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Abstract 

Bac kgr ound: Spatial information about the location and suitability of areas for native plant and animal species under different climate 
futures is an important input to land use and conservation planning and management. A ustralia, reno wned for its abundant species 
di v ersity and endemism, often relies on modeled data to assess species distributions due to the country’s vast size and the challenges 
associated with conducting on-ground surveys on such a large scale. The objecti v e of this article is to develop habitat suitability maps 
for Australian flora and fauna under different climate futures. 

Results: Using MaxEnt, we produced Australia-wide habitat suitability maps under RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and 

RCP8.5-SSP5 climate futures for 1,382 terrestrial vertebrates and 9,251 vascular plants vascular plants at 5 km 

2 for open access. This 
r e pr esents 60% of all Australian mammal species, 77% of amphibian species, 50% of r e ptile species, 71% of bird species, and 44% of 
vascular plant species. We also include tabular data, which include summaries of total quality-weighted habitat area of species under 
different climate scenarios and time periods. 

Conclusions: The spatial data supplied can help identify important and sensiti v e locations for species under various climate futures. 
Additionall y, the supplied ta bular data can provide insights into the impacts of climate change on biodi v ersity in Australia. These 
ha bitat suita bility maps can be used as input data for landscape and conserv ation planning or species mana gement, particularl y 
under different climate change scenarios in Australia. 

Gr aphical abstr act 

Ke yw ords: A ustralia, Atlas of Living Australia, biodi v erstiy, bioclimatic v aria b les, climate c hange , CliMAS , species distribution, species 
r ange , MaxEnt, WorldClim 
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Introduction 

Rich spatial and temporal information about the effect of cli- 
matic and environmental change on species distributions is nec- 
essary to ensure robust species management and conservation 

policy mor e br oadl y [ 1–4 ]. Identifying ar eas wher e species oc- 
cur now, as well as areas that may be suitable in the future,
is a crucial aspect of decision-making under uncertainty [ 4 ].
T he a v ailability of r esources for conserv ation, including finan- 
cial, staffing, and land availability, is limited and exacerbates 
Recei v ed: J uly 4, 2023. Re vised: No vember 29, 2023. Accepted: J an uar y 5, 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
he challenge of conservation planning during climate change 
 3 ]. These constraints have sparked the need for more strate-
ic landscape and conservation planning methods, such as spa- 
ial prioritization, to identify the most effectiv e conserv ation so-
utions [ 5 ]. Spatial information on where species are now and
here suitable areas may be in the future is the foundation
f efficient planning for conservation action, particularly in ar- 
as where local conditions are more sensitive to climate change
 4 ]. 
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Australia is a hyperdiverse country with high le v els of species
ndemism [ 6 , 7 ]. Unfortunately, Australia also has some of the
ighest recorded numbers of contemporary extinctions world-
ide, and more than 1,900 species and ecological communities are
nder thr eat [ 8 , 9 ]. Giv en the extensiv e and se v er e r ange and pop-
lation declines of many threatened species [ 9–11 ], many more
pecies are also predicted to have a high risk of extinction in the
uture [ 12 ]. To ensure the conservation of Australia’s unique bio-
iversity, identifying and protecting important areas for species
uch as climate refugia is k e y to planning for resilience and adap-
iv e ca pacity [ 13 ]. To fulfill this task, underlying data on species
ocation and the habitat suitability of areas for species under dif-
erent climate futures are required. 

Ther e ar e man y ways to assess suitable ar eas for species, and
ne popular a ppr oac h is to use the maximum entropy method
henceforth, MaxEnt). MaxEnt is a nic he-based gener al-pur pose

achine learning method with a simple and precise mathemati-
al formulation that is particularly well suited for species distribu-
ion modeling with pr esence-onl y data [ 14 , 15 ]. Generating Max-
nt models for individual species at continental scales presents
 hallenges ar ound the pr ocessing and stor a ge of lar ge volumes
f data. A compr ehensiv e spatial dataset known as “CliMAS” [ 16 ]
odeled 1,872 terrestrial and freshwater vertebrate species dis-

ributions using the Inter gov ernmental P anel on Climate Change’
 (IPCC’ s) Coupled Model Intercomparison Project 3 (CMIP3) fu-
ur e climate pr ojections [ 17 ] whic h wer e fr eel y av ailable thr ough
 web-based portal. Although the CliMAS models led to many ap-
lied outcomes [ 18 , 19 , 20 ], the website was r etir ed in 2020, in
ecognition of the fact that there have been 2 major updates by
he IPCC and the current projections are based on CMIP6. For con-
ervation planning to progress, an improved and enlarged suite of
r eel y av ailable spatial data, based on up-to-date climate projec-
ions and extended for a m uc h br oader r ange of species including
ascular plants, is needed. 

We de v eloped habitat suitability maps for Austr alian flor a and
auna under different climate futures using a MaxEnt approach.

e produced freely accessible Australia-wide habitat suitability
aps for 1,441 terrestrial vertebrates and 9,251 vascular plants.

his r epr esents 60% of all Australian mammal species, 77% of am-
hibian species, 50% of reptile species, 71% of bird species, and
 1

 igure 1: Workflo w of the MaxEnt modeling pr ocedur e. Input data ar e r epr esen
axEnt modeling pr ocedur e is r epr esented as gray, and the output files are rep
4% of vascular plant species. We fit these models using 7 bio-
limatic variables and 11 soil and landscape variables under 4 cli-
ate scenarios, 8 general circulation models (GCMs) and 1 ensem-

le av er a ge, and 5 time periods. These habitat suitability maps are
est used as input data to r epr esent species or biodiversity values
or conservation planning and assessment, particularly under cli-

ate change in Australia. 

ethods 

he w orkflo w for this study w as ada pted fr om the CliMAS pr oject
 16 ] (Fig. 1 ). The first step involved compiling and collecting the in-
ut data, which consisted of occurrence point data and environ-
ental variables. We then used MaxEnt to fit models of habitat

uitability using climate, soil, and landscape variables. We used a
 ariable selection pr ocedur e, whic h consider ed the statistical and
cological importance of variables to refine the predictor variables
s well as validating the models. We then used the lambda files
roduced in the model-fitting step to project species habitat suit-
bility under future climate scenarios. 

nput data 

pecies occurrence points 
pecies occurrence records, which were used to fit the historical
limate models, were sourced from the Australian Atlas of Living
ustralia (ALA) [ 21 ], the Queensland Museum, and CSIRO. Vascu-

ar plant occurrence point data were acquired from the Queens-
and Museum. Vertebrate species occurrence w ere recor ds ac-
uir ed thr ough ALA went through an additional data-cleaning
rocess prior to modeling [ 21 ]. We used the points originally ap-
lied in the CliMAS project as of 2012 for v ertebr ates and the vas-
ular plant points that were compiled for the CliMAS project but
e v er modeled. Thr ough these sour ces, w e obtained occurrence
oint data for 197 mammals (60% cov er a ge), 523 birds (71% cover-
 ge), 530 r eptiles (50%), 191 amphibians (77%), and 9,200 vascular
lants (44% cov er a ge). Acr oss all species, the median number of
ccurrence points was 123 and the distribution of the number of
ccurr ence points r anged based on the following quantiles: 0% =
, 25% = 43, 50% = 123, 75% = 410, 100% = 78,503 (Fig. 2 ). 
ted as gr een, v ariable selection pr ocedur e is r epr esented as pur ple, 
resented as orange. 
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Figure 2: Distribution of occurrence points ( n ) for species models. 
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MaxEnt uses bac kgr ound sample points as pseudoabsences 
and recommends the use of tar get gr oups in sample selection to 
help overcome potential spatial biases [ 22 , 23 ]. To create the target 
gr oup bac kgr ound files, we combined all occurrence points for all 
species within a taxonomic group and sampled the background 

points from this space. Each target group background file con- 
tained between 60,000 and 250,000 points depending on the taxo- 
nomic group, in which MaxEnt takes a subsample of 10,000 points.

Environmental variables 
We used a combination of bioclimatic, soil, and landscape vari- 
ables as predictors to fit the MaxEnt models. For the climate vari- 
ables, w e do wnloaded spatial data at a 5 km 

2 resolution on his- 
torical and future CMIP6 modeled bioclimatic variables through 

the WorldClim database [ 24 ]. Bioclimatic variables summarize 
monthl y temper atur e and r ainfall v alues into 19 mor e biologicall y 
meaningful variables (Table 1 ). Bioclimatic variables were down- 
loaded for 8 GCMs: BCC-CSM2-MR [ 25 ], CNRM-CM6-1 [ 26 ], CNRM- 
ESM2-1 [ 27 ], CanESM5 [ 28 ], IPSL-CM6A-LR [ 29 ], MIROC-ES2L [ 30 ],
MIROC6 [ 31 ], and MRI-ESM2-0 [ 32 ], for 4 shared socioeconomic 
(SSP) [ 33 ] and r epr esentativ e concentr ation pathway (RCP) com- 
binations, RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and RCP8.5- 
SSP5, and 5 time periods (1990, 2030, 2050, 2070, and 2090). As we 
did not have access to the following 2 files, IPSL-CM6A-LR SSP2-4.5 
2030 and MRI-ESM2-0 SSP5-8.5 2030, we linearly interpolated val- 
ues. All climate scenarios and bioclimatic v ariables wer e clipped 

to the extent of Australia prior to modeling. 
We downloaded 15 environmental variables from the Soil and 

Landscape Grid of Australia [ 34 ] to use as environmental predic- 
tors of habitat suitability . Additionally , w e do wnloaded the Interim 

Biogeogr a phic Regionalisation for Australia [ 35 ] (IBRA) as an in- 
dication of the inherent spatial differences in biome across Aus- 
tr alia. Soil and landsca pe v ariables wer e clipped and masked to 
the extent of Australia and scaled to the same resolution as the 
bioclimatic data (Table 1 ). 

MaxEnt modeling procedure 

Model fitting 

All habitat suitability models were fit in MaxEnt Version 3.4.1 us- 
ing the command line. MaxEnt models were first run with 10 repli- 
ates (replicates = 10) validated using a cr oss-v alidation method
o train the model and to compute model validation statistics. At
his stage, habitat suitability values were calculated as values be-
ween 0 and 1 with no threshold applied and were later converted
o values between 0 and 100. An example of the full MaxEnt model
pecification can be found in the GitHub or Zenodo repository af-
liated with this article [ 36 ]. Important outputs of the MaxEnt
odeling pr ocedur e include a .csv file containing statistical infor-
ation to inform variable selection and model validation as well

s the “lambdas file,” which is a text file containing the regression
oefficients or lambdas fit by MaxEnt during modeling. 

ariable selection 

he variables included in the final MaxEnt model runs were in-
ormed by analyzing the variable contributions and importance 
ercentages calculated using a full MaxEnt model run, informa- 
ion about variable complexity [ 37 ], and ecological knowledge 
ased on se v er al published models of terrestrial vertebrate and
ascular plant climate and habitat suitability. The goal of vari-
ble selection was to reduce the number of predictor variables
rom the initial 35 variables chosen as potential environmental 
redictors to avoid overfitting. Although MaxEnt is robust to mul-
icollinearity among variables [ 38 ], including excessive numbers 
f predictors can affect the model’s ability to make inferences out-
ide of the training data. 

We r e vie wed v ariables included within se v er al Austr alian bio-
iversity modeling efforts of terrestrial vertebrates [ 16 ] and vas-
ular plants [ 39 , 40 ]. We then performed a full MaxEnt model run,
hich included the 35 variables described in the above section,

or each species. We reviewed the importance of variables based
n the av er a ge per cent contribution and per cent importance val-
es across all species . T he percent contribution is a measure of
he contribution of eac h v ariable to w ar d model fit after each it-
ration of the MaxEnt model, while the percent importance is a
easure of the importance of eac h v ariable to w ar d model fit for

he final MaxEnt model. We also categorized bioclimatic variables 
ased on complexity and favored simple variables as they tended
o be less correlated with one another [ 37 ]. 

This combined a ppr oac h to v ariable selection r esulted in 18
ariables that moved through to the model-fitting stage (Table 1 ):
 bioclimatic variables and 11 soil and landsca pe v ariables. All
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Table 1: Summary of the bioclimatic, soil, and landscape variable selected in the final MaxEnt model 

Code Variable name Contribution 1 Importance 2 Ecological r a tionale 

Bioclimatic variables 
BIO1 Annual Mean Temper atur e 8 .72 18 .21 Influences thermal tolerances of species. 
BIO5 Max Temper atur e of Warmest 

Month 
6 .33 9 .92 Influences upper thermal tolerances of 

species through extreme temperatures. 
BIO6 Min Temper atur e of Coldest Month 4 .30 8 .66 Influences lo w er thermal tolerances of 

species through extreme temperatures. 
BIO12 Annual Precipitation 8 .60 10 .81 Av er a ge annual r ainfall, whic h influences 

water availability. 
BIO13 Precipitation of Wettest Month 17 .67 7 .77 Maxim um r ainfall in the wettest month, 

which influences maximum water 
availability. 

BIO14 Precipitation of Driest Month 14 .93 8 .45 Minim um r ainfall in the driest month, 
which influences minimum water 
availability. 

BIO15 Precipitation Seasonality 12 .13 13 .20 Standard deviation of rainfall in the 
annuall y, whic h influences the variation in 
water availability. 

Soil and landscape variables 
AWC Available Water Capacity 0 .94 0 .68 The amount of water held by the soil for 

future use. 
BDW Bulk Density (Whole Earth) 0 .89 1 .17 Soil’s ability to function for structural 

support, water and nutrient and microbial 
life movement, and soil aeration. 

CLY Clay 1 .04 0 .95 Promotes water retention and reduces air 
circulation in soil. 

DES Depth of Soil 2 .00 1 .29 Defines the root space and volume of soils 
a vailable . 

ECE Electroconductivity 3 .39 5 .21 Movement of nutrients within the soil, 
which influences the availability of soil 
nutrients. 

elev Ele v ation 2 .37 1 .57 Ele v ation influences soil properties and air 
pr essur e. 

pHc pH 5 .43 4 .30 Affects the amount of nutrients that are 
water soluble in soil. 

slope Slope Relief 1 .81 1 .00 Influences soil properties and creates 
v arying micr oclimates. 

SLT Silt 2 .63 2 .10 Promotes water retention and creates 
r elativ el y por ous soil conditions. 

SND Sand 1 .60 1 .60 Promotes water drainage and air circulation 
in soil. 

SOC Organic Carbon 5 .17 3 .05 Promotes soil structure by providing a food 
source for micr o-or ganisms. 

1 Av er a ge (mean) percent contribution in the final models for each environmental variable across all species. A measure of the contribution of each variable to w ar d 
model fit after each iteration of the MaxEnt model. 
2 Av er a ge (mean) percent importance in the final models for each environmental variable across all species. A measure of the importance of each variable measure 
depends the resulting decrease in training AUC on the final MaxEnt model. 
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ioclimatic variables selected for this study were included in
liMAS models [ 16 ] and similar modeling efforts for Australian
lants [ 39 ], and all bioclimatic variables with the exception of
IO15 wer e consider ed simple climate v ariables [ 37 ] (Table 1 ).
ll bioclimatic variables except for BIO05 had high or moderate

mportance values in the full model. Similarly, we included
dditional soil and landscape variables [ 41 ] based on their use in
 ecent biodiv ersity models [ 39 ], and w e fav or ed soil and landsca pe
ariables that were simpler. 

odel validation 

nce v ariables wer e selected, models wer e r erun, and model per-
ormance was assessed based on the area under the curve (AUC;
.e., the area under the receiver operating curve [ROC] curve) and
he Boyce Index. The AUC is a widely used model validation met-
ic used within the MaxEnt liter atur e [ 42 ]. The AUC metric mea-
ures the predictive accuracy of the model and represents the
robability that a randomly selected occurrence point is ranked
igher than a r andoml y selected bac kgr ound point. The Boyce In-
ex is another method that can be used to e v aluate model per-
ormance and does so by assessing the magnitude in which the

odel predictions differ from random distribution of the observed
r esences acr oss the pr ediction gr adients [ 43 , 44 ]. The Boyce Index
 alue is r epr esented by the Spearman r ank corr elation coefficient,
hich assesses the increase in the prediction/expected (P/E) plot

 45 ]. 
The median AUC across all models was 0.97, and generally, AUC

alues of 0.7 or below indicate poor performance (Fig. 3 ). We as-
ess that 99.6% ( n = 10,566) of species have an AUC value above
.7 AUC, and 0.4% ( n = 38) of species have an AUC value below the
.7 threshold (33 birds, 4 vascular plants, and 1 mammal). Boyce
ndex values can vary from −1 to 1, and we find that the median
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F igure 3: F r om left to right, the plots ar e the distribution of AUC v alues, the distribution of Boyce Index (BI) v alues, and a scatter plot between AUC and 
BI values for species models . T he median AUC and Boyce Index value is represented by a dashed line. On the AUC plot, the 0.7 threshold is presented 
using a solid vertical line. On the BI plot, the 0.5 threshold is presented using a solid vertical line . T hese thresholds are also represented by solid lines 
on the scatterplot. 
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Boyce Index across all models in this study was 0.97 (Fig. 3 ). A 

Boyce Index closer to 1 indicates that suitability predictions are 
consistent with the occurrence point distribution, and values of 
0.5 or below gener all y indicate poor performance [ 43 , 44 ]. We as- 
sess that 99.3% ( n = 10,509) of species have a v alue ov er 0.5, 0.65% 

( n = 69) species had a value between 0.5 and 0, and 0.05% ( n = 5) 
species had a value below 0 (1 bird and 4 vascular plants). 

We have also provided a scatterplot summary of AUC in re- 
lation to the Boyce Index. Based on the 0.7 threshold for AUC 

and the 0.5 threshold for the Boyce Index, we find that 98.99% 

of species meet both thresholds. We find that 0.69% ( n = 73) meet 
the AUC threshold but not the Boyce Index threshold, 0.32% ( n 
= 34) species meet the Boyce Index threshold but not the AUC 

threshold, and 1 species did not meet either threshold (brown fal- 
con, Falco berigora ). Prior to using species data, please ensure you 

c hec k the AUC and the Boyce Index v alue, whic h ar e contained 

within the species folder within the maxentResults.csv and the 
boyce_index_score .csv file . 

Model projections 
Using the best model selected in the model-fitting pr ocedur e,
we pr ojected species-le v el MaxEnt models under the futur e 
climate scenarios (RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and 

RCP8.5-SSP5) and 8 GCMs for 1 historical time period (1985) and 4 
future time periods (2030, 2050, 2070, 2090) using the lambda files 
produced in the model-fitting step. Using the predicted habitat 
suitability data, we then calculated an ensemble av er a ge (mean),
minim um, and maxim um habitat suitability (to ca ptur e model 
v ariance) acr oss 8 GCMs for eac h species, climate scenario, and 

time period. 

Geospatial calculations 
To describe the patterns of habitat suitability across time in an ac- 
cessible tabular format, we calculated the total quality-weighted 

sum of habitat suitability for each species under different climate 
scenarios at each time period (Equation ( 1 )). We first adjusted the 
resolution of the rasters to 1 km 

2 ; therefore, the quality-weighted 

habitat area ( qwHA ) sum corresponds to the “habitat area” in km 

2 .
For example, if the probable habitat suitability in a cell is equal to 
1, the cell is equivalent to 1 km 

2 , whereas if the probable habitat 
suitability in a cell is equal to 0.3, the cell is equivalent to 0.3 km 

2 .
It should be noted that the quality-weighted habitat area is not 
equivalent to the realized area available for a species given eco- 
logical or land-use constr aints, whic h can both influence habitat 
availability and suitability for species . T he probability of habitat 
uitability ( p ) was summed across raster cells ( xy ) for each species
 j ), year ( y ), and climate scenario ( c ): 

qwHA jyc = 

n ∑ 

i =1 

p jyc,xy (1) 

To describe how the patterns of habitat suitability may have
 hanged acr oss space under different climate scenarios or years,
e summarized raster data for each species in multiple wa ys . For

ac h taxonomic gr oup ( t ), we calculated c hanges in habitat suit-
bility ( s ) by subtracting future time periods and climate scenarios
 yc ) by historical climate niche ( p h ), where positive values indicate
r eas that incr ease in suitability in the future and negative values
ndicate areas that decrease in climate suitability in the future.

e provide visual representation of this information in Fig. 7 and
nclude the absolute and pr oportional c hange in habitat area in
he tabular summaries provided for species: 

S yc 
t = p h t − p yc 

t (2) 

To spatially identify important areas of climate r efugia, whic h
as done for Fig. 6 , we multiplied the historical habitat suitability
atrix by the habitat suitability in each future climate scenario

nd year combination. For each the cell, the probability of habitat
uitability values per cell ( p ), for each species ( t ), year ( y ), and cli-
ate scenario ( c ), was multiplied by the future habitat suitability.

ell v alues wer e then divided by 100, and the resulting cell value
 epr esents climate refugia ( r ) between 0 and 100. 

r yc 
t = (p h t ∗ p yc 

t ) / 100 (3) 

euse potential 
ode availability 

or each species, MaxEnt models were run directly from the ter-
inal using java and bash syntax and wer e ultimatel y executed

sing a “Simple Linux Utility for Resource Management” (SLURM) 
orkload manager on a high-performance Linux-based computer 

luster. Additional modeling and geospatial anal yses wer e pr o-
essed using a shell file executed using SLURM on the computer
luster. The scripts used to generate these data are available in
he companion GitHub and Zonodo repositories [ 36 ]. 

ataset 
ndividual species’ maps for historical and future minimum,

ean, and maximum ensembled habitat suitability, as well as the
axEnt lambda file and summary r eports pr oduced in this study,
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Figur e 4: T his habitat suitability distribution is for the southern casso w ary ( Casuarius casuarius ) and pr esents its historical suitability pr ojection 
historically, in 2030, and in 2090. The gr a ph r epr esents the total amount of habitat suitability (km 

2 ) av ailable in eac h time period; gr een bars 
correspond to the maps presented (historical, 2030, and 2090). Casuarius casuarius icon w as sour ced fr om T. Mic hael K eesey, PhyloPic (2014 May 30). 
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r e publicl y accessible for download on the open-access compan-
on GigaDB database [ 46 ]. This dataset includes species-le v el his-
orical (1970–2000 centered on 1990) and the future minimum,

ean, and maximum habitat suitability projections for 1,382 ter-
 estrial v ertebr ates (182 amphibians, 487 birds, 178 mammals, and
35 reptiles) and 9,251 vascular plants under 4 climate scenarios
nd 5 time periods; these data equate to 521,017 .tif raster files
hat ar e compr essed using Lempel–Ziv–Welc h (lzw) compr ession.
dditionall y, for eac h species , we ha ve included a .csv file that con-

ains the total quality-weighted habitat areas (in km 

2 ) for each
pecies under each different climate scenario and time period.
e have also consolidated these tables across all species and in-

luded these tabular data. A complete list of the species for which
abitat suitability maps were produced can be found in the com-
anion GigaDB database. 

patial resolution of data 

hese data are presented at a 5-km 

2 resolution, which is aligned
ith the climate data used as k e y inputs to the MaxEnt model.
he data can be subsequently downscaled to finer resolutions,
ut assumptions will have to be made about how habitat suit-
bility is distributed across cells . T he curr ent r esolution of these
ata is best utilized to understand general trends across space
nd time. To demonstrate the resolution, we present the south-
rn casso w ary ( Casuarius casuarius ), which is kno wn to occur in
he Wet Tropics region of Queensland, Australia. Current suit-
ble areas for the southern casso w ary ar e pr edicted to occur be-
w een To wnsville and Cookto wn, with an isolated ar ea ar ound
he Iron Range (Fig. 4 ). Taking the most se v er e climate change
cenario (RCP8.5-SSP5), the environmental space for the south-
rn casso w ary is pr edicted to r educe ov er time ar ound its centr al
abitat in the Atherton Tablelands . T he maps for the southern
asso w ary can be compared with [ 16 ] for reference. 

pecies-level data summary 

he dataset includes suitability maps for species under different
limate scenarios and time periods using an ensemble av er a ge
 ppr oac h. Thr ough the process of ensemble av er a ging, the mini-
um and maximum suitability maps were also produced. These
aps can be compared to understand the bounds of how climate

hange may generally impact habitat suitability in the future.
he importance of incor por ating m ultiple GCM pr ojections can be
een by the variation among the minimum, mean, and maximum
uitability maps (Fig. 5 ). For the common wallaroo ( Macropus robus-
us ), the differences between the minimum, mean, and maximum
uitability ma ps ar e most a ppar ent under worsening climate sce-
arios. Ar eas acr oss the southern parts of Austr alia r emain suit-
ble across all 3 suitability maps, compared to areas in the cen-
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Figur e 5: T hese habitat suitability distributions ar e for the common wallar oo ( Macropus robustus ) for 1 historical pr ojection and 4 futur e emission 
scenarios in the year 2090. The habitat suitability distributions of each row of maps represent the minimum, mean, and maximum habitat suitability 
pr ojections acr oss GCMs . T he line gr a phs r epr esent the total habitat suitability (km 

2 ) for 4 futur e emission scenarios ov er time . T he uncertainty band 
r epr esents the minimum and maximum amount of habitat suitability across GCMs. Macropus robustus icon sourced from Jiekun He, PhyloPic (2022 Apr 
10). 
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tral and northern parts of their range becoming pr ogr essiv el y less 
suitable . T hese trends are consistent with other macropod model- 
ing studies that also suggest suitability for the common wallaroo 
will tr ac k south as climate scenarios worsen [ 47 ]. The maps for the 
common wallaroo can also be compared with [ 16 ] for reference. 

Spatial changes over time 
Taking this a step further, geospatial calculations can also be ap- 
plied to determine the differences betw een y ears or climate sce- 
narios . T his can be conducted to identify areas of refugia (Equa- 
tion ( 3 )) or the location and magnitude of change between dif- 
ferent time periods (Equation ( 2 )). To calculate spatial locations 
of refugia, historical and future suitability maps can be multi- 
plied together to accentuate areas in space that are suitable in 

both time periods. To calculate spatial changes in habitat suit- 
ability through time, historical suitability maps can be subtracted 
r om futur e suitability ma ps to spatiall y accentuate locations that
av e c hanged in habitat suitability (i.e., impr ov ed in suitability or
eclined in suitability) across time periods. Using the snow gum
 Eucalyptus pauciflora ) as an example, we find refugia in the alpine
 egion of Austr alia is pr edicted to decline for the snow gum un-
er worsening climate scenarios, with declines being most se v er e

n the year 2090 (Fig. 6 , top). Across all climate scenarios, habitat
uitability is declining from all areas of the snow gum’s range, and
e did not identify areas of increases (Fig. 6 , bottom). 

hanges in quality-weighted habitat area 

he dataset also includes a tabular summary of quality-weighted 

abitat area in km 

2 for each species under different climate
cenarios and time periods (Equations ( 1 ) and ( 2 )). The quality-
eighted habitat area values can be analyzed and plotted to
nderstand how climate change may impact habitat area for 
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Figure 6: Refugia and habitat suitability change maps for snow gum ( Eucalyptus pauciflora ). The top panel presents climate change refugia for 4 future 
emission scenarios in the years 2050 and 2950. Dark green on the refugia maps represents areas that have high predictive suitability historically as 
well in future time periods . T he bottom panel presents changes in habitat suitability for 4 future emission scenarios in the years 2050 and 2090. 
Or ange ar eas indicate places that decr ease in suitability compar ed to the pr e vious time period, and gr een ar eas indicate ar eas that impr ov e in 
suitability. White areas indicate no change in suitability. Eucalyptus leaf icon sourced from Ferran Sayol, PhyloPic (2019 Oct 9). 

s  

t  

t  

i  

t  

a  

i  

(

D
S  

t  

m  

i  

t  

i  

a  

a  

c  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae002/7619364 by Jam

es C
ook U

niversity user on 16 July 2024
ingle species or groups of species in the future (Fig. 7 ). When
hese data are summarized across all species, we can show
hat in 2030, the distribution of change in habitat area is sim-
lar across the 4 climate scenarios. Ho w e v er, in 2090, the dis-
ribution of change in habitat area follows a different pattern
cross climate scenarios with progressively more species los-
ng pr ogr essiv el y mor e habitat ar ea as climate c hange worsens
Fig. 7 ). 
iscussion 

patial data on the suitability of areas for species are an impor-
ant input to guide conservation planning, policy ,and manage-

ent. The objective of this article was to develop habitat suitabil-
ty maps for Australian flora and fauna under different climate fu-
ures using a MaxEnt a ppr oac h. T hese data ha v e been de v eloped
n a way that is consistent across species and enables users to an-
lyze how different climate futures may impact the habitat suit-
bility for biodiversity more generally across Australia. These data
an also be used for species-le v el anal ysis and can be a starting
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Figure 7: Histogram of the number of species and their relative change in quality-weighted habitat area between 1990 and each future time period 
(2030, 2050, 2070, 2090). 
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point for additional analyses that use either geospatial informa- 
tion or tabular information that could take into consideration ad- 
ditional information like land use, conservation actions, or species 
ecology. 

Applications for landscape and species 

conserv a tion 

This spatial and tabular dataset is ideal for users who would like 
to understand how the habitat suitability of areas for species is 
pr edicted to c hange ov er time or under differ ent climate scenar- 
ios . For example , at the landsca pe le v el, these habitat suitability 
maps can be combined into a general biodiversity layer to eval- 
uate how habitat suitability more generally changes over time 
(Fig. 7 ) or over space and time (Figs. 4 –6 ) [ 48 ]. These data can then 

be utilized in a pplications suc h as spatial prioritizations using 
such tools as Zonation [ 49 ] or Marxan [ 50 ] to guide spatial con- 
servation priorities in Australia [ 4 , 19 ]. T herefore , using these data 
for subsequent analysis can be useful to inform conservation (e.g.,
where to establish new protected areas), restoration, or monitor- 
ing plans in areas that are suitable for biodiversity or are predicted 

to lose or gain suitable areas for biodiversity. 
At the species le v el, this dataset can be used to support con- 

servation actions for species of interest (e.g., threatened species,
iconic species , endemic species). T he tabular data can be used to 
systematically identify species of interest based on the way cli- 
mate change is anticipated to impact the species or could be used 

to inform pr ocesses suc h as threatened species listing [ 51 ]. Spa- 
tial information about species could also be useful to compare 
he long-term suitability of areas for threatened species under cli-
ate change to inform present-day decision-making and species 
anagement [ 52 , 53 ]. This could be paired with other types of data

o assess the impacts of climate change on species [ 54 ] or could
nform broader-scale biodiversity conservation analyses [ 55 ]. 

pplications in sustainability and natural capital account- 
ng 

iodiversity forms a foundation of broader sustainability ideals; 
her efor e, to measur e pr ogr ess to w ar d sustainability, conservation
r cor por ate goals spatial data on biodiv ersity can serv e as an im-
ortant input information to the creation of metrics [ 56 , 57 ]. Bio-
i versity indicators lik e the species ric hness, or mor e complex in-
icators like the Species Threat Abatement and Restoration met- 
ic (STAR) [ 58 ] or the biodiversity intactness index (BII) [ 59 ], all
r aw fr om species layers as input data. Feeding the habitat suit-
bility maps generated in this study into biodiversity layers and
nto broader sustainability models or assessments can impr ov e
he consideration of biodiversity against other environmental or 
ocial values . T his ma y include initiativ es suc h as land-use plan-
ing or land-use change modeling [ 60 , 61 ]. 

Additionall y, as man y businesses ar e tr ansitioning to w ar d “na-
ur e positiv e,” the use of biodiv ersity to monitor business impacts
nd pr ogr ess to w ar d natur e positiv e is necessary. The habitat suit-
bility maps generated in this study can be used to represent k e y
pecies or biodiversity within natural capital within frameworks 
uch as the System of Environmental-Economic Accounts (SEEA) 
r ame work [ 62 ], within sustainability assessments such as “foot
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rinting” to enhance the biodiversity input data [ 63–65 ], or within
atur e-r elated impact or dependency assessments that inform
r ame works like the Taskforce on Nature-Related Financial Dis-
losures (TNFD) [ 66 ]. 

imitations and caveats with the data 

hen using and inter pr eting the data contained in this dataset,
t is important to consider the following limitations and consider-
tions . T his dataset presents the habitat suitability of areas for
pecies under different climate scenarios and time periods us-
ng a corr elativ e a ppr oac h. These ma ps ar e not distribution ma ps;
 ather, they pr esent habitat suitability based on climate, soil, and
andsca pe c har acteristics. Due to its 5-km 

2 spatial resolution, the
ata are best for understanding broader spatial trends that can be

ntegrated into spatial planning [ 19 ], rather than more local man-
 gement suc h as identifying specific sites for tr anslocation with-
ut additional finer detail [ 54 ]. These maps have not been thresh-
lded, nor do they consider dispersal [ 16 ], land use [ 67 ], biophysi-
al capacity [ 68 ], or attributes that may be important for species of
nterest (e.g., normalized difference vegetation index [NDVI], fire
r vegetation structure) [ 54 ]. There are a multitude of other meth-
ds to model suitability and species distributions that have their
wn use cases and limitations [ 69 , 70 ]. 

The occurrence points used for this analysis were those orig-
nally used for the CliMAS work, and the ALA data were passed
hrough an additional rigorous cleaning process for terrestrial ver-
ebr ates onl y. This pr ocess helped r educe the spatial bias and
oise in the occurrence points [ 23 ]; ho w ever, more broadly, there
re sampling biases that influence the distribution of occurrence
oints, such as land tenure. To improve on the models, an inte-
rated pathway to ALA into the modeling pr ocedur e would be
deal as this would ensure up-to-date input data. Howe v er, this
an also come with challenges as occurrence data are required
o have the same temporal resolution to the historical or cur-
ent climate data (i.e., 1990 in this study). While we did use tar-
et bac kgr ound files to r educe spatial biases [ 22 ], there may still
e limitations of this a ppr oac h at the taxonomic group level, for
xample, for small-ranging species [ 71 ]. Taxonomic-level group-
ng may still be too broad to adequately capture those species
hat are highly range restricted and require very specific micro-
limate needs; ther efor e, species-specific le v el gr ouping may help
o overcome this. Bac kgr ound files that are too broad may ade-
uatel y ca ptur e sampling biases or the true relationship between
ccurrence points and environmental predictors. 

MaxEnt models are also prone to overfit but are also less influ-
nced by collinearity than statistical models; we tried mitigating
he impacts of overfitting the MaxEnt models by conducting vari-
ble selection . In relation to the variables used, w e w ere primarily
uided by past efforts that model the suitability of areas across
ustr alia for man y species [ 39 , 40 ], but this a ppr oac h ob viousl y
verlooks some variables that can be important to suitability. For
xample, we did not consider v ariables suc h as the NDVI [ 72 ], land
se [ 73 ], weather [ 74 ], or detailed information about vegetation
tructure or extreme events like fire [ 54 ]. T hus , our recommenda-
ion is for the users of these data to consider whether the vari-
bles used to model habitat suitability in this study are compati-
le with the species of interest or whether additional information

s r equir ed. This will likel y be the case if the user is interested in a
or e fine-scale a pplication of the data, for example, at the single

pecies or local le v el, as these data are best suited for macro-level
nalyses and applications. 

Finall y, ther e is m uc h contention ar ound the best way to assess
odel performance of MaxEnt models beyond just the AUC, to
 ppr oac hes like the True Skill Statistic value, the kappa score, and
he Boyce Index [ 44 , 45 , 75 , 76 ]. We present the AUC and the Boyce
ndex and do not consider the thresholds for these indexes prior
o creating the habitat suitability pr ojections; ther efor e, the user
an assess the model performance for their species on interest
hen inter pr eting the data. 

onclusion 

o spatiall y tar get conserv ation actions, spatial information about
he location and suitability of areas for species is needed. This
tudy provides a comprehensive dataset of predicted habitat suit-
bility under 4 climate futures while also incor por ating the uncer-
ainty across GCMs. We are providing a spatial and tabular data
roduct at the Australian scale and at 5-km 

2 resolution that can
e used to inform r esearc h and decision-making at local, regional,
nd national scales . T hese data can be applied within strategic
onserv ation planning a ppr oac hes and used to identify impor-
ant areas for species consecration [ 5 ]. Spatial information about
urr ent and futur e suitable ar eas for species is a k e y component
f conservation planning, particularly as the impact of climate
hange on species and biodiversity is uncertain. 

a ta Av ailability 

ll spatial and tabular data are freely accessible in the GigaScience
epository, GigaDB [ 77 ]. 
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zed Difference Vegetation Index; P/E plot: prediction/expected
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