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Abstract  Groundwater salinity is a critical factor 
affecting water quality and ecosystem health, with 
implications for various sectors including agriculture, 
industry, and public health. Hence, the reliability and 
accuracy of groundwater salinity predictive models 
are paramount for effective decision-making in man-
aging groundwater resources. This pioneering study 
presents the validation of a predictive model aimed 
at forecasting groundwater salinity levels using three 
different validation methods and various data parti-
tioning strategies. This study tests three different data 
validation methodologies with different data-parti-
tioning strategies while developing a group method 
of data handling (GMDH)-based model for predicting 

groundwater salinity concentrations in a coastal aqui-
fer system. The three different methods are the hold-
out strategy (last and random selection), k-fold cross-
validation, and the leave-one-out method. In addition, 
various combinations of data-partitioning strategies 
are also used while using these three validation meth-
odologies. The prediction model’s validation results 
are assessed using various statistical indices such as 
root mean square error (RMSE), means squared error 
(MSE), and coefficient of determination (R2). The 
results indicate that for monitoring wells 1, 2, and 
3, the hold-out (random) with 40% data partitioning 
strategy gave the most accurate predictive model in 
terms of RMSE statistical indices. Also, the results 
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suggested that the GMDH-based models behave dif-
ferently with different validation methodologies and 
data-partitioning strategies giving better salinity pre-
dictive capabilities. In general, the results justify that 
various model validation methodologies and data-
partitioning strategies yield different results due to 
their inherent differences in how they partition the 
data, assess model performance, and handle sources 
of bias and variance. Therefore, it is important to use 
them in conjunction to obtain a comprehensive under-
standing of the groundwater salinity prediction mod-
el’s behavior and performance.

Keywords  Groundwater salinity · Machine 
learning · GMDH · FEMWATER· Data partitioning 
strategies

Introduction

The application of machine learning-based predictive 
models in the field of water resources management 
and engineering has increased significantly in the last 
decade. The availability of several machine learning 
algorithms, high-performing computers and infra-
structures, and modeling expertise has made it easier 
to use machine learning-based models for water qual-
ity prediction (Ahmed et  al., 2019; Liu et  al., 2016), 
water network management (Sattar et al., 2019), water 
infrastructure construction (Zhang et  al., 2018), and 
water level forecasting (Samani et  al., 2023a, 2023b; 
Zhu et al., 2020). Developing a robust water resources 
prediction model is a complex task as it is dependent 
on the dataset used, validation methodology implied, 
and data-partitioning strategy applied. While the data-
set for a predictive modeling task can be easily acces-
sible, using a suitable validation and data-partitioning 
strategy requires attention to detail and thorough 
scrutiny as they both have a direct correlation to the 
model’s predictive capability (Kazemi et al., 2020). In 
this work, a first-ever comparison study is conducted 
where three different predictive model validation and 
several data-partitioning strategies are employed to 
develop groundwater salinity prediction models.

Predictive models are mainly used for two pur-
poses in water resources engineering research and 
applications. First, predictive models are developed 
to predict future conditions and scenarios provided 
the input dataset required by the model is available 

(Khalil et  al., 2005). Second, predictive models are 
used for replicating the behavior of a high‐fidelity 
physics‐based model or simply a complex numerical 
simulation model (Zahura et  al., 2020). In the lat-
ter case, the predictive model is termed as the com-
plex model’s surrogate as it can accurately mimic 
the complex system and provide reasonable outputs 
when compared to the numerical simulation model. 
For both purposes, predictive models need to be vali-
dated for its accuracy, efficiency, and reliability. This 
is one of the most challenging tasks as it requires 
careful consideration, modeling effort, and computa-
tional time. Model validation is the process used to 
decide whether the model performs satisfactorily for 
a problem of interest (Morrison et  al., 2013). Once 
the model is validated for its accuracy, it can be used 
for its designed purpose, i.e., to either predict future 
conditions or accurately replicate the responses of a 
complex numerical simulation model. In this study, 
our focus is on the latter part, which is to develop and 
validate a predictive model capable of mimicking the 
responses of a complex 3D groundwater numerical 
simulation model.

In developing a groundwater predictive model, the 
standard procedure is as follows. First, the required 
number (user-dependent) of input and output datasets 
is obtained by running the complex 3D groundwa-
ter numerical simulation model. Second, this dataset 
is separated/divided into two sets: the model fitting 
set (training) and the validation set. The training set 
is used to fit the model, while the validation set is 
used to assess the performance of the trained model. 
Third, mathematical performance comparison indices 
are used to compare the performances of the outputs 
given by the numerical simulation model and the cor-
responding output from the predictive model. The 
biggest nontrivial question is to decide on the pro-
cedure of how to divide the data. Using appropriate 
standard validation methodology answers this ques-
tion where multiple partitions of the data are used for 
model validation. The most common validation meth-
ods are the hold-out strategy (either last and random 
selection), k-fold cross-validation, and leave-one-out 
method, which are described next.

Hold-out strategy is one of the simplest and old-
est validation methods where a portion of the selected 
dataset is used for fitting the model, and the leftover 
portion is used for validation (Pang & Jung, 2013). 
Often, the test set contains about 10 to 30% of the 
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available dataset, and the fitting set contains about 90 
to 70% of the dataset (Berrar, 2019). Data partition-
ing in the hold-out methodology can be done in two 
ways: (1) the last portion (certain percentage) of the 
dataset is used for validation, called hold-out (last); 
and (2) portions of the fitting and validation dataset 
are selected randomly (from anywhere) from the data 
space, called hold-out (random). In a typical k-fold 
cross-validation procedure, the dataset is randomly 
and evenly split into k parts (Valavi et  al., 2018). A 
candidate model is built based on k − 1 part of the 
dataset, called a training set. The prediction accu-
racy of this candidate model is then validated using 
the k set. Using each of the k parts as the test set and 
repeating the model building and evaluation proce-
dure, a final model is built, and its prediction capabil-
ity is compared using standard comparative analysis 
mathematical indices. For k = n, where n is the total 
number of input–output observations in the dataset, 
we obtain a special case of k-fold cross-validation, 
called leave-one-out validation. In this methodology, 
each individual dataset, in turn, is held out for vali-
dating the model. Detailed explanations of these three 
validation methodologies are presented in “Predictive 
model validation methods.” It is critically important 
for predictive model developers to investigate which 
validation methods work best for a particular data-
set. Therefore, the objective of the proposed study 
is to employ all three predictive model validation 
methodologies with different data partitioning strat-
egies to analyze their effect on the model accuracy 
and computational time requirement. The interest is 
in presenting scientific proof that the data validation 
method and the number of datasets are both impor-
tant for developing robust groundwater salinity pre-
diction models.

In various hydrological studies, it is seen that a 
single validation methodology and a data-partitioning 
strategy are used for developing a predictive model. 
However, in some recent works, it is clearly estab-
lished that it is advisable to employ different valida-
tion methodologies and data-partitioning strategies 
and choose the best performing model for a predictive 
task. For example, in a recent study, Vabalas et  al. 
(2019) established that validation of machine learn-
ing models is imperative for developing a robust pre-
dictive model. Their study demonstrated that using 
one validation methodology may give rise to biased 
performance estimates and will not be sufficient to 

observe overfitting. They also suggested that mean-
ingful comparisons of different validation methods 
are even more important when available training and 
testing samples are small. Lastly, they concluded that 
it is vital to utilize and compare different validations 
with data partitioning strategies to develop a robust 
predictive model regardless of the sample size. In 
another similar study, Morrison et  al. (2013) argued 
that while employing one validation methodology 
with a single data-partitioning strategy is often used, 
in practice, the distinction between training and val-
idation is not so clear and simple. Their study sug-
gested that the available datasets must be optimally 
divided, and their performances compared to develop 
a reliable predictive model.

In addition, Wang et al. (2015) demonstrated that a 
predictive model cross-validation performance often 
relies on the quality of the data partitioning. Their 
study outlined that poor data partitioning may cause 
poor predictive results, and therefore, creating sev-
eral partitions of datasets using different experimental 
designs and comparing their performances is a must 
while developing an accurate predictive model. Fur-
thermore, Seidu et  al. (2023) demonstrated different 
data partitioning techniques used for predicting opti-
mum groundwater levels by different machine learn-
ing models. The authors reported that 70–30 and 
80–20 data partitions gave the best groundwater level 
predictions.

In this work, our main aim is to apply the three 
most common prediction model validation meth-
odologies and different data partitioning strategies 
for developing a group method of data handling 
(GMDH)-based predictive model and gauge their 
influences on the model’s prediction performances. 
GMDH-based prediction models have shown con-
siderable efficiency in replicating groundwater simu-
lation models and predicting water salinity concen-
trations (Lal & Datta, 2021). GMDH stands out as 
a superior model compared to others like artificial 
neural networks (ANN), long short-term memory 
(LSTM), and recurrent neural networks (RNN) due 
to its unique ability to autonomously select the opti-
mal architecture and features for a given dataset. 
Unlike ANN, LSTM, and RNN, which often require 
manual tuning of hyperparameters and feature selec-
tion, GMDH employs a self-organizing approach that 
iteratively refines its structure, effectively minimizing 
the risk of overfitting and improving generalization 
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performance (Ghosh & Tagore, 2017). GMDH’s abil-
ity to handle both linear and non-linear relationships 
within data makes it particularly versatile, outper-
forming ANN, LSTM, and RNN in scenarios where 
complex patterns and interactions exist. Addition-
ally, GMDH exhibits greater transparency and inter-
pretability, as its recursive structure allows for easy 
understanding of the underlying decision-making 
process, a feature often lacking in black-box models 
like ANN and LSTM (Sahoo & Sankaranarayanan, 
2017). Overall, GMDH emerges as a powerful mod-
eling technique that excels in automating the model 
selection process, providing robust performance, and 
offering insights into the data generation process.

A study conducted by Samani et  al., (2023a, 
2023b) for Chaghlondi aquifer in Iran reported that 
GMDH performs better in predicting qanat water flow 
over other machine-learning models. Amini et  al. 
(2023) combined GMDH and Kriging to reduce the 
errors in groundwater salinity estimation. The authors 
reported that using the cross-validation approach, the 
GMDH models performed better than other machine 
learning models.

To achieve the targeted goals of the study, input 
and output datasets from a simulated coastal aqui-
fer system are used to analyze the performance of 
the developed groundwater salinity predictive mod-
els. This study suggests that while it may be easy to 
choose a predictive modeling algorithm for a task, 
it is very challenging to choose a suitable validation 
methodology and an optimal data-partitioning strat-
egy. In addition, the result of this study suggests 
that it is imperative to conduct different experiments 
using different predictive model validation and 
data-partitioning strategies to develop a robust pre-
dictive model. The results presented are highly sig-
nificant as they validate the usefulness of employ-
ing the three different predictive model validation 
methodologies and the reasons behind using differ-
ent data-partitioning strategies. For the first time, a 
study of this nature is reported in the field of water 
resources research. This study is the first to justify 
the fundamental reasons for using different valida-
tion methodologies and data-portioning strategies 
when developing a predictive model. The evalu-
ation of the various methodologies and strategies 
for predictive model development using a coastal 
aquifer case study was needed to highlight how a 
predictive model behaves under different validation 

methodologies and data-partitioning strategies and 
why it is advisable for water resources engineers, 
hydrogeologists, climatologists, and water manage-
ment decision-makers to not rely on a single vali-
dation methodology or data-partitioning strategy 
while developing predictive models.

The paper is structured as follows. The method-
ology including the descriptions of the various vali-
dation methodologies, data partitioning strategies, 
description of the GMDH algorithm, the experi-
mental design, and the study area is presented in the 
“Methods and Data.” Results and discussions are 
presented in the “Results and discussion.” Lastly, 
the recommendations as well as future work and 
conclusions are presented in the last two sections, 
respectively.

Methods and data

3D groundwater numerical simulation

The FEMWATER model is a three-dimensional 
finite element model that can simulate the flow and 
mass transport of both saturated and unsaturated 
conditions of porous media (Lin et  al., 1997). For 
the present study, the FEMWATER package from 
Groundwater Modeling Systems (Aquaveo) was 
used to simulate pumping-induced saltwater intru-
sion phenomena into a coastal aquifer system. The 
FEMWATER modeling platform uses the Galerkin 
finite-element approximation and residual finite-
element method to approximate flow and transport 
equations. Successful implementation of FEMWA-
TER for groundwater flow and transport modeling 
has been reported in several studies (Koda & Wien-
claw, 2005; Carneiro et al., 2010; Kim et al., 2012; 
Lal & Datta, 2020; Sharan et al., 2021). In develop-
ing a FEMWATER 3D model, the governing flow 
and transport equations can be solved depending on 
the specific value of a hydrogeological substance, 
hydraulic conductivity characteristics, initial condi-
tions, and boundary conditions. Using the FEMWA-
TER model, flow and transport equations are calcu-
lated simultaneously to simulate seawater intrusion. 
In this study, a hypothetical coastal aquifer system 
was simulated using the FEMWATER computer 
package for method evaluation and data acquisition.
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Experimental design for data acquisition

The constructed 3D numerical simulation model of 
the study area of 2.53 km2 comprised a portion of 
a multi-layered coastal aquifer. The length of the 
seaside boundary, shown in Fig.  1, was 2.13  km, 
and the other two side boundaries were 2.04  km 
(Boundary A) and 2.79  km (Boundary B), respec-
tively. The aquifer had a depth of 60 m, which was 
equally divided into three layers. Each layer in the 
aquifer had different hydrologic properties, and 
therefore, the aquifer was considered heterogene-
ous vertically. The aquifer system consisted of eight 
freshwater abstraction wells (FAW) and five saltwa-
ter abstraction wells (SAW) for seawater intrusion 
prevention located close to the seaside boundary. 
Saltwater abstraction from wells installed near the 
coastline is a common approach to controlling salt-
water encroachment into fresh groundwater and has 
been successfully implemented in various case stud-
ies worldwide (Kallioras et al., 2012; Sharan et al., 
2024; Sreekanth & Datta, 2010). Saltwater abstrac-
tion creates a trough along a shoreline, causing 

saltwater to flow inward and freshwater to flow in 
the opposite direction, i.e., toward the sea, which 
creates a hydraulic barrier that can reduce saltwa-
ter intrusion into freshwater systems (Sharan et al., 
2023; Todd, 1974). Furthermore, Lal and Datta 
(2019) evaluated the benefits of SAW using a real 
case study aquifer system in the Pacific Islands. 
Their results demonstrated that the installation of 
SAW can serve a beneficial purpose and be regarded 
as a practical option for regulating saltwater intru-
sion. Three additional monitoring wells (MW1, 
MW2, and MW3) were installed to monitor ground-
water salinity. A 3D view of the simulated aquifer 
system with different boundaries and well loca-
tions is given in Fig.  1. The seaside boundary had 
constant contact with the ocean and was assigned 
a constant head and constant concentration bound-
ary (assigned concentration = 35  kg/m3). The other 
two boundaries were no-flow boundaries. The aqui-
fer was discretized into finite triangular elements 
having an average element size of 150 m. The ele-
ment size near the wells was reduced to 75 m, and 
constant groundwater recharge was specified over 

Fig. 1   Groundwater salinity contour at the end of the 4th time step (4 years) in response to one set of pumping conditions from all 
groundwater and saltwater abstraction wells
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the entire model domain. The volumetric domain 
modeled by FEMWATER was idealized and discre-
tized into a “Prism or wedge.” The elements were 
typically grouped into zones representing different 
stratigraphic units. Each element is assigned a mate-
rial ID representing the zone to which the elements 
belong. When constructing a mesh, care was taken 
to ensure that elements do not cross or straddle 
stratigraphic boundaries. The screening interval was 
taken from the aquifer’s second and third layers. 
Various hydrologic parameters and their respective 
values used for the simulation are given in Table 1.

The relative conductivity, moisture content, 
and water capacity curves are usually determined 
directly by performing a series of tests on the soils 
involved in the study. However, as done in many 
cases, this study approximated the curves using a 
set of measured or approximated constants and a set 
of empirical relationships. Specifically, the curves 
were generated using the van Genuchten functions 
(van Genuchten, 1980) given below.

K
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[1 − (1 − �
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e )
�
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2
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And

θw	� moisture content (dimensionless)

θe	� effective moisture content (dimensionless)

θs	� saturation moisture content (dimensionless)

θr	� residual moisture content (dimensionless)

β,γ	� soil-specific exponents (dimensionless)

α	� soil-specific coefficient (1/L)

Kr	� Relative Conductivity

The values for saturated and residual moisture con-
tents and the van Genuchten α and β terms for the soil 
type used in the study were attained from Carsel and 
Parrish (1988). Also, when applying the α term, nec-
essary care was taken to convert it to the proper units.

The 3D numerical simulation was commenced 
initially using a steady-state condition of the aqui-
fer, achieved via constant pumping of 300 m3/day 
from only three of the production wells for a period 
of 20  years. After 20-year simulation period, it was 
noticed that the observed heads at different nodes in 
the model domain became constant. These constant 
heads and concentrations were used as initial condi-
tions (initial head and concentration) to run the model 
for a further 4 years (using yearly time steps) where 
pumping from all FAW and SAW was instigated. 
This model was used to generate datasets needed for 
developing the GMDH-based groundwater salinity 
predictive models. The aquifer had 13 pumping wells 
(8 FAW and 5 SAW), and constant pumping from 
each well every year within the 4-year management 
time frame was instigated. This gave a total variable 
of 52 (13 wells × 4 years). A set of 700 randomized 
transient pumping (inputs) values from all FAW and 
SAW were obtained via Latin hypercube sampling 
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Table 1   Hydrologic parameters values used for 3D numerical 
simulation model development

Hydrologic parameters Values used for 
simulation pur-
poses

Hydraulic conductivity x direction 15 m/d
y direction 7.5 m/d
z direction 1.5 m/d

Bulk density 1600 kg/m3

Longitudinal dispersivity 50 m
Lateral dispersivity 25 m
Molecular dispersion coefficient 0.69 m2/d
Density reference ratio 0.025
Soil porosity 0.46
Compressibility 8.5 × 10–15 md2/kg
Dynamic velocity of water 131.328 kg.md
Groundwater recharge 0.00054 m/d
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(Loh, 1996), having an upper bound of 1300 m3/d and 
a lower bound of 0 m3/d. The number of input–output 
datasets was arbitrarily selected. For a similar illustra-
tive coastal aquifer management problem investigated 
in Lal and Datta (2018), 700 pumping and concentra-
tion datasets were found to be sufficient in training 
and validating support vector regression surrogate 
models with reasonable prediction accuracy. On the 
other hand, in a similar saltwater intrusion modeling 
investigation, Yadav et  al. (2017) established that 
only 300 input–output datasets were adequate to train 
an artificial neural network, support vector machine, 
genetic programming, and extreme machine learn-
ing models with reasonable accuracy. The number of 
training and testing datasets is dependent on the pre-
diction performances of each machine learning-based 
predictive model type. The needed training and test-
ing datasets can be increased or decreased depend-
ing on the prediction capabilities of the models, 
which can be deduced from the performance evalu-
ation results. In the present case, 700 datasets were 
found to be sufficient in developing and validating the 
GMDH models. Each of these 700 datasets was fed 
to the numerical simulation model, and groundwater 
salinity values at respective monitoring wells were 
monitored. This was repeated 700 times to obtain 700 
different sets of input–output patterns. Each simula-
tion took approximately 4–5 min to converge. These 
input–output patterns with different validation and 
data partitioning strategies were later used for devel-
oping GMDH-based groundwater salinity prediction 
models.

Predictive model validation methods

Hold‑out validation (last and random selection)

The hold-out methodology is most used to vali-
date predictive models whereby the entire dataset 
is divided into two different sub-sets, namely, train-
ing (model fitting) and test sets. The model is trained 
on the training (or fitting) sub-set data, and then it is 
tested using the test subset. The testing subsets allow 
the users to see how well the developed predictive 
model has performed (Molinaro et  al., 2005; Kim, 
2009; Kumar, 2012). The splitting/division of the 
entire datasets into training and testing subsets can be 
done in two ways. First, the last portion (usually user-
specified x%) of the dataset can be withheld and kept 

separate and used as the testing dataset referred to as 
the hold-out (last) validation methodology. On the 
other hand, in some cases, the testing dataset (user-
specified x%) can be taken randomly from the entire 
datasets available. This is referred to as the hold-out 
(random) validation methodology. Both validation 
methodologies are commonly used for large data-
sets. A simple schematic hold-out strategy is shown 
in Fig.  2a. Kearns (1997) has thoroughly given the 
overall description and a step-by-step guide on how 
to use the hold-out validation methodology and sum-
marized ways in which users can minimize predic-
tive model performance errors. In addition, Sahu and 
Mishra (2011) studied the performance of feed-for-
ward neural network for novel feature selection, and 
their accuracy was tested using the hold-out meth-
odology. Their results showed that support vector 
machine algorithm had 100% accuracy using hold-out 
validation.

k‑fold cross‑validation

The k-fold cross-validation is another commonly 
used validation methodology where model fitting and 
validation use subsets of the entire datasets. Cross-
validation is typically used to improve model predic-
tion, even though we do not have enough data points 
(Dantas, 2020). The validation is done in multiple 
layers and times whereby the entire dataset is divided 
into several parts, referred to as the folds. Each fold 
is used as the validation set at a time, while the 
remaining folds are used as the training set. This hap-
pens iteratively until all the folds have been used as 
a validation set. Mathematically, this process contin-
ues for N number of times, where N takes the value 
of k, depicting the number of validation processes 
conducted on the dataset. A simple k-fold cross-val-
idation process is shown in Fig. 2b. Cross-validation 
is said to permit a high chance of detecting model 
over-fitting. Nurhayati et  al. (2014) used hold-out 
and k-fold cross-validation for accuracy of ground-
water modeling in tidal lowland reclamation using an 
extreme learning machine (ELM). They reported that 
k-fold cross-validation indicated a good performance 
of the ELM at both the training and validation stages. 
Numerous other studies have used the k-fold cross-
validation methodology to evaluate the accuracy of 
various machine learning-based predictive models 
(e.g., Ahmadi et  al., 2022; Borra & Ciaccio, 2010; 
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Fushiki, 2011). These studies also reported that k-fold 
gives better accuracy than other techniques.

Leave‑one‑out validation

The model is evaluated following its name, where 
one observation from the entire dataset is left out for 
model validation. The trained model is then used to 
predict the response value of the one observation that 
was left out. A simple schematic of the leave-one-
out validation methodology is presented in Fig.  2c. 
The leave-one-out validation methodology is slightly 
different from other validation methodologies as it 

uses the entire datasets for model validation each at 
a time. The leave-one-out validation methodology is 
renowned for its important features such as provid-
ing a less biased measure of test mean squared error 
compared to a single test dataset and its ability not 
to overestimate the test mean squared errors. Despite 
offering serious advantages, leave-one-out is less 
commonly used because there is a major drawback 
associated with this methodology. The leave-one-out 
validation methodology is established to take longer 
computational time, and therefore, it is computation-
ally expensive (Zach, 2020). For example, Hawk-
ins et  al. (2003) used hold-out and leave-one-out 

Fig. 2   Schematic of a 
hold-out validation, b 
k-fold cross-validation, and 
c leave-one-out validation 
methodologies
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validation methodology to check the plausibility and 
reliability of their QSAR model. They reported that 
the leave-one-out validation methodology is compu-
tationally demanding than the hold-out strategy due 
to the amount of time required in carrying out leave-
one-out test.

These three validation methodologies with differ-
ent data partitioning strategies were used for devel-
oping GMDH-based groundwater salinity predictive 
models. A description of the different data partition-
ing strategies is given in the next section.

Data partitioning strategies

The hold-out (last), hold-out (random), and k-fold 
validation methodologies can be implemented using 
different subsets or folds of data, respectively. Par-
titioning of data into subsets and/or folds demands 
careful attention and consideration. Different parti-
tioning strategies can be used for a particular mod-
eling task, and most of the time, it is user-dependent. 
Different data partitioning strategies have a different 
impact on the predictive accuracy and the computa-
tional time requirements. In this study, for evaluation 
purposes, 700 datasets were divided using different 
partitioning strategies. The partitioning details are 
given in Table 2.

GMDH algorithm

In recent times, the GMDH algorithm has been suc-
cessfully used in prediction investigations, clusteriza-
tion studies, system identification, data mining, and 
developing knowledge extraction technologies. It was 
first introduced by the former Soviet scientist Ivakh-
nenko and is a widely used method for recognizing 
non-linear relationships between a set of input and 
output (Fernández & Lozano, 2010). In principle, the 

GMDH model functions by generating a high-order 
polynomial network, which is principally a feed-
forward and multi-layer neural network. The GMDH 
works by providing a self-organizing data mining 
platform, which automatically decides the variables 
to be used in the modeling framework, the structure 
(neurons in hidden layers), and the model parameters. 
The model itself provides an optimal structure, which 
reduces the need for prior knowledge and assump-
tions. This feature of the GMDH algorithm reduces 
the possibility of any user biases and minimizes the 
model complexity (Xiao et al., 2017). The construc-
tion of the GMDH models requires the division of 
the input dataset into two groups. The first group is 
used to approximate the parameters of each neuron 
to obtain a partial description of the process, and the 
second group is used to weigh the performance of 
the candidate models that describe the process more 
efficiently (Fernández & Lozano, 2010). Specifically, 
the training dataset is used to approximate the coef-
ficients of the Kolmogorov–Gabor polynomial, while 
the testing set is used in the GMDH network for error 
evaluation. GMDH works by constructing successive 
layers with connections that are the individual terms 
of a polynomial (Srinivasan, 2008). The output of 
each neuron is assessed and evaluated by an external 
criterion. The model disregards the neurons that has 
the poorest prediction results and preserves the neu-
rons with excellent performance as the next layer. 
These steps are repeated to create new layers until the 
error criterion stops decreasing. The whole process of 
training and assortment is repeated on this new layer. 
Once neurons that best satisfy the pre-specified crite-
rion are chosen, the model is verified using the testing 
dataset. A more detailed description of the GMDH 
modeling algorithm is available in the literature (Far-
low, 1984; Liu et al., 2018; Srinivasan, 2008). Also, 
successful implementation of GMDH-based models 

Table 2   Different data-partitioning strategies used for modeling fitting and validation

Validation methodology Data-partitioning strategy Data used for validation

Hold-out (last) 6 different strategies utilized 10%, 20%, 30%, 40%, 50%, and 60%
Hold-out (random) 6 different strategies utilized 10%, 20%, 30%, 40%, 50%, and 60%
k-fold 7 different strategies utilized k = 4, k = 5, k = 6, k = 7, k = 8, k = 9, and k = 10
Leave-one-out 700 different portioning strategies utilized. Each time, 1 

set is left for validation while 699 datasets are used for 
training

k = 700
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for saltwater intrusion and groundwater level pre-
diction is demonstrated in Lal and Datta (2021) and 
Moosavi et  al., (2021), respectively. For the pre-
sent assessment activity, GMDH shell software was 
used for model development. Different validation 
methodologies and data-partitioning strategies were 
user-dependent and manually implemented into the 
GMDH shell. Depending on the provided datasets, 
the GMDH model itself automatically decides the 
variables to be used in the modeling framework, the 
structure (neurons in hidden layers), and the models’ 
parameters. This is one of the significant benefits of 
using GMDH algorithm in predictive modeling. In 
addition, all the GMDH-based predictive models 
were developed using a single standard computer set, 
i.e., (Intel® Core™ i7-2600 CPU @3.40 GHz, 8 GB 
RAM) with RMSE as the external stopping criterion.

Performance evaluation indices

The performance evaluation of all the GMDH models 
developed was evaluated during the fitting and vali-
dation phases to critically examine their efficiency in 
predicting groundwater salinity concentrations. Three 
goodness-of-fit indices (also known as “statistical 
indicators”) such as root mean square error (RMSE), 
mean absolute error (MAE), and coefficient of deter-
mination (R2) were used to evaluate the developed 
GMDH models. Table 3 presents a summary of these 
three indices.

Results and discussion

Hold‑out (last vs. random) validation comparison

The results for the hold-out (last) and hold-out (ran-
dom) validation methodologies in terms of RMSE, 
MAE, R2, and computational time are presented in 
Figs. 3 and 4, respectively.

For MW1, it is observed that for both the fitting 
and validation phases, hold-out (last)–40% gave the 
best predictive accuracy results in terms of RMSE 
and MAE indices. The lowest value of RMSE and 
MAE is obtained during this validation and data-
partitioning strategy. The R2 value remained the same 
for all six data-partitioning strategies. The compu-
tational time requirement decreased as the subset of 
the validation dataset increased, i.e., as the hold-out 
(last)–40% increased. Similar results are recorded 
for MW2 and MW3, i.e., hold-out (last)–40% gave 
the most accurate GMDH-based models in terms of 
RMSE and MAE. Also, similar to MW1, the compu-
tational time requirement for model fitting and valida-
tion decreased as the validation subset increased.

For the hold-out (random) validation methodology, 
it is observed that for both the fitting and validation 
phases, the data partitioning strategy of 40% gave the 
best accuracy results in terms of RMSE and MAE 
for all three monitoring wells. The lowest values of 
RMSE and MAE were recorded for models devel-
oped using the hold-out (random)–40% validation 
and data-partitioning strategy. The R2 values showed 
no particular trend as they fluctuated between 0.996 
to 0.997, 0.982 to 0.996, and 0.983 to 0.985 for MW1, 
MW2, and MW3, respectively. In addition, similar to 
hold-out (last) validation methodology, the compu-
tational time requirement decreased as the subset of 

Table 3   Summary of the statistical indices used for predictive model evaluation

 Where n represents the total number of datasets, c
T
 is the true concentration from the numerical simulation model, c

P
 represents 

GMDH predicted concentrations,  c
T

 is the mean true concentration from the numerical simulation model, and  c
P
 denotes mean 

GMDH predicted concentrations

Statistical indices Mathematical representation General rule

RMSE
RMSE =

�
1

n

∑n

i=1

�
c
T
− c

P

�2 A lower RMSE value indicates a better performing predictive model

MAE
MAE =

∑n

i=1�cP−cT �
n

A lower MAE value indicates a better performing predictive model

R2
R
2 =

∑n

i=1
(c

T
−c

T
)((c

P
−c

P
)√∑n

i=1 (cT−cT)
2
√∑n

i=1 (cP−cP)
2

A higher R2 value indicates a better performing predictive model
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validation dataset increased, i.e., when the hold-out 
(random) dataset for validation increased from 10 to 
60%. This was true for all three monitoring wells.

In general, for the present case study, both hold-
out (last)–40% and hold-out (random)–40% gave 
the best performing predictive model and can be 

used for groundwater salinity prediction at the three 
monitoring wells. On the other hand, if computation 
time is considered important over the accuracy, then 
hold-out (last)–60% and hold-out (random)–60% 
data-partitioning strategy is to be used.

Fig. 3   Performance evalu-
ation results for the predic-
tive models developed 
using the hold-out (last) 
validation methodology and 
different data partitioning 
strategies

MW1

MW2

MW3
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k‑fold cross‑validation comparison

The k-fold cross-validation results are presented 
in Fig. 5. All the developed models show a similar 
trend in terms of accuracy and computational time 
requirements. For example, RMSE and MAE values 

declined as the fold increased from k = 4 to k = 10. 
This was true for all three monitoring wells. Also, 
it was observed that the computational time require-
ment increased as the folds increased from k = 4 to 
k = 10. The values for R2 did not show such trend 
as the values remained the same. Overall, these 

Fig. 4   Performance evalu-
ation results for the predic-
tive models developed 
using the hold-out (random) 
validation methodology and 
different data partitioning 
strategies

MW1

MW2

MW3
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results establish that a predictive model’s accuracy 
increases as the number of folds increases. There-
fore, a larger value of k should be used when decid-
ing to use k-fold validation for a predictive mode-
ling task. However, it is also important to consider 
the computational time as another factor given it 
increases with more folds (i.e., more k). There is 

always a trade-off between accuracy and computa-
tional time requirement, and an optimal number of k 
is always dependent on the user. Therefore, several 
trials need to be conducted with different values of 
k before selecting a particular model for a modeling 
purpose.

Fig. 5   Performance 
evaluation results for the 
three predictive models 
developed using the k-fold 
validation methodology and 
different data partitioning 
strategies during the fitting 
phase

MW1

MW2

MW3
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Leave‑one‑out comparison

The performance evaluation results in terms of the 
different statistical indices for the GMDH-based 
predictive models, fitted, and validated using the 
leave-one-out validation methodology are presented 
in Fig. 6.

As per Fig.  6, the predictive model developed 
using the leave-one-out methodology had compara-
ble results in terms of accuracy when compared to the 
other two validation methodologies. In most cases, 
the RMSE and MAE values obtained for the predic-
tive models during leave-one-out validation were 
higher than the respective values obtained for hold-
out and k-fold validation methodology. However, 

Fig. 6   Performance evalua-
tion results for the 3 predic-
tive models developed using 
the leave-one-out validation 
methodology during the 
fitting phase

MW1

MW2

MW3
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there were also instances when leave-one-out method 
prediction results were better than other valida-
tion methods. For, e.g., the fitting RMSE values for 
leave-one-out and k-fold (k = 4) were 0.372 mg/l and 
0.385 mg/l, respectively. A similar trend was seen in 
MAE values. These results demonstrated that leave-
one-out method can perform better in certain cases 
and should be used for comparison. The results 
obtained also justify the fact that different validation 
and data-partitioning strategies have different infer-
ences of the accuracy of a predictive model. The R2 
values have minimal variations when compared to the 
other two validation methodologies. This is true for 
the results for all three monitoring locations. On the 
other hand, the computational time taken by leave-
one-out is significantly higher than the other two vali-
dation methodologies. The time taken for developing 
GMDH-based predictive models for MW1, MW2, and 
MW3 are 7.52 min, 6.50 min, and 6.21 min, respec-
tively. These values are much higher than the corre-
sponding computational time obtained using the other 
two validation methodologies. This highlights that the 
leave-one-out methodology is time-consuming and 
may not be preferred over the other two validation 
methodologies.

Selection of the best possible predictive model—
trade‑off investigation

Selecting the best model for the predictive task is 
quite challenging. It involves analyzing different 
trade-offs between accuracy and computational time. 
It depends on the need of the modeling investigation 
and/or the user. Sometimes, higher accuracy is pre-
ferred over computational time. This is when the reli-
ability of the predictive model in providing accurate 
or precise modeling results is of utmost importance. 
However, computational time is given more weight 
than accuracy in some cases, for instance, in real-time 
systems in vehicles and industrial control systems. 
In the present case, it is observed that no validation 
methodology and data partitioning strategy give simi-
lar predictive accuracy results. Also, the computa-
tional time for each of the methodologies is different. 
For evaluation purposes, the best performing models 
in each of the three validation methodologies are pre-
sented in Fig. 7. The methods and machine learning 
models utilized in this study could be used for other 
aquifers. However, the numerical model needs to be 

developed with the corresponding aquifers hydrogeo-
logical parameters.

Figure 7 demonstrates that it is difficult to choose 
a particular predictive model for groundwater salinity 
prediction for the simulated aquifer system. All four 
validation methodologies possess different accuracy 
and require different computational time.

For MW1, in terms of RMSE, it is observed that 
hold-out (random)–40% data partitioning strategy 
gave the most accurate predictive model. However, 
the best predictive model was obtained by hold-
out (last)–40% in terms of MAE. The values of R2 
obtained for all the methodologies were the same. 
Lastly, the computational time required for each 
model was different, with the highest time obtained 
for leave-one-out and lowest time obtained for hold-
out (last)–40% data partitioning strategy. For MW2, 
the best predictive model was obtained using hold-
out (random)–40% as demonstrated by their RMSE 
and MSE, whereas hold-out (random)–40% had the 
lowest value for the same indices. R2 values did not 
show much of a difference. The prediction model 
developed using hold-out (last)–40% had the lowest 
computational time requirement of 0.44  min, while 
the leave-one-out validation methodology took the 
longest computational time of 6.5  min. Similarly, 
for MW3, hold-out (random)–40% had the low-
est RMSE value of 0.38  mg/l, whereas the lowest 
MAE value of 0.319 mg/l was obtained for hold-out 
(last)–40%. Hold-out (random)–40% and hold-out 
(last)–40% also gave the best results in terms of R2. 
Lastly, hold-out (random)–40% model took the short-
est time, while the leave-one-out methodology took 
the longest computational time. Overall, no particu-
lar trend is deduced as it is observed that different 
validation methodologies and data partitioning strate-
gies behaved differently when used on the same 700 
input–output dataset. However, it can be established 
that both in terms of RMSE, MAE, and computa-
tional time requirements, the hold-out validation 
methodology with 40% data partitioning strategy pro-
duced better prediction result.

Recommendations and future work

After analyzing the results of this study, the following 
recommendations can be made.
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1.	 Different validation methodologies employed for 
predictive model fitting and validation perform 
differently. Users should validate the predictive 
accuracy of models using each of the available 
validation methodology.

2.	 Dataset partitioning strategies used for model 
validation also influence the accuracy of predic-
tive models. It is important to have a comparative 
assessment of different data partitioning strate-
gies before agreeing to use a single strategy. This 

is particularly critical when developing improved 
and robust prediction models.

3.	 The computational time requirement for model 
fitting and validation also differs for different val-
idation methodologies and data partitioning strat-
egies.

4.	 There is always a trade-off between accuracy and 
computational time. The selection of a predictive 
model validation methodology and data partition-

Fig. 7   Performance evalu-
ation results of the best 
performing models

MW1

MW3

MW2
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ing strategy is dependent on user preference and 
predictive modeling aim.

5.	 Different numerical codes would be used to 
develop numerical models, for instance, MOD-
FLOW, MT3DMS, and SEAWAT. Then compar-
ing the results with FEMWATER would be more 
debatable.

6.	 Carrying sensitivity analysis while changing 
model input parameters would be considered in 
the future.

The main goal of this study was to demonstrate the 
effectiveness of the three most common prediction 
model validation methodologies and different data 
partitioning strategies on the predictive callability of a 
prediction model. While this study has demonstrated 
several novel results and outcomes, there are a few 
limitations. One limitation of the study is that the uti-
lized GMDH-based predictive models is a black-box 
model, which fails to simulate the internal physical 
processes of saltwater intrusion. The predictive model 
only learns to approximate the system and is depend-
ent on the input–output dataset used in its develop-
ment. Therefore, the GMDH-based predictive models 
should not be used for understanding the underlying 
saltwater intrusion processes in the investigated aqui-
fer system. A robust 3D numerical simulation model 
should be utilized for this purpose. The second limi-
tation of the present work is that it only uses a single 
machine learning algorithm, i.e., GMDH for replicat-
ing the aquifer system and predicting salt concentra-
tions at respective monitoring locations. Other state-
of-the-art modeling algorithms and machine learning 
models could be used, which might yield different 
prediction results. However, this was not in the scope 
of the present study. In the near future, the authors 
have planned to verify the methodology using differ-
ent machine learning algorithms such as polynomial 
chaos expansion (PCE) and multivariate adaptive 
regression splines (MARS). It would be interesting 
to compare the performance evaluation results of the 
developed GMDH models with these models. It is 
anticipated that different modeling algorithms might 
perform differently on the same dataset and yield dif-
ferent results in terms of accuracy and computational 
time. In addition, the authors have also planned for a 
similar study where the performances of predictive 
models developed using less than 700 datasets will be 
assessed and compared. If the results are similar or 

comparable, then fewer datasets can be used for simi-
lar modeling investigations saving us computational 
time and effort. Third, the utilized GMDH model 
may not be able to accurately replicate the system and 
predict salt concentration when the number of dimen-
sions in the problem variable space is large. In the 
present work, GMDH performs reasonably well with 
52 variables. However, this may change when the 
number of variables increases, i.e., when more FAW 
and SAW are considered. In this case, a different pre-
dictive modeling algorithm capable of handling large 
variable size could be utilized. Lastly, other sophis-
ticated statistical indices can be used to assess the 
accuracy of the developed predictive models. These 
additional indices can help us verify and confirm the 
accuracy indicated by RMSE, MAE, and R2 values.

Conclusions

Accurate fitting and validation are indeed one of the 
most important stages during the development of a 
predictive model. This study used three different vali-
dation methods and several data-partitioning strate-
gies to develop a robust GMDH-based groundwater 
salinity prediction model. The analysis carried out 
in the study established that GMDH-based model’s 
predictive performances were comparable to the 3D 
numerical simulation model. However, as illustrated 
in this case study, careful understanding of the vali-
dation processes and as well as an assessment of the 
various data partitioning strategies are required while 
developing accurate predictive models. The results 
presented in this paper are also particularly useful 
for real-world applications as it highlights the impor-
tance of assessing different validation methodologies 
and data partitioning strategies during the predic-
tive model development stage. Noteworthy, the new 
insights presented in this paper are significant for 
hydrologists, water engineers, and other impact com-
munities that need robust and reliable predictive mod-
els. Also, the key findings presented in this study can 
provide a reference for further experimental work in 
machine learning-based hydrological investigations.
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