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ABSTRACT Spatio-temporal trajectory is a movement of an object in space over a certain time period,
represented by a series of nodes composed of geospatial location and corresponding timestamp. A large
amount of spatio-temporal trajectory data is being gathered through various trajectory acquiring devices by
tracking the movement of objects such as people, animals, vehicles and natural events. Various trajectory
data mining techniques have been proposed to discover useful patterns to understand the behaviour of spatio-
temporal trajectories. One unexplored pattern is to identify potential contacts of targeted trajectories which
can be defined as contact mining, that is useful for many applications. One such example would be to identify
potential victims from known infected humans or animals, especially when the victims are asymptomatic in a
rapid spread of infectious disease environments. Another one would be to identify individuals who have been
close contacts with known terrorist networks or law breakers. This paper proposes a robust contact mining
framework to efficiently and effectively mine contacts of multiple trajectories-of-interest from a given set of
spatio-temporal trajectories. Experimental results demonstrate the efficiency, effectiveness and scalability
of our approach. In addition, parameter sensitivity analysis reveals the robustness and insensitivity of our
framework.

INDEX TERMS Contact mining, data mining, multiple trajectories-of-interest, spatio-temporal trajectories.

I. INTRODUCTION
A spatio-temporal trajectory refers to a movement of an
object through geographical space which is represented by a
series of geospatial coordinates, latitude and longitude over
a period of time [1]. Massive amounts of data are being
generated over a long period of time using different types of
trajectory acquiring devices. This will be terabytes of data
for a small city with about half a million population, when
each individual’s trajectories are obtained at every second for
a period of a month. This raw spatio-temporal trajectory data
contains various types of spatial uncertainties and inaccura-
cies due to the nature of trajectory acquiring devices which
require pre-processing prior to data mining [2]. Trajectory
clustering, classification and trajectory pattern mining are
several widely studied domains in trajectory data mining, and
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have been applied to discover interesting patterns in many
applications [3], [4], [5], [6], [7], [8].

Contact mining is to find potential contacts from
spatio-temporal trajectories which are a beneficial domain
where contacts in a close proximity are of interest. In a
pandemic situation such as COVID outbreak, identifying
contacted individuals of known infected people and isolating
them would minimise the rapid spread of disease until a
medical solution is discovered. Identifying individuals who
have been close contacts with known terrorist networks and
law breakers is also vital to decrease criminal activities. It is
interesting to study whether spatio-temporal trajectory data
can be used to identify these forms of contacts. Even though
spatio-temporal data can be used to identify contacts, mining
algorithms can take significant amount of processing time due
to the massiveness of data.

To address these issues, this study proposes a
multi-step contact mining framework to identify contacts
from Other Trajectories (OT) (Definition 3) of multiple
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Trajectories-of-Interest (ToI) (Definition 2) and undertakes
empirical analyses with various settings.

Initially raw spatio-temporal data is pre-processed in order
to identify and rectify the inaccuracies and inconsistencies of
data. Then with the availability of user specified attributes,
several approaches are proposed to identify contacts for mul-
tiple ToI using Minimum Bounding Rectangle (MBR). The
aim of this paper is to investigate a scalable, efficient and
effective contact mining approach, and compares its perfor-
mance against baselines modified from existing data mining
techniques.

Main contributions of this study are as follows:
• Formulation of contact mining for multiple ToI;
• Proposal of a scalable, efficient, effective and robust
contact mining algorithm for multiple ToI;

• Provision of extensive experimental results for perfor-
mance analysis including accuracy, efficiency, scalabil-
ity, parameter sensitivity and applicability.

The rest of the paper is organised as follows. Section II
reviews relevant studies to identify the literature gap.
Section III describes definitions and illustrates the proposed
framework for contact mining. Section IV presents a frame-
work of multiple ToI contact mining. Section V examines
experimental results and presents major findings to identify
the most appropriate approach to find contacts for multiple
ToI. Section VI draws conclusive remarks and suggests
possible future directions.

II. LITERATURE REVIEW
Three broader domains are analysed and reviewed in this
section to assess whether they can be employed to identify
potential contacts, and what hinders their applicabilities.
Initially a review is conducted to examine techniques which
can be used to identify inaccuracies of spatio-temporal data
as well as approaches to resolve these problems. Trajectory
data mining techniques are widely used in discovering inter-
esting knowledge such as finding anomalies, patterns and
correlations within large spatio-temporal datasets for better
decision making. Hence the suitability of solving the con-
tact mining problem using these techniques is investigated.
Finally, collision detection techniques which can be used to
detect the intersections of geometric models are examined to
determine whether they can be applied to find contacts from
spatio-temporal trajectories.

A. SPATIO-TEMPORAL DATA PRE-PROCESSING
Varying location accuracy levels are witnessed due to various
types of trajectory acquiring devices, surrounding barriers,
lack of satellites in certain areas and weather conditions
which result in measurement inaccuracies [2]. Multipath is
another problem caused by reflecting satellite signals which
leads to positional errors [9]. Longer paths can be lessened
using the Real-Time Kinematic Precise Point Positioning
(PPP-RTK) systems [10]. Trajectory acquiring devices

capture data in a certain resolution of time and when this
sample rate is lower than the required minimum sample, it is
identified as spatial uncertainty. Trajectory data may also
contain oversampled data as well as inconsistent data. This
data has to be resampled into regular time intervals using
trajectory simplification techniques [11]. These solutions are
being used in the pre-processing stage of this paper to extract
correct spatio-temporal data prior to using other trajectory
mining methods to identify contacts.

B. TRAJECTORY DATA MINING
In this subsection, we will review major trajectory data
mining approaches.

1) TRAJECTORY CLUSTERING
Trajectory clustering is an unsupervised learning method
which categorises spatio-temporal trajectory datasets into
clusters by identifying similarities of intra-cluster trajectories
from dissimilarities of inter-cluster trajectories [12]. This
is being used in applications such as object motion pre-
diction, traffic monitoring, activity understanding, abnormal
detection and weather forecasting [12]. Trajectory cluster-
ing algorithms can be generally categorised into partitioning
based, density based, hierarchical based, model based and
grid based [13]. Partitioning based algorithms are more
popular as they are relatively simple and have the ability
of handling large datasets [14]. On the other hand, they
have disadvantages such as needing a predefined number of
clusters prior to clustering and the impact of outliers [15].
Density based clustering algorithms overcome these issues,
but they have their own challenges such as the requirement
of predefined parameters and inability to perform well with
higher dimensional data and clusters with varying densi-
ties [16]. Although, hierarchical based algorithms overcome
these issues by considering more attributes in each level,
they consume more computational time [17]. Model based
clustering computes internal relationships by analysing sim-
ilar matrix and thus is more efficient in processing data
together [18]. Hence these clustering methods can be used
to divide the space into several highly populated regions, it is
interesting to use these methods as a preprocessing approach
to examine whether this can be used to identify contacts.

2) TRAJECTORY CLASSIFICATION
Trajectory classification is a supervised learning technique
which categorises trajectories into pre-defined classes [19].
This is useful when there exist predefined labels and a
prediction is required. Trajectory classification is used in
many applications such as trip recommendations, sharing
life experiences, hurricane prediction, security alert triggers
and context-aware computing [20]. Trajectory classification
could be used as a post-process step for contact mining but
cannot be deployed for contact data mining due to the lack of
ground-truth training data.
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3) TRAJECTORY PATTERN MINING
Trajectory pattern mining describes discoveries of signifi-
cant, interesting or unexpected patterns in a movement of
trajectories [21]. Trajectory pattern mining is categorised
into periodic/repetitive pattern mining, frequent/sequential
pattern mining and moving together/group pattern mining.
Periodic or repetitive pattern mining refers to a moving
object which repeatedly follows the same route in constant
time periods such as daily, monthly or annually in the same
trajectory [22]. These behavioural patterns are useful to
predict future movements. This method has uncertainties
since the period affects the clustering output. The spec-
ification of a period in advance was overcome by the
Periodica algorithm [22]. Frequent or sequential pattern
mining focuses on multiple moving objects who visit approx-
imately the same place in the same order in relative time [23].
Frequent Spatiotemporal Sequential Pattern (FSSP) mining
and Generalized Sequential Pattern (GSP) mining are some
of the methods found in frequent pattern mining [24]. Finding
important regions from the trajectories and then applying
sequential mining is a common approach to mine frequent
patterns. Group pattern mining is numerous moving objects
staying close in space and visiting the same places at the
same time [1]. These patterns can be categorised depending
on the shape and density of the group and the duration of
movement of objects. There are different types of trajectories
which move together in a certain time period such as flock,
convoy and swarm patterns [1]. Trajectory pattern mining is
designed to find frequent or regular movement patterns and
is not designed to detect contacts.

4) TRAJECTORY MONITORING
Recently, few studies [25], [26] have been proposed to
monitor trajectories to identify asymptomatic patients and
to find potential zones for daily activities and movement
dynamics. For a given target trajectory, [25] attempts to iden-
tify dense areas where potential interaction activities occur.
The approach was tested with various clustering algorithms
but it was for a single trajectory and not general to be
applied to multiple ToI. Another study was conducted to
identify potential endemic zones monitoring asymptomatic
patient’s movements by identifying Points of Interest (PoI)
using spatio-temporal trajectories [25]. This study was fur-
ther extended to a continuous monitoring of asymptomatic
patients [26]. Even though these studies focus on potential
patient’s interactions, these approaches are limited to the
stay point detection, and cannot be used to mine general
contacts.

In another study [27], mining activity chains of individ-
uals was proposed by identifying stops in spatio-temporal
data. This is an extension to pattern mining discussed in
Section II-B3 but not directly related to contact mining.
Another study investigated movement dynamics in urban
areas using inflows and outflows of trajectories [28]. This
study focuses on flow traces revealing monocentric flow

patterns and changes of functionalities which are different
from contact mining. A Privacy Protection Technique (PPT)
developed for COVID-19 pandemic [29] investigated on safe-
guarding individual’s privacy in order to protect the intended
uses of personal data. Another investigation conducted on
modelling travel behaviour [8] is to mine the similarity
amongst trajectories based on their activities.

In general, these trajectory monitoring approaches are
designed to monitor trajectories based on clusters or stay
points to find behavioural dynamics and interactions for a
certain target trajectory, and they are not designed to mine
contacts for multiple ToI.

C. COLLISION DETECTION
Collision detection is to detect the intersection of geometric
models when objects are static as well as moving [30]. This
is used in areas such as computer graphics, manufactur-
ing, automation, robotics, computer animation and computer
simulated environments [31]. There are many collision detec-
tion algorithms available which can be categorised into two
phases such as the broad phase followed by the narrow
phase [32]. To optimise the speed, broad phase algorithms are
initially used to identify objects that can potentially collide
and exclude objects that are not colliding with certainty. Then
only those objects with a possibility of colliding are used to
find out which objects are colliding each other in the narrow
phase. The two phases allow much more efficient collision
detection than using one phase [32]. The separation of these
two phases was introduced by Hubbard [33] and followed
by others. Collision detection methods are designed to detect
two-dimensional and three-dimensional objects and cannot
be usedwith spatio-temporal trajectories. Also, the scalability
of these algorithms is questionable hence it is designed to
handle small datasets.

In summary, none of these techniques can be utilised to find
contacts for multiple ToI. Even though the contact mining
technique [25] could be extended to identify multiple ToI,
it becomes inefficient in handling multiple ToI. A compar-
ative literature review table is given in Table 1.

TABLE 1. Comparison of literature review.
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III. DEFINITIONS OF MULTIPLE TOI CONTACT MINING
Definition 1 (Spatio-Temporal Trajectory): A spatio-

temporal trajectory (Ta) in a given spatio-temporal tra-
jectory database T = [Ta, Tb,. . . , Tn] is a list of
trajectory nodes representing longitude, latitude and cor-
responding timestamp, denoted by Ta = {(xa1, ya1, ta1),
(xa2, ya2, ta2),. . . ,(xan, yan, tan), where xai, yai ∈ R2 and
tai ∈ R+ for i = {1, 2,. . . , n} and ta1 < ta2 < . . .< tan.
Definition 2 (Trajectory of Interest): ToI is a user specified

subset of the spatio-temporal trajectories (⊆ T).
Definition 3 (Other Trajectories): OT are the remaining

trajectories in T other than the ToI. That is, OT = T\ToI.
Definition 4 (Spatial s-Neighbourhood): The spatial

s-neighbourhood of a trajectory node n ∈ Ta for a given
trajectory Ti ∈ (T\Ta), denoted by NTi

s (n), is defined by
NTi
s (n)= {nj ∈ Ti | dist(nj , n)≤ s}, where dist(.,.) is a distance

function, but it is the Euclidean distance by default in this
paper.
Definition 5 (Temporal t-Neighbourhood): The temporal

t-neighbourhood of a trajectory node n ∈ Ta for a given
trajectory Ti ∈ (T\Ta), denoted by NTi

t (n), is defined by
NTi
t (n) = {nj ∈ Ti | diff(nj , n) ≤ s}, where diff(.,.) is a time

difference function, that measures the difference between the
two timestamps.
Definition 6 (Spatio-Temporal st-Neighbourhood): The

spatio-temporal st-neighborhood of a trajectory node n ∈ Ta
for a given trajectory Ti ∈ (T\Ta), denoted byNTi

st (n), satisfies
both Definition 4 and Definition 5.
Definition 7 (Contact Duration d-Neighbourhood): Let N

be a set {ni, ni+1, . . . , ni+k} (where i, k ∈ R+) of consecu-
tive nodes in a trajectory Ti ∈ (T\Ta). The contact duration
d-neighbourhood of a trajectory node n ∈ Ta for a given
trajectory Ti, denoted by NTi

d (n), is defined by NTi
d (n) = {N |

diff(ni, ni+k ) ≤ d}.
Definition 8 (Contact Detectable): A trajectory Ti ∈

(T\Ta) is contact detectable by Ta iff NTi
d (n) for a given d

for a node n ∈ Ta is not ∅.
Definition 9 (Multiple ToI Contact Mining From

Spatio-Temporal Trajectories): For a given set of ToI
(Ts⊂ T ), multiple ToI contact mining from a set T = {Ta,
Tb,. . . , Tn} of spatio-temporal trajectories is to find all contact
detectable trajectories from T\Ts (Definition 8).

IV. FRAMEWORK OF MULTIPLE TOI CONTACT MINING
A multi-step hierarchical contact mining framework is pro-
posed to identify contacts using multiple ToI as shown in
Figure 1.

Primarily, different types of datasets are artificially gener-
ated and another dataset is downloaded to perform a diverse
set of experiments. First, these datasets are pre-processed
to identify and rectify the inaccuracies of the raw spatio-
temporal trajectory data. Subsequently by employing the user
defined attributes, different types of approaches are used to
identify contacts in various situations. A brute-force approach
is initially applied to identify ground truth contacts which

FIGURE 1. Multi-step hierarchical multiple ToI contact mining framework.

will be used as the baseline to compare the accuracy of other
approaches. Then several types of clustering approaches are
applied to obtain clustering results that are utilised to identify
contacts. Thereafter MBR-s approach (an extension of single
ToI contact mining [25]) is used to identify contacts, serially
going through each ToI for contact mining. These algorithms
will be used as baselines to evaluate the comparative per-
formance analysis of our proposed approaches with respect
to accuracy, efficiency, scalability, parameter sensitivity and
applicability.

A. DATA GATHERING
A spatio-temporal trajectory consists of a series of nodes
where each node is denoted by trajectory id, latitude, lon-
gitude and a corresponding timestamp. Three datasets were
artificially generated with varying sizes and different com-
plexities to explore the wide spectrum of trajectories, and one
real-world dataset is downloaded from the Web in order to
carry out our experiments.

Generated dataset 1 (denoted by Gd1) is artificially gen-
erated composed of 100 trajectories (among them 20 as ToI)
with varying number of nodes in each trajectory. This dataset
is further subdivided into four sub-datasets having 500, 1000,
2500 and 5000 nodes per each trajectory to carry out ded-
icated experiments. This dataset is used to compare the
accuracy of each approach against the ground truth obtained
by the brute-force approach. This dataset is also used to com-
pare the efficiency against the brute-force, clustering, MBR-s
and MBR-m (MBR based multiple ToI) approaches. Please
note that this is a relatively small dataset as the brute-force
and clustering approaches consume a considerable amount of
processing time, it becomes infeasible to run these traditional
approaches with large spatio-temporal trajectories.

Generated dataset 2 (denoted by Gd2) is artificially gen-
erated consisting of 100 trajectories and having 20 ToI.
This dataset is then subdivided into four sub-datasets having
1000, 2000, 5000 and 10000 nodes per each trajectory to
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compare the efficiency amongst MBR-m and our proposed
approaches. Since these approaches are more efficient, rela-
tively large dataset is generated. This dataset is also utilised
to perform parameter sensitivity experiments.

Generated dataset 3 (denoted by Gd3) is artificially gen-
erated composed of varying trajectories having 1000 nodes
per trajectory. Several experiments were conducted to analyse
the efficiency of each approach having 100, 200, 500 and
1000 trajectories where 20 trajectories are used as ToI. These
experiments are performed to see how efficiency varies with
an increasing number of trajectories.

Generated dataset 4 (denoted by Gd4) is similar to Gd2
but having 30 ToI. These datasets are used to perform exper-
iments to observe the efficiency variation with regards to the
number of ToI.

Generated dataset 5 (denoted by Gd5) is generated with
100 trajectories where 20 trajectories are used for ToI. This
dataset is then subdivided into four sub-datasets having
10000, 20000, 50000 and 100000 nodes per each trajec-
tory to compare the scalability of the approaches. This is a
larger dataset compared to other datasets hence it requires to
perform a scalability experiment.

Generated dataset 6 (denoted by Gd6) is generated with
10000 nodes per trajectory. Experiments were conducted to
analyse the scalability of each approach having 100, 200,
500 and 1000 trajectories when 20 trajectories are used as
ToI. These experiments are performed to see how scalability
is affected by an increasing number of trajectories.

Downloaded dataset 1(denoted by Dd1) is downloaded
from Microsoft Geolife and utilised to examine the applica-
bility of the approaches with real data. This dataset contains
100 trajectories which include 20 ToIs. This dataset is sub-
divided into four sub-datasets having 1000, 2000, 5000 and
10000 nodes per each trajectory to analyse efficiency.

B. DATA PREPROCESSING
Raw spatio-temporal trajectory data has inaccuracies due to
the nature of trajectory acquiring devices. These inaccuracies
such as measurement inaccuracies and spatial uncertain-
ties such as over-sampled complexity and under-sampled
simplicity must be resolved prior to experiments. Initially,
inconsistencies of different formats of data, due to various
types of data acquiring devices are processed. Then, measure-
ment inaccuracies are handled by identifying and removing
inaccurate and incomplete data. Then spatial uncertainties are
addressed by finding the linear movement of trajectories and
correcting the sampling rates.

C. USER SPECIFIED ATTRIBUTES
User specified attributes are used to find the contacts in
various types of situations. This is performed to illustrate our
approaches are parameter insensitive and applicable to vari-
ous applications. Users can define spatial s-neighbourhood
threshold, temporal t-neighbourhood threshold and a con-
tact duration d-neighbourhood threshold in order to identify
contacts. For instance, in relation to contagious disease

situations, to identify potentially affected humans from
known infected humans, a user may define spatial
s-neighbourhood threshold as maximum 2 meters (the effec-
tive range of the virus), temporal t-neighbourhood threshold
as maximum 15 minutes (effective lifetime of the virus)
and a duration d-neighbourhood as at least 5 seconds
(minimum contagion duration). Users may define these
attributes according to the type of contagious disease.
Furthermore, in relation to criminal network activities, con-
tacts of known criminals may be identified by defining spatial
s-neighbourhood threshold as at most 2 meters (effective
range of the meeting), temporal t-neighbourhood thresh-
old as at most 5 seconds (arrival time), and a duration
d-neighbourhood threshold as at least 1 minute (effective
meeting time). Various types of experiments have been
conducted in Section V-E to illustrate the sensitivity of
parameters with different values.

D. MULTIPLE TOI CONTACT MINING APPROACHES
This section covers three multiple ToI contact mining
approaches and four proposed new methods.

1) BRUTE-FORCE APPROACH
Initially, a naive brute-force approach was performed to iden-
tify ground-truth contacts. All nodes in multiple ToI are
compared against all nodes in OT to find true positive con-
tacts. Given a set T = {T1, T2,. . . , Tn} of spatio-temporal
trajectories and ToI Ta /∈ T , this approach requires |Ta| x
|T1| x |T2| x. . . x |Tn| operations. Even though this is a time-
consuming operation, this approach is required as there are
no datasets with true ground-truth contacts available.

2) CLUSTERING METHODS
As clustering is to identify a set of nodes in trajectories
exhibiting similar spatio-temporal similarities, clustering
could be a potential approach to detect contacts. This clus-
tering prunes the search space and focuses on areas of high
densities, thus it is a solid candidate to improve efficiency.
Different categories of clustering methods were discussed in
the literature and four clustering methods from most suitable
for trajectories have been utilised in this paper. This includes
DBSCAN and OPTICS clustering from the density based cat-
egory, k-Means clustering from the distance based category,
and BIRCH clustering from the hierarchical based category.
The choice is intentionally to cover the wide spectrum of
clustering categories and also to investigate which category of
clustering methods is more suitable for multiple ToI contact
mining for spatio-temporal trajectories. As clustering needs
to be undertaken prior to contact mining, an overhead is
involved in this approach.

3) MBR-s APPROACH
MBR-s approach utilises aMBRwhich is computed using the
spatial s-neighbourhood threshold for each node of trajectory
in ToI. Once computed, each node of OT is compared against
to see if each node in OT is within the MBR which indicates
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st-neighborhood. In multiple ToI, we need to iterate each
trajectory in ToI to find all multiple ToI contacts. This is an
extension of single ToI contact mining [25].

4) MULTIPLE ToI CONTACT MINING APPROACHES
Four approaches are proposed in this paper to find multiple
ToI contacts.

a: APPROACH 1 – MBR-m
A straightforward extension ofMRB-s is to consider all MBR
of ToI at the same time to efficiently process contact mining.
Similar to MBR-s, this approach creates a MBR initially
for all nodes of each trajectory in ToI. Then nodes in OT
are compared to see whether they are within MBRs of all
trajectories in ToI. Instead of going through each node of
each trajectory in ToI, this approach compares all nodes of
all trajectories in ToI.

b: APPROACH 2 – MBR-mm
Initially the minimum and maximum of latitude, longitude
and time-stamp of all nodes in ToI are obtained. Then each
node of OT is compared against to see if it is within these
boundaries (the minimum and maximum) as an initial prun-
ing phase. Thereafter only those nodes within the boundaries
are compared to see whether it is within MBRs. Hence this
approach uses only the nodes within the minimum and maxi-
mum boundary, it is named as MBR-mm. Hence all nodes in
OT are not compared against all MBRs this approach will be
more efficient than MBR-m approach.

c: APPROACH 3 – MBR-sn
In this approach, initially each node of OT is compared to
find the nearest node of ToI and this distance is obtained.
Thereafter using the average timestamp interval, the number
of nodes to reach this distance is calculated. Hence this is the
shortest path to the node in ToI, the result can be used to skip
the number of nodes in OT and hence to further prune the
search space. The details of this approach are described in
Algorithm 1.

d: APPROACH 4 – MBR-ms
Both MBR-mm (Approach 2) and MBR-sn (Approach 3) are
combined to further reduce the search space, as this approach
inherits the benefits from both approaches, it will be the most
efficient approach.

V. EXPERIMENTAL RESULTS
A. COMPUTER SPECIFICATIONS
A workstation with an Intel(R) Core (TM) i7-8750H @
2.20 GHz processor and 20 GB unallocated memory is used
to perform all experiments in this paper. Python programming
language is utilised to implement all algorithms.

Algorithm 1 Find_Contacts_MBRsn
Input:
dsTOI :Trajectories of interest dataset;
dsOT :Other trajectories dataset;
dsAttributes: User provided attributes;
Output
dsContactsFound : Contacts found;

1: function Find_Contacts_MBRsn(dsTOI , dsOT , dsAttributes)
2: Create an empty list dsContactsFound ;
3: Assign time taken move to next node to timeNode;
4: while not end of dsOT
5: Assign to dsOT [id] to id ;
6: while dsOT [id] = id
7: Find the nearest node of dsTOI ;
8: Assign distance to nearest node to distanceToNode;
9: Assign distanceToNode / timeNode to nodesToSkip;
10: if nodesToSkip <= 1
11: Find contact using dsAttributes;
12: if contact found
13: Append dsOT [id] to dsContactsFound ;
14: Skip to next id
15: Exit while loop
16: else
17: Skip to next node
18: end if
19: else
20: Skip nodesToSkip;
21: end if
22: end while
23: end while
24: return dsContactsFound ;

25: end function

B. ACCURACY ANALYSIS
This experiment is conducted with all approaches to compare
the accuracy amongst each of them which can be observed
in Figure 2. Initially brute-force approach is conducted to
identify ground-truth data, and the result is used as a baseline
to compare the accuracy of other approaches. A relatively
small dataset (Gd1) is used to perform this experiment since
the brute-force approach consumes a considerable amount
of processing time to find the ground-truth true positive
contacts. The dataset consists of 100 trajectories, and four
experiments were conducted with each trajectory having 500,
1000, 2500 and 5000 nodes per trajectory. Out of 100 trajec-
tories, 20 trajectories are identified as ToI. This is conducted
to observe how an accuracy level varies with the number of
nodes in each trajectory. It is noted that in general cluster-
ing approaches are computationally fast at the expense of
effectiveness exhibiting a varying level of accuracies. Density
and hierarchical based clustering methods show reasonably
accurate results while the distance based clustering method
shows less accurate results. The reason behind this is the den-
sity based and hierarchical based clustering methods group
nodes spatio-temporally close to each other whilst the dis-
tance based clustering method does not. Also, the distance
based clustering may identify nodes in potential contact areas
as outliers. One interesting point to note is that the clustering
based approaches improve their accuracies in general as there
are more nodes in trajectories. This is not surprising as there
will be more nodes falling in the clustered areas (however
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FIGURE 2. Comparison of approaches: accuracy percentage for
100 trajectories each having 500, 1000, 2500 and 5000 nodes.

it will be achieved at the expense of efficiency as there will
be more nodes to check for possible contacts). In conclusion,
MBR-s and our four proposed approaches are able to identify
all true positive ground-truth contacts.

C. EFFICIENCY ANALYSIS
This experiment is conducted utilising the same dataset
(Gd1), used in previous experiment to analyse the efficiency
of each approach. Initially clustering methods, MBR-s and
MBR-m methods are compared against the brute-force base-
line approach as shown in Figure 3. It is observed that
certain clustering approaches consume more processing time
than the baseline approach. This is due to the additional
requirement of processing time for clustering. This clearly
demonstrates that clustering cannot be directly applied to
contact mining as it fails to detect all ground-truth contacts
and also even its extra time to compute clusters places an
additional computational burden to contact mining. Particu-
larly, the density based approaches (DBSCAN and OPTICS)
suffer from inefficiencies even though they perform better in
accuracy than the distance based clustering approach. Even

FIGURE 3. Comparison of approaches: processing time in seconds for
100 trajectories having 500, 1000, 2500 and 5000 nodes in each
trajectory.

though the distance based clustering performs the worst in
effectiveness among other approaches, it performs better in
efficiency than other clustering approaches. Undoubtedly,
MBR-s and MBR-m approaches demonstrate promising
results as shown in Figure 3. Hence processing times of these
two approaches are not noticeable in Figure 3, it is shown
separately in Figure 4.

FIGURE 4. Comparison of MBR-s and MBR-m approaches: processing
time in seconds for 100 trajectories having 500, 1000, 2500 and
5000 nodes in each trajectory.

A relatively large dataset (Gd2) is used to perform the
efficiency analysis of proposed four approaches. This dataset
has 100 trajectories with 20 ToI, and four experiments are
conducted with each trajectory having 1000, 2000, 5000 and
10000 nodes. The most efficient MBR-m approach in pre-
vious experiment is utilised here as the baseline to compare
against our three other approaches. The result is shown in
Figure 5.

FIGURE 5. Comparison of MBR-m with proposed approaches: processing
time in seconds for 100 trajectories with 20 ToI and 1000, 2500, 5000 and
10000 nodes in each trajectory.

It is observed that MBR-mm is slightly more efficient
than the baseline approach MBR-m. But approach MBR-sn
is far more efficient than MBR-mm. The combination
(MRB-ms) of approaches MBR-mm and MBR-sn even fur-
ther improves the efficiency of MBR-sn. The efficiency of
approachMBR-mm is dependent on how dense the nodes are.
When the nodes of trajectories are spread out in relation to the
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geographical study region and the time span, the efficiency is
higher and vice versa. However, this dependency is lessened
with MBR-ms as it consistently performs better than all other
approaches in various settings.

The experiment shown in Figure 6 is conducted to inves-
tigate how efficiency varies with the number of trajectories.
Dataset (Gd3) is used with a fixed number of nodes per trajec-
tory, which is 1000 with an increasing number of trajectories
100, 200, 500, 1000 to perform this experiment.

FIGURE 6. Comparison of MBR-m with our approaches: processing time
in seconds for 100 trajectories with 20 ToI and 10000, 20000, 50000 and
100000 nodes in each trajectory.

Please note that both experiments shown in Figure 5 and
Figure 6 have the same number of total nodes (with different
arrangements), we can induce some findings in both results.
It is observed that efficiencies of all approaches in Figure 6
(varying the number of trajectories) are slightly better than
those shown in Figure 5 (varying the number of nodes per
trajectory). This suggests that our proposed algorithms are
more robust in efficiency with a growing number of trajec-
tories than a growing number of nodes per trajectory.

All experiments above were conducted with 20 ToI out of
100 trajectories. The following experiment shown in Figure 7
is performed with dataset (Gd4) having 30 ToI. It is observed
that efficiency in all the approaches is slightly lower than

FIGURE 7. Comparison of MBR-m with proposed approaches: processing
time in seconds for 1000 nodes per trajectory with 20 ToI and 100, 200,
500, 1000 trajectories.

the previous experiment. This is due to the fact that when
there are more nodes in ToI, the requirement of comparison
amongst each node is more.

D. SCALABILITY ANALYSIS
This experiment is conducted to demonstrate the scalability
of our approaches with a comparatively larger dataset (Gd5).
The dataset consists of 100 trajectories with 20 trajectories as
ToI and having 10000, 20000, 50000 and 100000 nodes per
trajectory. All approaches as seen in Figure 8 display a linear
growth indicating that the scalability of proposed approaches.

FIGURE 8. Comparison of MBR-m with our approaches: processing time
in seconds for 100 trajectories with 30 as ToI having 1000, 2500, 5000 and
10000 nodes in each trajectory.

Another experiment was conducted using the dataset Gd6
having 10000 nodes per trajectory with 100, 200, 500 and
1000 trajectories as shown in Figure 9. This was performed
to see how an increasing number of trajectories effects the
scalability. This also exhibits a similar trend as shown in
Figure 8 illustrating the scalability of proposed approaches.

FIGURE 9. Comparison of MBR-m with our approaches: processing time
in seconds for 10000 nodes per trajectory with 20 ToI and having 100,
200, 500, 1000 trajectories.

E. PARAMETER SENSITIVITY ANALYSIS
This experiment is conducted to demonstrate the parameter
sensitivity of proposed approaches. Users can have different
parameter values for various applications. Dataset Gd2 is
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used here with 100 trajectories where 20 ToI and 1000 nodes
per trajectory used. Also, different parameter values are used
to explore the parameter sensitivity analysis. It is observed in
Figure 10 that all approaches have a similar efficiency trend
with varying parameter values hence it can be concluded
that our proposed approaches are insensitive to parame-
ter values, and robust to various parameter settings and
real-world scenarios.

FIGURE 10. Comparison of MBR-m with our approaches: processing time
in seconds for 100 trajectories with 10 ToI and each having 10000 nodes.

F. APPLICABILITY ANALYSIS
A downloaded dataset (Dd1) is used to experiment the
applicability of our approaches. This was conducted using
100 trajectories and a varying number of nodes per trajectory
ranging from 1000, 2000, 5000 and 10000.

As shown in Figure 11, it is observed that efficiency results
are similar to previous experiments exhibiting an outperform-
ing trend, and also note that these approaches are able to
detect all true positive contacts from dataset Dd1 that can be
found by the brute-force approach as ground-truth contacts.
This indicates that these approaches are applicable to
real-world data.

FIGURE 11. Comparison of MBR-m with our approaches: processing time
in seconds for 100 trajectories with 20 ToI and 1000, 2500, 5000 and
10000 nodes in each trajectory.

VI. CONCLUSION
Contact data mining is an interesting topic as it investi-
gates potential contacts involving interactions with others.

It could be used to identify suspicious interactions in criminal
networks and to find potential interactions in pandemic dis-
ease situations. In many situations, we are required to find
contacts from multiple ToI as there would be more than one
criminal in the criminal network analysis and one patient in
the epidemic disease analysis.

This paper introduces this newmultiple ToI contact mining
and proposes a number of approaches that are able to iden-
tify all true positive ground-truth contacts. First, this paper
designs and implements clustering based approaches, extends
the single ToI contact mining, and proposes several MBR
based approaches. A various set of experiments demonstrates
that our proposed multiple ToI contact mining approaches
are able to detect all ground-truth contacts, more efficient
than clustering based and extended single ToI approaches,
and also robust and insensitive to various parameter settings
demonstrating the efficiency, effectiveness, scalability and
applicability to various real-world settings and scenarios.

Future directions are in two folds. First, an investigation
into multi-level contact mining is of interest as it is evident in
real-world where a criminal is contacted by potential people
who will be in contact with other people in a later stage.
Second, as there is no known dataset with ground-truth con-
tacts available. A generation of datasets with ground-truth
contacts is an area to explore.
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