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Abstract: The challenge of denoising low-dose computed tomography (CT) has garnered significant
research interest due to the detrimental impact of noise on CT image quality, impeding diagnostic
accuracy and image-guided therapies. This paper introduces an innovative approach termed the
Wavelet Domain Dual Forward Denoising Stream Network (WaveletDFDS-Net) to address this
challenge. This method ingeniously combines convolutional neural networks and Transformers to
leverage their complementary capabilities in feature extraction. Additionally, it employs a wavelet
transform for efficient image downsampling, thereby preserving critical information while reducing
computational requirements. Moreover, we have formulated a distinctive dual-domain compound
loss function that significantly enhances the restoration of intricate details. The performance of
WaveletDFDS-Net is assessed by comparative experiments conducted on public CT datasets, and
results demonstrate its enhanced denoising effect with an SSIM of 0.9269, PSNR of 38.1343 and RMSE
of 0.0130, superior to existing methods.

Keywords: computerized tomography denoising; wavelet transform; convolution operation; vision
transformer; deep learning

1. Introduction

Computed tomography (CT), which uses an X-ray beam to scan a certain region
of the human body, is a widely utilized medical imaging technique, due to its high-
resolution output and rapid scanning capability. Unfortunately, the widespread use of CT
has sparked concerns about the potential carcinogenic and genetic risks associated with
X-ray exposure [1,2]. In response, the last decade has shifted towards minimizing radiation
doses in CT scans, adhering to the As Low As Reasonably Achievable (ALARA) principle to
mitigate safety hazards [3]. However, this reduction in radiation dose inherently increases
noise in the resulting CT images [3]. This noise amplification negatively affects image
quality, which poses a challenge to the diagnostic reliability of using the images. In essence,
the lower the radiation dose, the greater the noise, and consequently, the less the clinical
diagnostic value of CT images [4].

Several denoising algorithms have been developed to address challenges in improving
image quality in low-dose CT (LDCT). These can be broadly classified into three types:
sinogram filtration, iterative reconstruction, and image post-processing. Sinogram filtration
methods [5–7] operate on the raw data before image reconstruction, benefiting from the
well-known noise properties in this domain. However, they often lead to edge blurring
or a loss of resolution, and access to sinogram data may not be available to all researchers.
Iterative reconstruction methods [8–10] aim to optimize an objective function that combines
the statistical characteristics of sinogram data with prior image information. Despite
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achieving impressive results, these methods are limited by long processing times and
the requirement for dedicated hardware, hindering their clinical use. Lastly, image post-
processing methods [11–13] focus on the suppression of noise in reconstructed images.
This approach, unlike the others, faces challenges in accurately determining the noise
distribution within the image domain, complicating the achievement of an optimal balance
between noise reduction performance and structural detail preservation.

The advent of deep learning, particularly the success of convolutional neural networks
(CNNs) in computer vision, has sparked significant advancements in LDCT denoising.
Many CNN-based methods, focussing primarily on image post-processing, training end-to-
end networks in a supervised manner to learn mappings from LDCT to normal-dose CT
(NDCT) images, using a predefined loss function for optimisation. Chen et al. [14] were
among the first to demonstrate that a basic CNN could estimate the value of the NDCT
Hounsfield Unit (HU) from LDCT patches. Gondara [15] also validated the effectiveness
of the CNN-based encoder–decoder structure in medical image denoising. Furthermore,
the RED-CNN model proposed by Chen et al. [16], incorporating shortcut connections in
a residual encoder–decoder convolutional neural network, surpassed existing traditional
image processing methods in Structural Similarity Index Measure (SSIM) and Peak Signal-
to-Noise Ratio (PSNR), which were up to 0.0514 and 4.0802 dB, respectively. Additionally,
to alleviate the requirement of paired LDCT and NDCT images, the exploration of un-
supervised learning in LDCT denoising has been notable. Yang et al. [17] employed a
generative adversarial network with the Wasserstein distance (WGAN) and perceptual
loss to enhance denoised image quality and reduce over-smoothing. Kang et al. [18]
introduced a CycleGAN-based approach using unpaired LDCT and NDCT images for
training. In addition, Lee et al. [19] introduced an additional noise extractor network
based on CycleGAN [20] to cooperate with its generators and obtained excellent results.
However, a limitation of CNN-based models is their reliance on cascaded convolutional
layers for high-level feature extraction focusing on local regions, restricting their ability to
capture global contextual information due to the limited receptive fields of the convolution
operation. This limitation hampers their efficiency in modelling structural similarity across
the whole images [21].

In recent years, vision Transformers have gained significant traction in computer vi-
sion, demonstrating remarkable achievements [22–24]. The core of these Transformers, the
self-attention unit, excels at extracting long-range dependencies by computing interactions
between any two positions in the input sequence, outperforming CNN models in some
extent. Vision Transformers have been increasingly applied to image restoration tasks. For
instance, SwinIR [25] successfully adapted the shifted window self-attention mechanism
from the Swin Transformer [26] for image restoration with an average PSNR of over 30 dB
across several datasets. Uformer [27] utilized non-overlapping window-based self-attention
and depth-wise convolution in its feed-forward network, efficiently capturing local context.
In the realm of LDCT denoising, several innovative approaches have been developed.
Eformer [28] combined a network similar to Uformer with an edge enhancement module,
effectively enhancing image quality. CTformer [29] introduced the first dedicated Trans-
former for LDCT denoising, employing dilation and cyclic shift in Token2Token to broaden
the receptive field and gather more extensive contextual information from feature maps.
These advancements underscore the Transformers’ superiority in this domain. However,
their self-attention mechanism leads to a significant drawback—excessive GPU memory
consumption, particularly when processing high-resolution images like CT scans. This
results in extended processing times and heightened equipment demands.

To optimize the performance of the Transformer without the constraints of GPU
memory, a viable solution is to use low-resolution images, since it reduces the device
resource consumption of the models. The wavelet transform, a prevalent technique in
image processing, offers a reversible method to halve image size by decomposing signals
into different frequency bands, achieving this without any loss of information and thereby
reducing computational resource demands. Another significant advantage of the wavelet
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transform is the ease of handling sub-band signals separately and effectively. Integrating
the wavelet transform with deep learning has already shown impressive results in several
studies. Bae et al. [30] demonstrated the effectiveness of learning on wavelet sub-bands,
introducing the wavelet residual network for image restoration. Guo et al. [31] developed
a deep wavelet super-resolution network to retrieve missing details in wavelet sub-bands
between low and high-resolution images. Similarly, Liu et al. [32] proposed the multi-level
wavelet-CNN (MWCNN) for image restoration, utilizing multi-level wavelet transform for
various tasks and obtaining a PSNR of over 32 dB with a run time of less than 0.1 s. In the
context of image denoising, the decomposition of noise along with the image allows for
tailored noise suppression methods in different sub-bands. Such an approach is anticipated
to surpass traditional noise reduction methods that operate directly in the image domain.

In this work, we leverage the wavelet transform as the sampling framework and at-
tenuate noise in the wavelet domain. Drawing inspiration from previous LDCT denoising
research, we introduce a novel denoising network that synergizes the strengths of both
CNNs and Transformers. Our approach employs the discrete wavelet transform (DWT)
for image downsampling and the inverse discrete wavelet transform (IDWT) for upsam-
pling. The network architecture features dual forward denoising streams, which effectively
combine the local feature extraction capability of the convolution operation with the fine-
grained information connectivity modelling prowess of Transformers. This integration
allows for the extraction of CT image features at various levels. Trained under a specifically
designed dual-domain loss function, our proposed network, termed WaveletDFDS-Net,
demonstrates enhanced performance in exquisite detail restoration, effectively utilizing the
complementary advantages of CNNs and Transformers in the context of LDCT denoising.
In summary, this paper introduces the following key contributions to LDCT denoising:

• Development of WaveletDFDS-Net: We propose WaveletDFDS-Net, which harnesses
the local feature extraction capabilities of the convolution operation and the pixel-
level information encoding strength of Transformers and reduces noise in the wavelet
domain. This network is designed to efficiently extract LDCT image wavelet features
from various levels in parallel, leading to more effective noise suppression in LDCT
images and fewer computing resource requirements.

• Dual-domain compound loss function: An efficient dual-domain compound loss
function has been formulated to train WaveletDFDS-Net. This function incorporates
an additional wavelet domain loss as an auxiliary component to the image domain
loss, aiming to achieve high-fidelity detail restoration in the denoising process.

• Superior experimental outcomes: Our experimental evaluations demonstrate that the
proposed method outperforms existing well-known denoising techniques. WaveletDF
DS-Net not only shows improved performance metrics but also produces images of
higher quality, underlining its effectiveness in LDCT denoising applications.

The remainder of this paper is structured as follows: Section 2 provides a comprehen-
sive description of the proposed WaveletDFDS-Net and the dual-domain compound loss
mechanism. Section 3 outlines the experimental setup, presents the outcomes of various
ablation studies, and compares experimental results. The paper concludes with Section 5,
summarizing the key findings and contributions of this research.

2. Methodology
2.1. Problem Formulation

The noise in LDCT is primarily composed of statistical noise, also known as quantum
noise, and electronic noise, which arise during the signal acquisition process [33]. To
simplify the complex degradation transition from NDCT to LDCT in the image domain,
the noisy LDCT image Ild ∈ RH×W can be represented as:

Ild = D(Ind), (1)
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where Ind ∈ RH×W denotes the NDCT image, and D : RH×W −→ RH×W symbolizes the
degradation process. Consequently, the task is reformulated as finding a denoising function
f to minimize the following objective function:

argmin
f

|| f (Ild)− Ind||. (2)

In our approach, the denoising function is characterized by a neural network, denoted
as fθ , where θ represents the network parameters. This function is obtained through deep
learning training techniques.

In the proposed model, we implement the DWT operation as the downsampling layer
to process the input image, transforming the input image Ild into four distinct wavelet
sub-images:

ILL, ILH, IHL, IHH = DWT(Ild), (3)

where ILL, ILH, IHL, IHH ∈ R H
2 ×W

2 represent sub-images capturing various frequency
components. This process effectively separates high- and low-frequency information
while reducing the resolution by half. An example of DWT decomposition is depicted in
Figure 1, illustrating the different sub-images: ILL represents the low-frequency sub-image,
essentially an approximation of the original image; ILH and IHL capture horizontal and
vertical edge features, respectively; IHH reflects the diagonal edge feature. The sub-images
are then concatenated into a latent feature Iω ∈ R H

2 ×W
2 ×4, upon which the designated

network operates to diminish noise in the wavelet domain:

Îω = fθ(Iω). (4)

In this equation, Îω ∈ R H
2 ×W

2 ×4 signifies the denoised latent feature. The final phase
of our model utilizes the IDWT operation as an upsampling layer. This step converts the
feature back to its original resolution and reconstructs the denoised image Înd ∈ RH×W :

Înd = IDWT(Îω). (5)

Figure 1. An example of wavelet transform. Left is the original low-dose CT image, and right is the
sub-images after the DWT operation, where L and H refer to the low- and high-pass filter, respectively.
The display window is [−1000, 1000] HU.

Consequently, the objective function is finally reformulated as:

argmin
θ

||Înd − Ind||. (6)

Given the reversible nature of the DWT, this function can be optimized either in the
image domain, the wavelet domain, or a combination of both.
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2.2. Network Architecture

As proven by many previous works, the convolution operation has the ability to
capture positional information in images, which is lacking in Transformers. Although
positional embedding methods have been introduced in Transformers to mitigate this
shortfall, they are generally less efficient and more computationally intensive compared to
a convolution operation [34,35]. Transformers, on the other hand, excel at encoding pixel-
level features from a global sequence, a function that convolution operations struggle with
due to their limited receptive fields. Our approach synergises convolution and Transformer
operations, harnessing their respective strengths and counterbalancing their weaknesses.

Specifically, the proposed WaveletDFDS-Net, as illustrated in Figure 2, features a
distinctive architecture primarily composed of dual forward denoising streams, including
a convolution operation branch and a Transformer branch. These streams are intricately
designed for efficient feature extraction and aggregation within the wavelet domain. At the
network’s inception, a 3 × 3 convolutional layer is utilized to extract the fundamental infor-
mation as the initial features and elevate the wavelet sub-images to a higher dimensional
space. Conversely, towards the end of the network, another 3 × 3 convolutional layer is
employed to reduce the dimensionality. This design deviates from conventional methods
that predominantly rely on stacking Transformer layers. Instead, the WaveletDFDS-Net
innovatively incorporates a CNN branch in parallel to the Transformer layers. Throughout
the feature processing phase, information is synergistically integrated between these two
branches multiple times. This approach is instrumental in enhancing the learning of the
feature representation, ensuring a more robust and efficient noise reduction process.

Figure 2. The structure of WaveletDFDS-Net. It uses the discrete wavelet transform (DWT) and
inverse discrete wavelet transform (IDWT) as the sampling units and contains two denoising streams,
namely, a convolution stream constructed by a convolutional block (ConvBlock) and a Transformer
stream constructed by Transformer, and integrates latent feature by concatenating (concat) two
branches during the feature processing procedure.

In our model, the high-dimensional features are processed through dual forward
streams. One stream, comprising a ConvBlock with multiple residual blocks, is dedicated
to extracting local, coarse features. Concurrently, the other stream, built from several vision
Transformer blocks, focuses on modelling pixel relationships and capturing pixel-wise, fine-
grained information. The specific structures of the ConvBlock and Transformer are shown
in Figures 3 and 4, respectively. This dual-stream structure enables each pathway to spe-
cialize in different aspects without mutual interference, mitigating the issue of information
dilution often encountered in densely stacked neural networks. The distinct natures of the
convolution operation and the Transformer allow for a multi-level information extraction.
By merging the outputs from the ConvBlock and the Transformer, a richer feature set is
obtained. A subsequent 3 × 3 convolutional layer then adeptly weights and fuses these
features, facilitating adaptive redundancy filtering while maintaining dimensional consis-
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tency. This enhances the efficiency of subsequent processes. The WaveletDFDS-Net repeats
this processing mode thrice, effectively balancing model complexity and performance.

Figure 3. ConvBlock structure, which consists of several residual blocks.

Figure 4. Transformer structure. The basic block is adopted from the Swin Transformer.

2.3. Loss Function

In this work, two loss functions were employed for denoising LDCT images: the L1
loss and the Structural Similarity Index Measure (SSIM) loss [36]. The SSIM loss, formulated
as follows, plays a crucial role in evaluating image quality:

LSSIM(X, Y) =
1
N

N

∑
i=1

∥∥∥1 − SSIM(Xi, Yi)
∥∥∥, (7)

SSIM(X, Y) =
(2µXµY + C1)(2σXY + C2)

(µ2
X + µ2

Y + C1)(σ
2
X + σ2

Y + C2)
, (8)

where µ and σ represent the mean and standard deviation of the images, respectively, and
σ2

XY denotes the covariance between X and Y. C1 and C2 are constants that stabilize the
division with weak denominators. This SSIM loss is particularly effective in maintaining
the structural integrity and similarity between the denoised and original images, which is
vital in medical imaging applications like LDCT. The integration of L1 loss complements
the SSIM by focusing on pixel-wise differences, thus ensuring both global structural fidelity
and local accuracy in the denoised images.

To train the proposed model, we initially utilized the L1 loss as the primary loss
function, aiming to minimize the L1 distance between the predicted output Înd and the
ground truth Ind. However, relying solely on the image domain loss did not fully harness
the model’s capabilities. The wavelet transform offered the unique ability to reduce noise
in various sub-bands, applying tailored methods based on the specific characteristics
of each sub-image. To enhance denoising performance, we formulated a dual-domain
compound loss function that integrated the image domain L1 loss with a wavelet-domain
detail restoration loss. Given that the low-frequency sub-image ILL retained most of the
original image’s features and details, we incorporated an SSIM loss specifically in this sub-
band to bolster structure information learning, as SSIM effectively quantifies the structural
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similarity between two images. The wavelet domain loss thus served as an auxiliary
regulatory component relative to the image domain loss.

In summary, the compound loss function was defined as:

Lcompound = L1(Înd, Ind) + λ × LSSIM(ÎLL, ILL). (9)

In this equation, ÎLL denotes the low-frequency sub-image of predicted output Înd,
and ILL corresponds to the low-frequency sub-image of NDCT image Ind. The parameter λ
represents the weight of the total wavelet domain loss. In our experiments, we set λ = 0.05.

3. Experiments
3.1. Implementation Details

In this study, we standardized the feature channels across all layers at 64. Each Con-
vBlock comprised two residual blocks, while the Transformer segment included two Swin
Transformer blocks adopted from the Swin Transformer model [26]. Various combinations
were explored, with findings detailed in Section 3.4. Both the window size and the number
of attention heads within the Transformer were set to eight for convenient operation, and
the MLP dimension count quadrupled the number of feature channels used as default in
the paper [26].

All our experiments were conducted on a workstation equipped with an Intel(R)
i9-9900K CPU, 64 GB RAM and dual NVIDIA GeForce RTX 2080Ti graphics cards, utilizing
Pytorch 1.8.1. We trained our model for 100,000 iterations using the Adam optimizer with
β1 = 0.9, β2 = 0.99, with a batch size of four. The initial learning rate was set to 0.001.

3.2. Dataset Description

In this study, we used the publicly accessible dataset, Low-Dose CT Image and Pro-
jection Data [37], to evaluate our proposed method. This dataset includes a variety of
exam types: 99 head scans, 100 chest scans, and 100 abdomen scans. All these scans were
acquired at standard dose levels, and each case was processed to include a second simu-
lated lower-dose projection dataset—head and abdomen scans were provided at 25% of the
normal dose, and chest scans at 10%. In our experiments, we randomly selected 2000 slices
from 20 patients for each exam type. These images were then normalized to a range of [0, 1],
using exam type-specific window settings: [0, 80] HU for head scans, [−1000, 1000] HU
for chest scans, and [−300, 300] HU for abdomen scans. Moreover, the large background
of all of the head CT images was removed and only the centre 320 × 320 was preserved.
Then, all datasets were divided into training, validation, and test sets, where the training
sets were used to train the proposed network, the validation sets were used to monitor
the networks’ performance during training, and the test sets were used to evaluate the
networks after training.

3.3. Evaluation Metrics

To facilitate a thorough comparison, we employed three quantitative metrics, includ-
ing the SSIM, Peak Signal-to-Noise Ratio (PSNR), and Root-Mean-Square Error (RMSE), for
evaluating the image quality of various compared denoising methods. Among the three
metrics, SSIM and RMSE primarily gauge pixel-wise similarity, whereas PSNR quantifies
the ratio between the maximal potential signal value and the interfering noise, thereby
assessing signal representation accuracy. Specifically, the SSIM, as represented by Equa-
tion (8), is meant to compare the brightness, contrast, and structure between two images,
while the PSNR, usually measured in decibels (dB), is defined as the following function:

PSNR(X, Y) = 10 lg
MaxValue2

MSE(X, Y)
, (10)
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MSE(X, Y) =
1
n

n

∑
i=1

[Xi − Yi]
2, (11)

where MaxValue is the largest possible pixel value, n is the total number of pixels, and MSE
calculates the mean squared error of two images. Furthermore, the RMSE is the square root
of the MSE, which mainly reflects the average deviation between images:

RMSE(X, Y) =
√

MSE(X, Y). (12)

Optimal noise reduction performance is indicated by higher values of SSIM and PSNR,
coupled with a lower RMSE.

3.4. Model and Performance Trade-Offs

We firstly conducted several experiments on the chest dataset to evaluate the efficiency
of WaveletDFDS-Net with various configurations. Table 1 illustrates that as the number
of residual blocks Nc per ConvBlock increased, there was a significant rise in the number
of network parameters and floating-point operations (FLOPs). Concurrently, the number
of Transformer blocks Nt per Transformer markedly impacted inference time per image
and GPU memory usage. Although an expanded model demonstrated enhanced informa-
tion learning capability, this did not necessarily translate into a higher PSNR. In certain
configurations, the PSNR improvement was minimal and did not justify the increased
computational resource consumption. To balance model size and denoising performance,
we settled on two residual blocks Nc and two Transformer blocks Nt for each unit, which
remains the standard unless noted otherwise in the following sections.

Table 1. Comparison of model size and performance among different combinations.

Nc Nt Params Time GPU FLOPs SSIM PSNR RMSE

1 1 0.60 M 0.08 s 930 MB 29.40 G 0.9215 37.9093 0.0133
1 2 0.75 M 0.15 s 1555 MB 29.45 G 0.9213 37.9363 0.0133
1 4 1.05 M 0.31 s 2805 MB 29.55 G 0.9164 37.6980 0.0137
2 2 0.97 M 0.16 s 1699 MB 43.98 G 0.9224 38.0251 0.0132
2 4 1.27 M 0.31 s 2949 MB 44.08 G 0.9196 37.8288 0.0135

Nc and Nt refer to the number of residual blocks per ConvBlock and the number of Transformer blocks per
Transformer, respectively. Model size is evaluated by the number of network parameters (Params), GPU memory
usage (GPU), and floating point operations (FLOPs), while performance is reflected by the model inference time
per image (Time) and three types of evaluation metrics.

3.5. Ablation Study
3.5.1. Ablation of Denoising Stream

To verify the effectiveness of the proposed convolution operation and Transformer
parallel denoising stream strategy, we performed the ablation experiments on the chest
dataset to compare the performance of the proposed network with the settings of only
the Transformer stream (Nc = 0) and only the convolution stream (Nt = 0). Experimental
results are shown in Table 2. We observe that denoising only using convolution operation
was more time-consuming, while the addition of transformer stream could accelerate the
inference to some extent. Moreover, the performance of the network with only a single
denoising branch was similar, which was significantly lower than that of the network
with two branches, although this combination increased requirements in terms of the
number of network parameters, GPU memory, and FLOPs. Apparently, these results fully
validated the necessity and effectiveness of the combination of convolution operation and
Transformer, since this combination allowed the network to extract features from different
levels and remove noise to a greater extent.
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Table 2. Performance comparison between different denoising strategies.

Denoising Stream Params Time GPU FLOPs SSIM PSNR RMSE

Transformer-only 0.42 M 0.15 s 1411 MB 7.67 G 0.9200 37.6779 0.0137
Conv-only 0.56 M 0.20 s 353 MB 36.63 G 0.91980 37.6308 0.0138

Both 0.97 M 0.16 s 1699 MB 43.98 G 0.9224 38.0251 0.0132

3.5.2. Ablation of DWT

To test the denoising performance of WaveletDFDS-Net in the image domain and
wavelet domain, we conducted comparative experiments on the chest dataset. As shown
in Table 3, it is obvious that the proposed network trained in the image domain took up
more computing resources. Except the number of network parameters, the use of the
wavelet transform dramatically reduced the execution time, GPU memory consumption,
and FLOPs of the network while improving the SSIM, PSNR, and RMSE. Therefore, the
power of the wavelet transform was that it not only significantly reduced the consumption
of computing resources by efficiently halving the image resolution but also helped to detect
noise in different frequency bands and obtain a better denoising effect.

Table 3. Performance comparison of WaveletDFDS-Net with or without the DWT.

DWT Params Time GPU FLOPs SSIM PSNR RMSE

✕ 0.97 M 1.88 s 6787 MB 175.02 G 0.9212 37.7222 0.0136
✓ 0.97 M 0.16 s 1699 MB 43.98 G 0.9224 38.0251 0.0132

3.5.3. Ablation of Loss Function

To prove the effect of the proposed dual-domain compound loss function, we com-
pared the performance of the proposed network trained under three types of loss functions,
including the L1 loss, image-domain compound loss, and dual-domain compound loss. As
shown in Table 4, the L1 loss was the main component of the three loss functions, all of
which were calculated in the image domain. Incorporating the SSIM loss either in the image
or wavelet domain enhanced all metrics. However, compared with the image domain SSIM
loss that evenly learned the information of different frequency bands, the wavelet-domain
SSIM loss, which guided the network to heavily focus on the low-frequency band with
more noise components, improved metrics more. Consequently, for optimal denoising per-
formance, the dual-domain compound loss function emerged as the preferred optimization
objective for subsequent experiments.

Table 4. Performance comparison of WaveletDFDS-Net trained with different loss functions.

Loss Type SSIM PSNR RMSE

L1 (image) 0.9224 38.0251 0.0132
L1 (image) + LSIMM (image) 0.9255 38.0833 0.0131

L1 (image) + LSIMM (wavelet) 0.9269 38.1343 0.0130

3.6. Experimental Results

Comparison methods: We compared our method with several well-known low-
dose CT denoising methods, including BM3D [38] and K-SVD [39], which are the most
popular image-based denoising methods, RED-CNN [16], MAP-NN [40], QAE [41], and
EDCNN [42], which are CNN-based methods, and TransCT [21] and CTformer [29], which
are Transformer-based methods. The training parameters of these competing methods were
set according to the recommendations of the original papers.

Here, we firstly tested the execution speed of these comparison methods other than
BM3D and K-SVD (non-deep-learning-based methods executing on CPU). Table 5 shows
the average inference time of 200 images with a resolution of 512 × 512. We observe that
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TransCT and CTformer were the fastest and slowest models, with average inference times
of 0.0094 s and 0.3624 s per image, respectively. In addition, the proposed network was
in the middle among these methods, with lower inference times than those of RED-CNN
and CTformer but higher than those of MAP-NN, QAE, EDCNN, and TransCT, with
approximately 0.1564 s per image processed. To sum up, even though WaveletDFDS-Net
applied the DWT, its model efficiency still lagged behind that of some approaches.

Table 5. Comparison of inference time between different methods.

Method Time
BM3D -
K-SVD -

RED-CNN 0.2412 s
MAP-NN 0.0615 s

QAE 0.0210 s
EDCNN 0.0161 s
TransCT 0.0094 s

CTformer 0.3624 s
WaveletDFDS-Net (Ours) 0.1564 s

Noise reduction performance: The left section of Table 6 presents the experimental
results on the head CT dataset. We observe that the proposed method was superior to all
compared methods, with the SSIM and PSNR achieving the highest value and the RMSE
the lowest. Figure 5 visualizes the noise reduction effects across different models on this
dataset. Notably, BM3D and K-SVD, unlike other compared methods which successfully
reduced noise, were less effective in noise reduction, resulting in images still marred
by significant noise. In contrast, images denoised by TransCT and CTformer exhibited
only slight noise. RED-CNN and EDCNN, while effective in noise reduction, tended to
over-smooth the boundaries of distinct soft tissues, thus diminishing clinical diagnostic
value. Other comparative methods like MAP-NN and QAE showed similar denoising
performance. However, WaveletDFDS-Net stood out for its superior restoration of details,
offering a higher quality and fidelity. As shown in Figure 6, the zoomed images over a
region of interest have clearer contrasts in the details. The evaluation metrics for the images
presented in Figure 5 are detailed in the left section of Table 7.

Table 6. Quantitative comparison with well-known low-dose CT denoising methods on the head,
chest, and abdomen datasets.

Methods Head (25% Dose) Chest (10% Dose) Abdomen (25% Dose)
SSIM PSNR RMSE SSIM PSNR RMSE SSIM PSNR RMSE

Before Denoising 0.8605 23.5636 0.0682 0.6244 29.4161 0.0382 0.7489 24.9297 0.0649
BM3D [38] 0.8706 24.6219 0.0606 0.8315 34.4676 0.0228 0.7967 27.6156 0.0504
K-SVD [39] 0.8589 24.1619 0.0631 0.7065 31.6084 0.0295 0.7811 26.8750 0.0518

RED-CNN [16] 0.8845 28.0380 0.0406 0.9126 37.1635 0.0146 0.8228 30.2898 0.0337
MAP-NN [40] 0.8877 28.0046 0.0407 0.9191 37.6004 0.0138 0.8265 30.2510 0.0338

QAE [41] 0.8874 28.0660 0.0404 0.9186 37.5780 0.0139 0.8256 30.3197 0.0336
EDCNN [42] 0.8870 27.9533 0.0409 0.9148 37.4787 0.0140 0.8261 30.1952 0.0340
TransCT [21] 0.8453 26.3517 0.0493 0.9112 36.9757 0.0149 0.7995 29.4216 0.0375

CTformer [29] 0.8758 27.6840 0.0422 0.8641 35.4648 0.0179 0.8005 29.4902 0.0368

WaveletDFDS-Net (Ours) 0.8890 28.0718 0.0403 0.9269 38.1343 0.0130 0.8297 30.3680 0.0334

The middle section of Table 6 displays the experimental results on the chest CT dataset.
Analysis of the metric values revealed that WaveletDFDS-Net achieved superior evaluation
metrics, surpassing all other models. Figure 7 depicts the image restoration results of the
various methods on that dataset. BM3D primarily smoothed the noise, leaving noticeable
traces in the denoised images. K-SVD and CTformer exhibited limited noise reduction



Electronics 2024, 13, 1906 11 of 16

capabilities, with their outputs retaining significant noise residues in the whole tissue. Some
other methods like RED-CNN, EDCNN, and TransCT showed similar denoising effects
with higher SSIM and PSNR and lower RMSE than BM3D, K-SVD, and CTformer but
tended to produce blurry images. MAP-NN and QAE demonstrated improved denoising
performance and image quality. Nevertheless, WaveletDFDS-Net further enhanced the
denoising efficiency and restored images with quality closest to NDCT images. Figure 8
enlarges the partial details of the region marked by the red box in Figure 7, which provides
a better observation. The quantitative results corresponding to these observations are
presented in the middle section of Table 7, related to Figure 7.

Figure 5. Comparison of the qualitative performance of WaveletDFDS-Net and other well-known
low-dose CT denoising methods on the head dataset. The display window is [0, 80] HU.

Figure 6. The zoomed images over the region of interest (ROI) marked by the red box in Figure 5.
(a) BM3D, (b) K-SVD, (c) RED-CNN, (d) MAP-NN, (e) QAE, (f) EDCNN, (g) TransCT, (h) CTformer,
(i) WaveletDFDS-Net.

The right section of Table 6 presents the experimental results conducted on the
abdomen CT dataset, where our proposed model demonstrated superior performance.
Figure 9 offers a qualitative comparison of noise reduction in abdomen CT images. K-SVD
showed the least effective noise reduction, with its outputs retaining significant noise dis-
tributed throughout the organs. Similar to findings in the head and chest datasets, images
denoised by BM3D, TransCT, and CTformer exhibited minor noise spots. In addition, other
compared methods, while displaying lower noise levels and better evaluation metrics, still
faced the issue of blurriness. In contrast, the proposed model trained with the compound
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loss not only attained higher metric values but also minimized image error, thereby restor-
ing clear feature details. All these fine details could be more obviously observed in the
zoomed images of Figure 10. The evaluation metrics for the images in Figure 9 are detailed
in the right section of Table 7.

Figure 7. Comparison of the qualitative performance of WaveletDFDS-Net and other well-known
low-dose CT denoising methods on the chest dataset. The display window is [−1000, 1000] HU.

Figure 8. The zoomed images over the region of interest (ROI) marked by the red box in Figure 7.
(a) BM3D, (b) K-SVD, (c) RED-CNN, (d) MAP-NN, (e) QAE, (f) EDCNN, (g) TransCT, (h) CTformer,
(i) WaveletDFDS-Net.

Table 7. Quantitative results of different denoising methods for Figures 5, 7, and 9.

Methods Figure 5 Figure 7 Figure 9
SSIM PSNR RMSE SSIM PSNR RMSE SSIM PSNR RMSE

Before Denoising 0.8747 23.9964 0.0631 0.7496 32.8246 0.0228 0.8719 30.1738 0.0310
BM3D [38] 0.8853 25.1456 0.0553 0.9260 38.4559 0.0119 0.9153 33.6569 0.0208
K-SVD [39] 0.8751 24.7358 0.0580 0.8135 34.8253 0.0181 0.8906 31.6105 0.0263

RED-CNN [16] 0.8973 28.3396 0.0383 0.9431 39.3966 0.0107 0.9217 34.6028 0.0186
MAP-NN [40] 0.9002 28.3003 0.0385 0.9477 39.6670 0.0104 0.9233 34.5802 0.0187

QAE [41] 0.8998 28.3502 0.0382 0.9457 39.5115 0.0106 0.9222 34.5999 0.0186
EDCNN [42] 0.8994 28.2622 0.0386 0.9448 39.4922 0.0106 0.9227 34.4535 0.0189
TransCT [21] 0.8617 26.6672 0.0464 0.9428 39.1229 0.0111 0.9110 33.5411 0.0210

CTformer [29] 0.8918 28.0242 0.0397 0.9190 38.0347 0.0125 0.9043 33.8039 0.0204

WaveletDFDS-Net (Ours) 0.9018 28.3540 0.0382 0.9543 40.1704 0.0098 0.9246 34.6519 0.0185
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Figure 9. Comparison of the qualitative performance of WaveletDFDS-Net and other well-known
low-dose CT denoising methods on the abdomen dataset. The display window is [−160, 240] HU.

Figure 10. The zoomed images over the region of interest (ROI) marked by the red box in Figure 9.
(a) BM3D, (b) K-SVD, (c) RED-CNN, (d) MAP-NN, (e) QAE, (f) EDCNN, (g) TransCT, (h) CTformer,
(i) WaveletDFDS-Net.

4. Discussion

We fully compared the efficiency and performance of WaveletDFDS-Net with sev-
eral well-known LDCT denoising methods and quantitatively and visually presented the
experimental results in the above sections. As one of the classical image-denoising algo-
rithms, BM3D groups patches by searching for similar regions in the image and performs
collaborative filtering by the group to reduce noise. Although excellent achievements on
natural image tasks have been obtained, the drawbacks are also obvious. For images with
uneven noise distribution or pixels entangled with noise, BM3D has a limited denoising
effect, whose results always suffer from noise residue or blurring. Similarly, classically,
K-SVD is a dictionary learning method that applies an SVD decomposition of images and
selects the term with the minimum error as the updated dictionary parameter to iteratively
optimize until the noise level converges. However, in our case, since the noise of LDCT
was introduced in the projection domain and converted into a more complex distribution
in the image domain, the capacity of the SVD decomposition was insufficient, resulting in a
minimum noise reduction effect of K-SVD in our experiments.

Different from the above two methods, the deep learning strategy had a more powerful
denoising ability. RED-CNN, as an early model, constructs an encoder–decoder structure
with residual connections that demonstrated far better performance than K-SVD and
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BM3D through end-to-end training, as shown in the experimental results in Table 6. MAP-
NN adaptively performs progressive noise reduction by looping through a convolutional
network and takes a discriminator as one of the supervisors to train its network. These
improvements contribute to increased evaluation metrics. Based on Red-CNN, QAE
employs quadratic neurons (executing a quadratic operation on the input data) instead of
the original inner product for high-order nonlinear sparse representation with a reasonable
model complexity. As the efficiency shown in Table 5 and performance shown in Table 6,
QAE comprehensively outperformed RED-CNN. EDCNN focuses on the extraction of
image edge information and introduces an edge enhancement module in the first layer of the
dense connection network to improve the effect of image edge restoration. Our experiments
confirmed that EDCNN restored clearer boundaries of distinct organs than other models.
However, all of these methods were inferior to WaveletDFDS-Net in denoising performance
due to the inherent receptive field limitations of convolution.

TransCT and CTformer are two kinds of Transformer-based LDCT noise reduction
models; the former separates the high-frequency content and low-frequency content of
LDCT images and then mainly denoises the high-frequency part, while the latter designs a
token-to-token learning strategy that encompasses local contextual information via token
rearrangement rather than convolution operation. Although neither requires much com-
puting resources, the performance is not satisfactory. Obviously, even though Transformer
has the long-range feature extraction capabilities that CNN lacks, it does not reach its po-
tential if it is used incorrectly. In contrast to these comparison methods, WaveletDFDS-Net
builds two parallel branches based on Transformer and convolution operations, respec-
tively, to learn the noise distribution at the fine-gained level and local coarse level on
multiple wavelet bands to improve noise reduction performance in a cooperative manner.
WaveletDFDS-Net shows promising potential to avoid the misrepresentation of anatomical
structures in images and ultimately lead to better patient outcomes through more accurate
diagnoses and treatments.

While the proposed methods demonstrate superior denoising capabilities, some as-
pects could be improved. Firstly, the concurrent architecture of CNNs and Transformers
does not fully exploit the synergistic potential between these technologies, resulting in
modest improvements in efficiency and experimental metrics. Secondly, the training of
WaveletDFDS-Net relies on a supervised learning strategy requiring a substantial dataset
of paired LDCT and NDCT images, which are challenging to acquire in real-world clinical
settings, thus restricting practical applicability.

5. Conclusions

In this paper, we introduced WaveletDFDS-Net, a dual forward denoising stream
network for low-dose CT noise reduction. This network synergized the local feature
extraction prowess of the convolution operation and the exquisite information connectivity
capabilities of Transformers to extract multi-level image features, enhancing the learning
of feature representation, resulting in more robust and efficient denoising performance.
Moreover, WaveletDFDS-Net employed the wavelet transform as the sampling unit to
reduce the image size without any information loss, and then processed image features in
the wavelet domain. Furthermore, we also devised a unique dual-domain loss function
to enhance detail restoration. Experimental results across three different types of CT
datasets demonstrated that our method outperformed the compared baseline models in
both evaluation metrics and visual quality. Future work will focus on developing an
unsupervised version of WaveletDFDS-Net to mitigate the dependency on paired training
datasets and broaden its applicability in clinical environments.
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