.3, the cell is equivalent to 0.3 km?.
It should be noted that the quality-weighted habitat area is not
equivalent to the realized area available for a species given eco-
logical or land-use constraints, which can both influence habitat
availability and suitability for species. The probability of habitat

suitability (p) was summed across raster cells (xy) for each species
(), year (y), and climate scenario (c):

n
qWHAjyc = Z Pjyexy (1)

i=1
To describe how the patterns of habitat suitability may have
changed across space under different climate scenarios or years,
we summarized raster data for each species in multiple ways. For
each taxonomic group (t), we calculated changes in habitat suit-
ability (s) by subtracting future time periods and climate scenarios
(yc) by historical climate niche (p"), where positive values indicate
areas thatincrease in suitability in the future and negative values
indicate areas that decrease in climate suitability in the future.
We provide visual representation of this information in Fig. 7 and
include the absolute and proportional change in habitat area in

the tabular summaries provided for species:

St'=pt - ptf (2)
To spatially identify important areas of climate refugia, which
was done for Fig. 6, we multiplied the historical habitat suitability
matrix by the habitat suitability in each future climate scenario
and year combination. For each the cell, the probability of habitat
suitability values per cell (p), for each species (t), year (y), and cli-
mate scenario (c), was multiplied by the future habitat suitability.
Cell values were then divided by 100, and the resulting cell value
represents climate refugia (r) between 0 and 100.

= (pl* p)/100 (3)

Reuse potential
Code availability

For each species, MaxEnt models were run directly from the ter-
minal using java and bash syntax and were ultimately executed
using a “Simple Linux Utility for Resource Management” (SLURM)
workload manager on a high-performance Linux-based computer
cluster. Additional modeling and geospatial analyses were pro-
cessed using a shell file executed using SLURM on the computer
cluster. The scripts used to generate these data are available in
the companion GitHub and Zonodo repositories [36].

Dataset

Individual species’ maps for historical and future minimum,
mean, and maximum ensembled habitat suitability, as well as the
MaxEnt lambda file and summary reports produced in this study,
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Southern Cassowary (Casuarius casuarius)
Spatial distribution of habitat suitability over time
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Figure 4: This habitat suitability distribution is for the southern cassowary (Casuarius casuarius) and presents its historical suitability projection
historically, in 2030, and in 2090. The graph represents the total amount of habitat suitability (km?) available in each time period; green bars
correspond to the maps presented (historical, 2030, and 2090). Casuarius casuarius icon was sourced from T. Michael Keesey, PhyloPic (2014 May 30).

are publicly accessible for download on the open-access compan-
ion GigaDB database [46]. This dataset includes species-level his-
torical (1970-2000 centered on 1990) and the future minimum,
mean, and maximum habitat suitability projections for 1,382 ter-
restrial vertebrates (182 amphibians, 487 birds, 178 mammals, and
535 reptiles) and 9,251 vascular plants under 4 climate scenarios
and 5 time periods; these data equate to 521,017 .tif raster files
that are compressed using Lempel-Ziv—Welch (lzw) compression.
Additionally, for each species, we have included a .csv file that con-
tains the total quality-weighted habitat areas (in km?) for each
species under each different climate scenario and time period.
We have also consolidated these tables across all species and in-
cluded these tabular data. A complete list of the species for which
habitat suitability maps were produced can be found in the com-
panion GigaDB database.

Spatial resolution of data

These data are presented at a 5-km? resolution, which is aligned
with the climate data used as key inputs to the MaxEnt model.
The data can be subsequently downscaled to finer resolutions,
but assumptions will have to be made about how habitat suit-
ability is distributed across cells. The current resolution of these
data is best utilized to understand general trends across space
and time. To demonstrate the resolution, we present the south-

ern cassowary (Casuarius casuarius), which is known to occur in
the Wet Tropics region of Queensland, Australia. Current suit-
able areas for the southern cassowary are predicted to occur be-
tween Townsville and Cooktown, with an isolated area around
the Iron Range (Fig. 4). Taking the most severe climate change
scenario (RCP8.5-SSP5), the environmental space for the south-
ern cassowary is predicted to reduce over time around its central
habitat in the Atherton Tablelands. The maps for the southern
cassowary can be compared with [16] for reference.

Species-level data summary

The dataset includes suitability maps for species under different
climate scenarios and time periods using an ensemble average
approach. Through the process of ensemble averaging, the mini-
mum and maximum suitability maps were also produced. These
maps can be compared to understand the bounds of how climate
change may generally impact habitat suitability in the future.
The importance of incorporating multiple GCM projections can be
seen by the variation among the minimum, mean, and maximum
suitability maps (Fig. 5). For the common wallaroo (Macropus robus-
tus), the differences between the minimum, mean, and maximum
suitability maps are most apparent under worsening climate sce-
narios. Areas across the southern parts of Australia remain suit-
able across all 3 suitability maps, compared to areas in the cen-
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Common Wallaroo (Macropus robustus)

Habitat suitability maps under climate

Variation (minimum, average & maximum) in habitat suitability predictions in 2090 under different climate scenarios
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Figure 5: These habitat suitability distributions are for the common wallaroo (Macropus robustus) for 1 historical projection and 4 future emission
scenarios in the year 2090. The habitat suitability distributions of each row of maps represent the minimum, mean, and maximum habitat suitability
projections across GCMs. The line graphs represent the total habitat suitability (km?) for 4 future emission scenarios over time. The uncertainty band
represents the minimum and maximum amount of habitat suitability across GCMs. Macropus robustus icon sourced from Jiekun He, PhyloPic (2022 Apr

10).

tral and northern parts of their range becoming progressively less
suitable. These trends are consistent with other macropod model-
ing studies that also suggest suitability for the common wallaroo
will track south as climate scenarios worsen [47]. The maps for the
common wallaroo can also be compared with [16] for reference.

Spatial changes over time

Taking this a step further, geospatial calculations can also be ap-
plied to determine the differences between years or climate sce-
narios. This can be conducted to identify areas of refugia (Equa-
tion (3)) or the location and magnitude of change between dif-
ferent time periods (Equation (2)). To calculate spatial locations
of refugia, historical and future suitability maps can be multi-
plied together to accentuate areas in space that are suitable in
both time periods. To calculate spatial changes in habitat suit-
ability through time, historical suitability maps can be subtracted

from future suitability maps to spatially accentuate locations that
have changed in habitat suitability (i.e., improved in suitability or
declined in suitability) across time periods. Using the snow gum
(Eucalyptus pauciflora) as an example, we find refugia in the alpine
region of Australia is predicted to decline for the snow gum un-
der worsening climate scenarios, with declines being most severe
in the year 2090 (Fig. 6, top). Across all climate scenarios, habitat
suitability is declining from all areas of the snow gum’s range, and
we did not identify areas of increases (Fig. 6, bottom).

Changes in quality-weighted habitat area

The dataset also includes a tabular summary of quality-weighted
habitat area in km? for each species under different climate
scenarios and time periods (Equations (1) and (2)). The quality-
weighted habitat area values can be analyzed and plotted to
understand how climate change may impact habitat area for
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Figure 6: Refugia and habitat suitability change maps for snow gum (Eucalyp
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tus pauciflora). The top panel presents climate change refugia for 4 future

emission scenarios in the years 2050 and 2950. Dark green on the refugia maps represents areas that have high predictive suitability historically as
well in future time periods. The bottom panel presents changes in habitat suitability for 4 future emission scenarios in the years 2050 and 2090.
Orange areas indicate places that decrease in suitability compared to the previous time period, and green areas indicate areas that improve in
suitability. White areas indicate no change in suitability. Eucalyptus leaf icon sourced from Ferran Sayol, PhyloPic (2019 Oct 9).

single species or groups of species in the future (Fig. 7). When
these data are summarized across all species, we can show
that in 2030, the distribution of change in habitat area is sim-
ilar across the 4 climate scenarios. However, in 2090, the dis-
tribution of change in habitat area follows a different pattern
across climate scenarios with progressively more species los-
ing progressively more habitat area as climate change worsens

(Fig. 7).

Discussion

Spatial data on the suitability of areas for species are an impor-
tant input to guide conservation planning, policy ,and manage-
ment. The objective of this article was to develop habitat suitabil-
ity maps for Australian flora and fauna under different climate fu-
tures using a MaxEnt approach. These data have been developed
in a way that is consistent across species and enables users to an-
alyze how different climate futures may impact the habitat suit-
ability for biodiversity more generally across Australia. These data
can also be used for species-level analysis and can be a starting
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Figure 7: Histogram of the number of species and their relative change in quality-weighted habitat area between 1990 and each future time period

(2030, 2050, 2070, 2090).

point for additional analyses that use either geospatial informa-
tion or tabular information that could take into consideration ad-
ditional information like land use, conservation actions, or species
ecology.

Applications for landscape and species
conservation

This spatial and tabular dataset is ideal for users who would like
to understand how the habitat suitability of areas for species is
predicted to change over time or under different climate scenar-
ios. For example, at the landscape level, these habitat suitability
maps can be combined into a general biodiversity layer to eval-
uate how habitat suitability more generally changes over time
(Fig. 7) or over space and time (Figs. 4-6) [48]. These data can then
be utilized in applications such as spatial prioritizations using
such tools as Zonation [49] or Marxan [50] to guide spatial con-
servation priorities in Australia [4, 19]. Therefore, using these data
for subsequent analysis can be useful to inform conservation (e.g.,
where to establish new protected areas), restoration, or monitor-
ing plansin areas that are suitable for biodiversity or are predicted
to lose or gain suitable areas for biodiversity.

At the species level, this dataset can be used to support con-
servation actions for species of interest (e.g., threatened species,
iconic species, endemic species). The tabular data can be used to
systematically identify species of interest based on the way cli-
mate change is anticipated to impact the species or could be used
to inform processes such as threatened species listing [51]. Spa-
tial information about species could also be useful to compare

the long-term suitability of areas for threatened species under cli-
mate change to inform present-day decision-making and species
management [52, 53]. This could be paired with other types of data
to assess the impacts of climate change on species [54] or could
inform broader-scale biodiversity conservation analyses [55].

Applications in sustainability and natural capital account-
ing

Biodiversity forms a foundation of broader sustainability ideals;
therefore, to measure progress toward sustainability, conservation
or corporate goals spatial data on biodiversity can serve as an im-
portant input information to the creation of metrics [56, 57]. Bio-
diversity indicators like the species richness, or more complex in-
dicators like the Species Threat Abatement and Restoration met-
ric (STAR) [58] or the biodiversity intactness index (BII) [59], all
draw from species layers as input data. Feeding the habitat suit-
ability maps generated in this study into biodiversity layers and
into broader sustainability models or assessments can improve
the consideration of biodiversity against other environmental or
social values. This may include initiatives such as land-use plan-
ning or land-use change modeling [60, 61].

Additionally, as many businesses are transitioning toward “na
ture positive,” the use of biodiversity to monitor business impacts
and progress toward nature positive is necessary. The habitat suit-
ability maps generated in this study can be used to represent key
species or biodiversity within natural capital within frameworks
such as the System of Environmental-Economic Accounts (SEEA)
framework [62], within sustainability assessments such as “foot
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printing” to enhance the biodiversity input data [63-65], or within
nature-related impact or dependency assessments that inform
frameworks like the Taskforce on Nature-Related Financial Dis-
closures (TNFD) [66].

Limitations and caveats with the data

When using and interpreting the data contained in this dataset,
itis important to consider the following limitations and consider-
ations. This dataset presents the habitat suitability of areas for
species under different climate scenarios and time periods us-
ing a correlative approach. These maps are not distribution maps;
rather, they present habitat suitability based on climate, soil, and
landscape characteristics. Due to its 5-km? spatial resolution, the
data are best for understanding broader spatial trends that can be
integrated into spatial planning [19], rather than more local man-
agement such as identifying specific sites for translocation with-
out additional finer detail [S4]. These maps have not been thresh-
olded, nor do they consider dispersal [16], land use [67], biophysi-
cal capacity [68], or attributes that may be important for species of
interest (e.g., normalized difference vegetation index [NDVI], fire
or vegetation structure) [54]. There are a multitude of other meth-
ods to model suitability and species distributions that have their
own use cases and limitations [69, 70].

The occurrence points used for this analysis were those orig-
inally used for the CliMAS work, and the ALA data were passed
through an additional rigorous cleaning process for terrestrial ver-
tebrates only. This process helped reduce the spatial bias and
noise in the occurrence points [23]; however, more broadly, there
are sampling biases that influence the distribution of occurrence
points, such as land tenure. To improve on the models, an inte-
grated pathway to ALA into the modeling procedure would be
ideal as this would ensure up-to-date input data. However, this
can also come with challenges as occurrence data are required
to have the same temporal resolution to the historical or cur-
rent climate data (i.e., 1990 in this study). While we did use tar-
get background files to reduce spatial biases [22], there may still
be limitations of this approach at the taxonomic group level, for
example, for small-ranging species [71]. Taxonomic-level group-
ing may still be too broad to adequately capture those species
that are highly range restricted and require very specific micro-
climate needs; therefore, species-specific level grouping may help
to overcome this. Background files that are too broad may ade-
quately capture sampling biases or the true relationship between
occurrence points and environmental predictors.

MaxEnt models are also prone to overfit but are also less influ-
enced by collinearity than statistical models; we tried mitigating
the impacts of overfitting the MaxEnt models by conducting vari-
able selection. In relation to the variables used, we were primarily
guided by past efforts that model the suitability of areas across
Australia for many species [39, 40], but this approach obviously
overlooks some variables that can be important to suitability. For
example, we did not consider variables such as the NDVI [72], land
use [73], weather [74], or detailed information about vegetation
structure or extreme events like fire [54]. Thus, our recommenda-
tion is for the users of these data to consider whether the vari-
ables used to model habitat suitability in this study are compati-
ble with the species of interest or whether additional information
is required. This will likely be the case if the user is interested in a
more fine-scale application of the data, for example, at the single
species or local level, as these data are best suited for macro-level
analyses and applications.

Finally, there is much contention around the best way to assess
model performance of MaxEnt models beyond just the AUC, to

approaches like the True Skill Statistic value, the kappa score, and
the Boyce Index [44, 45, 75, 76]. We present the AUC and the Boyce
Index and do not consider the thresholds for these indexes prior
to creating the habitat suitability projections; therefore, the user
can assess the model performance for their species on interest
when interpreting the data.

Conclusion

To spatially target conservation actions, spatial information about
the location and suitability of areas for species is needed. This
study provides a comprehensive dataset of predicted habitat suit-
ability under 4 climate futures while also incorporating the uncer-
tainty across GCMs. We are providing a spatial and tabular data
product at the Australian scale and at 5-km? resolution that can
be used to inform research and decision-making at local, regional,
and national scales. These data can be applied within strategic
conservation planning approaches and used to identify impor-
tant areas for species consecration [5]. Spatial information about
current and future suitable areas for species is a key component
of conservation planning, particularly as the impact of climate
change on species and biodiversity is uncertain.

Data Availability

All spatial and tabular data are freely accessible in the GigaScience
repository, GigaDB [77].
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