Pattern Recognition 155 (2024) 110621

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Check for

A multi-resolution self-supervised learning framework for semantic | e

segmentation in histopathology

Hao Wang 2, Euijoon Ahn?, Jinman Kim ®*

a Biomedical Data Analysis and Visualisation (BDAV) Lab, School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW
2006, Australia
b College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia

ARTICLE INFO ABSTRACT

Keywords:

Multi-resolution histopathology learning
Self-supervised learning

Semantic segmentation

Modern whole slide imaging technique together with supervised deep learning approaches have been advancing
the field of histopathology, enabling accurate analysis of tissues. These approaches use whole slide images
(WSIs) at various resolutions, utilising low-resolution WSIs to identify regions of interest in the tissue and
high-resolution for detailed analysis of cellular structures. Due to the labour-intensive process of annotating
gigapixels WSIs, accurate analysis of WSIs remains challenging for supervised approaches. Self-supervised
learning (SSL) has emerged as an approach to build efficient and robust models using unlabelled data. It
has been successfully used to pre-train models to learn meaningful image features which are then fine-tuned
with downstream tasks for improved performance compared to training models from scratch. Yet, existing SSL
methods optimised for WSI are unable to leverage the multi-resolutions and instead, work only in an individual
resolution neglecting the hierarchical structure of multi-resolution inputs. This limitation prevents from the
effective utilisation of complementary information between different resolutions, hampering discriminative
WSI representation learning. In this paper we propose a Multi-resolution SSL Framework for WSI semantic
segmentation (MSF-WSI) that effectively learns histopathological features. Our MSF-WSI learns complementary
information from multiple WSI resolutions during the pre-training stage; this contrasts with existing works
that only learn between the resolutions at the fine-tuning stage. Our pre-training initialises the model with
a comprehensive understanding of multi-resolution features which can lead to improved performance in the
subsequent tasks. To achieve this, we introduced a novel Context-Target Fusion Module (CTFM) and a masked
jigsaw pretext task to facilitate the learning of multi-resolution features. Additionally, we designed Dense
SimSiam Learning (DSL) strategy to maximise the similarities of image features from early model layers to
enable discriminative learned representations. We evaluated our method using three public datasets on breast
and liver cancer segmentation tasks. Our experiment results demonstrated that our MSF-WSI surpassed the
accuracy of other state-of-the-art methods in downstream fine-tuning and semi-supervised settings.

1. Introduction low resolution which we refer to as the context images, provides coarse-
grained locations of tumours and the global architectural composition
of tissue samples such as the presence of duct. Pathologists then use

high-resolution images of each region of interest (ROI) of the tumour

Whole slide images (WSI) are a high-resolution image produced
by a complete microscope slide (also known as virtual microscopy).

They supply various microscopic views including nuclear atypia, degree
of gland formation, mitosis and inflammation under different image
resolutions providing a thorough set of statistics about tissues and
tumours. Pathologists use this information by analysing WSIs to assist
with primary and secondary (consultation) diagnoses in histopathol-
ogy [1]. In a standard WSI analysis, pathologists typically need to
combine observations from multiple resolution of WSIs due to the
variety of tumour growth patterns. As shown in Fig. 1, WSI patch with
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section, which we refer to as the target images, to analyse more specific
information about cells such as the local cellular composition. However,
such manual analysis of WSIs is immensely time-consuming and labori-
ous, which requires careful expert examinations [2]. As a result, there
has been sustained interest in recent years in building an automated
computer-aided diagnosis (CAD) system for WSI analysis.

Automatic and accurate segmentation of WSI is a challenging prob-
lem for conventional machine learning methods due to the variations in
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Fig. 1. An illustration of extracted patches from multi-resolution WSI. The 10x patches
contain coarse-grained information with less details about the cell and the 20x patches
contain fine-grained details with less information about surrounding tissues.

cell size, shape, fuzzy boundaries, different cell colours and increasing
input image resolutions. Deep learning techniques, such as Convolu-
tional Neural Networks (CNNs), have shown promising performance in
improving WSI analysis. For example, Liu et al. [3] designed a patch-
based method that splits high-resolution WSI into small-sized patches
for fine-grained segmentation. It showed better performance than feed-
ing entire low-resolution WSIs into the network. Similarly, Chan et al.
[4] proposed to apply Grad-CAM on WSI patches to generate seg-
mentation masks and then post-processed the results with Conditional
Random Field to enhance the identification of the tissue contours.
Recently, Zhang et al. [5] designed a dual-task approach where the
tumour detection and the segmentation processes were conducted in
parallel based on the assumption that knowledge learned from these
two tasks are complementary. However, all these methods did not
explicitly exploit the inherent multi-resolution features of WSIs, and
therefore ignored the complementary information contained in dif-
ferent resolutions. As illustrated in Fig. 1, by using single resolution
inputs, model can learn essential structural information, such as tu-
mour locations, from 10x patches while discarding finer details like
local cellular composition found in 20x patches, and vice versa. To
address the information loss inherent from using a single resolution,
researchers [6,7] proposed to use multiple networks as the encoder to
process multi-resolution WSI inputs and then aggregate the correspond-
ing feature maps in the decoder path. The usage of multi-resolution
WSIs simulated the pathologist examination procedure and showed
advantages on segmentation accuracy over single-resolution WSI inputs
due to the integration of context and target features.

While using multi-resolution WSIs has shown good results, su-
pervised methods are impacted from the issue of generalisability,
e.g., model performance can greatly vary when the training/testing
datasets are collected in different settings. To address the above issues,
self-supervised learning (SSL), as a label-free algorithm, has received in-
creasing attention. Recent advancements of SSL [8,9], have successfully
shown that CNNs are capable of learning meaningful image features
without the need of manual labels, and the learned representations are
robust in various image analysis tasks. Many recent approaches [10,11]
have also validated the effectiveness of SSL on medical image appli-
cations that SSL-pre-training is helpful to improve performance when
the model is later fine-tuned with smaller set of labelled data. This
also applies to WSIs that researchers [12,13] have shown promising
outcomes by integrating SSL-pre-trained feature extractors to mitigate
data scarcity and domain shift (i.e., transferring from natural images to
WSIs) problems in histopathology.

Despite the successful adoption of SSL, these approaches were not
designed to learn image features from multi-resolution WSIs. Often,
they focused on single resolution features, thereby disregarding the
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valuable complementary information within multi-resolution WSIs.
For instance, low-resolution WSIs assist in locating ROIs, while high-
resolution WSIs help extract specific cellular structures. Therefore,
lacking multi-resolution learning during pre-training can hinder model
convergence in the subsequent fine-tuning stage. To solve this prob-
lem, we propose a new Multi-resolution Self-supervised representation
learning Framework for WSI semantic segmentation (MSF-WSI) that
simultaneously learns both context and target features. We design a
novel Context-Target Fusion Module (CTFM) to enable the learning of
multi-resolution features in the SSL pre-training. CTFM proposes a
new pretext task named masked jigsaw, wherein target features are
randomly masked and shuffled before being concatenated with context
features. The assumption is that different augmented views of the
same pair (context and target patches) have maximum similarities.
In contrast to existing WSI-specific SSL methods, CTFM formulates
a new learning task that requires holistic understanding of multi-
resolution features. In this task, context (low-resolution) features help
the model understand the semantics behind missing and rearranged
target (high-resolution) features. This enables the model to leverage
the complementary information from different resolution patches, thus
enhancing segmentation performance. Furthermore, we propose the
Dense SimSiam Learning (DSL) approach that improves the extraction
of meaningful image features across intermediate layers of the model.
Instead of merely contrasting features from the final model layer, as
prevalent in other SSL methods, DSL maximises the feature similarity
from early layers. In the initial layers, the network detects low-level
features, whereas in the deeper layers, it learns higher-level features
that encompass broader patterns and semantic information. Our pro-
posed DSL imitates the examination procedure of the pathologist in
their reading of WSIs and in doing so, our model is able to learn
low-level WSI features (i,e., edges, texture and colours) from the early
layers. We evaluated our framework by comparing it against several
State-Of-The-Art (SOTA) supervised and SSL approaches using three
public histopathology segmentation datasets. Our proposed MSF-WSI
framework has demonstrated superior performances compared to other
approaches under the fine-tuning and semi-supervised settings.

2. Related work
2.1. Recent supervised WSI segmentation works

Since the appearance of neural networks and digital pathology, CAD
system for WSI segmentation has shown promising results in modern
clinical practice [14-16]. For instance, Chen et al. [17] proposed a
contour-aware Fully Convolution Network (FCN), which classified ob-
ject appearance (e.g., textures, colours, etc.) and contour information,
to segment glands and nuclei. This contour-aware design was then
adopted by Van Eycke et al. [18] and combined with CNN architecture
U-Net [19] and ResNet [20] for segmentation of glandular epithelium
in colon cancer. Graham et al. [21] proposed a HoVer-Net to generate
horizontal and vertical distance maps based on the length of cells
to their mass centres. By learning how to generate these maps, the
model can leverage a shape prior to assist the prediction of nuclear
segmentation mask. Recent works have attempted to further improve
algorithm performance by integrating multiple tasks [5]. For exam-
ple, Graham et al. [22] designed a framework for the segmentation and
the classification of nuclei, glands, lumina, and different tissue regions,
using data from several independent sources. By solving different tasks
using the shared feature maps, these models learned and benefited from
complementary information among tasks.

Due to the diverse appearance of target objects (e.g., shape, size and
texture), it is essential to extract features from multiple scales of images
for accurate segmentation. Prior works that introduced multi-scale
feature maps are not applicable for WSI due to the gigapixel dimension.
Instead, combining WSI features under different resolutions can alter-
natively provide both coarse-grained and fine-grained information for
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Fig. 2. (a) Overview of MSF-WSIL. Initial multi-resolution patches x are transformed by T and T’, resulting in two views x, and x,. These views are input into the backbone
network f to extract context and target features, which are further refined by the Context-Target Fusion Module (CTFM) to produce multi-resolution features. Contrastive learning
is then applied to maximise similarity within these three feature types. Additionally, Dense SimSiam Learning (DSL) is introduced to maximise the similarities between features at
intermediate model layers. (b) Structure of CTFM. Using two distinct but identical structure networks (with non-shared weights), we process two-resolution images separately to
generate context and target features. Subsequently, CTFM introduces random masking and shuffling of target features, followed by concatenation with context features to produce
multi-resolution features. (c) Structure of DSL. For each of the » model stages, we apply SimSiam contrastive learning to context, target, and multi-resolution features » times. In

this figure, a mini-batch size of 1 is used for clarity.

segmentation [6]. For example, Nir et al. [23] extracted image features
from different WSI resolutions and integrated them later with support
vector machine. van Rijthoven et al. [24] proposed an encoder-decoder
network architecture where different resolution patches were processed
separately in two CNNs and were then integrated over the decoder
path. Similarly, Schmitz et al. [7] developed a family of multi-encoder
modules which merged model paths with different WSI resolutions in
a spatial relationship-preserving fashion. The performances of these
studies, however, were dependent on the availability of training data
and cannot generalise to various tumour types.

2.2. Recent SSL works for WSI segmentation

Self-supervised learning can obtain meaningful representations by
delving intrinsic data characteristics without the involvement of labels
such that fine-tuning these representations could yield better perfor-
mance with faster convergence. This is usually achieved by defining
different pretext tasks, such as context prediction [25], solving jigsaw
puzzles [26], image colourisation [27] and rotation prediction [28].
Recently, the research community has focused on a variant of SSL,
termed contrastive learning, which models the similarity and dissim-
ilarity of images [8,29,30] from different augmented views via data
transformations. Additionally, researchers [9,31] delved into a more
efficient contrastive style which compared the similarity of image views
only without measuring their dissimilarity. Despite of promising results
reported in these SOTA methods, direct application of them to WSI
segmentation can be compromised due to the differences in image
statistics, scale, and task-relevant features between natural images and
histopathology images.

One common approach to use SSL in WSI analysis is to simply ex-
change the ImageNet pre-trained extractor with SSL pre-trained models
using algorithms such as contrastive predictive coding [32], momen-
tum contrast [8] and SimCLR [12]. For example, Koohbanani et al.
[13] designed a multi-task self-supervised approach that involved for-
mulating both domain-agnostic (e.g., image rotation prediction) and

domain-specific (e.g., hematoxylin channel prediction) auxiliary tasks
to learn histopathology-related features. Azizi et al. [33] proposed a
multi-instance contrastive learning strategy that involved constructing
positive pairs using crops from two different images of the same pa-
tient case. This approach helped the model learn features that were
invariant to both the viewpoint and the tissue conditions. Similarly, Li
et al. [34] applied SimCLR to each of WSI resolution separately dur-
ing the pre-training and the learned resolution-specific features were
then aggregated for the subsequent multiple instance learning. Re-
cently, Ciga et al. [12] demonstrated the effectiveness of SSL by build-
ing a large diverse pre-training dataset that included samples from
various histopathology datasets. Moreover, Wang et al. [35] designed
a hybrid model using Transformer and CNN to extract local-global uni-
versal feature representations (i.e., cell-level structures and tissue-level
contexts) by pre-training it on a massive dataset containing 15 million
unlabelled WSI patches. However, a limitation of the aforementioned
approaches is that the majority of SSL-based histopathology methods
overlooked the intrinsic multi-resolution features present in WSIs, with
the exception of DSMIL [34]. DSMIL recognised the potential of lever-
aging low- and high-resolution information to accommodate the diverse
tumour appearances. However, a drawback persists in the absence of
effective usage of multi-resolution features. During the pre-training of
DSMIL, the context and target features were learned independently.
This isolated learning process could lead to sub-optimal fine-tuning
results, due to the loss of valuable complementary insights from the
different resolutions.

3. Method
3.1. Overview
An illustration of our framework is depicted in Fig. 2. The process

commences with the generation of WSI patches at two resolutions:
low (context patches) and high (target patches). Then, we apply an
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identical set of random data augmentations, transforming each patch
into two different views. These transformed patches are inputted into
the backbone to extract resolution-specific image features. We then
refine context and target features using our CTFM. This module intro-
duces a masked jigsaw pretext task which concatenates context features
with masked shuffled target features to form multi-resolution features.
Furthermore, we introduce the DSL mechanism which involves con-
trastive learning that starts from early layers of the model aiming to
help the learning of WSI segmentation representations. Overall, our
framework combines context features, target features, and multi-resolution
features as inputs to DSL, thereby fostering robust WSI segmentation
representation learning.

3.2. Multi-resolution SSL pipeline
The overview of our SSL pre-training pipeline is depicted in Fig. 2.a.

3.2.1. Resolution-specific learning

The backbone f comprises two identical models, named context
branch and target branch, with unshared weights to process multi-
resolution inputs. To learn meaningful resolution-specific WSI repre-
sentations, two tasks were defined. (i) Context features learning: we
fed low-resolution patches into the context branch and followed the
standard process of SimSiam [31] as explained in Appendix A; (ii)
Target features learning: we processed high-resolution patches through
the target branch, following the same procedure as the context fea-
ture learning. These two tasks helped each branch of the model to
extract context and target information contained in the corresponding
resolutions respectively. We defined the loss functions as follows:

1 1
L. = ED(pl, stopgrad(zf)) + ED([J?, stopgrad(zi)) 1)
L, = %D(p,l, stopgrad(ztz)) + %D(p,z, stopgrad(z,1 ) 2)

where p, and z, are outputs from context branch, and p, and z, are
outputs from target branch.

3.2.2. Context-target fusion module

To learn the relationships between WSI resolutions during pre-
training, we introduce the Context-Target Fusion Module (CTFM) to
generate multi-resolution features by the fusion of context and target
features (see Fig. 2(b)). This is accomplished through the integra-
tion of a third auxiliary task termed the masked jigsaw, involving
the random occlusion of shuffled image patches. The pseudo-code of
CTFM is provided in Appendix B. Given that a single context image
¢; corresponds to multiple target images {t}, ..., 1"} due to resolution
differences (e.g., a 10x context patch corresponds to 16 of 40x target
patches), we extracted context and target features (qc[ and {q,1,...,qm})
from these images via the backbone network. These features were sub-
sequently refined by CTFM, where target features were both shuffled
and randomly masked with a predefined ratio r. The resulting multi-
resolution feature g, was obtained through concatenating context
features and masked target features (length of m * r). The objective
of our proposed masked jigsaw task is to optimise the similarities
between multi-resolution features from different views, as denoted by
the equation:

1 1
Ly = ED(p}u, stopgrad(ziu)) + ED(piu, stopgrad(z'fu)) 3)

Here, p,, and z,, represent predicted outputs and projected embed-
dings derived from ¢, respectively. The underlying assumption is that
randomly sampled target features from the same set should retain sim-
ilar semantic information. Additionally, the concatenation of context
features with masked shuffled target features introduces a challenging
task that requires a holistic understanding of interrelationships among
multi-resolution patches.
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3.3. Dense SimSiam learning

We propose the Dense SimSiam Learning (DSL) strategy to enable
SSL training at early model stages. The procedure of DSL is illustrated
in Fig. 2(c). We used ResNet-18 [20] as the branch backbone and
defined the model stages as S = {s!, 5%, s3,s*} based on the dimensions
of output feature maps, i.e., 56, 28, 14, 7. The corresponding stage
features were flatten and denoted as K, and we applied independent
projectors and predictors for each of stage features resulting the sets
of projectors and predictors as G and H, respectively. We denote
the projected embedding set as Z and the predicted vector set as P.
Parameters in K,G, H,Z, P have the same format that superscripts
come from S indicate values at different stages. Thus, we defined the
loss function for the i,, model stage as

s = %D(p‘i/, stopgrad(z;‘ ) + %D(p;, stopgrad(z‘;‘ ) 4)
and

4 .
Lpsp= Y w - LY (5)

i=1
where w is the loss weight, and i denotes the stage index.

In summary, we conducted DSL for context, target and multi-
resolution features. Different sets of projectors and predictors were
used, i.e., there were 4 x 3 = 12 projectors and 4 x 3 = 12 predictors for
the proposed DSL. We defined the final loss function as:

L=Lpsrc+Lpsri+Lpsr fu (6)
3.4. Fine-tuning and inference

We adopted the previous work HookNet [24], a semantic seg-
mentation network for histopathology, as our baseline method and
demonstrated the effectiveness of our pre-training algorithm in improv-
ing the model segmentation performance. HookNet is a dual-branch
encoder—decoder network using multi-resolution patches as inputs. The
information from different resolutions was combined via a "hook"
mechanism, where feature maps in the decoder part from the context
branch were cropped and concatenated with the bottleneck feature
maps in the target branch, as shown in Appendix C. After pre-training
the encoder part by the proposed MSF-WSI, we can simply initialise
and fine-tune the encoder for semantic segmentation task.

4. Experiments and results
4.1. Datasets

We used three public WSI semantic segmentation datasets includ-
ing Camelyon16 [36], Pathology Artificial Intelligence Platform 2019
challenge (PAIP2019) dataset [37], and Breast Cancer Semantic Seg-
mentation (BCSS) dataset [38]. We validated the effectiveness of our
framework on breast semantic segmentation (BCSS dataset) and liver
tumour segmentation (PAIP2019) datasets by conducting internal test-
ing (pre-train and fine-tune on the same dataset) and external testing
(pre-train and fine-tune on different datasets).

4.1.1. Camelyonl6 dataset

The Camelyonl6 dataset is a large-scale histopathology dataset
containing 399 WSIs of sentinel lymph node collected from two inde-
pendent medical centres. Each of WSI contains pixel-level annotations
about tumour areas provided by the pathologists.

For the data pre-processing, we firstly tiled each WSI using sliding
window size of 1024 x 1024 with step size of 512. Based on these
tiles, the context patches were generated by directly resizing them into
224 x 224 and target patches were generated by applying a window
size of 256 x 256 with a step size of 256 on the 1024 x 1024 patches.
We then resized back into 224 x 224. Thus, each context patch (10x
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magnification) had 4 x 4 = 16 corresponding target patches (40X
magnification). We followed the official dataset split of training set
containing 270 WSIs (160 normal and 110 tumour) and testing set of
129 WSIs. During the pre-training, we used all training set image data
without annotations.

4.1.2. PAIP2019 dataset

The PAIP 2019 dataset [37] contains 50 WSIs of liver cancer from
50 patients. Two types of annotation are provided: viable regions of
cancer cells for continuous tumour areas, as well as whole cancer
regions for boundary between the non-tumorous hepatic lobules and
the viable tumour. Additionally, we also generated annotations for
“tissue area” which indicates healthy tissue pixels by threshold of (R, G,
B) < (235,210,235). This is consistent with the work in [7] and allows
sampling of healthy tissue patches that can be used as meaningful
negative examples. During the evaluation, all 3 classes were considered
including tissue area, whole tumour area and viable tumour area.

For the data pre-processing, we generated context (5x magnifica-
tion) and target patches (20x magnification) consistent with the settings
used in Camelyonl6. We randomly selected 10 out of 50 WSIs as the
testing set for the 5-fold cross-validation (CV). For internal testing, we
pre-trained models on the training set of each fold to prevent potential
information leakage.

4.1.3. BCSS dataset

The BCSS dataset [38] is a subset of TCGA dataset [39] where data
were collected from multiple institutes. The BCSS dataset consists of
151 H&E stained WSIs coming from 151 independent breast cancer
cases. Total of 5 classes were annotated including Tumour (TUM),
Stroma (STR), Lymphocytic infiltrate (LYM), Necrosis (NEC) and Other
(OTR). During the evaluation, all 5 classes were considered including
TUM, STR, LYM, NEC and OTR.

For the data pre-processing, we generated context (10x magnifica-
tion) and target patches (40x magnification) consistent with the settings
used in the Camelyon16 dataset. To facilitate 5-fold CV, we augmented
the official data split by randomly selecting additional 4 folds, allowing
us to use distinct testing set. We used the institute-exclusive strategy
following the settings described in [38]. Here, none of training data
comes from institutes in the testing set, and vice versa. The number
of institutes in each testing fold remained consistent with the official
testing set.

4.2. Model configurations

We used ResNet-18 [20] as the encoder of each branch and applied
the default data transformation settings in SimSiam [31] for the pre-
training. The resolution difference between the context and target
images was set to a ratio of 1 : 4, and the random masking ratio
was set to 1 : 1 for the CTFM configuration. As for the DSL, we used
a three-layer MLP as the projector, where the hidden dimension and
output dimension were set to be equal to the input dimension. Each
predictor was a two-layer MLP, and the input and output dimensions
were identical, but the hidden dimension was a quarter of the input
dimension. The weights of each stage were set to {0.1,0.4,0.7,1.0}.
Other related hyperparameters are shown in Appendix D.

For HookNet [24], we used the official code implementation® but
changed the encoder to ResNet-18 for fair comparisons with other
SOTAs. Other parameter configurations were kept the same as the
original paper, where 1 was set to 1 to ignore the context loss. Other
related hyperparameters are also shown in Appendix D.

4.3. Evaluation
We evaluated model performance by Dice’s coefficient (DSC), Inter-

section over Union (IoU), and pixel accuracy (Acc).

1 https://github.com/DIAGNijmegen/pathology-hooknet
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We benchmarked with both single-resolution methods, such as the
U-Net model [19] for general medical imaging segmentation, and
the WSI-focused Cerberus [22]. Additionally, we compared multi-
resolution WSI methods, including HookNet [24] and msY-Net [7].
Furthermore, we evaluated various SSL algorithms, including gen-
eral SSL strategy SimSiam [31], and WSI-specific approaches like
Slf-Hist [12], DSMIL [34], and SSL_CR_Histo [40]. Implementation
details are provided below:

U-Net [19]: a encoder—-decoder model architecture which is a
supervised method for biomedical image segmentation. We modi-
fied this architecture by changing the encoder to ResNet-18. Only
target patches were used to generate fine-grained segmentation
masks.

Cerberus [22]: a ResNet-34 weights which was pre-trained by a
supervised multi-task learning including segmentation and classi-
fication of nuclei, glands, lumina and different tissue regions. We
used U-Net and altered the encoder to ResNet-34 and initialised
with Cerberus. Only target patches were used for fine-tuning.
HookNet [24]: a model architecture using multi-resolution WSIs
for histopathology semantic segmentation. We trained this model
from the scratch in a supervised manner.

msY-Net [7]: a model architecture using multi-resolution WSIs for
histopathology image segmentation. We used their source code”
and trained this model from scratch using labelled data.
SimSiam [31]: a popular SSL algorithm for natural images. We
applied this algorithm to pre-train context and target branch
separately with corresponding resolution patches. Afterwards, we
initialised the HookNet encoder with the pre-trained weights and
fine-tuned with multi-resolution inputs.

Slf-Hist [12]: a ResNet-18 weights which was pre-trained by a SSL
method proposed for WSI analysis tasks. We used their pre-trained
weights to initialise corresponding encoders of HookNet. They
used a hybrid dataset built with total of 57 datasets consisting
of around 4 million patches.

DSMIL [34]: a ResNet-18 weights pre-trained by a SSL method
proposed for WSI classification. We initialised the HookNet with
this weight and fine-tuned it with multi-resolution inputs.
SSL_CR Histo [40]: a ResNet-18 weights pre-trained by a SSL
method proposed for WSI classification and tumour cellularity
quantification. We used this initialisation for HookNet and fine-
tuned it with multi-resolution patches.

Two settings were considered for model performance evaluation. (a)
Fine-tuning: After initialising with pre-trained weights, models were
trained with labels by the full training set and validated by the full
validation set. (b) Semi-supervised: After initialising with pre-trained
weights, models were trained with labels by a fraction (50%, 10%and
1%) of the training set and validated by the full validation set.

4.4. Main results

4.4.1. Fine-tuning results

The results of fine-tuning are presented in Table 1. In the PAIP2019
dataset, our MSF-WSL pre-trained on PAIP2019 had the best perfor-
mance, yielding the highest mean DSC of 0.9236, a mean IoU of 0.8603,
and a mean Acc of 0.9492. Our MSF-WSI, even when pre-trained on
Camelyon16, achieved the second-best performance, obtaining a mean
DSC of 0.9138, a mean IoU of 0.8454, and a mean Acc of 0.9436.
The msY-Net approach had the third-best performance, achieving a
mean DSC of 0.9106, a mean IoU of 0.8435, and a mean Acc of
0.9407. Tables 2 and 3 present the detailed per-class performances.
Our MSF-WSI pre-trained on PAIP2019 outperformed others, achieving
the highest scores for Whole Tumour (mean DSC of 0.86 and mean

2 https://github.com/ipmi-icns-uke/multiscale/
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The results of fine-tuning experiments on PAIP2019 and BCSS with 5-fold CV in the format mean(standard deviation). Based on the mean values, the best results are in bold, the
second best results are underlined, and the third best results are in italic.

Method Pre-training Pre-training PAIP2019 BCSS
strategy dataset
DSC ToU Acc DSC ToU Acc

Single Resolution Methods
U-Net [19] Supervised ImageNet 0.8940(0.0321)  0.8194(0.0347)  0.9290(0.0213)  0.7492(0.0198)  0.6097(0.0234)  0.8997(0.0079)
Cerberus [22] Supervised 9 histopathology  0.9001(0.0300)  0.8281(0.0344)  0.9337(0.0199)  0.7850(0.0129)  0.6560(0.0158)  0.9140(0.0052)

datasets
Multi-resolution Methods
msY-Net [7] Random N/A 0.9106(0.0320)  0.8435(0.0411)  0.9407(0.0214)  0.7620(0.0122)  0.6246(0.0151)  0.9048(0.0049)
HookNet [24] Random N/A 0.8962(0.0304)  0.8231(0.0336)  0.9311(0.0203)  0.7458(0.0164)  0.5956(0.0211)  0.8984(0.0065)
Slf-Hist [12] SSL 57 0.9089(0.0241)  0.8401(0.0301)  0.9395(0.0161)  0.7782(0.0159)  0.6453(0.0192)  0.9113(0.0064)

histopathology

datasets
DSMIL [34] SSL Camelyon16 0.9003(0.0320)  0.8303(0.0332)  0.9337(0.0214)  0.7640(0.0151)  0.6274(0.0175)  0.9056(0.0061)
SSL_CR _Histo [40] SSL Camelyonl6 0.8962(0.0326)  0.8232(0.0342)  0.9310(0.0218)  0.7602(0.0197)  0.6222(0.0237)  0.9041(0.0079)
HookNet + MSF-WSI (ours) SSL Camelyon16 0.9138(0.0219)  0.8454(0.0259)  0.9436(0.0152)  0.7851(0.0091)  0.6562(0.0109)  0.9141(0.0036)
SimSiam [31] SSL PAIP2019/BCSS ~ 0.9097(0.0191)  0.8385(0.0284)  0.9407(0.0122)  0.7704(0.0145)  0.6345(0.0186)  0.9082(0.0058)
HookNet + MSF-WSI (ours) SSL PAIP2019/BCSS 0.9236(0.0087) 0.8603(0.0136) 0.9492(0.0059) 0.7949(0.0118) 0.6672(0.0143) 0.9180(0.0047)

Table 2

The per-class results of fine-tuning experiments on PAIP2019 using with 5-fold CV in the format mean (standard deviation).

the best results are in bold, the second best results are underlined, and the third best results are in italic.

The best results are in bold. Based on the mean values,

Method DSC Acc
Tissue Whole Viable Tissue Whole Viable

U-Net [19] 0.6335(0.0241) 0.8124(0.0254) 0.9247(0.0298) 0.9798(0.0023) 0.8942(0.0311) 0.9147(0.0318)
Cerberus [22] 0.6581(0.0375) 0.8263(0.0182) 0.9286(0.0312) 0.9805(0.0021) 0.9000(0.0296) 0.9214(0.0278)
msY-Net [7] 0.7089(0.0325) 0.8473(0.0258) 0.9308(0.0337) 0.9852(0.0027) 0.9090(0.0360) 0.9234(0.0344)
HookNet [24] 0.6599(0.0292) 0.8189(0.0227) 0.9261(0.0292) 0.9813(0.0024) 0.8961(0.0304) 0.9174(0.0298)
Slf-Hist [12] 0.6632(0.0418) 0.8396(0.0133) 0.9344(0.0281) 0.9823(0.0020) 0.9082(0.0234) 0.9279(0.0234)
DSMIL [34] 0.6611(0.0392) 0.8253(0.0264) 0.9297(0.0295) 0.9815(0.0024) 0.8997(0.0307) 0.9200(0.0319)
SSL_CR_Histo [40] 0.6417(0.0397) 0.8167(0.0250) 0.9252(0.0289) 0.9812(0.0024) 0.8965(0.0320) 0.9153(0.0312)
HookNet + MSF-WSI (ours) 0.6902(0.0384) 0.8476(0.0107) 0.9392(0.0268) 0.9825(0.0026) 0.9089(0.0222) 0.9333(0.0205)
SimSiam [31] 0.6822(0.0492) 0.8455(0.0171) 0.9349(0.0178) 0.9802(0.0054) 0.9172(0.0101) 0.9330(0.0096)
HookNet + MSF-WSI (ours) 0.6971(0.0400) 0.8600(0.0101) 0.9462(0.0174) 0.9829(0.0029) 0.9230(0.0073) 0.9416(0.0083)

Table 3

The per-class results of fine-tuning experiments on BCSS using with 5-fold CV in the format mean(standard deviation). Based on the mean values, the best results are in bold, the
second best results are underlined, and the third best results are in italic.

DSC Acc

TUM STR LYM NEC OTR TUM STR LYM NEC OTR
U-Net [19] 0.7690(0.0397) 0.6606(0.0180) 0.6626(0.0227) 0.5520(0.0713) 0.4030(0.0343) 0.8498(0.0095) 0.8028(0.0094) 0.9227(0.0144) 0.9597(0.0127) 0.9641(0.0036)
Cerberus [22] 0.8200(0.0250)  0.7163(0.0177)  0.7116(0.0224) 0.7404(0.0498)  0.4631(0.0421) 0.8786(0.0086) 0.8287(0.0108) 0.9397(0.0088) 0.9700(0.0056) 0.9669(0.0038)
msY-Net [7] 0.7831(0.0323) 0.6735(0.0251) 0.6690(0.0219) 0.3927(0.0731) 0.4295(0.0587) 0.8607(0.0083) 0.8128(0.0099) 0.9314(0.0077) 0.9557(0.0092) 0.9635(0.0041)
HookNet [24] 0.7605(0.0360) 0.6507(0.0070) 0.5903(0.1096) 0.5243(0.1068) 0.4217(0.0577) 0.8411(0.0088) 0.7895(0.0103) 0.9335(0.0125) 0.9555(0.0099) 0.9636(0.0038)
SIf-Hist [12] 0.8093(0.0188) 0.6968(0.0263) 0.6767(0.0365) 0.6787(0.0716) 0.4428(0.0741) 0.8683(0.0090) 0.8200(0.0101) 0.9352(0.0079) 0.9691(0.0112) 0.9640(0.0026)
DSMIL [34] 0.7901(0.0339) 0.6705(0.0199) 0.6747(0.0347) 0.5534(0.1704) 0.4266(0.0628) 0.8581(0.0073) 0.8111(0.0076) 0.9353(0.0092) 0.9584(0.0139) 0.9650(0.0044)
SSL_CR _Histo [40] 0.7844(0.0375) 0.6625(0.0242) 0.6597(0.0448) 0.5882(0.0973) 0.4035(0.0352) 0.8516(0.0140) 0.8121(0.0094) 0.9275(0.0143) 0.9642(0.0106) 0.9651(0.0053)
HookNet + MSF-WSI (ours)  0.8147(0.0210) 0.7114(0.0240) 0.7188(0.0167)  0.7231(0.0529) 0.4697(0.0556)  0.8752(0.0058) 0.8328(0.0111) 0.9399(0.0087)  0.9719(0.0067) 0.9673(0.0037)
SimSiam [31] 0.7932(0.0325) 0.6863(0.0226) 0.6832(0.0269) 0.5925(0.0747) 0.4281(0.0711) 0.8613(0.0087) 0.8186(0.0078) 0.9310(0.0135) 0.9659(0.0079) 0.9649(0.0048)
HookNet + MSF-WSI (ours)  0.8158(0.0294) 0.7084(0.0246) 0.6860(0.0075) 0.6795(0.0657) 0.4568(0.0650) 0.8794(0.0054)  0.8349(0.0104)  0.9369(0.0091) 0.9725(0.0082)  0.9661(0.0037)

Acc of 0.923) and Viable Tumour (mean DSC of 0.9462 and mean Acc
of 0.9416). The msY-Net approach attained the highest score for the
Tissue class, with a mean DSC of 0.7089 and a mean Acc of 0.9852.
For the BCSS dataset, our MSF-WSI pre-trained on BCSS achieved
better performance, yielding the highest mean DSC of 0.7949, a mean
IoU of 0.6672, and a mean Acc of 0.918. Following closely, our MSF-
WSI pre-trained on Camelyonl6 ranked as the second-best method,
achieving a mean DSC of 0.7851, a mean IoU of 0.6562, and a mean Acc
score of 0.9141. The Cerberus approach had the third-best results, with
a mean DSC of 0.785, a mean IoU of 0.656, and a mean Acc of 0.914.
Similar results were achieved when examining per-class performance.
Specifically, Cerberus exhibited the most promising DSC performance
on TUM (0.82), STR (0.7163), and NEC (0.7404), whereas our MSF-
WSI pre-trained on Camelyonl6 demonstrated superiority in terms
of DSC for LYM (0.7188) and OTR (0.4697). Notably, with respect
to the Accuracy metric, our MSF-WSI pre-trained on BCSS excelled,
achieving the highest results for TUM, STR, and NEC with scores of

0.8794, 0.8349, and 0.9725, respectively. Meanwhile, the consistent
performance of our MSF-WSI pre-trained on Camelyonl6 was evident
in LYM and OTR, obtaining leading positions with scores of 0.9399 and
0.9673, respectively.

4.4.2. Semi-supervised results

We extended our evaluation to show the model’s performance under
a semi-supervised setting. Tables 4 and 5 present the experiment results
for both the datasets, including DSC, IoU, and Acc scores.

For the PAIP2019 dataset, our MSF-WSI model pre-trained on
PAIP2019 exhibited superior performance across all metrics and set-
tings. SimSiam approach was the second best in all scenarios, barring
the DSC score when employing 1% of the training data, where it
achieved the third-best outcome. Our MSF-WSI model pre-trained on
Camelyon16 had the third-best performance in terms of DSC, IoU, and
Acc under the 50% and 10% settings. In contrast, the Slf-Hist method
had the second-best DSC score and the third-best IoU and Acc scores
when training data constituted only 1% of the dataset.
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The results of semi-supervised experiments on PAIP2019 with 5-fold CV in the format mean(standard deviation). Based on the mean values, the best results are in bold, the second

best results are underlined, and the third best results are in italic.

Method DSC IoU Acc
50% 10% 1% 50% 10% 1% 50% 10% 1%

U-Net [19] 0.8868(0.0309) 0.8607(0.0196) 0.7868(0.0306) 0.8072(0.0329) 0.7604(0.0261) 0.6577(0.0398) 0.9247(0.0206) 0.9071(0.0131) 0.8578(0.0204)
Cerberus [22] 0.8959(0.0290) 0.8789(0.0237) 0.8501(0.0244) 0.8214(0.0313) 0.7932(0.0235) 0.7488(0.0256) 0.9309(0.0193) 0.9195(0.0159) 0.9003(0.0159)
msY-Net [7] 0.9019(0.0331) 0.8598(0.0340) 0.8129(0.0191) 0.8306(0.0343) 0.7663(0.0340) 0.6840(0.0235) 0.9346(0.0221) 0.9010(0.0329) 0.8753(0.0127)
HookNet [24] 0.8906(0.0312) 0.8608(0.0219) 0.7970(0.0218) 0.8119(0.0344) 0.7691(0.0197) 0.6657(0.0286) 0.9272(0.0208) 0.9072(0.0146) 0.8647(0.0145)
SIf-Hist [12] 0.8929(0.0311) 0.8765(0.0325) 0.8538(0.0139) 0.8175(0.0321) 0.7911(0.0342) 0.7488(0.0200) 0.9288(0.0207) 0.9177(0.0217) 0.9027(0.0093)
DSMIL [34] 0.8933(0.0300) 0.8728(0.0288) 0.8425(0.0214) 0.8179(0.0317) 0.7837(0.0316) 0.7329(0.0296) 0.9290(0.0199) 0.9152(0.0192) 0.8950(0.0143)
SSL_CR _Histo [40] 0.8894(0.0287) 0.8684(0.0277) 0.8294(0.0175) 0.8104(0.0316) 0.7764(0.0297) 0.7164(0.0194) 0.9264(0.0191) 0.9122(0.0184) 0.8863(0.0117)
HookNet + MSF-WSI (ours) + Canelyon16 0.9049(0.0209) 0.8828(0.0270) 0.8458(0.0219) 0.8326(0.0260) 0.8003(0.0261) 0.7430(0.0214) 0.9368(0.0140) 0.9219(0.0178) 0.8974(0.0146)
SimSiam [31] 0.9116(0.0165) 0.8860(0.0269) 0.8536(0.0247) 0.8426(0.0211) 0.8041(0.0304) 0.7541(0.0283) 0.9413(0.0110) 0.9241(0.0179) 0.9030(0.0165)

HookNet + MSF-WSI (ours) + PAIP2019 0.9151(0.0072) 0.9009(0.0118) 0.8613(0.0281)

0.8451(0.0120)

0.8225(0.0174) 0.7674(0.0272) 0.9436(0.0049) 0.9340(0.0078) 0.9076(0.0188)

Table 5

The results of semi-supervised experiments on BCSS with 5-fold CV in the format mean(standard deviation). Based on the mean values, the best results are in bold, the second

best results are underlined, and the third best results are in italic.

Method DSC ToU Acc
50% 10% 1% 50% 10% 1% 50% 10% 1%
U-Net [19] 0.7211(0.0198) 0.6327(0.0149) 0.5434(0.0430) 0.5757(0.0219) 0.4761(0.0162) 0.3898(0.0436) 0.8885(0.0080) 0.8531(0.0059) 0.8182(0.0163)
Cerberus [22] 0.7827(0.0129) 0.7650(0.0147) 0.7123(0.0215) 0.6522(0.0149) 0.6293(0.0183) 0.5649(0.0227) 0.9131(0.0052) 0.9060(0.0059) 0.8850(0.0086)
msY-Net [7] 0.7274(0.0191) 0.6683(0.0150) 0.5559(0.0455) 0.5829(0.0227) 0.5143(0.0166) 0.3969(0.0432) 0.8910(0.0076) 0.8673(0.0060) 0.8224(0.0181)
HookNet [24] 0.7053(0.0145) 0.6494(0.0133) 0.5363(0.0601) 0.5573(0.0171) 0.4925(0.0135) 0.3825(0.0553) 0.8822(0.0058) 0.8598(0.0053) 0.8152(0.0242)
SIf-Hist [12] 0.7553(0.0188) 0.7465(0.0134) 0.6507(0.0244) 0.6157(0.0225) 0.6052(0.0185) 0.4957(0.0248) 0.9022(0.0075) 0.8986(0.0054) 0.8603(0.0098)
DSMIL [34] 0.7554(0.0125) 0.7153(0.0280) 0.6079(0.0528) 0.6156(0.0149) 0.5672(0.0314) 0.4509(0.0541) 0.9022(0.0050) 0.8862(0.0112) 0.8432(0.0211)
SSL_CR _Histo [40] 0.7406(0.0186) 0.6765(0.0155) 0.4111(0.0428) 0.5981(0.0221) 0.5234(0.0174) 0.2740(0.0340) 0.8963(0.0075) 0.8707(0.0062) 0.7740(0.0259)
HookNet + MSF-WSI (ours) + Canelyonl6 0.7769(0.0094) 0.7493(0.0102) 0.6554(0.0170) 0.6440(0.0110) 0.6076(0.0120) 0.4989(0.0183) 0.9108(0.0038) 0.8998(0.0041) 0.8623(0.0068)
SimSiam [31] 0.7623(0.0114) 0.7326(0.0214) 0.6365(0.0312) 0.6245(0.0146) 0.5873(0.0253) 0.4778(0.0339) 0.9049(0.0046) 0.8931(0.0086) 0.8550(0.0119)
HookNet + MSF-WSI (ours) + BCSS 0.7827(0.0121) 0.7572(0.0095) 0.6876(0.0262) 0.6470(0.0114) 0.6174(0.0127) 0.5354(0.0275) 0.9136(0.0039) 0.9031(0.0037) 0.8751(0.0105)
Table 6 randomly-initialised model which yielded a DSC score of 0.7471. No-
Ablation experiments on our CTFM and DSL. The best result is bold. tably, we observed that employing weights pre-trained solely through
Method DsC the SimSiam approach led to modest enhancements in model perfor-
Ours (w/o CTFM and DSL, random-init) 0.7471 mance, resulting in an improvement of approximately 0.02, although
Ours (w/o CTFM and DSL, ImageNet-init) 0.7768 this improvement was less pronounced compared to the utilisation of
Ours EW/ o CTFM a?d DSL, s)1m51am-1n1t) 0.7633 ImageNet-pre-trained weights (DSC score of 0.7768).
Ours (w/o DSL, only jigsaw 0.7753 . . . .
» only Jigsav Furthermore, we investigated the impact of our CTFM, which
Ours (w/o DSL, only masking) 0.7773 hieved a DSC £ 0.7881 (0.0113 hicher th h el
Ours (w/o DSL, only CTFM) 0.7881 ac '1eve fi score O ( .7 (0. igher than the mode : pre-
Ours (w/0 CTFM, only DSL) 0.7896 trained with ImageNet weights). We proceeded to evaluate the efficacy
Ours (with CTFM and DSL) 0.8072 of individual components by independently applying the jigsaw task
(yielding a DSC score of 0.7753) and the masking task (yielding a DSC
Table 7 score of 0.7773).
able i . . .
Ablation study on SSL. pre-training strategy. The best result is bold. In addition, we validated the effectiveness of the DSL module inde-
Method DSC pendently from CTFM, and obtained a DSC score of 0.7896. Notably,
- the combination of these two pivotal model components yielded a
SimCLR [29] 0.7614 romising increase of approximately 6% from the baseline model and
0
MoCo v2 [8] 0.7642 P . 8 o pp - y Lo o
SimSiam [31] 07671 an enhancement of 3% when compared to the ImageNet-pre-traine
BYOL [9] 0.7661 model.

Within the context of the BCSS dataset, Cerberus consistently
achieved the top position across all scenarios, achieving the highest
DSC, IoU, and Acc scores, except for the Acc score when utilising 50%
of the training data, where it had the second-best result. Our MSF-
WSI model, pre-trained on the BCSS dataset, obtained the second-best
results in most cases. Notably, our MSF-WSI model achieved the best
DSC and Acc scores when using 50% of the training data. The method
that had the third-best performance across all metrics and settings was
our MSF-WSI model pre-trained on Camelyon16.

4.5. Ablation studies

We conducted all ablation studies on fold 1 of the BCSS dataset
and used the same model configurations as with the fine-tuning exper-
iments.

4.5.1. Effectiveness of CTFM and DSL
Table 6 presents the result measuring the efficacy of the proposed
model components. We initiated our evaluation by benchmarking the

4.5.2. SSL strategy

Our evaluation included four SOTA SSL algorithms: SimCLR [29],
MoCo v2 [8], SimSiam [31] and BYOL [9]. In this ablation analysis,
instead of utilising our MSF-WSI approach, we independently applied
each SSL algorithm to context and target branches. The objective was to
highlight the inherent advantages arising solely from SSL pre-training.
The results are presented in Table 7.

A noteworthy observation emerges from the outcomes: SSL algo-
rithms that avoid the need for negative samples attained superior
performance compared to their counterparts. Specifically, SimSiam ex-
hibited better efficacy, attaining a DSC score of 0.7671, closely followed
by BYOL with a DSC score of 0.7661.

4.5.3. Robustness of model selection

To evaluate the robustness of our proposed algorithm, we conducted
evaluations with varying model selections, the results are shown in
Table 8. The pre-training process was the same as MSF-WSI but we
reduced the number of epochs to 300 to save computation time. Our as-
sessment contained not only a deeper ResNet-34 architecture [20], but
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Fig. 3. Ablation study on hyperparameters, including random mask ratio of CTFM (25%, 50%, and 75 %), loss weights of DSL (wl = [1.0, 1.0, 1.0, 1.0], w2 =[0.5, 0.7, 0.7,
1.0], w3 = [0.2, 0.5, 0.8, 1.0], and w4 = [0.1, 0.4, 0.7, 1.0]), and combinations of batch size (16 and 32) and learning rate (1le-3, 3e-4, le-4). Their corresponding experiment

results are shown from left to right.

Table 8

Ablation study on model backbone. The best result is bold.
Method DSC ImageNet Acc
ResNet-18 0.7851 69.758
ResNet-34 0.7880 73.314
RegNetY-008 [41] 0.8004 76.314
EfficientNet-BO [42] 0.8082 77.700
SegFormer-BO [43] 0.7779 N/A

also contained contemporary SOTA image recognition models, includ-
ing RegNet [41], EfficientNet [42], and SegFormer [43] (a transformer-
based semantic segmentation model). Subsequently, we substituted
pre-trained model backbones with the encoder part of HookNet.

Upon examining the outcomes detailed in Table 8, it becomes
evident that the trend in DSC scores across different backbone models
remained in alignment with their respective performances in the con-
text of the ImageNet classification task. Remarkably, EfficientNet-BO
attained the highest result of 0.8082, which marked an improvement
of approximately 0.02 in comparison to the performance of ResNet-
18 (0.7851). It is noteworthy that SegFormer-B0O obtained the lowest
performance, achieving a DSC score of 0.7779.

4.5.4. Empirical evaluation of hyperparameters

We conducted an empirical study to select the hyperparameters for
the model’s pre-training performance. The results are shown in Fig. 3.
We experimented with the random mask ratio of CTFM (25%, 50%, and
75%). Masking half of the target features obtained the best pre-training
performance, yielding DSC of 0.8072 compared with 0.7972 from 25%
mask ratio and 0.7964 from 75% mask ratio. We also evaluated loss
weights of DSL (wl = [1.0, 1.0, 1.0, 1.0], w2 = [0.5, 0.7, 0.7, 1.0],
w3 = [0.2, 0.5, 0.8, 1.0], and w4 = [0.1, 0.4, 0.7, 1.0]), and observed
the w4 achieved the best DSC of 0.8072 than the other three sets of loss
weights. Additionally, we tested combinations of batch size (16 and 32)
and learning rate (le-3, 3e-4, le-4). We identified that using a batch
size of 32 and a learning rate of le-3 gave the best result.

4.5.5. Comparisons of memory and speed

We compared our MSF-WSI with other SSL pre-training algorithms
in terms of GPU memory and speed, via the total number of model
parameters with the unit of Million (M), the model throughput with
the unit of seconds per batch (sec./batch), and peak GPU memory with
the unit of Gigabytes (GB). We compared four SSL algorithms: Slf-
Hist, DSMIL, SSL_CR _Histo, and SimSiam. All algorithms were run on
a machine with Intel(R) Core(TM) i9-10900K CPU and a single Nvidia
GeForce RTX 3090 24G. The experiment configurations were: batch size

Table 9

Ablation study on model speed and memory via the total number of model parameters
with the unit of Million (M), the model throughput with the unit of seconds per batch
(sec./batch), and peak GPU memory with the unit of Gigabytes (GB).

Method Params (M) Throughput(sec./batch) Peak memory (GB)
SIf-Hist 12.49 201.33 12.62
DSMIL 24.98 406.80 12.62
SSL_CR _Histo 11.93 212.34 12.58
SimSiam 29.70 417.39 14.02
MSF-WSI 123.55 419.18 14.02

was maximum multiple of 2 fitting into the GPU, number of worker was
1, and using mixed precision with PyTorch version of 1.13.

Table 9 shows the results of GPU memory usage and speed among
the comparison methods. Slf-Hist and SSL_CR_Histo had similar number
of parameters which is around 12M along with similar peak memory
usage of 13 GB. DSMIL and SimSiam run nearly half slower (around
400 s./batch) than Slf-Hist and SSL_CR_Histo (around 200 s./batch).
SimSiam requires more GPU memory (14.02 GB) than DSMIL
(12.62 GB). Our MSF-WSI contains largest model parameters (123.55M)
due to additional MLPs in DSL. The peak memory and throughput are
similar to SimSiam which is 14.02 GB and 419.18 s./batch, respec-
tively.

4.6. Visualisation

We executed a qualitative assessment of MSF-WSI by visualising
the top-4 performing methods including MSF-WSI-BCSS, MSF-WSI-C16,
Cerberus, and Slf-Hist on the BCSS dataset. Fig. 4 illustrates the visu-
alisations where each mask is colour-coded: blue represents Tumour,
yellow for Stroma, green for Lymphocytic Infiltrate, purple for Necrosis,
and orange for Other regions.

In the initial row, MSF-WSI exhibited fewer false positives com-
pared to the other methods. For instance, Cerberus yielded more false
positive predictions for the OTR class, while Slf-Hist produced more
false positive predictions for the NEC class. In the second sample, our
approach generated a more precise segmentation mask for the NEC
class, as evident in the lower right corner. In the third example, MSF-
WSI demonstrated superior performance in segmenting the TUM class
in contrast to the other methods.

5. Discussion
The primary findings are as follows: (i) In contrast to conventional

SSL methods, our CTFM and DSL enabled multi-resolution learning dur-
ing pre-training, effectively leveraging complementary multi-resolution
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DSF-WSI-C16 Cerberus SIf-Hist

DsC 0.7571

0.6397

0.6539

Fig. 4. Visualisation of semantic segmentation results in BCSS. Blue is for Tumour, yellow is for Stroma, green is for Lymphocytic Infiltrate, purple is for Necrosis, and orange is
for Others. Corresponding DSC are shown under each of predictions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

features for subsequent segmentation fine-tuning; (ii) Our MSF-WSI
pre-training strategy consistently enhanced histopathology image seg-
mentation, particularly in cases of testing, where both pre-training and
fine-tuning occur on the same datasets and; (iii) In scenarios with
constrained labelled training data, SSL pre-training aided in model con-
vergence, most notably when the distribution of the data in pre-training
datasets closely aligns with that of the fine-tuning datasets.

5.1. Comparing to existing methods on different datasets

Our MSF-WSI pre-training consistently outperformed all other meth-
ods on both the PAIP2019 and BCSS datasets, as shown in Table 1.
We observed that pre-training on histopathology datasets yielded more
improvements than using ImageNet pre-training. For instance, Cerberus
achieved substantial enhancements, improving the ImageNet-initialised
U-Net with a higher DSC of 0.6% in PAIP2019 and 3.6% in BCSS. The
gap between PAIP2019 and BCSS could be attributed to differences
in data distribution; notably, TCGA, one of Cerberus’s pre-training
datasets, serves as the parent set of BCSS. When compared to U-Net,
the baseline model HookNet exhibited comparable performance when
trained from scratch, while the more advanced architecture msY-Net
achieved better results when initialised randomly. This indicates that
integrating context features from the encoder path is superior to doing
so from the decoder path.

In contrast, SSL pre-training proved effective in enhancing model
performance compared to the baseline HookNet. For instance,
SSL_CR _Histo led to improved model performance in the PAIP2019
dataset, and DSMIL contributed to model improvement for both the
PAIP2019 and BCSS datasets. A trend emerged where the SSL pre-
training seemed to offer more significant benefits in the BCSS dataset
than in the PAIP2019 dataset. This could be attributed to the fact that
PAIP2019 with its 3 target classes, is comparatively simpler than the
BCSS dataset with 5 target classes. Another factor is that Camelyon16
pre-training dataset comprises of breast WSIs, similar to the BCSS which
is also a breast dataset, while PAIP2019 contains liver WSIs. This
performance discrepancy could be mitigated by either pre-training on
diverse external datasets like Slf-Hist or by pre-training on the same
dataset like SimSiam.

While existing SSL histopathology methods used multi-resolution
WSIs independently, they struggled to achieve competitive performance

compared to Cerberus. In contrast, our MSF-WSI pre-training achieved
superior results, whether by transferring from Camelyonl6 or pre-
training on the same dataset. Specifically, MSF-WSI pre-trained on
Camelyon16 outperformed other methods, enhancing baseline HookNet
with a 1.7% higher DSC, 2.2% higher IoU, and 1.2% higher Acc on
the PAIP2019 dataset, and 4% higher DSC, 6.1% higher IoU, and 1.6%
higher Acc on the BCSS dataset. Furthermore, through pre-training
on the same dataset, our approach achieved additional performance
gains, surpassing the best existing method msY-Net by 1.3% higher
DSC, 1.7% higher IoU, and 0.9% higher Acc on the PAIP2019 dataset,
and Cerberus by 0.9% higher DSC, 1.1% higher IoU, and 0.4% higher
Acc on the BCSS dataset. These experimental results underscored the
significance of learning the correlations between resolutions during SSL
pre-training, which is crucial for multi-resolution models to effectively
utilise complementary information between multi-resolution WSIs for
improved segmentation performance.

5.2. Analysis of semi-supervised performance

Our method consistently achieved superior results across all metrics
on the PAIP2019 dataset, while maintaining a top-three position on
the BCSS dataset, as indicated in Tables 4 and 5. From these results,
it is evident that randomly-initialised and ImageNet-initialised models
experienced notable performance degradation as the available training
data diminished. Specifically, there was an average drop of 10% in DSC
on the PAIP2019 dataset and a 20% DSC drop on the BCSS dataset when
only 1% of the data was utilised for training.

In alignment with the main fine-tuning experiments, the transfer
from the distinct WSI dataset Camelyonl6 (breast cancer) for the
PAIP2019 dataset (liver cancer) did not outperform pre-training on the
same dataset. Nevertheless, our MSF-WSI pre-trained on Camelyonl6
exhibited the best performance among external testing methods, com-
pared to the baseline HookNet, it improved DSC by 1.4% when using
50% of the data and by 2% when using 10% of the data. This suggests
that pre-training on the same dataset is more efficient than pre-training
on a larger but different dataset. Furthermore, when we pre-trained
MSF-WSI on the PAIP2019 training set, our method enhanced HookNet
with a higher DSC of 2.5% using 50% of the data, a higher DSC of 4%
using 10% of the data, and a higher DSC of 6.4% using only 1% of
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the data. Notably, after pre-training with our MSF-WSI, a mere 10%
of the training data proved sufficient to surpass the performance of a
random-initialised HookNet trained with 100% of the data.

For the BCSS dataset, Cerberus consistently achieved better results
than other methods under all semi-supervised settings. Despite this, our
MSF-WSI pre-trained on the BCSS dataset obtained the first position
when the training data was 50%, and our method remained within the
top three even in the 10% and 1% settings. The superior performance of
Cerberus may be attributed to (1) ResNet-34’s enhanced image feature
representation, and (2) the model’s robust representation owing to in-
domain knowledge from the TCGA pre-training dataset and its exposure
to a larger number of pre-training histopathology datasets.

In summary, our method demonstrated the effectiveness of learned
representations, proving efficient for subsequent model fine-tuning
even when working with partial datasets.

5.3. Analysis of model components

The contributions of CTFM and DSL components are presented
in Table 6. It is noticeable that the combination of CTFM and DSL
yielded the highest outcome, achieving 6% improvement over the base-
line random initialisation. When compared to the randomly initialised
model, CTFM improved the DSC by 4.1%, and DSL improved DSC
by 4.2%. CTFM introduced a pretext task that demands the model
to comprehend multi-resolution WSI features during SSL pre-training.
Unlike the independent pretext tasks of jigsaw and masking that is
common in SSL [25,26], our CTFM creates a more challenging task
by generating complex samples involving multi-resolution WSIs. This,
in turn, facilitates the multi-resolution model in learning how to learn
complementary multi-resolution features, leading to an improvement of
over 1% compared to both jigsaw and masking tasks. DSL strengthens
the model’s ability for representation learning by enabling SSL training
in the early stages of the model. This is valuable since low-level image
features can enhance segmentation performance. The standard SimSiam
learning typically employs features solely from the last model layer,
which often contains high-level, semantic-relevant representations for
the entire input. However, in histopathology segmentation, low-level
features like edges, colours, and curves, are also important. Addition-
ally, since ROIs, such as tumour cells, might constitute a small portion
of the image, later model layers may not adequately learn the ROI
features. Enabling feature learning in the early stages of the model, as
done in our DSL approach, resulted in a 2.3% increase in DSC when
compared to SimSiam that focuses only on the last layer outputs.

In this study, we adopted the SimSiam method as our contrastive
learning strategy due to its property of being negative-free, wherein the
loss function maximises similarities between positive samples without
minimising dissimilarities between negative samples. This character-
istic offers two essential advantages: (1) it eliminates the need for a
large batch size, reducing GPU memory demands, and (2) it relaxes
the assumption for patch-based WSI methods, which require patches
from the same WSI to be categorised as “positive” samples. This as-
sumption was overlooked in previous works [12,13,34], leading to
misclassification of patches from the same WSI (positive samples) as
negatives if allocated to the same mini-batch. This misclassification
hindered the model from receiving accurate updates from calculated
losses. Our validation results in Table 7 demonstrated that negative-
sample-free algorithms, such as BYOL and SimSiam, exhibited superior
performance.

The assessments of backbone robustness, as presented in Table 8,
highlighted the adaptability of our MSF-WSI to various backbone archi-
tectures. Generally, the segmentation performance aligns with the back-
bone’s ImageNet classification accuracy, where EfficientNet-BO demon-
strated optimal performance and consistent superiority over other mod-
els. Notably, SegFormer exhibited the lowest performance despite being
designed for the segmentation task. This might be attributed to the
SegFormer decoder’s decoupling from its optimally designed encoder.
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To ensure fair comparisons with previous SOTA methods, we used the
standard ResNet-18 as the backbone in our main experiments.

Due to the advanced designs for processing multi-resolution inputs,
we introduced extra hyperparameters for model pre-training which can
sensitively affect the pre-training representation performance. There-
fore, we conducted empirical evaluations on these hyperparameters
and show results in Fig. 3. We found that using 50% masking ratio
performed the best. We suggest that small masking ratio may reduce
the difficulty of the pretext task and prevent the model from learning
complementary multi-resolution features, whereas high masking ratio
can remove essential details in target features. For the loss weights
in DSL, we observed that using identical loss weights (wl) yielded
the worst result. This is as expected since shallow layers learning of
low-level features should have less effect than deep layers learning of
high-level features [44]. Gradually increasing the weights from shallow
to deep layers with an identical gap 0.3 (w4) seems to give a better
result than other strategies. Additionally, we explored the effects of
batch size and learning rate and found that larger batch size of 32 and
learning rate of 1e-3 have advantages over other combinations.

In addition, we compared our algorithm with others in terms of
memory and speed as shown in Table 9. Compared with algorithms
(SIf-Hist and SSL_CR_Histo) which shared the same model for different
patch resolutions, DSMIL and SimSiam doubled the number of param-
eters by adopting two unshared networks for multi-resolution inputs.
Our MSF-WSI had more model parameters due to the introduce of
MLPs in DSL. Nevertheless, the peak memory and throughput were
similar among DSMIL, SimSiam and MSF-WSIL. We conclude that the
complexity of MSF-WSI arises from two aspects: (a) the data processing
time is increased due to the on-the-fly generation and pre-processing of
target patches, including shuffling and random masking during the pre-
training; and (2) our model complexity is increased as distinct models
are employed for multiple resolution patch feature extraction. Addition-
ally, DSL requries additional predictors (3-layer MLP) and projectors
(2-layer MLP) for the contrastive pre-training. It is noteworthy that
after the pre-training, MLPs introduced in DSL and pre-processing of
target features are removed and thus keep the efficiency for the later
fine-tuning.

6. Conclusion

In this paper, we introduced a new SSL framework designed to
exploit the multi-resolution information in WSIs for histopathology.
Specifically, the learning of multi-resolution features was enabled by
the proposed CTFM and masked jigsaw pretext task during the self-
supervised pre-training. This compelled the model to understand the
relationships between different WSI resolutions. Our experiment results
showed that the proposed CTFM with masked jigsaw pretext task
facilitate the learning of complementary histopathology information
between multi-resolution WSIs, yielding superior representations com-
pared to the original SimSiam and single masking or jigsaw pretext
tasks. Furthermore, we found that maximising the feature similarities
from early model layers in SSL pre-training is beneficial for learning
low-level image features and contributing to the segmentation perfor-
mance in histopathology. Our MSF-WSI was evaluated in three public
datasets on breast and liver cancer segmentation tasks with internal and
external testing settings, and it outperformed other SOTA SSL methods
under different fractions of training data.

There are two limitations to our method that require further consid-
eration for future works. One identified limitation is that the framework
was evaluated with two fixed resolutions, and it can be generalised to
use more WSI resolutions which provides richer hierarchy information
than two-resolution inputs. Additionally, the model was pre-trained on
a single dataset, potentially restricting the generalisability of learned
representations. Addressing this limitation could involve combining
diverse WSI datasets with various tissue types to create a large-scale
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hybrid dataset, enabling the development of WSI-general-purpose pre-
trained weights for more effective transfer learning. Moreover, future
works could involve clinical validation assess the performance and
reliability of our model in real clinical settings which is essential for
its translation into clinical practice
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