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Abstract: Research is increasingly revealing that inflammation significantly contributes to various
diseases, particularly inflammatory bowel disease (IBD). IBD is a major medical challenge due to its
chronic nature, affecting at least one in a thousand individuals in many Western countries, with
rising incidence in developing nations. Historically, indigenous people have used natural products
to treat ailments, including IBD. Ethnobotanically guided studies have shown that plant-derived
extracts and compounds effectively modulate immune responses and reduce inflammation. Simi-
larly, helminths and their products offer unique mechanisms to modulate host immunity and alle-
viate inflammatory responses. This review explored the pharmaceutical potential of Aboriginal re-
medial plants and helminths for treating IBD, emphasizing recent advances in discovering anti-in-
flammatory small-molecule drug leads. The literature from Scopus, MEDLINE Ovid, PubMed,
Google Scholar, and Web of Science was retrieved using keywords such as natural product, small
molecule, cytokines, remedial plants, and helminths. This review identified 55 important Aboriginal
medicinal plants and 9 helminth species that have been studied for their anti-inflammatory proper-
ties using animal models and in vitro cell assays. For example, curcumin, berberine, and triptolide,
which have been isolated from plants; and the excretory-secretory products and their protein, which
have been collected from helminths, have demonstrated anti-inflammatory activity with lower tox-
icity and fewer side effects. High-throughput screening, molecular docking, artificial intelligence,
and machine learning have been engaged in compound identification, while clustered regularly
interspaced short palindromic repeats (CRISPR) gene editing and RNA sequencing have been em-
ployed to understand molecular interactions and regulations. While there is potential for pharma-
ceutical application of Aboriginal medicinal plants and gastrointestinal parasites in treating IBD,
there is an urgent need to qualify these plant and helminth therapies through reproducible clinical
and mechanistic studies.
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1. Introduction

Inflammation is a defense response to injuries, chemicals, or microorganisms, involv-
ing by tissue damage, as well as metabolic and microcirculation disorders. It involves the
release of mediators such as nitric oxide, prostaglandins, and cytokines, which are essen-
tial for removing harmful stimuli, restoring normal physiology, and controlling inflam-
mation [1]. Different cytokines, markedly, interleukin-1 (IL-1) and tumor necrosis factor
(TNF), regulate inflammation. These chemical mediators, primarily triggered by bacterial
lipopolysaccharide [2], are released by monocytes, macrophages, and other cells [3]. Anti-
inflammatory drugs have been used to address severe inflammation and pain. Presently,
the United States Food and Drug Administration (USFDA) has approved nonsteroidal
anti-inflammatory drugs (NSAIDs), including indomethacin, ibuprofen, cyclooxygenase-
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2 enzyme (COX-2) inhibitors like celecoxib and naproxen, for managing inflammation.
However, these NSAIDs are linked to side effects on various bodily systems [4]. For in-
stance, the long-term use of NSAIDs increases the risk of ulcers and complications in the
upper gastrointestinal tract by about four times, while in the lower gastrointestinal tract,
they cause mucosal ulcers or erosions and alter the diversity of microbiota, thereby mod-
ulating their toxicity [5].

Among the various inflammatory disorders, the chronic-relapsing condition of IBD,
which mainly affects the gastrointestinal tract, has become a global health burden [5]. The
etiology and pathogenesis of IBD are multifaceted, and it is difficult to determine a single
causative agent [6]. Overall, these disorders are marked by persistent inflammation, often
resulting in complications such as a heightened likelihood of hospitalization, surgical in-
tervention, colorectal cancer, and disability. Acknowledging the chronic and advancing
characteristics of IBD, commencing effective treatment during the early phases of the dis-
ease is crucial to minimize relapses and prevent complications [7]. In this view, NSAIDs
such as 5-aminosalicylic acids (5-ASA), corticosteroids, and immunomodulators such as
6-mercaptopurine and azathioprine are used for managing IBD [7]. These medications can
induce and sustain remission [8]; unfortunately, they are linked to numerous side effects
[9,10]. For instance, 5-ASA and corticosteroids, often prescribed for patients with mild-to-
moderate ulcerative colitis, have exhibited only moderate efficacy. Long-term medication
use is associated with side effects such as stunted growth, depression, hypertension, and
osteoporosis [11].

Similarly, immunomodulators such as 6-mercaptopurine and azathioprine are also
associated with pancreatic inflammation, decreased hematopoiesis, and liver toxicity [12].
Among the biological agents or biologics, infliximab is commonly utilized for IBD treat-
ment. However, biologics are expensive and associated with adverse infusion lupus-like
syndrome and infections, including sepsis [11,13]. Historically, natural products (NPs)
have been a vital source of structurally diverse and pharmacologically important anti-
inflammatory small molecules (SMs, <10 kDa molecular weight) [14-18]. For instance, in
the period spanning from 1981 to 2019, the USFDA approved 33.5% (1394 SMs) of the
small-molecule (SM) drugs derived from natural products, underscoring the significant
role of NPs in shaping the global healthcare landscape [18]. A total of 1881 new drugs
were approved, which included 71 drugs sourced from unaltered natural products and 14
from botanicals. Among the 1602 new chemical entities, 53 were identified to exhibit anti-
inflammatory properties [18].

Overall, the treatment of inflammatory disorders such as IBD has seen a transition
from focusing on symptomatic control to emphasizing more objective endpoints [19]. This
has resulted in the development of large-molecule biologics and synthetic small-molecule
drugs (SMDs). However, these drugs have efficacy, safety, cost, and management time
frame limitations. Considering this, more cost-effective oral drugs that offer improved ef-
ficacy and tolerability are in demand. Consequently, there is rising interest in developing
new, targeted anti-inflammatory SMDs for IBD and other immune-mediated inflamma-
tory conditions. Due to their low molecular weight, SMDs can quickly diffuse through cell
membranes. The variance in size notably influences aspects such as the route of admin-
istration, target site, pharmacokinetics, antigenicity, and drug interactions. When admin-
istered orally, these drugs resist gastric degradation and quickly enter into the systemic
circulation. The short half-life of SMDs can prove advantageous, especially in settings
where instant drug elimination occurs, such as in infections, during surgical procedures,
or during pregnancy. Hence, herbal and natural product compounds have been screened
for therapeutic potential in anti-inflammatory-related diseases due to their chemical di-
versity, lower toxicity, and cost-effectiveness. However, biocompatibility and toxicity con-
cerns have impeded clinical trial progress [20]. To address issues like poor bioavailability,
solubility, and targeted delivery, advanced drug delivery systems such as nanoparticles,
bioadhesive microspheres, chitosan-based hydrogels, liposomes, and phytosomes are be-
ing developed [21-26]. Nanoparticles can encapsulate or attach therapeutic drugs,
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ensuring precise targeting and controlled release, enhancing drug delivery and efficacy.
FDA-approved nanoparticle-based therapies, such as liposomes and micelles, improve
drug delivery by preventing gastrointestinal degradation and enhancing the delivery of
poorly soluble drugs [27-29]. Similarly, the phytophospholipid complex technique con-
verts water-soluble herbal extracts into lipid-compatible complexes, improving absorp-
tion and protecting compounds from degradation, thus enhancing therapeutic efficacy
[30]. Examples of nanoformulated phytochemicals include silymarin, hypericin, and cur-
cumin [31].

While general anti-inflammatory drugs have been reviewed elsewhere in more de-
tail, we examined emerging the SMDs with anti-inflammatory properties derived from
natural sources for treating IBD. Specifically, we explored anti-inflammatory SMs in me-
dicinal plants and gastrointestinal parasites, offering insights into their potential future
roles and impact. Databases such as Scopus, MEDLINE Ovid, PubMed, Google Scholar
and Web of Science were queried using keywords like “Aboriginal remedial plants’, ‘hel-
minths therapy’, and ‘anti-inflammatory small molecules’ to uncover the literature dis-
cussing the biological activities, phytochemistry, and ethnomedical applications of both
Aboriginal plants and helminths against inflammatory-related disorders.

2. Plant-Derived Anti-Inflammatory Compounds

Plants have been a healing source since time immemorial [32]. Since their chemical
analysis in the 19th century, bioactive compounds, referred to as phytochemicals in plants,
animals, and living organisms, which influence physiological processes and have thera-
peutic potential and offer health benefits [33,34], have been crucial in advancing drug de-
velopment [35]. Nearly 150,000 plant species, including medicinal plants, have been stud-
ied, with numerous harboring valuable therapeutic compounds, particularly anti-inflam-
matory compounds [36,37]. For example, the Eucalyptus and Melaleuca species are herbal
remedies used by Australian Aboriginal people to treat inflammatory ailments such as
muscular aches, sores, internal pains, and painful joints [38]. Likewise, Bhutanese tradi-
tional medicine involves the use of Aconitum laciniatum Stapf and the entire plant of Aco-
nitum orochryseum Stapf to treat chronic parasitic and microbial infections, inflammatory
diseases, and bilious fever [39]. Considering these traditional practices, researchers iso-
lated the compound 14-O-acetylneoline, which exhibited anticolitis activity in TNBS
(2,4,6-trinitrobenzene sulfonic acid)-induced colitis [40,41]. This practice emphasizes the
long-standing recognition of the anti-inflammatory properties of NPs. Patients with IBD
often turn to botanicals due to their perceived safety and effectiveness. Popular herbal
remedies include Tripterygium wilfordii Hook. f., Plantago ovata Phil., Artemisia absinthium
L., Aloe vera L., Curcuma longa L., Boswellia serrata Roxb., and Cannabis sativa L. [42]. A re-
view of 27 studies and 1874 patients with IBD found seven herbal remedies were beneficial
for ulcerative colitis (UC) and four induced remissions in cystic fibrosis diseases [42]. The
oral administration of Aloe vera gel and Plantago ovata Phil. seeds showed promising anti-
inflammatory results in UC [42]. Overall, ethnopharmacology insight has been a guiding
force in the biodiscovery of anti-inflammatory SMs from NPs.

Inflammatory mediators play a crucial role in modulating IBD through various mech-
anisms. For example, nitric oxide (NO) is a signaling molecule produced by inducible ni-
tric oxide synthase (iNOS) during inflammation and plays a significant role in vasodila-
tion, modulation of blood flow, and immune defense. However, excess NO production
can contribute to inflammation and tissue damage [43]. Both crude extracts and com-
pounds isolated from natural sources exhibit anti-inflammatory effects by regulating key
cytokines [44,45]. Pro-inflammatory cytokines like IL-6 promote the immune response by
stimulating acute-phase protein production and influencing B-cell differentiation, while
TNF and IL-1pB, produced mainly by macrophages, mediate inflammation by promoting
leukocyte recruitment, fever, and apoptosis in infected cells. Conversely, anti-inflamma-
tory cytokines such as IL-10, IL-4, and IL-13, released by T helper 2 (Th2) cells, inhibit pro-
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inflammatory responses, modulating immune functions and inflammation [46]. However,
excess cytokines are associated with chronic inflammation and autoimmune diseases.

Both crude extracts and compounds isolated from medicinal plant species have

demonstrated wide-spectrum anti-inflammatory activity in both in vitro and in vivo
screening (Table 1). For example, a methanol extract of Blainvillea acmella (L.) Philipson
inhibited interleukin (IL)-1p and IL-6 expression levels in LPS-stimulated RAW264.7 mac-
rophage cells [47]. This bioactivity guided the isolation of the bioactive compound spilan-
thol from B. acmella, inhibiting iNOS expression NO production and reducing TNF levels
in LPS- and IFNy-induced RAW264.7 cells [48]. In another study, a methanol extract of
Corymbia terminalis (F.Muell.) K.D.Hill and L.A.S.Johnson inhibited IL-6, IL-8, and COX-1
expression levels in LPS-stimulated mammalian keratinocyte (HaCaT) cells [49,50]. Small
molecules such as axifolin, aromadendrin, cianidanol, and farrerol isolated from C. termi-
nalis showed anti-inflammatory properties by suppressing IL-6, IL-8, and cyclooxygenase-
1 (COX-1) expression in LPS-stimulated HaCaT cells [49] (Table 1). Likewise, an ethanol
root extract of Euphorbia tirucalli L. inhibited the TNF and interferon-gamma (IFN-y) pro-
duction in carrageenan-induced acute inflammation in the albino rat hind paw edema
model [51]. Phytochemically, Eucalyptus species were reported to contain 1,8-cineole and
a-pinene and aromadenderene as the main compounds in their leaves and essential oils
[52]. The compound 1,8-cineole demonstrated the downregulation of inflammatory re-
sponses in dextran sulfate sodium (DSS)-induced colitis in mice and decreased proinflam-
matory chemokine production in TNE-stimulated HT-29 cells, proving to be a potent com-
pound in treating human IBD [53]. Monoterpene acid and gallic acid glucose esters and
phenolic compounds have also been reported in Eucalyptus species, which have shown a
substantial reduction in the production of pro-inflammatory cytokines, including TNF, IL-
1B, and IL-6 in LPS-stimulated peripheral blood mononuclear cells (PBMCs) and LPS-stim-
ulated murine macrophage (RAW264.7) cells, indicating significant anti-inflammatory ef-
fects [54,55]. Studies have also reported the presence of phenolic compounds (including
flavonoids, phenylpropanoids, and polyphenols) [56-58] and triterpenoids (including lu-
pine, ursane, and oleanane derivatives) in Melaleuca species [59-62]. Many of these com-
pounds showed pharmacological activities, including anti-inflammatory properties [63].
For instance, galloyl-lawsoniaside A and (45)-a-terpineol 8-O-p-D-(6-O-galloyl) glucopy-
ranoside, isolated from Uromyrtus metrosideros (F.M.Bailey) A.].Scott, demonstrated re-
markable in vitro inhibition of proinflammatory cytokines, which are linked to the devel-
opment of IBD. Specifically, the releases of IFN-y, IL-17A, and IL-8 from phorbol myristate
acetate/ionomycin (P/I) and anti-CD3/anti-CD28-activated T cells were significantly sup-
pressed [64]. On a similar note, the isolated compound hispidulin from Clerodendrum in-
erme R.Br. exhibited anti-inflammatory properties characterized by the inhibition of pros-
taglandin E2 (PGE2) production. It suppressed the expression of inducible nitric oxide syn-
thase (iNOS) and COX-2 by blocking nuclear factor-kappa B (NF-kB) DNA-binding activ-
ity in LPS-stimulated RAW264.7 macrophages [2].

Many researchers have conducted studies to assess the effectiveness of plant-derived
extracts and compounds in chronic IBD models. These have included curcumin (1E,6E)-
1,7-bis (4-hy- droxy-3-methoxyphenyl) hepta-1,6-diene-3,5-dione, isolated from Curcuma
longa L. (Zingiberaceae) [65]; colchicine, a major alkaloid from Colchicum autumnale L. [66];
resveratrol from Veratrum grandiflorum O.Loes. [67]; capsaicin from Capsicum species [68];
and epigallocatechin-3-gallate (EGCG) from Camellia sinensis (L.) Kuntze [69]. Additional
small bioactive molecules, such as quercetin and berberine, have been shown to suppress
IFN-v- and IL-17A; while berberrubine, which inhibits myeloperoxidase (MPO), has been
identified and isolated from Berberis vulgaris [70-72]. In clinical studies, curcumin inhibits
important proinflammatory signaling cascades, such as NF-«B, mitogen-activated protein
kinases (MAPK), COX and lipoxygenase (LOX) pathways in LPS-stimulated RAW264.7
cells and HT-29 human colon cancer cells. Additional proinflammatory cytokines like
TNF, IL-13, and IL-6 were downregulated [73-75]. According to numerous studies, cur-
cumins exhibit a good safety profile (well tolerated and nontoxic).
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Other anti-inflammatory lead compounds such as brevilin A, centiplide A and H
(Centipeda minima) [76,77], geraniin, corilagin (Acalypha wilkesiana Mull.Arg.) [78], 5'-meth-
oxy nobiletin, 1,2-benzopyrone, (Ageratum conyzoides L.) [79], costatamins A—C (Angophora
costata Britten), quercetin 3-O-(2"-acetyl)-glucoside, oumarinolignoid, cleomiscosins A-C
(Arivela viscosa (L.) Raf.) [80,81], and quercetin 7-O-3-D-glucopyranoside (Brasenia schreberi
J.F. Gmel.) have been isolated following ethnopharmacology and bioassay-guided ap-
proaches. The quercetin and quercitrin isolated from Merremia tridentata (L.) Hallier f. ex-
hibited inhibitory effects on NO production and proinflammatory cytokines such as IL-6,
TNF, and IL-1p in LPS-stimulated RAW264.7 cells [82]. Apigenin demonstrated similar
bioactivity in LPS-stimulated BV2 microglia [83]. Additionally, calophyllolide and 27-[(E)-
p-coumaroyl] canophyllic derived from Calophyllum inophyllum L. downregulated IL-6,
TNEF, IL-1f3, and NO production while upregulating IL-10 in LPS-stimulated RAW 264.7
cells [4]. Compounds including antidesoside, podocarpusflavone A, and amentoflavone
from Antidesma bunius Wall. also reduced NO levels in LPS-stimulated BV2 cells and RAW
264.7 cells [4]. The crude extracts and a few isolated compounds from NPs showing anti-
inflammatory activity in diverse colitis animal models are summarized in Table 1. Repre-
sentative chemical structures are shown in Figure 1.
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Table 1. Anti-inflammatory activity of crude extract and bioassay-guided isolated SMs from Aboriginal medicinal plants.

Botanical 1\.Iame and Plan.t .Parts and Anti-Inflammatory Compounds/Ex- Model/Cell Used for Testing Main Effecf on Ref
Family Traditional Uses tracts. Inflammation
Olean-12-ene-3[3, 16[3,23,28-tetrahy-
Abrus precatorius L. Seeds; abortion droxy-3-O-{[p-D-glucopyranosyl-(— 4)- Croton oil ear model  Inflammation on the ear tis- (4]
(Fabaceae) [-D-glucopyranosyl-( 1— 3)]-[3-D-glu- sue of rats
copyranosyl-(— 2)]-B-D-fucopyranose}
-8-H 7, 5'-trimethoxyisofla- Pol h 1 11
(5)-8-Hydroxy 6, . 5' trl.met oxyisofla olymorphonuclear cells L TNF and ROS [84]
van-1',4'-quino (PMNs)
Abruquinone A and B
Acacia melanoxylon R Br. - Bark: headache, cold and Kolavic acid 15-methyl ester LPS- LPS-stimulated J774 cell VIL-6 [85]
(Fabaceae) fever
Acalypha wilkesiana Shoot: sores/skin le LPS-stimulated RAW264.7 mac
Mull.Arg. N Polyphenol-enriched fraction ) 4 TNF, IL- 1B, and IL-6 [78,86]
. sions/wounds/cuts rophage
(Euphorbiaceae)
1 p-p65 NF-xB and p-p38
Ageratum conyzoides L. Whole plant: sores/skin le- _, o . . MAPK
(Asteraceae) sions/wounds/cuts 5'-Methoxy nobiletin 1, 2-benzopyrone Carrageenan-induced pleurisy  IL-17A, IL-6, TNF and IFN- [87,88]
v levels
Cotton pellet-induced granu-
Leaves extract and aerial extract loma and formaldehyde-in- | Paw edema
duced arthritis models
Alphitonia petriei Braid and ) .
C.T. White Bark, leaves, stem; Body Embolic acid LPS + IEN-y activated RAW | N6y 4 TNF production [89]
pain 264.7 cells
(Rhamnaceae)
Whole plants: h h
Alphitonia excelsa Reissek cold(; ef(fVZ? :toiziicue, A-carrageenan-induced paw
ex Endl  EVer, p Betulinic acid & SUCeEPAW | cOX-2, NO, TNF, and IL1-B [90]
set, skin lesions, wounds, edema mice
(Rhamnaceae).
cuts
Angophora costata Britten . . .
Costatamins A-C LPS-stimulated RAW264.7 cell 4 NO production and TNF [91]

(Myrtaceae)
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i ; hach
Alstonia scholaris (L.) R.Br. Juice, sap, bark; toothache,

12-ursene-2,3,18,19-tetrol-28 Acetate

Carrageenan-induced.

fever, sores, skin lesions, . { Paw edema [92]
(Apocynaceae) wounds, and cuts paw edema (Wistar rats)
T SOD activity
ice ai h 1 (In vi
Picrinine, vallesamine, and scholaricine Mice air pouch model (In vivo) 4 NO production, PGE2, and [93]
MD
Antidesma bunius Wall. Fruit: colds, fever, and Antidesoside, podocarpusflavone A,  LPS-stimulated BV2 cells and .
. . . 4 NO production [94]
(Phyllanthaceae) headache byzantionoside B, (6S,9R)-roseoside RAW?264.7 macrophages
Ari 1 L.) Raf. hole plants; Col . ) -i -i
rivela viscosa (L.) Ra Whole plants; Colds and Quercetin 3-O-(2"-acetyl)-glucoside Carrageenan-induced rat paw | Carrageenan-induced rat [80]
(Cleomaceae) fever edema paw edema
L IL-6, TNF NO production
. 1. . 1 . . A B 7
Coumarino lgnoalj dC Ceomlscosms ! Female Swiss albino mice TL-4ina dose-dependent [81]
manner
{ Carrageenan-induced rat
paw edema
J IL-4, TNF, and NO produc-
tion
1 COX-1
Cembrenoid diterpene Cyclooxygenase enzyme (COX- ¥ COX-1 and COX-2 enzyme [95]
Malabaric acid 1 and -2) inhibitory assays
Stlgmas.t-4-ene-3,6-d10ne, cleomaldeic 1 COX-1 and COX-2 enzyme
acid, stigmast-4-en-3-one, and lupeol
Burrmgtosn u;erzcemose L) Bark, fruits; tonic, pain Ethyl acetate fraction Carrageenan-induced rat paw Demonstrated dose-depend- [96]
P . & and inflammatory edema model ent anti-inflammatory activity
(Lecythidaceae)
Barringosides I LPS-stimulated RAW264.7 cell 4 Production of NO [97]
Blamvlz)li:zq.acsm;lla (L) mB:;l: anrl;tsr’l a; (1120:;:1;5 Spilanthol LPS and IFNYy induced 4 iNOS expression, NO pro- [48]
Hpso v pra, bo ’ P! © RAW264.7 cells duction, and TEN
(Asteraceae) dislocation, broken bones
Methanol extracts LPS-stimulated RAW264.7 mac- 3 IL-1p and IL-6 [47]

rophages
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. : { COX-1 and COX-2
Boerhawa.dzﬁusa L. Whole plants; asthma Boeravinone B and N Carrageenan-induced paw Exhibited anti-inflammatory (98]
(Nyctaginaceae) edema ..
activity
Exhibited T anti-inflamma-
Rotenoid-rich fraction Sprague-Dawley rats tory potential and T plasma [99]
level
{ Expression of iNOS and NO
Brasenia schreberi ].F.Gmel Leaves: stomach cancer, Overexpression of COX-2 4
o "boil, dysentery, and tuber- Quercetin 7-0-B-d-glucopyranoside ~ LPS-stimulated RAW 264.7 cells verexp [100]
(Cabombaceae) culosis Granulocyte macrophage-col-
ony-stimulating factor
PGE2, TNF, IL-1
Brucea javanica (L.) Merr. . ) LPS-stimulated RAW264.7 mac- ¥ NO, PGE2, TNF, B and
. Leaves and roots; pain Ethyl acetate fraction of seeds IL-6 [101]
(Simaroubaceae) rophages
T1IL-10
Carrageenan-induced paw Inhibited carrageenan-in-
edema duced paw edema
{ TNF, IL-1B, IL-6, IL-8, IL-17,
. . . e and IFN-y
Oil emulsion DSS-induced colitis mice L mRNA expression of MPO, [102]
iNOS, and COX-2
LPS-stimulated RAW264.7 -
Cleomiscosin A and E 5-stimulate 64.7 mac 4 NO production [103]
rophages
| Caspasel, CD206, IL-1p, IL-
18, MCP-1, TNF, NIK
Bruj id E LPS-i RAW264.7 cell g ’ ! § 104
rujavanoid S-induced 64.7 cells NLRP3, and p65 in a dose-de- [104]
pendent manner
| TNF, IL-1B, PGE2, and NO
levels
I NF-«B signaling pathway.
LPS- RAW 264.7 cell
Brusatol Sinduced RAW 264.7 cells =y g 20 d IL-18 levels [105-107]

TNBS-i litis mi
NBS-induced colitis mice { Catalase, glutathione, and

superoxide dismutase en-
zymes in the colon tissue
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Calophyllum .znophyllum L. Fruits; body pain and pur- Acetone extract LPS-stimulated RAW 264.7 cells ¥ NO production, iNOS, [108]
(Clusiaceae) gative COX-2, and NF-«xB
IL-1pB, IL-6, TNF
Calophyllolide Albino male mice VIL-1, TL-6, TN [109]
ML-10
{ NO production, IL-1f, and
E- 1 tri id (27-[(E)-p- ’ ’
coumaroyl triterpenoid 27-{(E)-p- | b i 41 cod RAW 2647 cells TNF, iNOS [110]
coumaroyloxy] canophyllic acid) . .
{ NF-«B signaling pathway
Inhibition with IC50 values of
.. o . . 26.24 +1.78,20.38 + 1.36, 22.8
Capparis mitchellii Lindl.  Bark: cut.s, wo.unds, and Luteolin, kaempferol., apigenin and cat- LPS-induced RAW 264.7 cells +1.57, and 42.5 + 2.24 uM, re- [111]
(Capparaceae) skin lesions echin .
spectively
4 NO production
{ IL-4, IL-17, MMP-1, and
Salvia plebeian R.Br. . MMP-3 | Akt and MAPKSs
1 t Eth 1 extract BALB 112
(Labiatae) Colds and tumors anotextrac fe mice pathways, J Akt and ERK p38 [112]
expression
Leaves: (extract juice) res-
piratory tract and throat
Carpobrotus rossii infections, gastrointestinal
Schwantes discomfort, insect bites, Aqueous extract PBMC 4 IL-10, TNF, and MCP-1 [113]
(Aizoaceae) wounds burns, eczema,
bluebottle, and jellyfish
stings
Clematis pickeringii A. Gray I-‘Ieadz.iche, paih, theuma- . T PPARa and PPARYy at the
tism, infections, common Ethanolic extract HepG2 cells [114]
(Ranunculaceae) colds dose of 60 pug/mL

LPS-induced RAW 264.7 cells

Whole-plant extract and A-carrageenan-induced { NO production [115]
paw edema

DSS-induced colitis mouse

Centipeda minima (L.) A.Br. Nasal allergy, diarrhea,
(Apiaceae) asthma

model { TNF-at and IL-18 [116,117]
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Brevilin A, centiplide A, centiplide H,

Attenuated NF-kB pathway

.. LPS-induced RAW 264.7 cells activation and oxidative stress [76,77]
and Helenalin isova lerate .
4 NO production
4 TNF and IL-1p
LPS-i h 11
6-O-angeloylplenolin 5 mduc(e];lvr;ici‘lo I)) agecels Phosphorylation of NF-1B [76,118]
o | TkB-a, NO, and PGE2
L Whole plants; lupus, vari-
tell tica (L.) Urb.
Cente (aAa Slil;;:;é) ) ur cose ulcers, eczema, and Triterpenoid saponin-rich fraction ~ LPS-stimulated RAW 264.7 cells  { IL-13, NF-«B pathway [119]
P psoriasis
Asiatic acid i . vy
st IC. acid, 1s0madecasso§ lfie’ a.s tatt LPS-stimulated RAW 264.7 cells JNO production [120,121]
coside B and G, rosmarinic acid
L Whole plants; headache,
DC.
Clematis microphylla DC colds, sores, gastric disor- Ethanolic plant extracts HepG2 cells 1 COX-1, 5-LOX [114]
(Ranunculaceae)
der and fever
Clerodendrim inerme R.Br Leaves and roots; sores, I NO production
. " skin lesions, wounds, cuts, Ethanol leaf extract LPS-induced RAW 264.7 cells 4 mRNA and protein expres- [122]
(Lamiaceae) . . .
and sprains sions of iNOS
I NO production, NF-xB
DNA-binding activity, and
Hispidulin LPS-stimulated RAW 264.7 cells  JNK signaling pathway [122]
1 iNOS and COX-2 expres-
sion
Methanolic extract Formalin-induced hind-paw T Anti-inflammatory activity [123]
edema at dose 200 mg/kg
LPS-stimulated RAW264.7 - ti
Ethyl acetate fraction S-stimulated 64.7 mac vNO Produc on [122,124]
rophage cells { iNOS
Cleome v.iscosa L. Whole plants; diarrhea, fe- Quercetin 3-O-(2"-acetyl)-glucoside Carrageenan-induced paw  { Carrageenan-induced rat [80,124]
(Capparidaceae) ver, cuts, and ulcers edema paw edema
Cleomiscosing A-C LPS-stimulated Peritoneal Mac- {4 IL-4, TNF, and NO produc- [81]

rophages (Swiss albino mice)

tion

Malabaric acid

4 COX-1 and two activities

[95]




Pharmaceuticals 2024, 17, 819

11 of 33

J{ PGE2 production, and iNOS
and COX-2 expressions

Hispidulin 1 NF-kB DNA-binding activ- [122]
ity and JNK pathway
Crinum pedunculatum R.Br. Whole plants; stings from Methanol, ethanol, and ethyl acetate ex- Carrageenin-induced Wistar al- | Carrageenin-induced rat [124,125]
(Amaryllidoideae) marine life tracts bino paw edema paw edema ’
Morinda citrifolia Fruits: cough and cold, LPS-stimulated human mono- { Matrix metalloproteinase-9
. . [126]
(Rubiaceae) sore throat cyte (MMP-9) production
Fruit juice DSS-induced colitis model ¥ TNF and IFT;/' NO and IL- [127]
J COX-2, IL-8, and prosta-
Ethyl acetate extract Caco-2 cells glandin E2 production and [128]
neutrophil chemotaxis
Fruit extract LPS-stimulated RAW 264.7 cells 4 NO synthase and TNF [129]
Rutin, nonioside A, (2E,4E,7Z)-deca- I NO production, expression
2,4,7-trienoate-2-O-3-d-glucopyranosyl- LPS-stimulated RAW 264.7 cells of IKKa/p, I-kBa, and NF-«B [126,130]
B-d-glucopyranoside, and tricetin p65
Eucalyptge;“n”;‘fld”le”s ' Leavesand gum from Ethanol extract Carrageenan-induced paw | Carrageenan-induced paw [124131]
barks; diarrhea edema edema
(Myrtaceae)
12-O -tetradecanoyl-phorbol-13-acetate ¢ Edema and I?ukocyte infil-
tration
Acalypha wilkesiana . . li v NOand P,GEZ
Mull. Arg. Shoots: skin lesions, sores, Leaf extract LPS-stimulated RAW 264.7 cells iNOS productIO{ls and [2]
(Euphorbiaceae) cuts, wounds COX-2 expression
{ TNF, IL-1B) and IL-6
Corymbia terminalis LPS-
(F.Muell.) K.D.Hill and Bark; dysentery Methanol leaves extracts stimulated mammalian ¢ IL_ZE;;;I?;:CE‘(ZE; and 2 [49,50]
L.A.S.Johnson (Myrtaceae) keratinocyte (HaCaT) cell
Axifolin, aromadendrin, cianidanol, and 4 IL-6, IL-8, and COX-1 and 2 [49]

farrerol enzyme activities
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Dodonaea polyandra Merr.

Roots: sores, skin lesions,

Nonpolar hexane and methylene chlo-

{ Inflammation in TPA-in-
duced mouse ear edema by
72.12 and 79.81%, respec-

and L.M.Perry wounds, cuts, and tooth- . TPA-induced mouse ear edema . [132]
(Sapindaceae) ache ride/methanol tively, at 0.4 mg/ear;
P 12 and 79.81%, respectively, at
0.4 mg/ear
. Mouse Ear Tissue (male
Polyandric acid A BALB/c mice) LIL-1B [133]
16-E -8at- 1 hyl-2a-
516-Epoxy-8a-(benzyloxy) m_et yreo Exhibited optimum inhibition
hydroxycleroda-3,13(16),14-tried-18-oic . . o
. . of inflammation (70-76%) at
acid and 15,16-Epoxy-2a-benzo- TPA-induced mouse ear edema [134]
. . doses of 0.22 and 0.9
yloxycleroda-3,13(16),14-tried-18-oic .
. pmol/ear, respectively
acid
Dodonaee viscosa Jacq. L.eaves., rheumatis.m, skin Hydroalcoholic extract Carrageenin-induced paw | Edema induced.in rats by [135]
(Sapindaceae) infections, and diarrhea edema carrageenin
TPA-i 1i
Dichloromethane extract induced ede@a model in 1 97.8% of the edema [136]
CD-1 mice
L 12—O—tetradecan(?ylphorbol 13- 97% of edema inhibition with
Hautriwaic acid acetate (TPA) mice ear edema [136]
an ED50 = 0.158 mg/ear
models
Excoecaria agallocha L. . . .
. Latex; stings (marine) Agallochanin K RAW?264.7 cells I NF-«B [137]
(Euphorbiaceae)
{ NF-«B with inhibition rates
f 23.4% 19.4% -
Agallolides I and | NF-«B (p65) RAW264.7 cells  Of 20:470 and 19.4%, respec [138]
tively, at the concentration of
100.0 uM
E 1 is Hensch.  Whole plants; antisepti LPS-i RAW 264.7 -
leocharis dulcis Hensc ole plants; antiseptic, Ethyl acetate extract S-induced 64.7 macro L TNF, iNOS, and COX-2 [124,139]
(Cyperaceae) wounds phages
Ipomoea pes-caprae (L.) . Trypsin-, histamine-, and brad- | Trypsin-, histamine-, and
Whole plants;
R.Br. ole plants; diseases, Ethanol extract from leaves and stems ykinin-induced paw edema in  bradykinin-induced paw [140]

(Convolvulaceae)

boils, and swelling

mice edema in mice
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4,7,8-Trimethoxy-naphthalene-2- -
Heliotropium ovalifolium /7/8-Trimet O)iiyc 2251 :mécli ene-2-carbox
Forssk. Body wash and fever y ) LPS-stimulated THP-1 cell J IL-6 and TNF [141]
(Boraginaceae) 6-hydroxy-5,7-dimethoxy-naphthalene-
& 2-carbaldehyde
o Leaves; hypertension, res-
E L.
uphorbia h irta piratory ailments, tumors, Ethanol extract LPS-induced inflamed rat knees { TNF and NO production [142]
(Euphorbiaceae)
and wounds
Butanol extract LPS-stimulated RAW 264.7 cells vNO pr(.)ductlon a,nd iNO [143]
protein expressions
1 NO and PGE2 production
E i f COX-2
Melaleuca leucadendra L Leaves and bark; cough ' Xpr?ls\lsg? 0rofeoin e
" and cold; wounds, cuts, Butanol extract LPS-stimulated RAW 264.7 cells p. . . [144]
(Myrtaceae) | NF-B transcriptional activ-
and sores o
ity in a dose-dependent man-
ner
Ethanol-i ic ulcera-
Casuarinin thanol-induced gastriculcera- | \p 5 cox.0 iNOS [145]
tion in rats
E ja ti i L. -i te-in-
uphorbia tz?’ucullz Latex; skin cancer Ethanol extract from roots CarragegnaIT md‘fced ACEEIN™ | INF and IFN-y production [51]
(Euphorbiaceae) flammation in albino rat model
, . Carrageenan-induced paw  { Carrageenan-induced rat
Manihot esculenta Crantz Roots: diarrhea and stom- . . .
. edema in rats and xylene-in-  paw edema and xylene-in- [146]
(Euphorbiaceae) achache S L
duced ear edema in mice duced ear swelling in mice
Flueggea virosa (Roxb. Ex N-form}z lmethlonyl—leucyl—ph?- . .
. nylalanine (FMLP)/cytochalasin  Superoxide anion genera-
willd.) Royle Root; toothache Flueggrenes A . . [147]
B (CB) activated-human neutro-  tion and elastase release
(Phyllanthaceae) .
phils
Litsea glutinosa (Lour.) Leaves and bark; fever, Carraseenan-induced rat paw
C.B.Rob. scabies, gastritis pain, cuts, = Hydroalcoholic extracts of leaves Carrageenan-induced edema & edema P [148]
(Auraceae) and wounds
Merremia tridentata (L.) . J TNF, IL-1pB, and IL-6 pro-
Whole plants; ti-
Halljer f. oeP asr; s;iscores, ant Apigenin LPS-stimulated BV2 microglia duction [83,124]
(Convolaceae) p 4 NF-kB activation
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ion, TNF, IL-1
Quercetin, quercitrin LPS-induced RAW264.7 Cells ¥ NO production, TNF, B [82]
and IL-6
. ) . { Lipopolysaccharide-in-
Ocimunm te.nuzﬂorum Leaves and stems; pain Leaf extract LPS-induced RAW264.7 Cells  duced inflammation in RAW [149]
L. (Lamiaceae) and stomachache
264.7 cells
Nauclea orientalis (L.) L.  Bark; colds, stomachache, Ethyl acetate (EA) and ethyl alcohol (ET) LPS-stimulated human mono-
. . . { TNF, NF-«xB [150]
(Rubiaceae) and snake bite lotus petal extracts cyte-derived macrophages
Nelumbo nucifera Gaertn. Ethanol extract from fruits Carrageena'n-lnduced paw | Carrageenan-induced rat [151]
(Nelumbonaceae) edema (Wistar male rats) paw edema
TIL-10 and IL-12
Leaf extract 293T cells JIL-6, IL-1 [, TNF-a, and [152]
IFN-y
. DSS-induce colitis mice model TNF, IL-1pB, and IL-6
f 153,154
Neterine (C57BL/6] male mice) T IL-10 [153,154]
IL-6 and TNF production
Murine macrophage RAW264.7 T Peroxisome proliferator-ac- [155]
cells tivated receptor (PPARa and
PPARY)
LPS-stimulated RAW 264.7 cells 4 NO release [156]
Ochrosia elliptica Labill LPS-stimulated RAW 264.7 cells
P ' Bark; malaria Quercetin-3-O-B-d-glucuronide and human peripheral blood ~ { NO production and TNF [157,158]
(Apocynaceae)
monocytes
{ IL-8 gene expression in
Phyllanthus urinaria L. o TNF-treated IB3-1 cells
(Phyllanthaceae) Leaves; colds Corilagin 1B3-1 cells TNEF-alpha-induced secretion [159]
of MCP-1
. . Whole plants; sores, stom- .
L. -
Scoparia dulcis Carrageenan-induced paw 1 COX-2, NO, TNF and IL1-8 [160]

achache, skin lesions, Ethanol extract

Plantaginaceae
( & ) wounds, and cuts

edema

Betulinic acid

{ TNF, IL-1g, COX-2, and NO
production
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Terminali L. B fruit; 12-O-TPA-i 1 i P -
erminalia catappa ark, young green fruit, Ethanol extract of leaves O mducefi edema | Mye 0per0>.<1<.iase (MPO) ac [161]
(Combretaceae) sore throat and thrush (Male ICR mice) tivity
Ursolic acid and 2a,3[3,23-trihy- J TPA-induced ear edema [161]
droxyurs-12-en-28-oic acid and inhibited MPO activity
Terminalia muelleri Benth. Leaves: Scabies, sores, skin Polyphenol-rich fraction Carrageenan-induced paw | PGE2 and IL-6, IL-1f and [162]
(Combretaceae) lesions, wounds, and cuts edema model TNF, IL-1p
Uromyrtus metrosideros . .
45)-a-t 1 8-O-p-D-(6-O-galloyl) H PBMCs stimulat
(F.M.Bailey) A.].Scott Leaves and branches (45)-a-terpineol 8-O-f . (6-O-galloyl) umarn . Css Hm_l ated by 4 IFN-y, IL-17A and IL-8 [64]
glucopyranoside P/I or anti-CD3/anti-CD28
(Myrtaceae)
Vitex trifolia L. L ; infl tory ail- | COX-2, NF-«B, L-1
tex trtlfolza caves, mtammatory at Aqueous extract LPS-induced RAW 264.7 cells COX-2, NF-«B, pand [163]
(Labiatae) ments caspase-3
Galloyl-lawsoniaside LIFN-y and IL-17A
Lophostemon suaveolens (So- ! .
. NO production
lan'd. ex Gaertn.) Peter N-hexane and dichloromethane extracts LPS-stimulated RAW264.7 cells 4 PGE2 in 3T3 murine fibro- [164]
G.Wilson and J.T.Waterh. from leaves
blasts
(Myrtaceae)
Inhibit cell recruitment,
Betulinic acid L.I’S-l.nduced lung inflamma- | TNF, NO, anfi TGF-f1 ex- [165]
tion in Sprague-Dawley rats pression
{ MDA production
Tasmannia lanceolate (Poir.) Pily(il:;n%ti;;il ::itéa:;z(gﬂgfoa(zg{f- 1 iNOS and COX-2
A.C.Sm. Berries, bark, and leaves y . Y . e & ] LPS-stimulated RAW264.7 cells + NO and prostaglandin E2 [166]
. acid were identified through their
(Winteraceae) (PGE2) levels

MS/MS spectra)
J, Downregulated; T, upregulated: TNF, tumor necrosis factor; ROS, reactive oxygen species; IL, interleukin; TNF, tumor necrosis factor; IFN-y, interferon-gamma;
NF-kB, nuclear factor kappa beta; MAPk, mitogen-activated protein kinase; NO, nitric oxide; PGE2, prostaglandin 2; COX-1, cyclooxygenase-1; COX-2, cyclooxy-
genase-2; IL, interleukin; LPS, lipopolysaccharide; NO, nitric oxide; DSS, dextran sulfate sodium; RAW, Ralph and William'’s cell line; MPO, myeloperoxidase;
DMSO, dimethyl sulfoxide; MMP, matrix metalloproteinase; MDA, malondialdehyde.
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OH o
OH 0
Ho/‘fjj\‘\ )
OH

Apigenin (ICs = 19.2 pg/mL) Aromadendrin (ICs, =257.7 uM) Betulinic acid (IC5, =23.5 pM)
H OH o)
OH o]
0.
OH ~

H

HO 0 HO 0
HO

OH OH
o] H
Kaempferol (ICs, = 20.38 pM) Malabaric acid (IC5, =11.5 uM pg/mL) Hispidulin (ICs, = 12.4 uM)

0,

OH

g

Nonioside (ICs, = 2.01 uM)

Hautriwaic acid (EDs, = 0.158 mg/ear) Neferine (ICs, = 15.48 uM)

OH (¢}
OH

OH
HO O

OH

Quercetin (ICs =3 g/mL) Quercitrin (ICs, = 4.5 pg/mL) Rutin (IC50 = 23.7 pg/mL)
OH (o} OCHj
OCH,4
OH
HO O
HOOC OCH3;
OH
OHC OCH,4 oc,
OH
Luteolin (IC5 = 26.24 M) 6-Hydroxy-5,7-dimethoxy-naphthalene-2- 4,7,8-Trimethoxy-naphthalene-2-
carbaldehyde (IC5,="7.0 pM) carboxylic acid (IC5, = 15.6 uM)

Figure 1. Selected common chemical structures of plant-derived anti-inflammatory SMs (the half-
maximal inhibitory concentration (IC50) measures a small molecule’s efficacy by indicating the
amount needed to inhibit inflammation by 50%, thus reflecting its potency in treating inflammatory-
related disorders) [167].
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3. Helminth-Derived Anti-Inflammatory Compounds

Several studies have highlighted the therapeutic significance of helminths and hel-
minth-derived excretory/secretory products (ESP) [168] in modulating host immune re-
sponses and protecting against inflammatory conditions (Table 2). Helminth-induced im-
mune modulation is multifactorial and often involves the potent stimulation of Th2 re-
sponses in conjunction with IL10- and transforming growth factor-p (TGFf)-dependent
immune regulation [169-171] and decreased type 1 and 17 T helper (Th1/Th17) inflamma-
tion [172-175]. Helminths are also potent drivers of regulatory cell responses, including
Foxp3+ regulatory T cells (Tregs) [171,175,176], IL10-producing type 1 regulatory T (Tr1)
cells [177], type 2 innate lymphoid cells [178], alternatively activated macrophages [179]
and regulatory dendritic cells [180,181]. Other studies have reported helminths like Hy-
menolepis diminuta, Trichinella spiralis, and Trichuris suis offering protection against colitis
in 2,4-dinitrobenzene sulfonic acid (DNBS) and TNBS-induced mouse models of colitis
[182,183] and randomized human trials [184]. For instance, TNBS-treated mice infected
with S. mansoni eggs showed decreased Thl-type inflammation and alleviated colon pa-
thology, possibly through IL-4 signaling and increased IL-4 levels [185]. The soluble mol-
ecules from S. mansoni eggs and hookworm (Ancylostoma caninum) ESPs were found to
counteract the detrimental effects of INF-y and IL-12 induced by DSS, inducing the secre-
tion of IL-10 [185]. In a piroxicam-induced IL-107- mouse model, infection with Heligmo-
somoides polygyrus inhibited IFN-y and IL-12 production while promoting the production
of Th2 cytokine IL-13 [185]. The succinic acid secreted by Nippostrongylus brasiliensis ESPs
was found to be involved in initiating an early Th2-type immune response [186], which
involves the activation of Th2 cells and the production of cytokines like IL-4, IL-5, IL-10,
and IL-13. These cytokines promote B-cell differentiation, antibody production, and the
activation of eosinophils, contributing to allergic inflammation and the defense against
extracellular pathogens [187]

Similar work on A. caninum by Wangchuk et al. [188] showed the protection of mice
from colitis by low-molecular-weight metabolites of somatic extracts, ESPs, and the latter
when used to treat mice resulted in a significant reduction in inflammatory cytokines such
as IL-23, TNF, and IL-1B. Similarly, different concentrations of the hexane-dichloro-
methane-acetonitrile somatic fraction of A. caninum exhibited notable reductions in TNF,
IL-1p3, IL-6, and monocyte chemoattractant protein-1 (MCP-1) production [188]. Hence,
helminth therapy is gaining attention in IBD treatment. For example, preliminary investi-
gations into the positive impacts of helminths on IBD revealed that the oral administration
of Trichuris muris whipworm eggs notably decreased TNBS-induced colitis in IL-107- mice
[189]. Similarly, Trichuris suis ova showed promise in human trials, inducing remission in
21 out of 29 patients with active Crohn’s disease (CD) [184]. Hence, identifying and char-
acterizing helminth molecules offers a unique opportunity to create nature-inspired, ef-
fective, safe, and minimally immunogenic drugs.

Wangchuk et al. [190] identified 54 SMs in the ESP of Trichuris muris and N. brasili-
ensis, of which 17 SMs had exhibited pharmacological activities in other studies. Similarly,
in the case of Dipylidium caninum, 49 SMs were characterized by gas chromatog-
raphy/mass spectrometry (GC-MS), with succinic acid as the chief constituent of its ESP
[191]. The study also highlighted that among the 35 polar metabolites, lactic acid, malic
acid, methionine, glycerol, and fructose were previously reported to exhibit anti-inflam-
matory and proinflammatory activities [191]. Furthermore, Wangchuk et al. [192] carried
out the initial metabolomic and lipidomic examination of the infective third-stage filari-
form larvae of the human hookworm Necator americanus, utilizing liquid chromatog-
raphy—mass spectrometry. The study unveiled 645 SMs, with 495 metabolites exclusive to
the somatic tissue extract and 34 found solely in the ESP component. Of these, 45 SMs
were identified as polar metabolites; 26 SMs had previously been documented for their
anti-inflammatory properties [192]. For example, in a study conducted to investigate the
impact of L-arginine on the inflammatory response and casein expression, the findings
indicated that arginine mitigated the LPS-induced production of inflammatory markers
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such as IL-13, IL-6, TNF, and iNOS [193]. Among the SMs identified, lactic acid, malic
acid, methionine, glycerol, and fructose, sourced from various NPs, have demonstrated
anti-inflammatory properties [194-198]. However, the immunomodulatory properties of
nonprotein SMs secreted or excreted by helminths remain relatively underexplored for
medicinal applications [199]. Therefore, based on these promising preliminary results, the
somatic tissues and ESPs of helminths could be sources of anti-inflammatory SMs that can
be used for treating IBD and other inflammatory conditions. The chemical structure of
common anti-inflammatory SMs identified through metabolomic studies from Trichuris
muris and Ancylostoma caninum are shown in Figure 2.
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Figure 2. Chemical structure of anti-inflammatory SMs identified through metabolomic studies of
Trichuris muris and Ancylostoma caninum (common to both).
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Table 2. Anti-inflammatory activities of different stages of helminths and their compo-
nents in various colitis animal models and cell lines.

SMs/ESP/Somatic Tis- Animal Model or
Helminth Species sue/Larva/Egg/EVs/Pro- Cell Line Mechanism of Action Reference
tein
Low-molecular-weight . -
TNBS- lit
Ancylostoma caninum somatic tissue extract me- NBS-induced colitis J TNF, IL-1p, and IL-13 [188]

tabolites model

Low-molecular-weight

LPS- stimulated

excretory-secretory prod- | TNF, IL-1B, and IL-13

. PBMC
uct metabolites
Dichloromethane-ace- J TNF, IL-1 B, IL-6 and the
tonitrile somatic extract chemokine MCP-1
{ Proinflammatory mediators
DSS-i liti
SS-induced colitis N3¢ 11 6 and IL-17A [200]

del mi
model mice T IL-4 and IL-10 levels

4 Th1 and Th17 cytokines

Crude extracts and excre- DSS-induced colitis

Ancylostoma ceylanicum torv-secretory products model { Colonic microscopic [201]
Y yP 1 EPO and MPO activity
o . . TNBS-induced colitis T IL-4, IL-13, IL-10, TGEF-p,
Trichinella spiralis 53 kDa ES protein model AAM [202]
4 IFN-y, TNF, IL-6
! inflammatory score
L IL 1B, TNF IFN-y, and IL-
. TNBS-induced colitis 17A
Extracellular vesicles model ML-10 and TGE- B, L4, and [203]
IL-13
) o . Murine small intesti- VIL6, IL-1 B, IEN'y, and IL-
Nippostrongylus brasiliensis ~ Extracellular vesicles . 17a [204]
nal organoids
TIL-10
. ) . . . LPS-stimulated RAW { NO production
Spirometra erinaceieuropaei Extracellular vesicles 2647 cell L TNE, IL1 B, and IL-6) [205]
, , TNBS-induced colitis 4 IFN-y
Schistosoma mansoni Egg model T IL-10 mRNA expression [172]
Egg DSS-induced colitis T FoxP3+ T regulat.ory cells [206]
model. and Th2 cytokines.
Trichinella spiralis Infective larvae TNBS-nrf;l;eeld colitis 4 DAI score and weight [207]
4 IFN-y
T IL-4
TNBS-i liti IL-4, IL-13- i i f
T. spiralis Infective larvae NBS-induced colitis T , 3- induction of a [182]
model Th2 response.
 IL-12, IFN-y, MPO activity
. . . Piroxicam- induced { IL-12 and IFN-y production
Heligmosomoides polygyrus Infective larvae 1110 mice L3, [170]
Infective larvae TNBS-lrIf;C;:eeld colitis T IL-4, IL-5, IL-10, IL-13 [208]

1 IL-12p40, TFN-y
T IL-4, IL-5, IL-13, and IL-10
secretion
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LIL-17
. O i
Infective larvae IL-10-- mice L4 and IL-10 [209]
Infective third-stage lar- TNBS-induced colitis T IL-4, IL-13, mucosal mast [210]
vae model cells, and resistance
{ IFN-y, TNF
T IFNy, TNF
. . . - . 7
Trichuris muris Embryonated eggs Mdrla= mice MLA3 and 1125 [211]
Infective larvae IL-10- mice ) IFN-vy, IL-17 [212]
LIL-13
T IL-13Ra2
Netrin-domain-contain-
TNBS-i liti
Necator americanus ing proteins (prophylac- NBS-induced colitis 4 TNF [213]

tic Na-AIP-1) model

4. Anti-Inflammatory Agents in Clinical Trials

Several plant species and their allied small molecules are being examined for their
potential in treating IBD, specifically UC and CD. The small molecule epigallocatechin-3-
gallate derived from Camellia sinensis is being investigated for its safety in patients with
mild to moderately active UC during clinical remission and maintenance therapy, with
the study currently in phase II. Another anti-inflammatory SM, curcumin, is also being
investigated at various clinical phases. In pediatric patients with IBD, a phase I study is
aiming to assess the tolerability of curcumin. In patients with UC, a phase I trial is inves-
tigated the effectiveness of a combined therapy involving curcumin and 5-ASA compared
to that of 5-ASA alone (Table 3).

In contrast, a phase III trial is exploring the impact of combining curcumin with thi-
opurines to prevent postoperative recurrence. The bioactive compound berberine, isolated
from Coptis chinensis, is the focus of a phase I study evaluating its safety in patients with
UC in clinical remission and undergoing maintenance therapy. Finally, triptolide, re-
ported as a bioactive compound in Tripterygium wilfordii, is being studied to assess its im-
pact and safety in inducing remission in CD, comparing its efficacy with that of mesala-
mine, with ongoing trials in both phase II and III. Overall, studies underscore the potential
of natural compounds in treating BD, offering insights into safety, efficacy, and therapeu-
tic strategies at the various stages of clinical development (Table 3)

Following the positive tolerance and absence of side effects observed in the open trial
involving patients with active UC and CD, researchers conducted clinical trials primarily
using Trichuris suis, the pig whipworm, and Necator americanus, a hematophagous hook-
worm [169]. In an open-label trial (phase 1) at the University of Iowa, seven patients with
IBD received 2500 TSO, resulting in remission for six patients per the IBD Quality of Life
Index [169,214]. Subsequently, a randomized, double-blind, placebo-controlled trial
(NCTO01433471) involved 54 active UC patients treated with 2500 TSO or placebo every
two weeks for 12 weeks. The study showed significant improvement in 43.3% of patients
treated with TSO compared to 16.7% of placebo recipients [169,214]. Similarly, a trial with
29 patients with active CD demonstrated a 79.3% decrease in the CD activity index (CDAI)
and a 72.4% remission rate after 24 weeks of TSO treatment (Table 3). N. americanus was
also tested in patients with CD, showing clinical improvement and remission in eight of
nine patients after 20 weeks despite mild side effects. Additionally, helminth-derived
products, such as P28 S-glutathione transferase (P285GT), demonstrated promise, reduc-
ing disease activity and inflammatory markers in patients with CD in clinical trials
(NCT02281916) [169] (Table 3). Considering the reported immunomodulatory properties,
helminths show significant potential for treating inflammatory bowel disease (IBD). How-
ever, further research is needed to fully understand their mechanisms and ensure their
safe and effective application in clinical settings.



Pharmaceuticals 2024, 17, 819

21 of 33

Table 3. Nature-derived anti-inflammatory compounds and helminth products in clinical trials for
treating inflammatory bowel diseases.

Plant Species

Natural Therapeu-
tics

Diseases

Objective

Clinical
Phase

Clinical Trial
Number

Plant-derived compounds/drugs

C. sinensis L.

Epigallocatechin3-
gallate (Polyphenon
E®)

Mild to mod-
erately active
ucC

Assess safety of an oral dose of
green tea extract as initial evidence
to substantiate its effectiveness in
UC (oral administration of placebo
tablet)

Phase II

NCTTO00718094

C. longa L.

Curcumin

Both UC and
CD

Assess the tolerability of curcumin
in pediatric patients with IBD
(double-blinded placebo-con-

trolled study)

Phase I

NCT00889161

C. longa L.

Curcumin

ucC

Assess effectiveness of a combined
therapy involving curcumin and
5ASA compared to that of 5ASA

alone in patients with mild to
moderate UC (randomized, dou-
ble-blind, placebo-controlled
study)

Phase III

NCT01320436

Coptis chinen-
sis Franch

Berberine (berberine
chloride)

ucC

Examine the safety profile of ber-
berine in individuals with UC who
are in clinical remission and are
simultaneously undergoing
maintenance therapy with mesala-
mine (oral administration of pla-
cebo)

Phase I

NCT02365480

Tripterygium

wilfordii Hook.

F.

Triptolide (Trip-
terygium glycosides)

CD

Evaluate the efficacy of combining
Tripterygium glycosides with en-
teral nutrition in inducing remis-
sion in patients with Crohn’s dis-
ease, comparing outcomes with
those receiving either Tripteryg-

ium glycosides alone or enteral nu-

trition alone

Not appli-
cable

NCT01820247

Helminths products/drugs

Trichuris suis

Trichuris suis ova
(CNDO 201)

CD

Evaluate the safety and tolerability
of single oral doses of CNDO 201
(double-blind, placebo-controlled)

Phase I

NCT01434693

Trichuris suis

Trichuris suis ova
(CNDO 201)

ucC

Investigate the immune response
activated in the human gastroin-
testinal tract (double-blind, pla-
cebo-controlled oral inoculation)

Phase I and
II

NCT01433471

Trichuris suis

Trichuris suis ova
(TSO)

CD

Compare the efficacy of three
doses of oral TSO suspension ver-
sus a placebo in inducing remis-
sion

Phase II

NCT01279577

Schistosoma
mansoni

P28GST (protein 28
Kd glutathion S
Transferase)

CD

Assess the effectiveness in regulat-
ing immunologic and inflamma-
tory markers in blood and tissue,
as well as determining the occur-
rence of clinical recurrence using

the disease activity index

Phase II

NCT02281916

The sources were acquired from www.clinicaltrials.gov (Accessed: 16 February 2024).
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5. Advances and Recent Approaches in SM Drug Lead Discovery

In drug discovery, including SMs, drug leads demand the physical screening of large
chemical libraries for biological targets, which is common but time-consuming and expen-
sive. As such, there have been substantial advancements in techniques for SM drug dis-
covery, including high-throughput screening, structure-based drug design, virtual screen-
ing, and the refinement of lead compounds. High-throughput screening (HTS) analyzes
over a million compounds biochemically, requiring substantial time and investment [215].
To address this, virtual high-throughput screening was developed as a cost-effective com-
putational method that is extensively applied in early drug discovery. It aims to identify
novel, active small molecules by searching vast compound libraries, supporting the goals
of HTS while reducing costs by evaluating only selected compounds for pharmacological
activity [216,217].

Furthermore, molecular docking has proved to be a crucial approach in drug discov-
ery in predicting the interaction patterns between proteins and small molecules and indi-
cating the presence of bioactive compounds in natural products. For instance, GC-MS-
identified bioactive ingredients and molecular docking against key targets revealed 3,5-
dehydro-6-methoxy, ethyl iso-allocholate cholest-22-ene-21-0l, alpha-cadinol, and
pivalate of Phyllanthus nivosus as promising compounds for UC drug development [218].
Computational methods, particularly in silico discovery, enhance traditional drug devel-
opment, ensuring sustainable and cost-effective drug discovery with increased efficacy
[219]. Modern techniques like pharmacophore modeling are also crucial for virtual screen-
ing, utilizing advanced compound databases and computing power to find small mole-
cules of lead compounds [17].

To expedite the discovery of bioactive NPs in extracts, metabolomics data have been
subjected to chemometric methods like multivariate data analysis, which correlate meas-
ured activity with nuclear magnetic resonance (NMR) and MS spectra signals, facilitating
the tracking of active compounds in complex mixtures without additional bioassays
[168,220]. Recent advancements in analytical technologies, particularly higher-field NMR
instruments and probe technology, have allowed for precise structure determination of
NPs even from limited quantities (<10 pg) [221]. Microcrystal electron diffraction, a cryo-
electron-microscopy-based technique, is being increasingly applied for unambiguous
structure determination of SMs in NP research [222]. Bioactivity-guided fractionation
techniques with NMR-based methods have recently been utilized for screening, identify-
ing, and isolating anti-inflammatory bioactive compounds from natural products. For in-
stance, a methanolic extract of Uraria crinite (L.) roots was screened to isolate the immuno-
modulatory isoflavone genistein. This compound exhibited immunomodulatory activity
against producing proinflammatory cytokines (IL-6 and TNF) [223].

6. Challenges and Future Directions

Exploring the small anti-inflammatory molecules derived from remedial plants and
helminths represents a promising frontier in pharmacopoeia research. These naturally
sourced compounds often exhibit unique mechanisms of action, lower toxicity, and fewer
side effects. However, challenges exist in identifying and isolating bioactive compounds
from diverse natural products. The use of HTS, computational approaches like molecular
docking and virtual screening, and integrating artificial intelligence (AI) and machine
learning (ML) algorithms can enhance the accuracy and efficiency of identifying promis-
ing candidates from natural compound libraries. It is crucial to understand the molecular
mechanisms through which these natural compounds exert their anti-inflammatory ef-
fects. Research should focus on investigating how these compounds interact with key in-
flammatory mediators. Advanced techniques such as clustered regularly interspaced
short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing and
RNA sequencing can provide better insights into these interactions. Additionally, ad-
dressing challenges related to bioavailability and unfavorable pharmacokinetic profiles is
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essential. Techniques like nanoencapsulation, liposomal delivery, and phytosome tech-
nology should be incorporated to improve small anti-inflammatory molecules’ absorp-
tion, stability, and targeted delivery. Research has shown that helminths are therapeutic
in treating inflammatory disorders due to their mechanisms evolved for modulating host
immune responses. Further research should explore isolating and characterizing the small
molecules from helminths to assess their therapeutic potential in inflammatory diseases.
Techniques like proteomics and metabolomics can be instrumental in identifying bioactive
helminth-derived compounds. Continued interdisciplinary research and collaboration
will unlock the full therapeutic potential of these natural compounds.

7. Conclusions

In conclusion, our comprehensive analysis of the anti-inflammatory properties inher-
ent in natural products, encompassing both crude extracts and isolated SMs, underscores
their remarkable capacity to modulate a spectrum of inflammatory pathways. The anti-
inflammatory efficacy of natural products is manifested by inhibiting key inflammatory
mediators such as NO, Cox-2, and proinflammatory cytokines, alongside the stimulation
of anti-inflammatory cytokine production. While certain reported extracts or SMs operate
through singular or dual mechanisms, others exhibit a more diverse array of actions. Fur-
thermore, emerging research highlights the therapeutic promise of helminths and their
secretory products (ESPs) in coordinating host immune responses and alleviating inflam-
matory maladies. Helminth-induced immune modulation fosters a milieu conducive to
Th2-, IL10-, and TGFp-dependent immune regulation, effectively attenuating Th1/Th17
inflammatory responses. Several helminth species, including Schistosoma mansoni, Hyme-
nolepis diminuta, Trichinella spiralis, and Trichuris suis, demonstrate significant protective
effects against colitis in preclinical models and human trials, highlighting their potential
as therapeutic agents.

In light of these findings, NPs remain a fertile ground for identifying and discovering
diverse structures of anti-inflammatory SMs. These structures can be either directly de-
veloped or serve as initial frameworks or scaffolds for further optimization into innovative
anti-inflammatory drugs. Despite the challenges associated with drug development, such
as high attrition rates and obstacles related to accessibility, sustainable supply, and intel-
lectual property constraints, we remain optimistic that ongoing scientific and technologi-
cal advancements will establish a robust foundation for NP-based drug discovery and
harness the vast potential of nature’s pharmacopeia.
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