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Abstract

Adenosine, lidocaine and Mg2+ (ALM) solution is an emerging therapy that

reduces secondary injury after intravenous administration in experimental

models of traumatic brain injury (TBI). Intranasal delivery of ALM may offer an

alternative route for rapid, point-of-care management of TBI. As a preliminary

safety screen, we evaluated whether ALM exerts cytotoxic or inflammatory

effects on primary human nasal epithelial cells (pHNEC) in vitro. Submerged

monolayers and air–liquid interface cultures of pHNEC were exposed to media

only, normal saline only, therapeutic ALM or supratherapeutic ALM for 15 or

60 min. Safety was measured through viability, cytotoxicity, apoptosis, cellular

and mitochondrial stress, and inflammatory mediator secretion assays. No

differences were found in viability or cytotoxicity in cultures exposed to saline or

ALM for up to 60 min, with no evidence of apoptosis after exposure to

supratherapeutic ALM concentrations. Despite comparable inflammatory cyto-

kine secretion profiles and mitochondrial activity, cellular stress responses were

significantly lower in cultures exposed to ALM than saline. In summary, data

show ALM therapy has neither adverse toxic nor inflammatory effects on

human nasal epithelial cells, setting the stage for in vivo toxicity studies and pos-

sible clinical translation of intranasal ALM therapy for TBI treatment.
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1 | INTRODUCTION

Intranasal administration of neuroprotective drugs for
traumatic brain injury (TBI) is an attractive alternative to
intravenous delivery since it potentially offers more rapid
onset of action by bypassing the blood–brain barrier

(BBB).1,2 Additional advantages of intranasal delivery
include: (1) optimal central nervous system (CNS) absorp-
tion and bioavailability from a highly vascular nasal epi-
thelium that is innervated by the olfactory and trigeminal
nerve pathways; (2) circumvention of first-pass liver degra-
dation and kidney filtration; and (3) a non-invasive
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strategy with self-administration potential at the point-
of-injury in conscious patients suspected of TBI.1–3

Intranasal drug delivery is not without challenges. As
the primary site for initial contact, the potential for local
adverse effects on the nasal epithelium is an important
consideration in drug development.3 In vitro models using
primary human nasal epithelial cell (pHNEC) cultures are
widely used to predict biological effects and toxicity poten-
tial for intranasal therapies.1 Adenosine, lidocaine and
Mg2+ (ALM) is an emerging small-volume drug therapy
that has shown neuroprotective effects in experimental
models of trauma following intravenous administration.4–6

In a rat model of moderate TBI, ALM increased survival,
reduced release of brain injury markers (neuron specific
enolase [NSE], high mobility group box protein-1
[HMGB1]), reduced systemic inflammation, preserved
platelet function and corrected coagulopathy.5 Intranasal
delivery of ALM therapy may offer an alternative delivery
route for rapid, point-of-care management of TBI.
Importantly, A, L or M individually do not confer the
multi-protection properties of combined ALM.7–9 As an
initial safety assessment, the aim of this study was to
examine the effect of ALM on the viability, cytotoxicity
and inflammatory responses of pHNEC in submerged and
air–liquid interface (ALI) cultures. We hypothesized that
cellular responses would be comparable following short-
term exposure of submerged and ALI pHNEC cultures to
ALM and its excipient, normal saline (0.9%).

2 | MATERIALS AND METHODS

2.1 | Ethics statement

Nasal epithelial cells were obtained from two healthy
donors on four separate occasions (Donor 1, single collec-
tion; Donor 2, collection on three separate occasions) fol-
lowing informed consent. The study protocol was
approved by the Institutional Human Research Ethics
Committee (H8967) and followed the ethical guidelines
of the Code of Ethics (Declaration of Helsinki) of the
World Medical Association for trials involving humans.
The study was conducted in accordance with the Basic &
Clinical Pharmacology & Toxicology policy for experi-
mental and clinical studies.10

2.2 | Primary human nasal cell (pHNEC)
collection and submerged, monolayer
culture conditions

Nasal epithelial brushings were taken from the middle
meatus of the left and right nostrils using a sterile

cytology brush (McFarlane Medical) and immediately
suspended in phosphate-buffered saline (PBS). Following
centrifugation (200g, 5 min), cells were resuspended with
5 ml of PneumaCult-Ex Plus media (PCEM, STEMCELL
Technologies) supplemented with foetal bovine serum
(10% FBS, Sigma-Aldrich) and antibiotic/antimycotic
solution (1%, Thermo Fisher Scientific), seeded directly
onto placental collagen-coated (0.8 μg/cm2; C5533,
Sigma-Aldrich) T25 culture flasks (Thermo Fisher Scien-
tific), and cultured for 24 h at 37�C in 5% CO2. Non-
adherent cells were removed after 24 h of culture, with
further media changes (FBS-free) performed three times
weekly until cultures reached 80% confluence (�Day 8).
pHNEC were enzymatically lifted (0.25% trypsin–EDTA;
Thermo Fisher Scientific), washed and subcultured in
collagen-coated T75 culture flasks. Secondary cultures
reached 80%–90% confluence within 7 days. For assess-
ment of cellular responses in submerged cultures,
pHNEC were enzymatically lifted from T75 flasks,
washed and seeded into 96-well plates at 104 cells/well.
Following overnight incubation to allow cell attachment,
cells were washed once prior to commencing treatment
exposure experiments, as described below.

2.3 | Air–liquid interface (ALI) cultures
of pHNEC

To establish ALI cultures, pHNEC were seeded at a den-
sity of 6 � 104 cells per 12 mm polyester transwell insert
(0.4 μm pore size; Corning, NY) in PneumaCult-ALI
medium and following the ALI culture standard proto-
col from STEMCELL Technologies. Cultures were main-
tained in the presence of 5% CO2 at 37�C, with apical
and basal chamber media replaced every second day
until cells reached 100% confluence (�Day 8). To com-
mence ALI culture, media was removed from the apical
chamber and replaced in the basal chamber every sec-
ond day. Cells in the apical chamber were washed once
per week with pre-warmed sterile Hanks’ Balanced Salt
Solution (HBSS), and all liquid was aspirated. ALI differ-
entiation of pHNEC occurred �24 days after airlifting,
with cultures subsequently used for assessment of
cellular responses to treatment exposure as described
below.

2.4 | Treatments

Adenosine (A9251), Lidocaine-HCl (L5647), and MgSO4

(M7506) were purchased from Sigma-Aldrich. Cultures
were exposed to (1) media only (control), (2) saline only
(0.9% NaCl), (3) a therapeutic ALM solution (adenosine
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1 mM, lidocaine 3 mM, Mg2+ 2.5 mM) or (4) a
supratherapeutic, double-strength (DS) ALM solution
(adenosine 2 mM, lidocaine 6 mM, Mg2+ 5 mM). Sub-
merged monolayers were exposed to treatments in tripli-
cate and ALI pHNEC cultures in duplicate for 15 or
60 min (37�C, 5% CO2). For ALI pHNEC experiments,
responses to DS ALM exposure were assessed after a
contact time of 15 min. Treatments (0.5 ml) were applied
to the apical chamber of ALI cultures. Exposure times
were selected to reflect and exceed the maximum
expected time of direct exposure of cells to therapeutic
concentrations of ALM after intranasal delivery. Since
the average nasal mucociliary clearance transit time in
humans is �15 min, this exposure period was considered
representative of the contact time for therapeutic ALM
within the human respiratory mucosa.11 After treatment
exposure, supernatants were removed and stored at
�80�C for subsequent cytokine analysis. Cells were
washed, media replenished, and submerged monolayer
and ALI pHNEC cultures were incubated for a further
24 h prior to assessment of viability, cytotoxicity and
inflammatory responses.

2.5 | Cell viability

The cell counting kit-8 (CCK-8) kit (Sigma-Aldrich) was
used to measure cell viability 24 h after treatment expo-
sure, according to the manufacturer’s protocol. Stauros-
porine (STS), an inducer of apoptosis, was included as a
positive control for all experiments (10 μM, 4 h). WST-8
(10% v/v) was added to each well 24 h after treatment
exposure, and cultures were incubated for 2 h at 37�C.
For ALI-pHNEC cultures, WST-8 was added to the basal
chamber with media transferred to a 96-well plate in trip-
licate for viability assessment. Absorbance was measured
at 460 nm using a POLARstar Omega microplate reader
(BMG Labtech). Relative viability was calculated as the
absorbance ratio of treated and control cells, with data
expressed as a percentage.

2.6 | Cytotoxicity

Cytotoxicity was measured using a lactate dehydrogenase
(LDH) release assay, according to manufacturer protocols
(CyQUANT LDH Cytotoxicity Assay Kit, Invitrogen).
Relative cytotoxicity was calculated based on LDH levels
of negative controls (untreated cells) and maximum
release controls (untreated and lysed cells), with data
expressed as a percentage.

2.7 | Mitochondrial membrane potential
(MMP)

To quantify changes in MMP in submerged pHNEC
monolayer cultures after treatment exposure, a TMRE-
Mitochondrial Membrane Potential Assay Kit (Abcam)
was used according to manufacturer protocols. Tetra-
methylrhodamine ethyl ester (TMRE) is a cell-permeant,
positively charged, red-orange dye that readily accumu-
lates in active mitochondria due to its relative negative
charge. As a positive control, we included carbonyl cya-
nide-p trifluoromethoxy phenylhydrazone (FCCP;
20 μM, 4 h incubation), an ionophore uncoupler of oxi-
dative phosphorylation that reduces MMP and TMRE
staining. Adherent pHNEC cultures in black 96-well
plates were stained with TMRE (100 nM) for 20 min,
then washed in HBSS prior to the addition of treatments.
HBSS was added to the unstimulated control wells.
After 15 min, fluorescence was measured at Ex/Em
549/575 nm using a POLARstar Omega microplate
reader.

2.8 | Inflammatory cytokines

Human cytometric bead array (CBA) Standard and
Enhanced Sensitivity Flex Sets (BD Biosciences) were
used to measure concentrations of interleukin (IL)-1α,
IL-1β, tumour necrosis factor (TNF)-α, IL-6, IL-8 and
monocyte chemoattractant protein (MCP)-1 in cell-free
supernatants from control and treated wells. Assays were
carried out according to the manufacturer’s instructions
with samples acquired on a FACSCanto II flow cytometer
(BD Biosciences) and FlowJo v.10.3 software used for
data analysis.

2.9 | Apoptosis

Caspase-3/7 activity was measured in submerged
pHNEC after treatment exposure using the Caspase-
Glo® 3/7 assay (Promega) and according to the
manufacturer’s protocol. Briefly, treatments were added
to adherent, submerged pHNEC in white 96-well
plates (104 cells/well) for 15 or 60 min. STS (10 μM)
was added to the control wells for 4 h. Following
exposure, cells were washed, media replaced and
Caspase-Glo® 3/7 reagents added. Plates were incu-
bated at RT for 1 h with shaking (300 rpm), then
luminescence measured using a POLARstar Omega
microplate reader.

MORRIS ET AL. 3
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2.10 | Cellular oxidative stress

To estimate oxidative stress and production of cellular
reactive oxygen species (ROS) within submerged pHNEC
after treatment exposure, we used a DCFDA/H2CFDA
Cellular ROS Assay Kit (Abcam) and measured fluores-
cence by microplate spectrophotometry according to
manufacturer protocols. The cell-permeant reagent, 20,70-
dichlorofluorescin diacetate (DCFDA), freely enters the
cell, is hydrolysed by intracellular esterase into its
non-fluorescent form, and then, in the presence of intra-
cellular ROS, becomes oxidized into highly fluorescent
20,70-dichlorofluorescein. Positive control wells were
stimulated with ter-butyl hydrogen peroxide (TBHP,
100 μM), an ROS generator, for 4 h. Briefly, adherent
pHNEC in black 96-well plates (104 cells/well) were
stained with DCFDA (10 μM) for 30 min, washed in
HBSS and treatments added. Negative control wells con-
tained HBSS only. Fluorescence was measured 15 and
60 min after the addition of treatments to cultures using
a POLARstar Omega microplate reader at Ex/Em
485/535 nm.

2.11 | Histochemistry and histology

To enable visualization of submerged pHNEC following
treatment exposure, cells were cultured in 8-well culture
slides. Twenty-four hours after treatment exposure, sub-
merged pHNEC were fixed with 1% paraformaldehyde
(PFA) for 1 h at room temperature (RT), washed in HBSS
and then stained following the May-Grünwald–Giemsa
procedure. To enable visualization of ALI-pHNEC cul-
tures following treatment exposure, cultures were fixed
with 4% PFA for 24 h at 4�C. Fixed membranes were
excised from insert cups, processed and paraffin embed-
ded for histology according to the protocol of Manna &
Cardonna (STAR Protocols 2 2021). Sections (5 μm) were
cut, stained with haematoxylin and eosin (H&E) and
visualized by light microscopy (Nikon Eclipse i50).

2.12 | Statistics

GraphPad Prism 10.1.1 was used for all data analysis and
graphing. Normality assumptions and equality of vari-
ances were assessed using Shapiro–Wilk and Levene’s
tests, respectively. Between-group responses were com-
pared using analysis of variance (ANOVA), with a Tukey
honestly significant difference (HSD) post hoc test. Data
are presented as the mean ± standard error of the mean
(SEM) of at least three independent experiments, with
significance set at p < 0.05.

3 | RESULTS

3.1 | Effects of ALM exposure on cell
viability and cytotoxicity in submerged
pHNEC monolayers

Compared to normal saline (0.9% NaCl), viability was
equivalent following exposure of submerged pHNEC to
therapeutic ALM for up to 60 min (Figure 1A). There
was no adverse effect on cell viability following exposure
of pHNEC to DS ALM for 15 min, with viability decreas-
ing by �30% when exposure times were extended to
60 min. Similarly, no significant cytotoxic responses were
observed for ALM or DS ALM, even with prolonged
exposure times (Figure 1B), with comparable cellular
morphology between treatment groups in submerged
pHNEC cultures (Figure 1C).

3.2 | Effects of ALM exposure on cellular
stress and inflammatory responses in
submerged pHNEC monolayers

Caspase-3/7 activity (Figure 2A) and MMP (Figure 2B)
were comparable between control (untreated) pHNEC
cultures and those exposed to ALM or normal saline for
15 min. Cellular ROS levels, however, were significantly
lower in pHNEC cultures exposed to ALM for 15 min
compared to those exposed to saline (p = 0.01;
Figure 2C). Assessment of key inflammatory mediators
in pHNEC culture supernatants immediately following
15-min treatment exposure found no significant differ-
ences in IL-1α, IL-1β, IL-6, TNF-α, IL-8 or MCP-1 con-
centrations between untreated control cultures or those
exposed to ALM or DS ALM (Figure 2D–I). Similarly,
24 h concentrations of inflammatory mediators remained
equivalent in untreated pHNEC cultures and those
exposed to therapeutic or supratherapeutic ALM for
either 15 (Figure 3A–F) or 60 min (Figure 3G–L).

3.3 | Effects of ALM exposure on cell
viability, cytotoxicity and inflammatory
responses in ALI-pHNEC cultures

To model the differentiated, pseudostratified mucociliary
structure of the human nasal epithelium, ALI pHNEC
was generated using collagen-coated transwell inserts
and differentiation over a 24-day period (Figure 4A). His-
tologically, there was no evidence of cellular damage or
loss of structural integrity of the epithelium following
15 min of exposure to saline, ALM or DS ALM
(Figure 4B). Compared to normal saline, relative viability

4 MORRIS ET AL.
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was equivalent following exposure of ALI-pHNEC cul-
tures to therapeutic ALM for 15 or 60 min (Figure 4C).
Viability was significantly greater in cultures exposed to
supratherapeutic DS ALM than saline (p = 0.005) and
therapeutic ALM (p = 0.006) for 15 min. For saline-
exposed cultures, viability was improved following expo-
sure times of 60 min, compared to 15 min (p = 0.002).
Cytotoxicity levels were comparable between control and
treatment groups 24 h after exposure, with no adverse
effect after 60 min (Figure 4D). Levels of secreted inflam-
matory mediators in ALI-pHNEC cultures 24 h after
exposure to ALM or DS ALM for 15 min were equivalent
to those in untreated control cultures (Figure 4E–J).

4 | DISCUSSION

Intranasal administration of ALM offers a potential
rapid, non-invasive delivery mode to provide neuropro-
tection after TBI. We report for the first time that ALM
has no adverse effects on the morphology or functional
responses of pHNECs following contact times of up to
1 h. A direct cell contact time of 1 h far exceeds the tis-
sue contact times associated with intranasal delivery
of ALM.

The three individual actives of ALM therapy (adeno-
sine, lidocaine and magnesium) are FDA-approved for
their specific indications and have each been safely

F I GURE 1 Viability and cytotoxicity in submerged cultures. (A) Relative viability, and (B) cytotoxic response of submerged primary

human nasal epithelial cell (pHNEC) cultures 24 h after exposure to media only (control), saline only, adenosine, lidocaine and Mg2+ (ALM)

(therapeutic), double-strength (DS) ALM (supratherapeutic) for 15 or 60 min. Positive control cultures were stimulated with staurosporine

(STS) for 4 h. Data is expressed as mean ± standard error of the mean (SEM). **p < 0.001 compared to control. (C) Representative images of

May-Grünwald–Giemsa-stained pHNEC cultures 24 h after exposure to media only (control), saline only, ALM (therapeutic), or DS ALM

(supratherapeutic) for 15 min, or STS for 4 h. Scale bar indicates 100 μm.
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administered via intravenous, intra-articular and intra-
osseous routes.12–24 Intranasal administration of 2%–10%
lidocaine is also often used for pain management
associated with migraines and seizures in both adults and
children.25,26 The ALM combination, however, has not
been tested for intranasal delivery. A key safety consider-
ation for clinical translation of intranasal ALM therapy is
the absence of potential toxicity to the nasal epithelium.

In the present study, both submerged and ALI cul-
tures of pHNEC showed a similar pattern of functional
responses to ALM. In contrast to immortal cell lines, pri-
mary human epithelial cell cultures are preferred for
in vitro toxicity screening as they more closely reflect the
heterogenous cell types within the nasal epithelium.27–29

Under ALI culture conditions, pHNEC differentiate into
an epithelial layer comprising ciliated pseudostratified

F I GURE 2 Cellular activation and stress responses in submerged cultures. (A) Caspase-3/7 activity, (B) mitochondrial membrane

potential (MMP), (C) cellular reactive oxygen species (ROS) production, and concentration of (D) interleukin (IL)-1α, (E) IL-1β, (F) IL-6,
(G) tumour necrosis factor (TNF)-α, (H) IL-8 and (I) monocyte chemoattractant protein (MCP)-1 in culture supernatants immediately

following 15 min exposure to media only (control), saline only, adenosine, lidocaine and Mg2+ (ALM) (therapeutic), or DS ALM

(supratherapeutic). Positive control cultures were stimulated with staurosporine (STS) for 4 h. Data is expressed as mean ± standard error of

the mean (SEM). **p < 0.01 compared to control.

6 MORRIS ET AL.
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columnar cells, non-ciliated mucous-producing goblet
cells and basal cells that exhibits structural, physiologic,
metabolic and inflammatory features closely resembling
the human nasal mucosa.27–29 As the major interface
between the environment and host, nasal epithelial cells
mount a potent, protective innate immune response to

foreign stimuli, including the release of inflammatory
mediators such as ROS, leukocyte-attracting chemokines
(IL-8, MCP-1) and proinflammatory cytokines (IL-1α, IL-
1β, IL-6 and TNF-α).27,30 A key finding of the present
study was the absence of an inflammatory stress response
following in vitro exposure of pHNEC cultures to ALM

F I GURE 3 Secreted inflammatory mediator profiles in submerged cultures. Concentration of (A) interleukin (IL)-1α, (B) IL-1β,
(C) IL-6, (D) tumour necrosis factor (TNF)-α, (E) IL-8 and (F) monocyte chemoattractant protein (MCP)-1 in culture supernatants 24 h after

exposure to media only (control), saline only, adenosine, lidocaine and Mg2+ (ALM) (therapeutic), or DS ALM (supratherapeutic) for 15 or

60 min. Positive control cultures were stimulated with staurosporine (STS) for 4 h. Data is expressed as mean ± standard error of the mean

(SEM). *p < 0.05, **p < 0.01, compared to media only (control).

MORRIS ET AL. 7
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F I GURE 4 Legend on next page.
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for up to 1 h, with cytokine and chemokine concentra-
tions comparable to those exposed to normal saline. In
fact, ALM exposure significantly lowered cellular ROS
levels in pHNEC compared to normal saline. This finding
is consistent with previous reports of antioxidant activity
in multiple cell types following exposure to the individual
constituents, adenosine,31 lidocaine32 and magnesium,33

as well as reduced pulmonary oxidative stress in ALM-
treated animals in a rat model of severe thermal injury.34

Further studies are needed to explore this antioxidant
effect and how it contributes to ALM’s multi-pronged
protection against secondary injury progression following
sterile and non-sterile injury in vivo.8,35

In line with the absence of inflammatory and oxida-
tive stress, we also found no evidence of mito- or cytotox-
icity after exposure of pHNEC to therapeutic or
supratherapeutic concentrations of ALM. Drug-induced
oxidative stress is a common mechanism of toxicity in
numerous tissues, with ROS damaging critical cellular
components at the molecular level and negatively
impacting cell survival.36 MMP drives the synthesis of
ATP and is a key indicator of mitochondrial function,
with decreases in MMP linked to activation of caspase-
mediated apoptotic pathways.37,38 In the present study,
MMP and caspase-3/7 activity within pHNEC cultures
remained unchanged after ALM exposure, suggesting
that even at supratherapeutic concentrations, ALM does
not induce mitochondrial dysfunction or apoptosis. Simi-
larly, LDH levels remained below 3% for ALM-treated
pHNEC cultures and were comparable to those exposed
to saline. Typically, LDH-based cytotoxicity is determined
at a cut-off of 20%.39 Findings were supported histologi-
cally, with no evidence of cellular necrosis or loss of
structural integrity in ALI cultures.

A potential limitation of our study is the use of iso-
lated human respiratory cells in ex vivo cultures, which
may not reflect the complexities of the same cells within
the highly vascularized and innervated environment of
the nasal and olfactory epithelium. Preclinical safety
studies, including histological assessments of brain and
local respiratory and olfactory tissue, are currently in pro-
gress. A second limitation is the inclusion of two donors
for the generation of pHNEC cultures, albeit with

collections performed on multiple, separate occasions.
Genetic diversity in future in vivo safety assessments of
ALM will be an important consideration for clinical
translation. Notably, the absence of any deleterious
effects of ALM toward human nasal epithelial cells in the
present study is consistent with findings using human
platelets40 and human mesenchymal stem cells.41

Despite decades of research, no drug has been shown
to significantly improve patient outcomes after TBI. The
key to successful therapy is the early attenuation of neu-
roinflammation triggered by TBI to prevent secondary
injury progression in the brain and other organs. ALM is
a systems-acting therapy that appears to confer
whole-body protection after TBI, as well as haemorrhage,
thermal injuries, major surgery and infection.8,42 ALMs
protective properties within different trauma and infec-
tive states involve shifting CNS sympathetic hyperactivity
to parasympathetic dominance, reducing inflammation,
improving tissue O2 supply and preserving mitochondrial
function.4,8,35,42 Intranasal administration of ALM there-
fore offers a promising strategy to rapidly blunt damaging
inflammatory and immune responses triggered by TBI.
Importantly, ALM’s protection is not conferred using A,
L or M alone; it is only the combination of actives in vivo
that appears to switch the “injury” phenotype to a “pro-
tective” phenotype. For this reason, elucidation of the
molecular basis for ALM’s protective switch within differ-
ent pathophysiological states, including after TBI, is reli-
ant on further in vivo investigations, which is the focus
of future research.

We conclude that ALM does not exert adverse cyto-
toxic, cellular stress or inflammatory effects on human
nasal epithelial cells in vitro. This data provides support
for the transition to human safety trials, with potential
for intranasal delivery of ALM therapy for early treat-
ment of TBI in the conscious patient.
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F I GURE 4 Cell viability, cytotoxicity and inflammatory responses of air–liquid interface (ALI) cultures. (A) ALI cultures of primary

human nasal epithelial cell (pHNEC) were generated using collagen-coated transwell inserts, with differentiation occurring over a 24-day

period. (B) The resulting multilayer formation closely resembled native tissue architecture (cilia, arrows; goblet cells, arrowheads), with no

histological evidence of structural integrity loss, 24 h after exposure to media only (control), saline only, adenosine, lidocaine and Mg2+

(ALM) (therapeutic), or DS ALM (supratherapeutic) for 15 min. Scale bar indicates 100 μm. (C) Relative viability and (D) cytotoxic responses

of cultures exposed to saline, ALM or DS ALM for 15 or 60 min. Concentrations of (E) interleukin (IL)-1α, (F) IL-1β, (G) IL-6, (H) tumour

necrosis factor (TNF)-α, (I) IL-8 and (J) monocyte chemoattractant protein (MCP)-1 in culture supernatants 24 h after exposure to media

only (control), saline only, ALM (therapeutic) or DS ALM (supratherapeutic) for 15 or 60 min. Data is expressed as mean ± standard error of

the mean (SEM). **p < 0.01.
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