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1  |  INTRODUC TION

Invasive species are those that cause ecological harm and threaten 
native biodiversity, affect human health and livelihoods or cause 
economic losses (CABI, 2018). To become invasive, angiosperms 
need to be able to reproduce, and for some that will require 

establishing new pollination mutualisms within their non-native 
range. Globally, 89.7% of angiosperms require a pollinator for out-
crossed seed set (Tong et al., 2023). Nevertheless, the extent to 
which pollination interactions are relevant in plant invasions de-
pends on the ability of plant species to reproduce asexually, the 
plant species' degree of self-compatibility and its dependence on a 
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Abstract
1.	 Plants that exhibit generalised pollination syndromes have been hypothesised to 

become invasive more easily compared with specialists, yet the degree to which 
specialised pollination traits inhibit plant invasions is unknown. One such spe-
cialisation is the buzz pollination syndrome, which encompasses specialised floral 
traits that restrict pollen access (typically poricidal anthers) and benefits from 
specialised insect behaviour for pollen extraction.

2.	 We reviewed the literature on buzz pollination of invasive plants to assess 
whether: (1) plant species exhibiting specialised pollination syndromes are un-
derrepresented as invasive species, and (2) species with specialised pollination 
syndromes that have become invasive can reproduce in the absence of specialist 
buzzing pollinators.

3.	 Synthesis. We found 2.5% (117/4630) of invasive angiosperms have poricidal an-
thers, which is an underrepresentation of the proportion of global angiosperms 
that are estimated to have poricidal anthers (6%–10%). Most invasive buzz-
pollinated plants are genetically self-compatible (97%), but only 43% can set fruit 
in the absence of a pollinator. Our findings highlight the importance of establish-
ing new pollinator mutualisms for sexual reproduction. However, we identified six 
non-buzzing behaviours used to extract pollen from plants with poricidal anthers, 
which is important where buzzing pollinators may be absent or not attracted to 
newly introduced plant species.
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pollinator to transfer pollen from the anther to a receptive stigma 
(Traveset et al., 2020).

Plants with generalised pollination systems are hypothesised 
to become invasive more easily than specialists due to the diver-
sity of fauna that can pollinate them (Baker,  1974; Richardson 
et  al.,  2000; Rodger et  al.,  2010). However, there are multiple 
definitions of what constitutes generalised or specialised in pol-
lination networks, as specialisation may refer to ecological spe-
cialists, functional group specialists or phenotypic specialists 
(Armbruster,  2017; Ollerton et  al.,  2007). Ecological specialist 
refers to the species richness of effective pollinators; functional 
group specialist refers to the pollinator functional group diversity, 
typically presented as a mix of functional traits and at a family 
level or order level (e.g. butterfly pollinated, short-tongued bee 
pollinated); and phenotypic specialist refers to the floral adapta-
tions, such as specialised morphological structures that attract 
pollinators (Armbruster, 2017). Defining whether a plant species 
is a specialist or generalist is subjective, and each type of polli-
nation specialisation is relative and can be placed on a specialist 
continuum (Armbruster,  2017). For example, at one extreme of 
that continuum is Yucca (Asparagaceae). Yucca pollination is con-
sidered highly ecologically and phenotypically specialised because 
each flower has a depressed stigma and requires pollen to be de-
posited by a single yucca moth species, which has modified tenta-
cles to handle and deposit the pollen on the stigma (Baker, 1986); 
while, at the other end, eucalypts (Myrtaceae) exhibit gener-
alised plant–pollinator networks as they have an unspecialised 
floral morphology (Zilko et  al.,  2017) and can be pollinated by 
bats (Hingston,  2002), possums (Brundrett, 2021), birds (Zilko 
et al., 2017) and a diverse suite of insect orders (Brundrett, 2021).

Furthermore, ecological, functional group and phenotypic spe-
cialisations are independent of each other (Ollerton et al., 2007). 
For example, a plant species with high phenotypic specialisation 
can be ecologically and functionally generalist. In trigger plants 
(Stylidium species; Stylidiaceae), the staminal and pistillate tis-
sues have fused into a column that, when touched at the base, 
launches onto the dorsal side of the visiting insect, depositing or 
collecting pollen (Armbruster et al., 1994). Despite Stylidium being 
highly specialised phenotypically, a suite of insect species from 
five genera and three functional groups (social bees, solitary bees 
and flies) can pollinate Stylidium species (Armbruster et al., 1994), 
thereby Stylidium plants can be classed as ecological and func-
tional generalists.

The ‘buzz-pollination’ syndrome provides a good example of 
a specialised pollination process because both functional group 
and phenotypic specialisations occur. Buzz-pollinated flowers 
have specialised floral traits that restrict pollen access, such as 
poricidal anthers with a small opening at the tip whereby pollen 
is released (Buchmann, 1983), or the solanoid flower morphology 
(De Luca & Vallejo-Marín,  2013; Vallejo-Marin & Russell,  2023). 
Solanoid flowers lack a nectar reward, contain short, centrally 
located filaments in a fused cone structure and rarely contain 
fused petals or sepals into a tube (De Luca & Vallejo-Marín, 2013). 

Plants containing poricidal anthers are broadly distributed across 
the angiosperms, from the ancestral complex of the Magnoliales 
(Buchmann, 1983). Poricidal anthers are a highly specialised floral 
structure that has convergently evolved in an estimated 6%–10% 
of angiosperm species (Buchmann, 1983; Russell, Zenil-Ferguson, 
et al., 2024). The most efficient way to remove pollen from flowers 
with these specialised traits is through floral vibrations. Vibrations 
are typically produced by female bees and it is these vibrations 
that cause pollen release (Buchmann, 1983; Vallejo-Marín, 2019). 
Bees are the primary taxonomic group known to produce floral 
buzzes (Buchmann et al., 1978; Pritchard & Vallejo-Marín, 2020; 
Vallejo-Marín & Vallejo,  2021), making these plants functional 
group specialists. As such, buzz pollination is commonly consid-
ered a specialised pollination syndrome.

In spite of this apparent specialisation, many broadly distrib-
uted invasive plants exhibit the buzz pollination syndrome, includ-
ing species from the Solanaceae, Fabaceae and Melastomataceae 
families. For example, Clidemia hirta (Melastomataceae) exhibits 
the buzz pollination syndrome and is listed on the ‘100 of the 
World's Worst Invasive Alien Species’ list (Luque et al., 2014) be-
cause it outcompetes native biodiversity and has the potential 
to cause extinctions for native flora and fauna in its non-native 
ranges (GISD,  2024). Furthermore, Solanum torvum and Solanum 
rostratum (Solanaceae) both exhibit the buzz pollination syn-
drome and are highly invasive species present on six continents 
(CABI,  2022; Palchetti et  al.,  2020). Plants that have specialised 
pollination syndromes may become invasive if the relevant func-
tional group of pollinators is present in their non-native range, if 
they switch to a new functional group of pollinators upon introduc-
tion to their non-native range or if they do not require a pollina-
tor to reproduce (Rodger et al., 2010 and references therein). The 
reproductive assurance hypothesis states that selection favours 
self-pollination or asexual reproduction in flowering plants where 
pollinators or mates are scarce (Baker, 1955; Darwin, 1876), such 
as when colonising new habitats (Baker, 1955). Baker's law reiter-
ates the reproductive assurance hypothesis and states that unipa-
rental reproduction is advantageous for species when colonising 
island ecosystems by long-distance seed dispersal (Baker,  1955; 
Stebbins,  1957). Currently, evidence for the factors that enable 
plants with specialised pollination syndromes to become invasive 
is scarce, and we rarely have data on what species visit or pollinate 
many invasive plants for either their native or their non-native 
ranges (Traveset et al., 2020). Consequently, whether species fre-
quently utilise any of these strategies to overcome the barrier of 
specialist plant–pollinator interactions is largely unexplored.

We reviewed the available literature on invasive buzz-
pollinated plants to determine (1) how frequently represented 
buzz-pollinated plants are as invasive species, and (2) whether 
buzz-pollinated plants that have become invasive can reproduce 
in the absence of specialist buzzing pollinators. Specifically, we 
hypothesised that (1) buzz-pollinated plants will be underrepre-
sented as invasive species. For invasive species that exhibit the 
buzz pollination syndrome, we expect that (2.1) these invasive 
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plants frequently reproduce in the absence of a pollinator, or that 
(2.2) these invasive plants can be pollinated by non-vibratile pollen 
collectors in their non-native range.

2  |  INVA SIVE SPECIES THAT E XHIBIT THE 
BUZZ POLLINATION SYNDROME

To determine whether buzz-pollinated plants are underrepresented 
as invasive species, and in turn, to infer whether the buzz pollination 
syndrome appears to provide a barrier to plant invasions, we assessed 
the proportion of known global invasive plant species that have a 
buzz pollination syndrome. We then compared this to the estimated 
6%–10% of angiosperms that have poricidal anthers and, in turn, ex-
hibit the buzz pollination syndrome (Buchmann, 1983; Russell, Zenil-
Ferguson, et al., 2024). The proportion of buzz-pollinated plants able 
to thrive in new regions should be less than the overall number of 
species exhibiting a buzz pollination syndrome if this specialist in-
teraction poses a barrier to plant invasions. Therefore, we expected 
that the proportion of invasive buzz-pollinated plants would be less 
than 6%–10%.

To calculate the proportion of invasive species globally that 
exhibit the buzz pollination syndrome, we assessed the pollina-
tion syndrome of angiosperms listed in the Centre for Agriculture 
and Bioscience International (CABI) Invasive Species Compendium 
Open Data Repository (CABI, 2022). We generated a report of in-
vasive angiosperms listed on the CABI Horizon Scanning Tool in 
May 2022 using the filters (1) datasheet type: ‘invasive species’ 
and (2) sub-phylum: ‘Angiospermae’. The search yielded 4807 
species from 228 families that are broadly distributed across the 
angiosperm phylogeny, that are listed as invasive anywhere in 
the world. We used The Catalogue of Life Checklist Bank (Bánki 
et  al.,  2023) to exclude species listed multiple times under syn-
onymous scientific names, resulting in 4630 species; then we ex-
tracted the 28 families from this list that are known to contain at 
least one species that exhibits a buzz pollination syndrome (from 
De Luca & Vallejo-Marín, 2013). We then conducted visual assess-
ments of the floral morphology from online imagery for the 1231 
species from the extracted 28 plant families, to individually exam-
ine whether each species had traits consistent with the buzz pol-
lination syndrome (poricidal anthers or solanoid morphology). We 
reviewed the literature for species for which we could not assess 
the floral morphology from available online imagery to determine 
whether these species contained poricidal anthers, exhibited a 
solanoid floral morphology or had other evidence of buzz pollina-
tion recorded. We undertook two independent Z-tests to examine 
whether the proportion of invasive plants that exhibit the buzz 
pollination syndrome is significantly lower than the overall pro-
portion of angiosperms that contain poricidal anthers. First, we 
compared only the percentage of invasive plants with poricidal an-
thers to the 6%–10% global estimate of angiosperms with poricidal 
anthers. Second, we compared the percentage of invasive plants 

with any trait representative of the buzz pollination syndrome, in-
cluding all species with poricidal anthers, a solanoid morphology 
or species for which we could not infer the pollination syndrome 
to the 6%–10% global estimate of angiosperms with poricidal an-
thers. We found that 2.5% (117 of the 4630) of invasive species 
listed on the CABI Invasive Species Compendium have poricidal 
anthers, significantly less than global angiosperms with poricidal 
anthers (6%–10%; z = −9.951, df = 1, p < 0.001). We found that 
2.9% (131 of the 4630) of invasive species listed on the CABI 
Invasive Species Compendium exhibited traits consistent with the 
buzz pollination syndrome. We were unable to infer the pollination 
syndrome of a further 31 species from eight families (Table  S1; 
Lopresti et al., 2024); species-specific data on the floral morphol-
ogy and pollen vectors were unavailable for these species and we 
could not confidently infer anther dehiscence from available on-
line imagery. If we assumed all 31 of these unclassified species 
were buzz pollinated, it would bring the total to 162, or 3.5% of 
the CABI-listed angiosperm invaders (z = −7.166, df = 1, p < 0.001). 
Therefore, buzz-pollinated invasive plants are approximately two 
to four times less common than would be expected based on their 
proportional representation among the generality of angiosperms 
(2.5%–3.5% of 6%–10%). This supports our first hypothesis that 
buzz-pollinated plants are underrepresented among invasive 
species.

We acknowledge that the lack of available data on invasion 
opportunity and plant reproduction limits a robust test of our 
first hypothesis. Firstly, multiple complex interactions influence 
whether an introduced species will become invasive. For example, 
the number of introduction events (propagule pressure) is strongly 
and positively correlated with the establishment success of alien 
invasive species (Cassey et al., 2018). However, we currently lack 
data as to when many plant species are introduced, intentionally or 
unintentionally, into a new range (Pigot et al., 2017). Furthermore, 
pollination syndromes are an oversimplification of the interactions 
between plants and pollinators (reviewed by Dellinger, 2020). This 
oversimplification is true for the buzz pollination syndrome be-
cause not every plant with a solanoid morphology or poricidal an-
thers will be buzz pollinated, and some bees will buzz flowers that 
do not have a solanoid morphology or poricidal anthers (Buchmann 
et al., 1978). Data on the floral morphology, breeding system and 
specific pollinators, including the foraging behaviour of floral vis-
itors for many plant species, are currently unavailable. For exam-
ple, both Buchmann and Russell et  al. estimated the number of 
angiosperm genera that contain at least one species with poricidal 
anther dehiscence but did not consider solanoid floral morphol-
ogies. Nevertheless, we assessed our results against the conser-
vative estimate of 6%–10% of angiosperms that contain poricidal 
anthers, as this is the most precise estimate of buzz-pollinated 
angiosperms available. Given these gaps in the available data, a 
practical and achievable method to test our first hypothesis was 
to assess the floral phenotypes that typically are associated with 
the buzz pollination syndrome. However, it would be beneficial 
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for future assessments to obtain a species-specific value of the 
number of angiosperms that have traits consistent with the buzz 
pollination syndrome.

3  |  THE FAC TORS THAT ALLOW 
BUZZ-POLLINATED PL ANTS TO BECOME 
INVA SIVE

3.1  |  Uniparental reproduction in buzz-pollinated 
invasive plants

Some species that exhibit traits consistent with the invasive buzz 
pollination syndrome have become invasive (131 species listed 
on the CABI Invasive Species Compendium). Specialised pol-
lination syndromes may not pose a barrier for invasive plants if 
they can reproduce in the absence of suitable pollinators. Most 
angiosperms are hermaphroditic (i.e. possess both male and fe-
male reproductive organs), but pre- and post-zygotic reproductive 
barriers can impede effective self-pollination. ‘Genetically self-
compatible’ species are those that can set seed from self-pollen 
(autogamy). Genetically self-compatible species may still require 
a pollen vector due to the spatial (e.g. herkogamy or dioecious 
floral morphologies) or temporal (dichogamy) separation of the 
androecium and gynoecium. ‘Functionally self-compatible’ spe-
cies can set seed autonomously in the absence of pollinators (e.g. 
apomictic reproduction or spontaneous selfing). Self-compatibility 
has been reported from at least 30 families of flowering plants, 
but it is less widespread than vegetative reproduction in vascu-
lar plants (Holsinger,  2000). Uniparental reproduction, including 
self-compatibility and vegetative reproduction, is expected to fa-
cilitate colonisation after long-distance seed dispersal of just one 
or a few propagules (Baker, 1955). However, fewer genotypes are 
typically present in progeny reared from uniparental reproductive 
pathways compared to conspecific outcrossed progeny, which can 
have long-term fitness consequences for populations including in-
breeding depression (e.g. see Holsinger, 2000 review).

Baker's Law (Baker,  1955) is frequently cited in the context of 
biological invasions because uniparental reproduction is expected 
to help achieve reproductive assurance (Pannell et al., 2015; Rodger 
et al., 2010). Furthermore, depending on the strength of selection 
for traits related to higher reproductive assurance, it is expected that 
some invasive plants will shift towards increased self-compatibility 
in their non-native range. This shift may occur because genotypes 
that are more self-compatible will be selected for when suitable pol-
linators are scarce in the non-native range (Petanidou et al., 2012). 
Despite the potential long-term fitness consequences associated 
with uniparental reproduction (Holsinger, 2000), there is some em-
pirical evidence of plants shifting mating systems upon introduction. 
For example, some populations of Mimulus guttatus (Phrymaceae) 
developed improved selfing ability over five generations after pol-
linators were excluded (Bodbyl Roels & Kelly, 2011). Yet, the degree 
to which reproductive assurance and shifts in mating systems enable 

plant invasions for species with specialised pollination syndromes 
has been largely unexplored.

To determine whether invasive plant species with a buzz polli-
nation syndrome can reproduce in the absence of a pollinator, or 
shift towards increased autogamy upon introduction, we examined 
the reproductive biology of each of the invasive species listed in 
the CABI Invasive Species Compendium that likely exhibited a buzz 
pollination syndrome (i.e. species that contained poricidal anthers 
or a solanoid morphology). We excluded the 39 Araceae and two 
Mayacaceae invasive species from this subsequent assessment 
because despite these families commonly containing species with 
poricidal anthers, these species do not exhibit the buzz pollination 
syndrome (discussed in Buchmann, 1983). To collate information on 
the reproductive biology of each species, we searched Scopus and 
Web of Science using the search terms (Latin species name AND 
(breed* OR reproduct* OR pollinat*)) and obtained data from each 
species CABI profile (CABI, 2022). For all species, we included his-
torical names from 1955 in the key search terms to account for stud-
ies published under older nomenclature undertaken since Baker's 
Law was first proposed (Baker, 1955). We also included historical and 
synonymous species names listed on The International Plant Names 
Index (IPNI, 2023) (Table S2; Lopresti et al., 2024). We extracted data 
on each species' breeding system, including assessments of genetic 
self-compatibility, functional self-compatibility (whether a pollinator 
is required for seed set), and whether the species can reproduce veg-
etatively in both its native and non-native ranges.

Breeding system data were available for 32 of the 92 inva-
sive buzz-pollinated species (Table  1; Table  S3). Regardless of the 
range (native or non-native), 97% of species (31 of the 32 species) 
were genetically self-compatible, that is, capable of setting at least 
some fruit or seed from pollen sourced from the same parent plant 
(Table 1; Table S3; Lopresti et al., 2024). This provides support for 
the reproductive assurance hypothesis. However, only 43% of spe-
cies (10 of 23 species for which data were available) are functionally 
self-compatible, that is can set fruit in the absence of a pollinator, 
regardless of their range. This highlights the importance for some 
buzz-pollinated plants to establish new pollinator mutualisms for 
sexual reproduction in their non-native range. Vegetative reproduc-
tion data were available for 33 of the 92 species, and 66% (22 of the 
33 species) of these species were capable of this form of asexual 
reproduction (Table 1).

Mating system data were available from both the native and 
non-native ranges for only three invasive buzz-pollinated species 
(Solanum elaeagnifolium, S. rostratum and Rhododendron ponticum) 
(Table S3; Lopresti et al., 2024), limiting our ability to make infer-
ences about how frequently plasticity in the mating system can 
facilitate plant invasions for buzz-pollinated plants. Hand pollina-
tion experiments showed S. elaeagnifolium to have a mixed mating 
system in both native and non-native ranges, but a general shift 
from self-compatible (native range) to self-incompatible (non-
native range) was apparent based on self-compatibility indices 
(Petanidou et al., 2012). In contrast, no shift in the mating system 
was apparent for S. rostratum, based on a comparison of multilocus 
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outcrossing rates for four populations in the native range (Vallejo-
Marín et  al.,  2013) and 10 populations in the non-native range 
(Zhang et  al.,  2017), which suggests a mixed mating system for 
both ranges. Similarly, a pollinator exclusion experiment repli-
cated in both the native and non-native ranges showed no shift in 
the mating system of R. ponticum (Erfmeier & Bruelheide, 2004). 
Thus, the few studies comparing the reproductive systems of 
buzz-pollinated invasive plants in both their native and non-native 
ranges illustrate two different outcomes: a shift towards reduced 
autogamy, and no change. However, the low number of studies 
available preclude any inference about the role of shifting mat-
ing systems in the context of plant invasions for buzz-pollinated 
plants. Future studies should compare the reproductive biology 
of invasive plants in both their native and non-native ranges to 
determine the extent to which the species is self-compatible and 
whether adaptive shifts towards increased self-compatibility in 
the non-native range could facilitate invasions.

3.2  |  Broadening the functional groups of 
pollinators

Theoretically, pollination barriers for ecological and functional 
group specialists can be overcome if pollinators in the same func-
tional group are already present in the species' non-native range, 
or if plants and pollinators are co-introduced (e.g. Liu & Pemberton, 
2009; Rodger et  al.,  2010 and references therein). Females from 
over 11,600 species of bees can produce vibrations on flowers 
at a frequency that causes pollen release (vibratile pollen collec-
tion) (Vallejo-Marín & Vallejo,  2021) which is estimated to be just 
over half of the world's bee species (Orr et  al.,  2021; Pritchard & 

Vallejo-Marín,  2020). Buzzing bees have a global distribution and 
are present on every continent, excluding Antarctica (Russell, 
Buchmann, et al., 2024); therefore, it is likely that the buzz pollina-
tion syndrome is a geographically unrestricted specialisation. This 
could be an important factor in overcoming specialisation barriers 
for invasive buzz-pollinated plants. However, this requires synchro-
nicity between the non-native plant's floral phenology and vibratile 
pollen-collecting bees. Local bee species richness and abundance can 
be highly dynamic and variable (Williams et al., 2001). Consequently, 
spatiotemporal mismatch may be more likely to occur where the 
plant is missing its coevolved pollinators in the non-native range 
compared to its native established pollinators. To our knowledge, 
whether an introduced plant has become invasive in the absence of 
buzz-pollinating fauna has not been examined.

Alternatively, invasive species with specialised pollination syn-
dromes may overcome difficulties associated with establishing new 
mutualistic interactions in their non-native range via an increase in 
the diversity of functional groups able to pollinate them. This hy-
pothesis implies that the buzz pollination syndrome does not in-
exorably require functional group specialisation, which has been 
previously hypothesised for a buzz-pollinated invasive plant (Solis-
Montero et al., 2022). However, evidence of invasive plants benefit-
ting from a broader range of their functional groups of pollinators is 
rare. One example is Digitalis purpurea (Foxglove), which exhibits a 
mellitophilous pollination syndrome: Its tubular flowers are adapted 
for pollination by long-tongued bees (Mackin et al., 2021). Foxglove 
is predominantly pollinated by bumble bees (Bombus species) in 
its native range in Western Europe (Best & Bierzychudek,  1982). 
Foxglove has become naturalised throughout much of the Americas, 
and a recent study found both bumble bees and hummingbirds to 
be key pollinators in its non-native range (Mackin et  al.,  2021). 

TA B L E  1  Synthesis of the relative occurrence of different reproductive systems described for invasive plant species with buzz pollination 
syndromes.

Reproductive system % (Total N) Examples References

Autogamy (genetically self-compatible) 97% (32) Solanum elaeagnifolium Petanidou et al. (2012)

Chimaphila umbellata Standley et al. (1988) and Barrett 
and Helenurm (1987)

Ardisia crenata Cheon et al. (2000)

Apomixis/Agamospermy (functionally 
self-compatible)

43% (23) Ardisia elliptica Pascarella (1997)

Clidemia hirta Melo et al. (1999)

Cynoglossum officinale Upadhyaya et al. (1988)

Asexual vegetative reproduction 66% (33) Root fragmentation: Ardisia crenata Roh et al. (2005)

Rhizome: Polygonatum multiflorum Kosiński (2015)

Tuber: Liriope spicata Nesom (2010)

Lacking data on breeding system 65% (92) Senna bacillaris Not applicable

Senna bicapsularis

Melastoma septemnervium

Note: The species richness of invasive buzz-pollinated plants is presented as a percentage (%) of total species for which data were available (Total N) 
and for which the relevant trait (e.g. self-compatibility) had been published. Note that the categories are not mutually exclusive and, thus, that the 
Total N does not equal 92. Species-specific reproductive biology data for each of the 92 buzz-pollinated invasive plants, including the range (native or 
non-native), is in Table S3 (Lopresti et al., 2024).
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Hummingbird pollination is resulting in rapid evolutionary shifts for 
foxglove's floral morphology, as hummingbirds are exerting a selec-
tion pressure that causes larger proximal corolla tubes in introduced 
foxglove flowers than those in the native range (Mackin et al., 2021). 
This shows that increased pollinator functional group diversity in 
non-native regions can facilitate plant invasions even for species 
with specialised pollination syndromes, which leads us to predict 
that buzz-pollinated plants can be pollinated by non-buzzing floral 
visitors upon introduction to a new region, in turn facilitating the 
plant invasion.

Vibratile pollen collection is frequently assumed to be the 
most efficient method of pollen extraction for plants with a 
buzz pollination syndrome (Buchmann,  1983); however, there 
are several other behaviours that insects use to extract pollen 
from plants with a buzz pollination syndrome. We systematically 
searched Scopus and Web of Science (March 2023) to obtain data 
on all known behaviours used to extract pollen from plants with a 
buzz pollination syndrome and assessed whether these are legit-
imate pollinators. The search terms ‘TITLE-ABS-KEY ((buzz AND 
pollinat*) OR (poricidal AND anther) OR Solanoid AND behav*)’ 
yielded 109 results. We extracted data on whether floral visi-
tors carried pollen of the target plant, whether species contacted 
the stigma while foraging or deposited pollen on the stigma, and 
whether fruit was set following a single species visit to a flower 
and used these to distinguish floral visitors from the likely polli-
nators. We excluded studies in which the behaviour of the floral 
visitors was not described when assessing the pollinating abilities 
of floral visitors to plants with poricidal anthers because insect 
species capable of vibratile pollen collection may also exhibit non-
buzzing foraging behaviours (e.g. Cortés-Rivas et al., 2022 found 
that Bombus terrestris only vibrated anthers in 45% of floral visits 
to blueberry crops).

The literature search revealed that pollen can be extracted from 
plants with a buzz pollination syndrome by two main categories of 
behaviour: buzzing (vibratile pollen collection) or non-buzzing. We 
summarised the descriptions of behaviours used to extract pol-
len from buzz-pollinated plants into eight different subcategories 
(Table  2). Vibratile pollen collection was the most common be-
haviour described in the literature. Vibrations can be produced by 
thoracic vibrations, in which floral visitors contact the flower, an-
ther cone or single anther and vibrate thoracic muscles at high fre-
quencies (~100–400 Hz) to expel pollen (Buchmann, 1983; Larson & 
Barrett, 1999; Switzer et al., 2016; Vallejo-Marín, 2019). Vibrations 
can also be produced by head-banging, in which the floral visitor re-
peatedly taps its head against anthers at a high frequency (~350 Hz) 
to expel pollen (Switzer et  al.,  2016). Behaviours for non-buzzing 
pollen collection included biting the tips of the anther (‘biting’) until 
pollen could be accessed, probing the proboscis inside the apical 
pore of anthers to scrape or lick the pollen (‘scraping’), and using 
mandibles to squeeze the pollen out from the anther (‘milking’) (e.g. 
Thorp, 1979, 2000). Despite the range of known behaviours used to 
extract pollen from buzz-pollinated plants, there has been some as-
sertion that buzz-pollinated plants require a buzzing insect to extract 

pollen. For example, some studies state that a ‘buzzing’ or ‘sonicat-
ing’ insect is required to extract pollen from plants with a buzz polli-
nation syndrome (e.g. Olesen & Dupont, 2006; Switzer et al., 2019; 
Tayal & Kariyat, 2021). Consequently, non-buzzing insects are not 
always considered pollinators when examining the pollinators of 
plants with a buzz pollination syndrome (e.g. Cardoso et al., 2018; 
Oliveira et al., 2016; Tavares et al., 2018), potentially contributing to 
the under-reporting of pollinator diversity in these studies.

Non-buzzing insects are frequently observed to forage on plants 
with poricidal anthers, yet few studies have compared the pollinat-
ing abilities of both non-buzzing and buzzing insects that forage on 
plants with poricidal anthers. Our search yielded 12 studies that 
compared the reproductive success of one or multiple plant species 
following floral visits by both buzzing and non-buzzing floral visi-
tors. All of these 12 studies found that plants with poricidal anthers 
benefitted from both pollinator behaviours (Table  3). Studies that 
examined individual pollen loads or pollen fidelity to assess pollina-
tor efficiency found that non-buzzing pollinators do carry the pollen 
from the target plant (Cane et al., 1985; Estravis-Barcala et al., 2021; 
Gross,  1993; Moquet et  al.,  2017; Solís-Montero et  al.,  2015). 
However, buzzing pollinators carried significantly more pollen and 
demonstrated greater floral fidelity compared to non-buzzing polli-
nators, for seven of the eight plant species assessed. Similarly, many 
studies have assessed the effects of managed and wild pollinators 
on crop species with poricidal anthers and have found that flowers 
visited by managed honey bees, which do not produce floral vibra-
tions, still result in fruit and seed set in blueberry (Vaccinium species; 
reviewed by Eeraerts et al., 2023) and tomato (Solanum lycopersicum; 
reviewed by Cooley & Vallejo-Marin, 2021) crops. A meta-analysis 
of fruit set following visits by non-buzzing and buzzing insects to 
tomato crops found fruit weight to be significantly greater following 
pollination by buzzing bees, compared to non-buzzing Apis species 
(Cooley & Vallejo-Marin, 2021). Collectively, these studies demon-
strate that buzzing is an efficient behaviour to extract pollen from 
poricidal anthers, but not a requirement to access the pollen.

Furthermore, every assessment of fruit yield (fruit set, size or 
weight) or seed set following visits by buzzing and non-buzzing 
pollinators in these 12 studies has shown that fruit set can result 
from floral visits by non-buzzing pollinators (Table  3). Yet, com-
parisons of fruit yield and seed set following visits by buzzing and 
non-buzzing insects have produced variable results. For example, 
De Araujo Campos et al.  (2022) compared fruit yield following a 
single floral visit and examined whether floral visitors contacted 
the stigma while foraging to distinguish floral visitors from polli-
nators. Fruit yield was greatest following pollination by the buzz-
ing Xylocopa species; however, there was no significant difference 
between some other buzzing and non-buzzing floral visitors. The 
number and size of fruits set when pollinated by the buzzing 
Euglossa species and the non-buzzing Paratrigona species did not 
significantly differ. Paratrigona species were observed milking the 
flowers, and they spent longer foraging on each flower compared 
to buzzing bees. The authors proposed that longer foraging bouts 
may compensate for the non-buzzing behaviour by increasing the 
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amount of pollen deposited on the stigma as the insect milked the 
anther (De Araujo Campos et al., 2022).

Despite there being few studies that have compared the polli-
nator efficiency of buzzing and non-buzzing insects for plants with 
a buzz pollination syndrome, the examples in Table 3 demonstrate 
that vibratile pollen release is not a requirement for pollination for 
plants exhibiting the buzz pollination syndrome. These results are 
consistent with many other studies that have assessed the pollinator 
efficiency of managed honey bees, which are unable to buzz flowers, 
in agroecosystems for crop species that have poricidal anthers (e.g. 
Estravis-Barcala et  al.,  2021; Goodman & Clayton-Greene,  1988; 
Macfarlane,  1992; Stubbs & Drummond,  1997). Agricultural stud-
ies have been at the forefront of investigating the efficacy of non-
buzzing floral visitors on plant reproduction; however unless the 
foraging behaviour of the floral visitors was described in the study, 
we excluded it from our systematic search, as species capable 
of vibratile pollen collection may not exhibit this behaviour every 
floral visit (e.g. Cortés-Rivas et  al., 2022). Non-buzzing insect pol-
lination of buzz-pollinated invasive plants will be relevant where 
buzzing species may be absent, less abundant or not attracted to 
newly introduced plant species. Consequently, the use of the terms 
‘buzz-pollination syndrome’ and ‘buzz-pollination’ warrants caution. 
Vallejo-Marín  (2019) defines ‘buzz-pollinated’ as ‘used implicitly to 
describe flowers that have obvious features that are likely to be ad-
aptations to buzz-pollination’ and ‘buzz-pollination’ as ‘the type of 
pollination in which bees pollinate flowers while vibrating the flow-
ers to extract pollen.’ Based on the results here, we add to this defi-
nition that vibrating is only one of several potential behaviours that 
insects can display to access the pollen of plants presenting the buzz 
pollination syndrome (De Luca & Vallejo-Marín, 2013; Thorp, 1979, 
2000).

Careful observations of foraging behaviour, as opposed to char-
acterisation as buzzing or not buzzing, may yield further insights into 
which insect species are mere floral visitors and which are pollina-
tors (Solis-Montero & Vallejo-Marin, 2017). Studies comparing the 
pollination efficiency of all floral visitors, buzzing and non-buzzing, 
in both the native and non-native ranges of invasive buzz-pollinated 
plants are currently missing, and will provide further fundamental in-
formation about how buzz-pollinated invasive plants overcome dif-
ficulties associated with setting outcrossed seed in their non-native 
range.

4  |  CONCLUSIONS

The disproportionate number of invasive plant species that present 
the buzz pollination syndrome suggests that this specialisation poses 
a partial barrier to plant invasions; invasive buzz-pollinated plants 
are approximately two to four times less common than they occur 
in global angiosperm taxa. Regardless of the floral traits that we use 
to infer the buzz pollination syndrome (i.e. only poricidal anthers or 
poricidal anthers, solanoid morphology and species in which we can-
not confidently infer their pollination syndrome), plants that exhibit 

traits consistent with the buzz pollination syndrome are underrep-
resented as invasive species across the globe, providing support for 
our first hypothesis.

Our review also highlighted some of the mechanisms that can en-
able invasive plants with the specialised buzz-pollinated pollination 
syndrome to effectively reproduce in their non-native range. The 
success of invasive buzz-pollinated plants may be a consequence of 
the global distribution of bee species capable of vibratile pollen col-
lection, in what could be considered a geographically unrestricted 
specialisation. We found that up to 97% (31/32) of invasive buzz-
pollinated plants were genetically self-compatible, providing sup-
port for the reproductive assurance hypothesis. However, just 43% 
(10/23) of these genetically self-compatible buzz-pollinated invasive 
plants set fruit in the absence of a pollinator. As such, most invasive 
buzz-pollinated plants still need pollinators for sexual reproduction. 
The success of invasive plants with buzz pollination syndromes may 
be a result of a combination of buzz pollination behaviour and a di-
verse range of other behaviours that insects can use to access pollen.

Studies that compare the reproductive biology and ecology of 
buzz-pollinated plants in both their native and non-native ranges will 
be most informative for determining the suite of factors that con-
tribute to buzz-pollinated plant invasions. We expected that plants 
with specialist pollinators may shift their mating systems towards 
higher self-compatibility during introductions, thereby facilitating 
plant invasions. To assess the frequency at which species shift their 
mating system, common pollinator exclusion experiments need to 
be undertaken in both the native and non-native ranges of invasive 
buzz-pollinated plants. Furthermore, studies should include a robust 
analysis to distinguish floral visitors, pollen thieves and effective pol-
linators in both the native and non-native range of buzz-pollinated 
plants to assess whether unorthodox pollinator behaviours are more 
important in the non-native range, thereby facilitating plant inva-
sions. Simultaneous assessments of these processes will shed light 
onto some of the factors that unfold and contribute to the spread of 
alien invasive species.
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Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table  S1: Centre for Agriculture and Bioscience International 
(CABI) Invasive Species Compendium Open Data Repository report 
of invasive angiosperms (downloaded 30 May 2022). We added 
additional columns (poricidal anthers or solanoid morphology) 

which detail whether each species had traits consistent with the 
buzz-pollination syndrome. We conducted visual assessments from 
available online imagery to individually examine whether the species 
had these traits. We reviewed the literature for species for which 
we could not assess the floral morphology from available online 
imagery to determine whether these species had poricidal anthers, 
exhibited a solanoid floral morphology, or had other evidence of 
buzz-pollination recorded. We provide the reference(s) for species 
for which we obtained information on floral morphology from 
published records.
Table  S2: Synonymous species names included in the literature 
search to assess the mechanisms for overcoming specialist plant-
pollinator barriers in invasive buzz-pollinated plants (Table S3).
Table  S3: The reproductive biology and ecology of invasive 
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Centre for Agriculture and Bioscience International (CABI) Invasive 
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and provide details on the breeding system, whether the species 
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